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Mean value formulas on surfaces in Grushin spaces

VALENTINA FRANCESCHI, ROBERTO MONTI and ALESSANDRO SOCIONOVO

Abstract. We prove (sub)mean value formulas at the point 0 € ¥ for (sub)harmonic functions
on a hypersurface ¥ C R"*! where the differentiable structure and the surface measure depend on
the ambient Grushin structure.

Keskiarvokaavoja Grushinin avaruuden pinnoilla

Tiivistelmi. Todistamme (ali)keskiarvokaavoja pisteessd 0 € ¥ sellaisen hyperpinnan ¥ C
R"™*! (ali)harmonisille funktioille, jonka derivoituva rakenne ja pinta-alamitta riippuvat ymp#rsivin
avaruuden Grushinin rakenteesta.

1. Introduction

For n € N and a > 0, we consider the vector fields on R"*!

9 %)
1.1 Xi=—, i=1,....,n, X1 =|z|"=—.
(11) ol n X =l
Here, a generic point in R"*! is denoted by & = (z,9) = (21,...,20,9y) € R We
also consider the second order partial differential operator on R"*! given by

n+1
(1.2) Lo = ZXZ?@ = A0+ |:E|20‘8§<p,

i=1

where |z| = (22+...4+22)2. The operator £ in (1.2) is known as Baouendi-Grushin
operator, see [9] for a historical account and see also [7].

When « is an even integer, this operator is hypoelliptic and admits a fundamental
solution with pole at any point & € R™"! (see [1] for an explicit representation).
When &, = 0, an explicit formula for this fundamental solution is in fact known for
any a > 0 (see [8]) and, up to a normalization constant, it is the function I'(§) =
o) € £ 0, where o: R"™™! — R is the gauge function

(1.3) 0(€) = (|22 1 (a + 1)%y?) %,

Let ¥ C R™! be a hypersurface of class C? with 0 € X. We declare the vector-
fields (1.1) orthonormal and we project them onto the tangent space to 3, getting

tangential operators ¢y, ..., d,+1. We fix on X the hypersurface measure o associated
with (1.1) according to the theory of sub-elliptic perimeters and then we define the
adjoint operators 07, ..., 0, with respect to o. The natural restriction of £ to ¥ is

the differential operator
n+1

Ls=—> 05
=1
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In this paper, we investigate the validity of mean value formulas (sub-mean value
formulas) at the point 0 € 3 for functions f € C*(X) satisfying Lsf =0 (Lsf > 0,
respectively).

The operator £ is an example of “sub-Laplacian” or “sum of squares of vector
fields” satisfying the Hormander condition [10]. When £ = Y 7" X7 is such an
operator in R"*!, the validity of mean-value formulas for £-harmonic functions is
established in [4, 3, 5]. Denoting by I'(+, &) the fundamental solution for £ with pole
at &, if a function f satisfies £f = 0 then for any r > 0 and &, € R**!

fleo) = / K (E,60) d,
T(fO)

r

where Q,(&) = {£€ € R"™: T(,&) > 1/r} and K(&,&) = |XT(£,&)|?/T(€, &)?,
with | XT(-,&))? = > (XiT(+, &))?. The appearance of the kernel K is due to the
different symmetry of Carnot-Carathéodory balls associated with the vector-fields
building up £ and level sets of I'(-, &).

In the Riemannian case, the validity of mean-value formulas on metric balls for
harmonic functions leads to the notion of “harmonic manifold”. Starting probably
with [11], there exists a huge literature on the problem of characterizing harmonic
manifolds and it is not possible to give a full account, here. In fact, our hypersurface
¥ embedded in R™! with the Grushin structure is not a Riemannian manifold but
rather a weighted Riemannian manifold that becomes singular at the point 0 € X,
see Remark 2.1.

In the Grushin space, the harmonicity at 0 € ¥ is governed by the following
structural function ¢s: ¥\ {0} - R

(1.4) gs(&) = (Xo,v) [(n+ 3a)(X log o, V) — 2a(V, log |x|, V) + nHyx)] .

Above, Xp = (Xjp,...,X,110) is the X-gradient of the gauge function o, v =
(7, Uny1) is the a-normal to ¥, (-,-) are standard scalar products in R"*! and R",
and Hs, is the mean curvature of ¥ associated with the Grushin structure. We
say that X is a-harmonic if ¢ = 0. In particular, any homogeneous hypersurface,
(Xo,v) =0, is a-harmonic, as we show in Section 5.1.

