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Mean value formulas on surfaces in Grushin spaces

ValentinaFranceschi, RobertoMonti and AlessandroSocionovo

Abstract. We prove (sub)mean value formulas at the point 0 ∈ Σ for (sub)harmonic functions

on a hypersurface Σ ⊂ R
n+1 where the differentiable structure and the surface measure depend on

the ambient Grushin structure.

Keskiarvokaavoja Grushinin avaruuden pinnoilla

Tiivistelmä. Todistamme (ali)keskiarvokaavoja pisteessä 0 ∈ Σ sellaisen hyperpinnan Σ ⊂

R
n+1 (ali)harmonisille funktioille, jonka derivoituva rakenne ja pinta-alamitta riippuvat ympäröivän

avaruuden Grushinin rakenteesta.

1. Introduction

For n ∈ N and α > 0, we consider the vector fields on R
n+1

(1.1) Xi =
∂

∂xi
, i = 1, . . . , n, Xn+1 = |x|α

∂

∂y
.

Here, a generic point in R
n+1 is denoted by ξ = (x, y) = (x1, . . . , xn, y) ∈ R

n+1. We
also consider the second order partial differential operator on R

n+1 given by

(1.2) Lϕ =

n+1
∑

i=1

X2
i ϕ = ∆xϕ+ |x|2α∂2yϕ,

where |x| = (x21+ . . .+x
2
n)

1/2. The operator L in (1.2) is known as Baouendi–Grushin
operator, see [9] for a historical account and see also [7].

When α is an even integer, this operator is hypoelliptic and admits a fundamental
solution with pole at any point ξ0 ∈ R

n+1 (see [1] for an explicit representation).
When ξ0 = 0, an explicit formula for this fundamental solution is in fact known for
any α > 0 (see [8]) and, up to a normalization constant, it is the function Γ(ξ) =
̺(ξ)1−n−α, ξ 6= 0, where ̺ : Rn+1 → R is the gauge function

(1.3) ̺(ξ) =
(

|x|2(α+1) + (α + 1)2y2
)

1
2(α+1) .

Let Σ ⊂ R
n+1 be a hypersurface of class C2 with 0 ∈ Σ. We declare the vector-

fields (1.1) orthonormal and we project them onto the tangent space to Σ, getting
tangential operators δ1, . . . , δn+1. We fix on Σ the hypersurface measure σ associated
with (1.1) according to the theory of sub-elliptic perimeters and then we define the
adjoint operators δ∗1 , . . . , δ

∗
n+1 with respect to σ. The natural restriction of L to Σ is

the differential operator

LΣ = −
n+1
∑

i=1

δ∗i δi.
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In this paper, we investigate the validity of mean value formulas (sub-mean value
formulas) at the point 0 ∈ Σ for functions f ∈ C2(Σ) satisfying LΣf = 0 (LΣf ≥ 0,
respectively).

The operator L is an example of “sub-Laplacian” or “sum of squares of vector
fields” satisfying the Hörmander condition [10]. When L =

∑m
i=1X

2
i is such an

operator in R
n+1, the validity of mean-value formulas for L-harmonic functions is

established in [4, 3, 5]. Denoting by Γ(·, ξ0) the fundamental solution for L with pole
at ξ0, if a function f satisfies Lf = 0 then for any r > 0 and ξ0 ∈ R

n+1

f(ξ0) =
1

r

ˆ

Ωr(ξ0)

f(ξ)K(ξ, ξ0) dξ,

where Ωr(ξ0) = {ξ ∈ R
n+1 : Γ(ξ, ξ0) > 1/r} and K(ξ, ξ0) = |XΓ(ξ, ξ0)|

2/Γ(ξ, ξ0)
2,

with |XΓ(·, ξ0)|
2 =

∑m
i=1(XiΓ(·, ξ0))

2. The appearance of the kernel K is due to the
different symmetry of Carnot–Carathéodory balls associated with the vector-fields
building up L and level sets of Γ(·, ξ0).

In the Riemannian case, the validity of mean-value formulas on metric balls for
harmonic functions leads to the notion of “harmonic manifold”. Starting probably
with [11], there exists a huge literature on the problem of characterizing harmonic
manifolds and it is not possible to give a full account, here. In fact, our hypersurface
Σ embedded in R

n+1 with the Grushin structure is not a Riemannian manifold but
rather a weighted Riemannian manifold that becomes singular at the point 0 ∈ Σ,
see Remark 2.1.

In the Grushin space, the harmonicity at 0 ∈ Σ is governed by the following
structural function qΣ : Σ \ {0} → R

(1.4) qΣ(ξ) = 〈X̺, ν〉 [(n+ 3α)〈X log ̺, ν〉 − 2α〈∇x log |x|, ν̄〉+ nHΣ] .

Above, X̺ = (X1̺, . . . , Xn+1̺) is the X-gradient of the gauge function ̺, ν =
(ν̄, νn+1) is the α-normal to Σ, 〈·, ·〉 are standard scalar products in R

n+1 and R
n,

and HΣ is the mean curvature of Σ associated with the Grushin structure. We
say that Σ is α-harmonic if qΣ = 0. In particular, any homogeneous hypersurface,
〈X̺, ν〉 = 0, is α-harmonic, as we show in Section 5.1.

Theorem 1.1. Let Σ ⊂ R
n+1 be an α-harmonic hypersurface of class C2 with

0 ∈ Σ. Any function f ∈ C2(Σ) such that LΣf = 0 satisfies the mean-value formula

at 0

(1.5) f(0) =
CΣ,n,α

rn+α

ˆ

Br∩Σ

f(ξ) |δ̺(ξ)|2 dσ,

for all r ∈ (0, r0) and for some r0 > 0 depending on Σ. The constant 0 < CΣ,n,α <∞
is defined by

(1.6)
1

CΣ,n,α

=
1

rn+α

ˆ

Br∩Σ

|δ̺(ξ)|2 dσ,

where the right hand-side does not depend on r ∈ (0, r0).

Above, the balls are

Br = {ξ ∈ R
n+1 : ̺(ξ) < r}.

and |δ̺| ≤ 1 is the length of the tangential gradient of ̺. When Σ is homogeneous,
the kernel is |δ̺|2 = |x|2α/̺2α. In the case of α-subharmonic hypersurfaces, qΣ ≥ 0,
the statement is similar.
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Theorem 1.2. Let Σ ⊂ R
n+1 be an α-subharmonic hypersurface of class C2

with 0 ∈ Σ. Any function f ∈ C2(Σ) such that LΣf ≥ 0 satisfies the following

sub-mean-value formula at 0

f(0) ≤
CΣ,n,α

rn+α

ˆ

Br∩Σ

f(ξ) |δ̺(ξ)|2 dσ,

for all r ∈ (0, r0) and for some r0 > 0 depending on Σ. The constant 0 < CΣ,n,α <∞
is defined by

(1.7)
1

CΣ,n,α

= lim
r→0+

1

rn+α

ˆ

Br∩Σ

|δ̺(ξ)|2 dσ.

The operator L in (1.2) and the hyper-surface measure σ are invariant with
respect to the vertical translations (x, y) 7→ (x, y + y0), for any fixed y0 ∈ R. Theo-
rem 1.2 can be therefore extended to get mean value formulas at points (0, y0) ∈ Σ
also with y0 6= 0. Obtaining mean value formulas at points (x0, y0) ∈ Σ with x0 6= 0
is, instead, difficult because our knowledge of the fundamental solution of L with
pole at (x0, y0) with x0 6= 0 is not explicit enough.

Our interest in sub-mean value formulas on hypersurfaces of Rn+1 endowed with
a system of Hörmander vector fields comes from the theory of minimal surfaces. One
of the key tools in Bombieri–De Giorgi–Miranda’s proof of the gradient estimate is
the sub-mean value property for sub-harmonic functions on minimal surfaces of the
Euclidean space, see [2]. In our setting, a minimal surface is defined by HΣ = 0. This
condition simplifies the structural function qΣ, however, this is not sufficient to have
qΣ ≥ 0.

The paper is organized as follows. In Section 2, we recall the basic definitions
of the measure σ, of the α-normal ν of Σ, and of mean curvature HΣ. In Section 3,
we introduce the various differential operators and we develop a calculus on radial
functions. The explicit computations of second order derivatives of ̺ is crucial, here.
In Section 4, we prove Theorems 1.1 and 1.2. Finally, in Section 5 we study the
structural function qΣ.

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No 101034255.

2. Perimeter and mean curvature of hypersurfaces

The α-perimeter of a Lebesgue measurable set E ⊂ R
n+1 in an open set A ⊂ R

n+1

is

Pα(E;A) = sup

{

ˆ

E

n+1
∑

i=1

Xiϕi(ξ) dξ : ϕ ∈ C1
c (A;R

n+1), max
ξ∈A

|ϕ(ξ)| ≤ 1

}

.

We are using the Lebesgue measure dξ = dLn+1 in R
n+1. When the boundary of E

is locally the graph of a Lipschitz function, its α-perimeter has the following integral
representation (see [6, Proposition 2.1])

(2.1) Pα(E;A) =

ˆ

∂E∩A

√

|N̄ |2 + |x|2α|N ′|2 dHn,

where N(ξ) = (N̄(ξ), N ′(ξ)) ∈ R
n × R is the Euclidean outer unit normal to ∂E at

the point ξ, and Hn is the standard n-dimensional Hausdorff measure in R
n+1. On
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top of its appearance as a sub-Riemannian perimeter, the relevance of the perimeter
Pα is due to its relation with the Heisenberg perimeter. When α = 1 and n is even,
then the Heisenberg perimeter of a set with cylindrical symmetry coincides with its
α-perimeter, see e.g., [6, Proposition 2.3].

Motivated by (2.1), when Σ ⊂ R
n+1 is an orientable hypersurface that is locally a

Lipschitz graph and N = (N̄ , N ′) is its Euclidean normal, we call the Borel measure
on Σ

(2.2) σ =
√

|N̄ |2 + |x|2α|N ′|2Hn Σ.

the α-perimeter measure of Σ.
The regular part of Σ is the set Σ∗ = {ξ = (x, y) ∈ Σ: x 6= 0}. At Hn-a.e. point

ξ ∈ Σ∗ we can define the α-normal of Σ as the vector field ν =
∑n+1

i=1 νiXi with

νi =
Ni

√

|N̄ |2 + |x|2α|N ′|2
, for i = 1, . . . , n,

νn+1 =
aNn+1

√

|N̄ |2 + |x|2α|N ′|2
.

With abuse of notation, we identify ν with the mapping ν : Σ∗ → R
n+1 given by the

vector of its coordinates ν(ξ) = (ν1(ξ), . . . , νn+1(ξ)) ∈ R
n+1 for ξ ∈ Σ∗.

Remark 2.1. (Comparison with the Riemannian structure) The hypersurface
measure σ and the α-normal ν can be interpreted in the following Riemannian terms.
The tensor metric in R

n+1 \ {x = 0} making X1, . . . , Xn+1 orthonormal is

gα(ξ) =

(

In 0
0 |x|−2α

)

, x 6= 0.