Theorem 1.1. Let ¥ C R™™! be an a-harmonic hypersurface of class C? with
0 € X. Any function f € C*(X) such that Lxf = 0 satisfies the mean-value formula
at 0
o (:32,71,cy 2
(1.5) f(0) = f(&)160(&)[" do,
B,Nx

Tn+a

for all v € (0, r9) and for some o > 0 depending on ¥. The constant 0 < Cy,, o < 00
is defined by

(1.6) L ! / ZGIRE

C&Lma rnte

where the right hand-side does not depend on r € (0, rg).
Above, the balls are

B, ={¢eR"": o(¢) <r}.

and |0p| < 1 is the length of the tangential gradient of p. When ¥ is homogeneous,
the kernel is |dg|* = |z]**/0**. In the case of a-subharmonic hypersurfaces, gs > 0,
the statement is similar.
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Theorem 1.2. Let ¥ C R""! be an a-subharmonic hypersurface of class C?
with 0 € X. Any function f € C?(X) such that Lsf > 0 satisfies the following
sub-mean-value formula at 0

7(0) < Some / 1€ o(€) o,

rn+a

for all r € (0, ry) and for some ry > 0 depending on X. The constant 0 < Cy,, o < 00
is defined by

1 ) 1 9
Coma rligh rote /Bmz 91 do

The operator £ in (1.2) and the hyper-surface measure o are invariant with
respect to the vertical translations (z,y) — (z,y + yo), for any fixed yo € R. Theo-
rem 1.2 can be therefore extended to get mean value formulas at points (0,y,) € X
also with yo # 0. Obtaining mean value formulas at points (xg,yo) € X with zg # 0
is, instead, difficult because our knowledge of the fundamental solution of £ with
pole at (g, yo) with zg # 0 is not explicit enough.

Our interest in sub-mean value formulas on hypersurfaces of R**! endowed with
a system of Hormander vector fields comes from the theory of minimal surfaces. One
of the key tools in Bombieri-De Giorgi-Miranda’s proof of the gradient estimate is
the sub-mean value property for sub-harmonic functions on minimal surfaces of the
Euclidean space, see [2]. In our setting, a minimal surface is defined by Hy, = 0. This
condition simplifies the structural function ¢s;, however, this is not sufficient to have
qs > 0.

The paper is organized as follows. In Section 2, we recall the basic definitions
of the measure o, of the a-normal v of ¥, and of mean curvature Hy. In Section 3,
we introduce the various differential operators and we develop a calculus on radial
functions. The explicit computations of second order derivatives of g is crucial, here.
In Section 4, we prove Theorems 1.1 and 1.2. Finally, in Section 5 we study the
structural function ¢s.

(1.7)

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sktodowska-Curie
grant agreement No 101034255.

2. Perimeter and mean curvature of hypersurfaces

The a-perimeter of a Lebesgue measurable set £ C R"*! in an open set A C R™*!
is

n+1
P, (E;A) = Xipi(€)dE: o € CHA; R™, <1sp.
(E; A) p{[Ez Pi(E)dE: p € CHAR™), max|o(¢)] <
We are using the Lebesgue measure d¢ = d£"! in R™™. When the boundary of E

is locally the graph of a Lipschitz function, its a-perimeter has the following integral
representation (see |6, Proposition 2.1|)

(2.1) Pu(E; A) = / VINE + [af2o N7 dn,
OENA

where N(§) = (N(§), N'(§)) € R" x R is the Euclidean outer unit normal to OF at
the point &, and H" is the standard n-dimensional Hausdorff measure in R*™!. On
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top of its appearance as a sub-Riemannian perimeter, the relevance of the perimeter
P, is due to its relation with the Heisenberg perimeter. When o = 1 and n is even,
then the Heisenberg perimeter of a set with cylindrical symmetry coincides with its
a-perimeter, see e.g., |6, Proposition 2.3].

Motivated by (2.1), when ¥ C R™*! is an orientable hypersurface that is locally a
Lipschitz graph and N = (N, N') is its Euclidean normal, we call the Borel measure
on X

(2.2) o = \/INP + e | NP HLS.

the a-perimeter measure of X.
The regular part of ¥ is the set ¥* = {£ = (z,y) € ¥: z # 0}. At H"-a.e. point
¢ € ¥* we can define the a-normal of X as the vector field v = Z?jll v; X; with

N; :
v; = — , fore=1,...,n,
VINP A+ [z N2
N,
Vn41 g ot

VNP [ N
With abuse of notation, we identify v with the mapping v: ©* — R™"*! given by the
vector of its coordinates v(£) = (11(€), ..., v 1(€)) € R* for £ € 3%,

Remark 2.1. (Comparison with the Riemannian structure) The hypersurface
measure o and the a-normal v can be interpreted in the following Riemannian terms.
The tensor metric in R"* \ {x = 0} making X7, ..., X,,;1 orthonormal is

ga(f) = ([On |:L,|(1204) ) T # 0.

When z = 0 the metric is not defined. The Riemannian volume associated with g,
is the measure p = |z|~*£""! and is singular at * = 0. The Riemannian surface area
associated with g, of a hypersurface ¥ is the measure

s = |2V + a2 NP HOLS,

where N = (N, N') is the Euclidean unit normal. We deduce that Lebesgue measure
and a-perimeter are weighted Riemannian volume and hypersurface measures with
the same weight:
L =z|*u and o = |z|*us.

We now focus on the case of graphs. Let ¥ =%, = {£ = (z,u(z)) e R"™: z €
Q} be the y-graph of a function u € C1(2) for some open set Q C R". We shall
assume that 0 € Q and let Q* = Q\ {0}. The a-unit normal to ¥, at points in X*
is the mapping v = (7, vp41): 2F — R

—Vu |z«

3 Vpt1 = .
VIVuPF e T VP + [oe

This normal is pointing upwards. Notice that v = v(£) only depends on x and not
on y = u(x).

From (2.2) and from the area-formula, we deduce that the o-area of ¥ has the
integral representation

(2.4) a(Zu):/Q\/\Vu|2+\:c|2°‘da::/gv(:c)da:,

(2.3) U=
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where v is the o-area element

(2.5) v(z) = +/|Vu|2+a?, a=|z|*
If ¥, minimizes the o-area with respect to compact perturbations in €2 and

u € C*(Q), then u satisfies the partial differential equation of the minimal surface-
type

| Vu(z) *
div =0, xe€Q".
<¢|w<x>|2 T |:c\2a> -

This follows by a standard first variation procedure applied to (2.4). This suggests
the following definition.

Definition 2.2. (a-mean curvature) Let ¥ be the y-graph of a function u €
C?(2). We define the a-mean curvature of 3 at the point £ = (x,u(x)) € £* as

1 . Vu(z)
. Hg = —div .
(2.6) €)= <\/|Vu(:c)|2+\:c|2a>

We say that ¥ is an a-minimal hypersurface if Hy = 0 on »*.

A more geometric definition of a-mean curvature will be presented in the next
section.

3. Tangential operators and Laplacians

We introduce tangential differential operators on hypersurfaces in R**! endowed
with the Grushin structure. Let ¥ C R"*! be an embedded hypersurface of class C?
with a-normal v: ¥* — R*H1,

The X-gradient of a function ¢ € C*(R"*!) is the vector-field X = S0 X0 X,
that we identify, with abuse of notation, with the vector of its coordinates X¢ =
(X1, ..., Xni190). We denote the standard scalar product on R™ by (- ).

Definition 3.1. (Tangential gradient) Let v: ¥* — R™! be the a-normal of X.
The tangential gradient on X is the mapping 6: C1(X) — C(X*; R™1)

(3.1) o =Xp— (X, v)v.
Forany i =1,...,n+ 1 we also let ;0 = X;0 — (X, V)1;.

In (3.1), ¢ is extended outside ¥ in a C! way, and the definition will be indepen-
dent of this extension. We are assuming that X is oriented and we are fixing a choice
of a-normal. The definition does not depend on this choice. When ¥ is a y-graph,
we agree that v is pointing upwards. In this case, the a-normal v can be extended
outside ¥ in a way that is independent of the variable y. In the rest of the paper the
surface Y will be always assumed to be a y-graph.