When x = 0 the metric is not defined. The Riemannian volume associated with gα
is the measure µ = |x|−αLn+1 and is singular at x = 0. The Riemannian surface area
associated with gα of a hypersurface Σ is the measure

µΣ = |x|−α
√

|N̄ |2 + |x|2α|N ′|2Hn Σ,

where N = (N̄ , N ′) is the Euclidean unit normal. We deduce that Lebesgue measure
and α-perimeter are weighted Riemannian volume and hypersurface measures with
the same weight:

Ln+1 = |x|αµ and σ = |x|αµΣ.

We now focus on the case of graphs. Let Σ = Σu = {ξ = (x, u(x)) ∈ R
n+1 : x ∈

Ω} be the y-graph of a function u ∈ C1(Ω) for some open set Ω ⊂ R
n. We shall

assume that 0 ∈ Ω and let Ω∗ = Ω \ {0}. The α-unit normal to Σu at points in Σ∗
u

is the mapping ν = (ν̄, νn+1) : Σ
∗ → R

n+1

(2.3) ν̄ =
−∇u

√

|∇u|2 + |x|2α
, νn+1 =

|x|α
√

|∇u|2 + |x|2α
.

This normal is pointing upwards. Notice that ν = ν(ξ) only depends on x and not
on y = u(x).

From (2.2) and from the area-formula, we deduce that the σ-area of Σ has the
integral representation

(2.4) σ(Σu) =

ˆ

Ω

√

|∇u|2 + |x|2α dx =

ˆ

Ω

v(x) dx,
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where v is the σ-area element

(2.5) v(x) =
√

|∇u|2 + a2, a = |x|α.

If Σu minimizes the σ-area with respect to compact perturbations in Ω and
u ∈ C2(Ω), then u satisfies the partial differential equation of the minimal surface-
type

div

(

∇u(x)
√

|∇u(x)|2 + |x|2α

)

= 0, x ∈ Ω∗.

This follows by a standard first variation procedure applied to (2.4). This suggests
the following definition.

Definition 2.2. (α-mean curvature) Let Σ be the y-graph of a function u ∈
C2(Ω). We define the α-mean curvature of Σ at the point ξ = (x, u(x)) ∈ Σ∗ as

(2.6) HΣ(ξ) =
1

n
div

(

∇u(x)
√

|∇u(x)|2 + |x|2α

)

.

We say that Σ is an α-minimal hypersurface if HΣ = 0 on Σ∗.

A more geometric definition of α-mean curvature will be presented in the next
section.

3. Tangential operators and Laplacians

We introduce tangential differential operators on hypersurfaces in R
n+1 endowed

with the Grushin structure. Let Σ ⊂ R
n+1 be an embedded hypersurface of class C2

with α-normal ν : Σ∗ → R
n+1.

TheX-gradient of a function ϕ ∈ C1(Rn+1) is the vector-fieldXϕ =
∑n+1

i=1 XiϕXi

that we identify, with abuse of notation, with the vector of its coordinates Xϕ =
(X1ϕ, . . . , Xn+1ϕ). We denote the standard scalar product on R

n+1 by 〈·, ·〉.

Definition 3.1. (Tangential gradient) Let ν : Σ∗ → R
n+1 be the α-normal of Σ.

The tangential gradient on Σ is the mapping δ : C1(Σ) → C(Σ∗;Rn+1)

(3.1) δϕ = Xϕ− 〈Xϕ, ν〉ν.

For any i = 1, . . . , n+ 1 we also let δiϕ = Xiϕ− 〈Xϕ, ν〉νi.

In (3.1), ϕ is extended outside Σ in a C1 way, and the definition will be indepen-
dent of this extension. We are assuming that Σ is oriented and we are fixing a choice
of α-normal. The definition does not depend on this choice. When Σ is a y-graph,
we agree that ν is pointing upwards. In this case, the α-normal ν can be extended
outside Σ in a way that is independent of the variable y. In the rest of the paper the
surface Σ will be always assumed to be a y-graph.

The definition of the tangential operator δ in (3.1) is extrinsic. A different pos-
sibility could be to define the tangential gradient of functions on Σ using the Rie-
mannian metric gα. However, the choice in (3.1) is the correct one in order to recover
the definition in (2.6) of α-mean curvature. Indeed, this definition reads

(3.2) HΣ = −
1

n

n
∑

i=1

Xiνi,

and it can be rephrased in the following way.
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Lemma 3.2. Let Σ ⊂ R
n+1 be a y-graph of class C2. Then on Σ∗ we have the

identity

HΣ = −
1

n

n+1
∑

i=1

δiνi.

Proof. We use the definition of δ and observe that
∑n+1

i=1 νiXkνi = Xk(|ν|
2/2) = 0,

and Xn+1νn+1 = 0, so that

n+1
∑

i=1

δiνi =

n
∑

i=1

δiνi + δn+1νn+1

=

n
∑

i=1

Xiνi −

n
∑

i=1

n+1
∑

k=1

νiνkXkνi +Xn+1νn+1 − νn+1νkXkνn+1

=

n
∑

i=1

Xiνi −

n+1
∑

k=1

(

νk

n+1
∑

i=1

νiXkνi

)

+Xn+1νn+1

=

n
∑

i=1

Xiνi = −nHΣ. �

Next we introduce the adjoint operators δ∗i , integrating by parts with respect to
the measure σ.

Definition 3.3. (Adjoint tangential operators) For each i = 1, . . . , n + 1, we
define the adjoint tangential operator δ∗i : C

1(Σ) → C(Σ∗) through the identity

(3.3)

ˆ

Σ

ψ δiϕdσ = −

ˆ

Σ

ϕ δ∗iψ dσ, ϕ, ψ ∈ C1
c (Σ).

The explicit formula for adjoint operators is given in the next lemma.

Lemma 3.4. Let Σ ⊂ R
n+1 be a hypersurface with α-mean curvature HΣ. For

every ψ ∈ C1
c (Σ) and i = 1, . . . , n+ 1, we have on Σ∗

(3.4) δ∗i ψ = −δiψ − ψ

[

δi log |x|
α +

1

νn+1
(δn+1νi − δiνn+1) + nHΣνi

]

.

Proof. Let ϕ, ψ ∈ C1
c (Σ

∗). Then by the area formula (2.4) with v as in (2.5)
ˆ

Σ

ϕ δ∗i ψ dσ =

ˆ

Σ

ψ δiϕdσ =

ˆ

Ω

ψ(Xiϕ− 〈Xϕ, ν〉νi)v dx

= −

ˆ

Ω

ϕ

[

Xi(vψ)−

n
∑

k=1

Xk(νiνkvψ)

]

dx = −

ˆ

Σ

ϕ
A

v
dσ,

where in the last identity we set A = Xi(vψ) −
∑n

k=1Xk(νiνkvψ). We are left to
prove that A/v is equal to the right-hand side in (3.4).

We have

−
A

v
= −

1

v

[

ψXiv + vXiψ − vνi〈Xψ, ν〉 − ψ
n
∑

k=1

Xk(νiνkv)

]

= −δiψ −
ψ

v

[

Xiv − νi〈Xv, ν〉 − v

n
∑

k=1

Xk(νiνk)

]

.
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In the term within brackets above, we easily recognize Xiv− νi〈Xv, ν〉 = δv. On the
other hand, using Xn+1ν = 0 and (3.2), we get

n
∑

k=1

Xk(νiνk) = −nνiHΣ −
1

νn+1
[Xn+1νi − νn+1〈Xνi, ν〉] = −nνiHΣ −

1

νn+1
δn+1νi.

Summarizing, we have

A

v
= δiψ + ψ

[

δiv

v
+
δn+1νi
νn+1

+ nHΣνi

]

.

To prove our claim it then remains to check the following identity

δiv

v
=
δia

a
−
δiνn+1

νn+1
= δi(log a)−

δiνn+1

νn+1
.

Indeed, since νn+1 = a/v we have

�
δia

a
−
δiνn+1

νn+1

=
δia

a
−
vδi(

a
v
)

a
=
δia

a
−
v

a

(

δia

v
−

a

v2
δiv

)

=
δiv

v
.

Definition 3.5. (Tangential Laplacians) Let Σ ⊂ R
n+1 be a hypersurface of

class C2. The tangential Laplacian of Σ is the operator LΣ : C
2(Σ) → C(Σ∗)

LΣϕ = −

n+1
∑

i=1

δ∗i δiϕ.

The relation between LΣ and the non-adjoint Laplacian

(3.5) ∆Σϕ =
n+1
∑

i=1

δ2iϕ.

is described in the following proposition.

Lemma 3.6. For any ϕ ∈ C2(Σ) we have the identity

(3.6) LΣϕ = ∆Σϕ+ ν2n+1〈δϕ, δ log a〉+ δn+1ϕ δn+1 log a

Proof. We have

LΣϕ = −

n+1
∑

i=1

δ∗i δi = ∆Σϕ+ 〈δϕ, δ log a〉 −
1

νn+1
〈δϕ, δνn+1 − δn+1ν〉.

By formula (3.4), for i = 1, . . . , n + 1 we have

δνn+1 − δn+1ν = νn+1

[

δ log a−
(

0̄, δn+1 log a
)]

+ ν2n+1

[

νδn+1 log a− νn+1δ log a
]

.

Since 〈δ(·), ν〉 = 0, we deduce

−
1

νn+1
〈δϕ, δνn+1 − δn+1ν〉 =− 〈δϕ, δ log a〉+ δn+1ϕδn+1 log a

+ ν2n+1〈δϕ, δ log a〉,

proving the result. �

The formal Hessian of ϕ with respect to the vector-fields X1, . . . , Xn+1 is the
(n+ 1)× (n + 1) matrix

X2ϕ =
(

XiXjϕ)i,j=1,...,n+1.

The non-adjoint Laplacian ∆Σ has a clear representation in terms of the Grushin
operator L in (1.2), X2 and α-mean curvature of Σ.



248 Valentina Franceschi, Roberto Monti and Alessandro Socionovo

Lemma 3.7. Let Σ ⊂ R
n+1 be a hypersurface of class C2 with α-mean curvature

HΣ. For any ϕ ∈ C2(Rn+1) we have the identity on Σ∗

(3.7) ∆Σϕ = Lϕ− 〈(X2ϕ)ν, ν〉+ nHΣ〈Xϕ, ν〉.

Proof. We first compute δ2iϕ, for i ≥ 1. We have

δ2i ϕ = δi(Xiϕ− 〈Xϕ, ν〉νi) = XiXiϕ− 〈XXiϕ, ν〉νi − 〈Xϕ, ν〉δiνi − δi(〈Xϕ, ν〉)νi.