The definition of the tangential operator § in (3.1) is extrinsic. A different pos-
sibility could be to define the tangential gradient of functions on ¥ using the Rie-
mannian metric g,. However, the choice in (3.1) is the correct one in order to recover
the definition in (2.6) of a-mean curvature. Indeed, this definition reads

1 n
3.2 He = —— X,
(3.2) > n; v

and it can be rephrased in the following way.
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Lemma 3.2. Let ¥ C R"™! be a y-graph of class C%. Then on ¥* we have the
identity
n+1

HZ = —% Zl(szl/z

Proof. We use the definition of § and observe that 3" v, X = Xi(Jv[2/2) =0,
and X, 117,11 = 0, so that

n+1

n
E 0iv; = E 0iVi + Op1Vn1
i=1 i=1

n n+l

n
= E Xiv; — E E Vi XV + Xpi1Vn1 — Vnp1 Ve XipVn 41

i=1 1=1 k=1

n n+1 n+1
= Z Xiv; — Z (Vk Z V@'XkVi> + Xn+1Vn11
i=1

k=1 i=1

= iXZVl = —an. ]
i=1

Next we introduce the adjoint operators o/, integrating by parts with respect to
the measure o.

Definition 3.3. (Adjoint tangential operators) For each i = 1,...,n + 1, we
define the adjoint tangential operator &} : C'(3) — C'(X*) through the identity

(33) [wwds == [ p5vdo, pwecio)
b b
The explicit formula for adjoint operators is given in the next lemma.

Lemma 3.4. Let ¥ C R""! be a hypersurface with a-mean curvature Hy,. For
every v € C}(X) andi=1,...,n+ 1, we have on ¥*

(34) G =~ — [ai log |«|* +
Vnti

Proof. Let ¢, € C1(X*). Then by the area formula (2.4) with v as in (2.5)

/290,@/)0 /E@/}soa /Qw v — (Xp,v)vivde

i A
= —/Q<P [Xi(vw) - ;Xk(VinU¢)] du = —/280; do,

where in the last identity we set A = X;(vy)) — > 7, Xy (vivpvep). We are left to
prove that A/v is equal to the right-hand side in (3.4).
We have

A n
- - _% [@/)Xﬂ) + v X — o (X, vy — 9 ; Xk(VinU)]

(Op+1s — Oilnt1) + nHsz‘] .

Y

v

= 6 -

Xiv —vi(Xv,v) —v ZX;C(VM)] )
k=1
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In the term within brackets above, we easily recognize X;v —v;(Xv,v) = dv. On the
other hand, using X,,;1v = 0 and (3.2), we get
1 1

n
ZX]C(V’in) = —TLI/Z'HZ _ [Xn—i—lVi — I/n+1<XI/Z', I/)] = —TLI/Z'HZ — —5n+17/i-
k=1 Vn+1 Vn+1

Summarizing, we have
A 0 Ony1li
v v Vn+1
To prove our claim it then remains to check the following identity
52"0 52‘& 5i7/n+1

= —— = §;(loga) —
v a Vny1 Vnt1

i Un+1

Indeed, since v, 11 = a/v we have

52‘_& _ 5i7/n+1 - 5Z_CL _ 115@(%) _ 5ia v <5ZCL a 5’0) _ (51_’0 ]
v

5 Ug
v v?

a Unt1 a a a a
Definition 3.5. (Tangential Laplacians) Let ¥ C R"™! be a hypersurface of
class C?%. The tangential Laplacian of X is the operator Ly : C*(X) — C(¥¥)

n+1

Lyp=—> 8.

i=1
The relation between Ly and the non-adjoint Laplacian
n+1

(3.5) Asp =) 6.
=1

is described in the following proposition.

Lemma 3.6. For any ¢ € C?(X) we have the identity

(3.6) Lsp = Asp + 5,1 (8¢, 010ga) + 6,410 0p 41 loga
Proof. We have
n+1
Lysp=—> 60 =Asp+ (d5p,0loga) — (6, OUps1 — Opi1l).

i=1 Vn+1
By formula (3.4), for i =1,...,n+ 1 we have
OVpi1 — Opi1V = Vpi1 [5 loga — ((), Ony1log a)] + IJEH [V5n+1 loga — v,410 log a] )
Since (0(+),v) = 0, we deduce

1
Dy (0, 0Vnt1 — On1v) = — (0, 010g a) + 0n 4190541 10g a
n+1
+ 12, 1(6p, 8 loga),
proving the result. O

The formal Hessian of ¢ with respect to the vector-fields X;,..., X,y is the
(n+1) x (n+ 1) matrix
XQSO = (Xincp)i,jzl ,,,,, n+l-