Summing over i, we obtain the identities

n+1
∑

i=1

〈XXiϕ, ν〉νi = 〈(X2ϕ)ν, ν〉,
n+1
∑

i=1

δiνi = −nHΣ,

n+1
∑

i=1

δi(〈Xϕ, ν〉)νi = 〈δ(〈Xϕ, ν〉), ν〉 = 0,

and this completes the proof. �

We specialize the previous formulas to the case when ϕ is a radial function around
0 ∈ R

n+1. The symmetry is governed by the gauge function ̺ in (1.3). Below, we
collect the differential identities concerning first and second order derivatives of ̺.
With the notation ξ = (x, y) and ̺ = ̺(ξ) we have

∇x̺ = x|x|2α̺−(2α+1) and ∂y̺ = (α + 1)y̺−(2α+1).

Then the squared norm of the X-gradient of ̺ is

(3.8) |X̺|2 = |∇x̺|
2 + |x|2α|∂y̺|

2 = |x|2α̺−2α.

The second derivatives of ̺ are, with i, j = 1, . . . , n and denoting by εij the Kronecker
symbol,

XiXj̺ = |x|2α
[

εij + 2α
xixj
|x|2

− (2α+ 1)
xixj |x|

2α

̺2(α+1)

]

,

XiXn+1̺ = (α+ 1)|x|2αxiy̺
−2α−1

[

α

|x|α+2
− (2α+ 1)

|x|2α

̺2(α+1)

]

,

Xn+1Xj̺ = −(2α + 1)(α+ 1)|x|3αxjy̺
−4α−3,

X2
n+1̺ = (α+ 1)|x|2α̺(x)−2α−1

[

1− (2α+ 1)(α + 1)
y2

̺2(α+1)

]

.

(3.9)

From (3.9), we get the following formulas for the Laplacian L and for the quadratic
form 〈(X2̺)ν, ν〉:

(3.10) L̺ = (n+ α)
|X̺|2

̺
,

and

〈(X2̺)ν, ν〉 = |ν̄|2 + 2α
〈x, ν̄〉2

|x|2
− (2α+ 1)

|x|2α〈x, ν̄〉2

̺2(α+1)

+ (α + 1)〈x, ν̄〉2νn+1y

(

α

|x|α+2
− 2(2α + 1)

|x|2α〈x, ν̄〉2

̺2(α+1)

)

+ (α + 1)ν2n+1

(

1− (α + 1)(2α+ 1)
y2

̺2(α+1)

)

.

(3.11)



Mean value formulas on surfaces in Grushin spaces 249

Let Σ ⊂ R
n+1 be a hypersurface with α-normal ν and α-mean curvature HΣ.

The structural function qΣ : Σ
∗ → R introduced in (1.4) governs the harmonicity of

Σ at 0 ∈ Σ and appears in the following formula.

Theorem 3.8. (Tangential Laplacian of radial functions) For any ϕ ∈ C2(R+),
the function ψ ∈ C2(Rn+1 \ {0}), ψ = ϕ ◦ ̺, satisfies the identity

(3.12) LΣψ =

{

ϕ′′(̺) + ϕ′(̺)
n + α− 1

̺

}

|δ̺|2 + qΣ ϕ
′(̺).

Proof. In a first step, we prove that formula (3.12) holds with the following
expression for qΣ:

qΣ = −
n + α− 1

̺
|δ̺|2 + (n + α)

|X̺|2

̺
− 〈(X2̺)ν, ν〉+ nHΣ〈X̺, ν〉

+ αν2n+1〈δ̺, δ log |x|〉+ αδn+1̺δn+1 log |x|.

(3.13)

The proof combines formula (3.6) of Lemma 3.6 and formula (3.7) in Lemma 3.7:

∆Σψ = L(ψ ◦ ̺)− 〈X2(ψ ◦ ̺)ν, ν〉+ nHΣ〈X(ψ ◦ ̺), ν〉

= ϕ′′(̺)|δ̺|2 + ϕ′(̺)
(

L̺− 〈(X2̺)ν, ν〉 + nHΣ〈X̺, ν〉
)

,

where the last identity is a simple computation with the chain rule. On the other
hand, we have

LΣψ = ∆Σψ + αν2n+1〈δψ, δ(log |x|)〉+ αδn+1ψδn+1(log |x|).

Since δψ = ϕ′(̺)δ̺, we deduce

LΣψ = ϕ′′(̺)|δ̺|2 + ϕ′(̺)
[

L̺− 〈(X2̺)ν, ν〉 + nHΣ〈X̺, ν〉

+ αν2n+1〈δ̺, δ(log |x|)〉+ αδn+1̺δn+1(log |x|)
]

The proof of (3.12) with qΣ as in (3.13) is then concluded by adding and subtracting
the quantity n+α−1

̺
|δ̺|2 within squared brackets and using (3.10).

In the next step, we check that qΣ in (3.13) is as in (1.4). We start by observing
that an elementary computation gives

ν2n+1〈δ̺, δ log |x|〉+ δn+1̺δn+1 log |x| =
|x|2α

̺2α+1

(

ν2n+1 − (α + 1)νn+1|x|
−2−α〈x, ν̄〉y

)

,

and

−
n + α− 1

̺
|δ̺|2 + (n+ α)

|X̺|2

̺
=

|X̺|2

̺
+
n + α− 1

̺
〈X̺, ν〉2.

Inserting formulas (3.9)–(3.11) into (3.13), we obtain

qΣ =
n+ α− 1

̺
〈X̺, ν〉2 + nHΣ〈X̺, ν〉 −

|X̺|2

̺

[

2α
〈x, ν̄〉2

|x|2

− (2α + 1)
|x|2α

̺2α+2
〈x, ν̄〉2 + 2α(α+ 1)〈x, ν̄〉y|x|−2−ανn+1

− 2(α + 1)(2α+ 1)
|x|α

̺2α+2
〈x, ν̄〉yνn+1

− (α + 1)2(2α + 1)y2ν2n+1

1

̺2α+2

]

.