The non-adjoint Laplacian Ay has a clear representation in terms of the Grushin
operator £ in (1.2), X? and a-mean curvature of 3.
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Lemma 3.7. Let ¥ C R""! be a hypersurface of class C? with a-mean curvature
Hs.. For any p € C*(R™) we have the identity on %*

(3.7) Asp = Lo — (X?0)v,v) + nHs (X, v).
Proof. We first compute §2¢p, for i > 1. We have

570 = 6;( Xy — (X, v)1;) = Xi Xsp — (X Xip, V) — (X, v)6iv; — 8:((X o, 1))

Summing over ¢, we obtain the identities

n+1 n+1
Z<XXZ'Q0, vy = (X320, v), Zél-yl- = —nHsy,
i=1 i=1

n+1

Z@((X% v)vi = (0((Xp,v)),v) =0,

and this completes the proof. 0

We specialize the previous formulas to the case when ¢ is a radial function around
0 € R**1. The symmetry is governed by the gauge function g in (1.3). Below, we
collect the differential identities concerning first and second order derivatives of o.
With the notation £ = (z,y) and o = p(§) we have

V,0= x|x|2a9—(2a+1) and 9,0 = (a + 1)y9—(2a+1).

Then the squared norm of the X-gradient of p is

(3.8) [ Xo|* = [Vaol? + [2**|0,0” = |z[** 07>
The second derivatives of g are, with 4, j = 1, ..., n and denoting by ¢;; the Kronecker
symbol,
_ 2c x1$] Ly x] |:L,|2a
XZX]Q— |.T‘ 81]+204|x|2 —(2 +1)W )

A _ 2, —2a-—1 @ [
o o= (o Dlsfrnge | i — (a1

X1 Xjo=—2a+1)(a+ 1)|x|3o‘xjyg’4a’3,

B 2
(63 —z0— y
Ko = (ot Dlafola) > 1= ot Do+ D]

From (3.9), we get the following formulas for the Laplacian £ and for the quadratic
form ((X?0)v, v):

(3.10) Lo=(n+a) |XQQ|2
and
(X20)v,v) = |7]? + 20 <T;C|”2>2 — (2a+ 1)%
(3.11) + (o + 1){(2, 1) vy 1y (lei” —2(2a+1)%)

2
Y
+(a+ 1), (1—(a+1)(2a+1)m).
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Let ¥ C R™™! be a hypersurface with a-normal v and a-mean curvature Hy..
The structural function ¢y : ¥* — R introduced in (1.4) governs the harmonicity of
> at 0 € X and appears in the following formula.

Theorem 3.8. (Tangential Laplacian of radial functions) For any ¢ € C?(R™T),
the function v € C*(R™\ {0}), ¢ = ¢ o o, satisfies the identity

(3.12) Lot = {90”(9) n me;‘l} 50 + a5 ¢ (0).

Proof. In a first step, we prove that formula (3.12) holds with the following
expression for ¢s:

n+a-—1 | X 0)?
= ———— |60 + (n+ a)—— — ((X?0)v,v) + nHx(X o,V
(313) . 00"+ ( ) . (X*o)v,v) »(Xo,v)

+ aljZ-‘rl <597 510g |l‘|> + a5n+1Q5n+1 log |:L‘|
The proof combines formula (3.6) of Lemma 3.6 and formula (3.7) in Lemma 3.7:

Asth = L(1p 0 o) — (X*(¥ 0 0)v,v) + nHs(X (¢ 0 0), V)
= ¢"(0)|00” + ¢'(0) (Lo — {(XP0)v,v) + nHx(X o, 1)),

where the last identity is a simple computation with the chain rule. On the other
hand, we have

Lstp = Astp + av? (0, 6(log |z|)) + abpi198,41(log |z]).
Since §1 = ¢'(0)do, we deduce

Lsib = ¢"(0)|00]* + ¢'(0) [Lo — ((X?0)v,v) + nHx (X o, V)
+ av?,(60,6(log |z|)) + ady4100,+1(log |z])]

The proof of (3.12) with ¢s as in (3.13) is then concluded by adding and subtracting
the quantity %?HMQ‘Q within squared brackets and using (3.10).