(3.14)
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Now we observe that

〈X̺, ν〉2 =
|x|2α

̺4α+2
(|x|α〈x, ν̄〉+ (α + 1)yνn+1)

2

and so, since |X̺| = (|x|/̺)α,

(3.15) 〈X̺, ν〉 =
|X̺|

̺α+1
(|x|α〈x, ν̄〉+ (α+ 1)yνn+1) .

Replacing last identity into (3.14) and after some computations that are omitted, we
obtain (1.4). �

4. Mean value formulas

We are ready to prove Theorems 1.1 and 1.2. Let Σ ⊂ R
n+1 be a hypersurface

of class C2 with 0 ∈ Σ. We say that:

i) Σ is α-harmonic at 0 if qΣ = 0;
ii) Σ is α-subharmonic at 0 if qΣ ≥ 0;
iii) Σ is α-superharmonic at 0 if qΣ ≤ 0.

Proof of Theorem 1.1. For any ψ ∈ C∞
c (Σ), by the integration by parts formula

(3.3) we have

(4.1) 0 =

ˆ

Σ

LΣf ψ dσ = −

ˆ

Σ

〈δf δψ〉dσ =

ˆ

Σ

f LΣψ dσ.

We shall use this identity for functions ψ with radial structure around 0. Let χ ∈
C∞(R+) be a function such that χ(r) = 1 for 0 < r < 1/2 and χ(r) = 0 for r > 1.
We may also assume that χ′ ≤ 0. With the notation m(r) = rn+α, for 0 < s < r we
define the function ϑs ∈ C∞(R+)

(4.2) ϑs(̺) =
∂

∂s

(

1

m(s)
χ

(

m(̺)

m(s)

))

, ̺ > 0.

Assume there exists a solution ϕs ∈ C∞(R+) to the differential problem

(4.3)

{

ϕ′′
s(̺) +

m′′(̺)
m′(̺)

ϕ′
s(̺) = ϑs(̺), ̺ > 0

ϕs(̺) = 0, ̺ > s.

Then we may consider the function ψs(ξ) = ϕs(̺(ξ)) for ξ ∈ Σ. By formula (3.12)
with qΣ = 0 and (4.3) we have

LΣψs =

{

ϕ′′
s(̺) + ϕ′

s(̺)
n + α− 1

̺

}

|δ̺|2 =
∂

∂s

(

1

m(s)
χ

(

m(̺)

m(s)

))

|δ̺|2,

and from (4.1) we deduce that

0 =

ˆ

Σ

f LΣψs dσ =
∂

∂s

ˆ

Σ

f(ξ)
1

m(s)
χ

(

m(̺)

m(s)

)

|δ̺|2 dσ,

and thus for any 0 < s < r

1

m(s)

ˆ

Σ

f(ξ)χ

(

m(̺)

m(s)

)

|δ̺|2 dσ =
1

m(r)

ˆ

Σ

f(ξ)χ

(

m(̺)

m(r)

)

|δ̺|2 dσ.
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We may approximate the characteristic function of the interval (0, 1) ⊂ R by a
sequence of functions χ as above. Passing to the limit in the previous identity, we
get

1

m(s)

ˆ

Bs∩Σ

f(ξ) |δ̺|2 dσ =
1

m(r)

ˆ

Br∩Σ

f(ξ) |δ̺|2 dσ.

This formula holds for f = 1, proving that the right hand-side of (1.6) does not
depend on r > 0. By continuity of f at 0, we get (1.5) with CΣ,n,α as in (1.6).

We are left to show that problem (4.3) has a solution. A straightforward com-
putation shows that the function ϑs in (4.2) reads

ϑs(̺) = −
m′(s)

m(s)2
∂

∂̺

(

m(̺)χ

(

m(̺)

m(s)

))

,

and so the differential equation in (4.3) is equivalent to

∂

∂̺

(

m′(̺)ϕ′
s(̺)

)

= −
m′(s)

m(s)2
∂

∂̺

(

m(̺)χ

(

m(̺)

m(s)

))

.

Integrating with ϕ′
s(̺) = 0 for ̺ > s we obtain:

(4.4) ϕ′
s(̺) = −

m′(s)m(̺)

m(s)2m′(̺)
χ

(

m(̺)

m(s)

)

= −
̺

sn+α+1
χ

(

̺n+α

sn+α

)

.

A final integration with ϕs(̺) = 0 for ̺ > s yields

(4.5) ϕs(̺) =

ˆ ∞

̺

r

sn+α+1
χ

(

rn+α

sn+α

)

dr,

showing that we find a function satisfying as a matter of fact ϕs(̺) = 0 for ̺ > s. �

Remark 4.1. Using the technique of Theorem 1.1, with m(r) = rn+α replaced
by m(r) = rn+α+1, one obtains a mean value formula for L-harmonic functions at
0 ∈ R

n+1, where |δ̺| in (1.1) is replaced by |X̺|, and L is the Grushin Laplacian (1.2).
The same technique works when L =

∑m
i=1X

2
j is the sub-Laplacian of any family

X1, . . . , Xm of smooth vector fields in R
n+1 satisfying the Hörmander condition, with

2 ≤ m ≤ n + 1 and admitting a global fundamental solution. The resulting mean-
value formulas coincide with the formulas obtained in [5].

We explain the relation between the two approaches in the case of a Carnot
group of topological dimension d > 2. Let Γ be the fundamental solution of the
corresponding Carnot sub-Laplacian L with pole at 0. For a harmonic function
Lf = 0, the mean value formula (1.4) proved in [5] reads

(4.6) f(0) =
1

r

ˆ

{ξ∈Rd:Γ(ξ)> 1
r
}

f(ξ) |X(log Γ)|2 ϕ

(

1

rΓ(ξ)

)

dξ, r > 0,

where ϕ is any continuous function on the interval [0, 1] with unit integral.

Let ̺(ξ) = Γ(ξ)
1

Q−2 , ξ 6= 0, where Q ∈ N is the homogeneous dimension of
the group. The Lebesgue measure of the balls Bs = {ξ ∈ R

d : ̺(ξ) < s} satisfies
m(s) = Ld(Bs) = CsQ for some constant C > 0 depending on n and Q. Using the
technique of Theorem 1.1 we get the mean value formula

(4.7) f(0) =
Cd,Q

m(s)

ˆ

Bs

f(ξ) |X̺(ξ)|2 dξ,
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with Cd,Q > 0 fixed on choosing f = 1. Formula (4.7) is precisely formula (4.6) with

the choice ϕ(t) = Q
Q−2

t
2

Q−2 . In fact, in this case we have

|X(log Γ)|2 ϕ

(

1

rΓ

)

= Q(Q− 2)r
2

2−Q |X̺|2,

and we obtain equivalence with (4.7) by setting r = sQ−2.

Proof of Theorem 1.2. The proof is identical to the proof of Theorem 1.1 with
minor modifications that we list below. For any nonnegative ψ ∈ C∞

c (Σ), we have

0 ≤

ˆ

Σ

f LΣψ dσ.

The function ϕs is the solution to (4.3) defined in (4.5). Notice that ϕ′
s ≤ 0 if χ ≥ 0

in (4.4). Then we have qΣ(ξ)ϕ
′
s(̺(ξ)) ≤ 0 for ξ ∈ Σ∗. By formula (3.12), the function

ψs = ϕs ◦ ̺ thus satisfies

LΣψs ≤
∂

∂s

(

1

m(s)
χ

(

m(̺)

m(s)

))

|δ̺|2,

and we get, for 0 < s < r,

1

m(s)

ˆ

Bs∩Σ

f(ξ) |δ̺|2 dσ ≤
1

m(r)

ˆ

Br∩Σ

f(ξ) |δ̺|2 dσ.

The choice f = 1 shows the existence of the limit in (1.7). �

Remark 4.2. If Σ is α-superharmonic, qΣ ≤ 0, then a function f with LΣf ≤ 0
satisfies the super-mean-value formula at 0:

f(0) ≥
CΣ,n,α

rn+α

ˆ

Br∩Σ

f(ξ) |δ̺(ξ)|2 dσ.

The proof is the same as in the sub-harmonic case.

5. Analysis of the structural function qΣ

5.1. Homogeneous hypersurfaces are harmonic. In R
n+1 with the Grushin

structure, we introduce the anisotropic dilations dλ : R
n+1 → R

n+1, λ > 0,

dλ(ξ) = dλ(x, y) = (λx, λα+1y), ξ ∈ R
n+1.

We say that a set Σ ⊂ R
n+1 is dλ-homogeneous if dλ(Σ) = Σ for any λ > 0.

Lemma 5.1. Let Σ ⊂ R
n+1 be a hypersurface of class C2 with 0 ∈ Σ. If Σ is

dλ-homogeneous then Σ is α-harmonic at 0.

Proof. We check the claim when Σ is a y-graph Σ = {(x, u(x)) ∈ R
n+1 : x ∈ R

n}
for some function u ∈ C2(Rn) satisfying the identity u(λx) = λα+1u(x) for any λ > 0
and x ∈ R

n. Differentiating this identity at λ = 1 we get

(5.1) 〈∇u(x), x〉 = (α + 1)u(x), x ∈ R
n.

Using formulas (2.3) for the α-normal ν = (ν̄, νn+1), (5.1) is equivalent to

|x|α〈x, ν̄〉+ (α + 1)yνn+1 = 0, (x, y) ∈ Σ∗.

By formula (3.15) this is in turn equivalent to 〈X̺, ν〉 = 0 on Σ∗, and this implies
qΣ = 0, see (1.4). �
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When Σ is dλ-homogeneous we have 〈X̺, ν〉 = 0 and, using (3.8), the kernel |δ̺|2

appearing in the mean value formula (1.6) reduces to

|δ̺|2 = |X̺|2 =
|x|2α

̺2α
.

This kernel is 0-homogeneous with respect to the dilations dλ and satisfies |δ̺|2 ≤ 1.

5.2. Flat case. The hyperplane Σ = {(x, y) ∈ R
n+1 : y = 0} is dλ homogeneous

and it is therefore α-harmonic. The α-normal is constant, ν = (0, 1) ∈ R
n × R, and

it follows that Σ is also α-minimal, HΣ = 0.
The tangential gradient δ reduces to the standard gradient δϕ = (∇xϕ, 0) and

the non-adjoint Laplacian ∆Σ in (3.5) reduces to the standard Laplacian ∆x in R
n,

see (3.7). From formula (3.6) we deduce that

LΣϕ = ∆xϕ+ α〈∇x log |x|,∇xϕ〉 =
1

|x|α
div
(

|x|α∇xϕ
)

.