In the next step, we check that gs in (3.13) is as in (1.4). We start by observing
that an elementary computation gives

a2 ray
ot (Vi = (0 Denalel G, o)y,

V3L+1<5Q, dlog |x|) + 0ps100pm41 log x| =

and
n+a-—1 Xo*> [Xo? n+a-1
o e a2 KD (Xo.)"
0 0 0
Inserting formulas (3.9)—(3.11) into (3.13), we obtain
n+a—1 Xol? x, v)?
g = ——(Xo,v)* + nHx(X0,v) — | X0l l2a< 2>
0 0 |z
|l»|20¢ —\2 — —2—a
—(20[+].)92a+2 <l‘, V) +2a(a+1)<x, I/>’y|$’| Vn41

(3.14)

2|

x
—2(a+1)2a+1) Jats (x, V)yvpi1

1
— (Oé + 1)2(20[ + 1)y2V2+1W:| .
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Now we observe that

(Xo,v) = 'ﬂi (2l (2.7) + (o + grass)’

and so, since |X | = (|z]/0)?,

[ Xo|

(3.15) (Xo,v) = oL (lz|*(2, 7) + (@ + Dyvnia) .-

Replacing last identity into (3.14) and after some computations that are omitted, we
obtain (1.4). O

4. Mean value formulas

We are ready to prove Theorems 1.1 and 1.2. Let ¥ C R"*! be a hypersurface
of class C? with 0 € ¥.. We say that:

i) ¥ is a-harmonic at 0 if g5 = 0;
ii) ¥ is a-subharmonic at 0 if g5, > 0;
iii) ¥ is a-superharmonic at 0 if g5 < 0.

Proof of Theorem 1.1. For any ¢ € C°(X), by the integration by parts formula
(3.3) we have

(4.1) O:/Zﬁgfwda:—/E(éféz/})da:/zfﬁgwda.

We shall use this identity for functions ¢ with radial structure around 0. Let y €
C°°(R™) be a function such that x(r) =1 for 0 < r < 1/2 and x(r) = 0 for r > 1.
We may also assume that ' < 0. With the notation m(r) = r"*t*, for 0 < s < r we
define the function ¥, € C*(RY)

e (29). o

Assume there exists a solution ¢, € C*°(R™) to the differential problem

(o) + 28l (0) = Vi(0), 0>0
vs(0) =0, 0> s.

Then we may consider the function 14(£) = @s(0(€)) for £ € ¥. By formula (3.12)
with ¢x = 0 and (4.3) we have

Lot = {0+ 0™ 2= ool = (o (2 ))

and from (4.1) we deduce that
1 m(o) 2
—= | |d0]* d
P (m<s>) |00l” do,

0= [ fesvido =2 [ 56
= [ 103 (B8 sokas = — [ 0% (28 5o

(4.3)

and thus for any 0 < s < r
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We may approximate the characteristic function of the interval (0,1) C R by a
sequence of functions x as above. Passing to the limit in the previous identity, we
get

1 v L 2
/;SOE f(g) |5Q| dO’ = /Brr—\|E f(g) |5Q| do‘,

m(s) m(r)

This formula holds for f = 1, proving that the right hand-side of (1.6) does not
depend on r > 0. By continuity of f at 0, we get (1.5) with Cx,,, o as in (1.6).

We are left to show that problem (4.3) has a solution. A straightforward com-
putation shows that the function 9 in (4.2) reads

o= 88 o (24

and so the differential equation in (4.3) is equivalent to

%(m’(g)wé(@)) = —Z;SZ@% (m(g)x (Zg)) :

Integrating with ¢’(0) = 0 for p > s we obtain:

(4.4) ps(0) = _T;n(/Sz)Zf((%X (ZE?;) B _5"+QO‘+1X (5:1:) .

A final integration with ¢4(g) = 0 for ¢ > s yields

[e’¢) r Tn-‘,—oc
(45) (103<Q> - 0 gnhta+l X ghta dT,

showing that we find a function satisfying as a matter of fact ¢s(0) = 0 for o > s. O

Remark 4.1. Using the technique of Theorem 1.1, with m(r) = r"** replaced
by m(r) = 7" one obtains a mean value formula for £-harmonic functions at
0 € R™™ where |dg| in (1.1) is replaced by | X g|, and £ is the Grushin Laplacian (1.2).
The same technique works when £ = > X 32 is the sub-Laplacian of any family
X1, ..., X,, of smooth vector fields in R"*! satisfying the Héormander condition, with
2<m <n+1 and admitting a global fundamental solution. The resulting mean-
value formulas coincide with the formulas obtained in [5].