Theorem 1.1 states that a function ϕ ∈ C2(Rn) satisfying LΣϕ = 0 has the mean
value property at 0

ϕ(0) =
n+ α

nωnrn+α

ˆ

{|x|<r}

ϕ(x)|x|α dx,

with ωn = Ln({|x| < 1}).

5.3. α-subharmonic surfaces. In this section, we look for sufficient conditions
for a hypersurface Σ to be α-subharmonic at 0 ∈ Σ.

Definition 5.2. (η-flatness) Let η > 0. We say that a hypersurface Σ ⊂ R
n+1

is η-flat at 0 ∈ Σ if there exists r > 0 such that its α-normal ν = (ν̄, νn+1) satisfies

(5.2) (α + 1)|y||νn+1| ≤ η|x|α|〈x, ν̄〉|

for all points ξ = (x, y) ∈ Σ∗ ∩Br.

When Σ is the y-graph of a function u, condition (5.2) reads

(5.3) (α+ 1)|u| ≤ η|〈x,∇xu〉|

holding for points a neighborhood of 0 ∈ R
n.

Lemma 5.3. Let u ∈ C1({|x| ≤ 1}) be a function satisfying (5.3). Then for any

point |x| ≤ 1 we have

(5.4) |u(x)| ≤

(

max
|x|=1

|u|

)

|x|
α+1
η .

Proof. Let |x| = 1 be fixed. We prove the claim along the segment tx, with
t ∈ [0, 1]. Letting ϕ : [0, 1] → R, ϕ(t) = u(tx), assumption (5.3) reads

(5.5) (α + 1)|ϕ(t)| ≤ ηt|ϕ′(t)|.

If ϕ = 0 on [0, 1], the claim is trivial. Then we can assume that the open set
A = {t ∈ (0, 1) : ϕ(t) 6= 0} is nonempty. This set is a finite or countable disjoint
union of intervals (a, b) ⊂ A. We always have ϕ(a) = 0 and from (5.5) it follows
that ϕ′ 6= 0 on (a, b), say ϕ′(t) > 0 for any t ∈ (a, b). Then ϕ is strictly monotone
increasing and thus ϕ(b) > 0, and so b = 1. It follows that A = (a, 1), for some
a ∈ [0, 1), and ϕ = 0 on [0, a].
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We can without loss of generality assume that a = 0 and conclude the proof in
the following way. We have ϕ > 0 and, say, ϕ′ > 0 on (0, 1). Then (5.5) reads

d

dt
log(tα+1) ≤ η

d

dt
logϕ(t),

and integrating this inequality from t = s to t = 1, 0 < s < 1, we get ϕ(s) ≤ ϕ(1)s
α+1
η .

This implies (5.4) and the proof is concluded. �

Theorem 5.4. Let Σ ⊂ R
n+1 by a hypersurface of class C2 with α-normal

ν = (ν̄, νn+1) and α-mean curvature HΣ. Assume that:

i) Σ is η-flat at 0 ∈ Σ for some

(5.6) 0 < η <
n+ α

n + 3α
.

ii) We have, with limit restricted to ξ = (x, y) ∈ Σ,

(5.7) lim
ξ→0

|x|2HΣ(ξ)

〈ν̄(ξ), x〉
= 0.

Then there exists a δ > 0 such that qΣ ≥ 0 on Σ∗ ∩Bδ.

Proof. Without loss of generality we may assume that Σ = {(x, u(x)) ∈ R
n+1 :

|x| ≤ 1} for some function u ∈ C2({|x| ≤ 1}), and that (5.2) holds with r = 1.
Letting C1 = max|x|=1 |u(x)|, points (x, y) ∈ Σ satisfy by (5.4)

(5.8) |y| ≤ C1|x|
α+1
η .

Formula (1.4) for qΣ reads

qΣ(ξ) = 〈X̺, ν〉

[

n+ 3α

̺
〈X̺, ν〉 −

2α

|x|2
〈x, ν̄〉+ nHΣ

]

,

and the inequality qΣ ≥ 0 is thus implied by

(5.9)

∣

∣

∣

∣

2α

|x|2
〈x, ν̄〉 − nHΣ

∣

∣

∣

∣

≤
n+ 3α

̺
|〈X̺, ν〉|.

Inserting the identity (3.15) into (5.9) and then using (3.8), we see that qΣ ≥ 0 is
implied by

(5.10)

∣

∣

∣

∣

2α

|x|2
〈x, ν̄〉 − nHΣ

∣

∣

∣

∣

≤
n+ 3α

̺2α+2
|x|α

∣

∣|x|α〈x, ν̄〉+ (α + 1)yνn+1

∣

∣.

By the η-flatness condition (5.2), (5.10) is in turn implied by

(5.11)

∣

∣

∣

∣

2α

|x|2
〈x, ν̄〉 − nHΣ

∣

∣

∣

∣

≤ (1− η)
n+ 3α

̺2α+2
|x|2α|〈x, ν̄〉|,

and finally, using assumption (5.7), (5.11) is implied by

(5.12)

(

2α +
n|x|2|HΣ|

|〈x, ν̄〉|

)

≤ (1− η)(n+ 3α)
|x|2α+2

̺2α+2
.

Now observe that, by (5.8),

(5.13)
̺2(α+1)

|x|2(α+1)
= 1 +

(α + 1)2y2

|x|2(α+1)
≤ 1 + C1(α + 1)2|x|2(α+1)(1/η−1).

By (5.13) and (5.7), inequality (5.12) is satisfied for x = 0 as a strict inequality, by
(5.6). Our claim follows by a limiting argument. �
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