We explain the relation between the two approaches in the case of a Carnot
group of topological dimension d > 2. Let I" be the fundamental solution of the
corresponding Carnot sub-Laplacian £ with pole at 0. For a harmonic function
Lf =0, the mean value formula (1.4) proved in [5] reads

1

4 g0 =7 RN () e o

where ¢ is any continuous function on the interval [0, 1] with unit integral.

Let o(§) = F(f)ﬁ, £ # 0, where Q € N is the homogeneous dimension of
the group. The Lebesgue measure of the balls By = {£ € R?: o(§) < s} satisfies
m(s) = LYB,) = Cs? for some constant C' > 0 depending on n and Q. Using the
technique of Theorem 1.1 we get the mean value formula

(47) 0) = s

. FE) 1 X 0(€)[ de,
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with Cy g > 0 fixed on choosing f = 1. Formula (4.7) is precisely formula (4.6) with
the choice p(t) = &tﬁ. In fact, in this case we have

X(osT) e () = Q@ - el xP

and we obtain equivalence with (4.7) by setting r = s@72.

Proof of Theorem 1.2. 'The proof is identical to the proof of Theorem 1.1 with
minor modifications that we list below. For any nonnegative ¢ € C'2°(X), we have

b

The function ; is the solution to (4.3) defined in (4.5). Notice that ¢/, < 0if x >0
in (4.4). Then we have g5 (&)¢.(0(§)) < 0 for £ € ¥*. By formula (3.12), the function
s = s o o thus satisfies

Lot < o (= () ) oo,

and we get, for 0 < s <r,
1

1 , 1 2
[ s@etiars s [ sielsopan

m(s) m(r)

The choice f =1 shows the existence of the limit in (1.7). O

Remark 4.2. If ¥ is a-superharmonic, g5, < 0, then a function f with Lyf <0
satisfies the super-mean-value formula at 0:

rn+a

F(0) > Come / O el do

The proof is the same as in the sub-harmonic case.

5. Analysis of the structural function gs

5.1. Homogeneous hypersurfaces are harmonic. In R""! with the Grushin
structure, we introduce the anisotropic dilations dy: R**! — R X\ > 0,

dA(§) = da(z,y) = (Az, 1" y), e R™L
We say that a set ¥ C R™™! is dy-homogeneous if d\(X) = X for any A > 0.

Lemma 5.1. Let ¥ C R be a hypersurface of class C? with 0 € X. If X is
dx-homogeneous then ¥ is a-harmonic at 0.

Proof. We check the claim when ¥ is a y-graph ¥ = {(z,u(z)) € R*""': z € R"}
for some function u € C?(R") satisfying the identity u(Az) = A*™u(z) for any A > 0
and x € R". Differentiating this identity at A = 1 we get

(5.1) (Vu(z),z) = (a+ Du(z), zeR™
Using formulas (2.3) for the a-normal v = (v, v,41), (5.1) is equivalent to
|.I“a<,§lj7ﬂ>—|—(0z+1)yljn+1:0, (Jf,y) SPH

By formula (3.15) this is in turn equivalent to (Xp,v) = 0 on ¥*, and this implies
gs =0, see (1.4). O
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When ¥ is dy-homogeneous we have (X g, ) = 0 and, using (3.8), the kernel |5g|?
appearing in the mean value formula (1.6) reduces to

‘x|2a
Q2a '

60|* = | Xof” =

This kernel is 0-homogeneous with respect to the dilations dy and satisfies [6g|* < 1.

5.2. Flat case. The hyperplane ¥ = {(x,y) € R"": y = 0} is d\ homogeneous
and it is therefore a-harmonic. The a-normal is constant, v = (0,1) € R" x R, and
it follows that ¥ is also a-minimal, Hy, = 0.

The tangential gradient ¢ reduces to the standard gradient d¢p = (V,¢,0) and
the non-adjoint Laplacian Ay in (3.5) reduces to the standard Laplacian A, in R",
see (3.7). From formula (3.6) we deduce that

1
Lsp =00+ a(V,1og|z|, Vop) = —adiv<|x|avxcp>.

|z]

Theorem 1.1 states that a function ¢ € C?*(R") satisfying Lxp = 0 has the mean
value property at 0
n+a

¢(0) = pp—— /{xq} o(@)|z|* dz,
with w, = L"({]z| < 1}).

5.3. a-subharmonic surfaces. In this section, we look for sufficient conditions
for a hypersurface ¥ to be a-subharmonic at 0 € >.

Definition 5.2. (n-flatness) Let n > 0. We say that a hypersurface ¥ C R"™!
is n-flat at 0 € X if there exists r > 0 such that its a-normal v = (v, 1,,1) satisfies
(5.2) (a 4+ Dyl[vns| < nlz|*(z, 7)|
for all points £ = (z,y) € X* N B,.

When ¥ is the y-graph of a function u, condition (5.2) reads

(5-3) (o + Dful < nl(z, Vau)|

holding for points a neighborhood of 0 € R".

Lemma 5.3. Let u € C'({|z| < 1}) be a function satisfying (5.3). Then for any
point |z| < 1 we have

(5.4) o)) < (1maxlul ) o]

jo|=1

Proof. Let |z| = 1 be fixed. We prove the claim along the segment tz, with
t € [0,1]. Letting ¢ : [0,1] = R, ¢(t) = u(tx), assumption (5.3) reads

(5.5) (o + Dlp(t)] < ntl'(1)]-

If ¢ = 0 on [0,1], the claim is trivial. Then we can assume that the open set
A ={t € (0,1): p(t) # 0} is nonempty. This set is a finite or countable disjoint
union of intervals (a,b) C A. We always have p(a) = 0 and from (5.5) it follows
that ¢’ # 0 on (a,b), say ¢'(t) > 0 for any ¢t € (a,b). Then ¢ is strictly monotone
increasing and thus ¢(b) > 0, and so b = 1. It follows that A = (a, 1), for some
a €10,1), and ¢ =0 on [0, a].
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We can without loss of generality assume that a = 0 and conclude the proof in
the following way. We have ¢ > 0 and, say, ¢’ > 0 on (0,1). Then (5.5) reads

d —log(t**!) < nj log p(t),

dt
and integrating this inequality from¢ = stot =1,0 < s < 1, we get ¢(s) < p(1)s N
This implies (5.4) and the proof is concluded. O

Theorem 5.4. Let ¥ C R"™! by a hypersurface of class C? with a-normal
v = (V,Vns1) and a-mean curvature Hy,. Assume that:

i) ¥ is n-flat at 0 € X for some

n+a
5.6 0<n<
(5.6) T + 3a
ii) We have, with limit restricted to £ = (z,y) € X,
2
H
(5.7) lim 2O

-0 (p(§), )
Then there exists a 6 > 0 such that gs; > 0 on X* N Bs.

Proof. Without loss of generality we may assume that ¥ = {(z,u(z)) € R*!:
|z| < 1} for some function u € C?({|z| < 1}), and that (5.2) holds with r = 1.
Letting C = max,— |u(z)|, points (x,y) € 3 satisfy by (5.4)
a+1
(5.8) lyl < Cufa] 7

Formula (1.4) for gy reads

and the inequality ¢s > 0 is thus implied by

(5.9) |2T2(x vy —nHy| <

Inserting the identity (3.15) into (5.9) and then using (3.8), we see that ¢z > 0 is
implied by

(x,v) —nHy| < ntsa

(5.10) ~ —55515—

|z[? ||| |2]* (2, 7) + (@ + 1)yvna .

By the n-flatness condition (5.2), (5.10) is in turn implied by

200 n+30, 9, -
ey —nls < (L=n)—5 [ |(z, 7)),

and finally, using assumption (5.7), (5.11) is implied by

(5.12) (2 ”'x‘ |HE|) )+ 30) 2

92a+2'

(5.11)

‘2a+2

Now observe that, by (5.8),

g2(oz+1) B (04—0—1)23/2

(5'13) |x‘2(a+1) - ‘x|2(a+1)

<1+ Ci(a+ 1)2|x|2(0‘+1)(1/”_1).

By (5.13) and (5.7), inequality (5.12) is satisfied for z = 0 as a strict inequality, by
(5.6). Our claim follows by a limiting argument. O
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