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Function theory off the complexified unit circle:
Fréchet space structure and automorphisms

Michael Heins, Annika Moucha§ and Oliver Roth

Abstract. Motivated by recent work on strict deformation quantization of the unit disk and
the Riemann sphere, we study the Fréchet space structure of the set of holomorphic functions on the
complement Ω := {(z, w) ∈ Ĉ2 : z · w 6= 1} of the complexified unit circle {(z, w) ∈ Ĉ2 : z · w = 1}.
We also characterize the subgroup of all biholomorphic automorphisms of Ω which leave the canon-
ical Laplacian on Ω invariant.

Funktioteoriaa kompleksisoidun yksikköympyrän komplementissa:
Fréchet’n avaruuden rakenne ja automorfismit

Tiivistelmä. Viimeaikaisen yksikköympyrän ja Riemannin pallon aitoa muodonmuutoksen
kvantittamista koskevan tutkimuksen kannustamana tässä työssä tarkastellaan kompleksisoidun yk-
sikköympyrän {(z, w) ∈ Ĉ2 : z · w = 1} komplementin Ω := {(z, w) ∈ Ĉ2 : z · w 6= 1} holomorfisten
funktioiden joukon Fréchet’n avaruus -rakennetta. Lisäksi määritetään niiden joukon Ω holomorfis-
ten bijektioiden aliryhmä, jotka säilyttävät joukon Ω kanonisen Laplacen operaattorin.

1. Introduction

We work on the Riemann sphere Ĉ := C ∪ {∞}. The complement of the com-
plexified unit circle is defined1 as the open subset

Ω :=
{

(z, w) ∈ Ĉ2 : z · w 6= 1
}

of Ĉ2. The Fréchet space H (Ω) of all holomorphic functions f : Ω → C, equipped
with its natural topology of locally uniform convergence, plays a peculiar and rather
puzzling key role in recent work [1, 3, 14, 22] on strict deformation quantization of
the unit disk D := {z ∈ C : |z| < 1} and the Riemann sphere Ĉ. Moreover, it is
shown in [6, 18], that the fine structure of H (Ω) also provides an efficient device to
investigate spectral properties of the invariant Laplacians on the disk and the sphere
(see e.g. Helgason [8], Rudin [20]) using methods from complex analysis.

The purpose of the present paper is to analyze the structure of the Fréchet space
H (Ω) and to identify the group of biholomorphic automorphisms of Ω which leave
the canonical Laplacian of Ω invariant. In order to place the results of this paper
into a broader context, we briefly indicate the role the Fréchet space H (Ω) is playing
in strict deformation quantization as well as for the spectral theory of the invariant
Laplacian for the unit disk D and the sphere Ĉ.
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(i) Roughly speaking, in the theory of strict deformation quantization, a star prod-
uct ?~ of Wick-type is an associative, non-commutative product or “deformation”
of the pointwise product of functions defined on some complex manifold M and
depending on a complex parameter ~ s.t. the product ?~ is compatible with the
complex structure of M , see e.g. [24] for a detailed survey. It turns out, see
[1, 3, 14], that the vector spaces

A (Ĉ) :=
{
Ĉ 3 z 7→ f(z,−z) : f ∈H (Ω)

}
and

A (D) := {D 3 z 7→ f(z, z) : f ∈H (Ω)} ,
which are subspaces of the real analytic functions on Ĉ resp. D, are of particular
interest. In fact, they can be equipped with star products ?~,Ĉ and ?~,D such that
(A (Ĉ), ?~,Ĉ) and (A (D), ?~,D) are non-commutative Fréchet algebras w.r.t. the
subspace topology induced from the natural topology of H (Ω). In addition,
these star products are holomorphic w.r.t. ~, and they are invariant w.r.t. the
action of the groups Rot(Ĉ) and Aut(D) of holomorphic isometries of Ĉ resp. D.

In [7] we go one step further and show that the star products ?~,D and ?~,Ĉ are
simply the restrictions of a naturally defined star product ?~ on the “ambient”
Fréchet space H (Ω). In particular, (H (Ω), ?~) becomes a Fréchet algebra when
equipped with its natural compact-open topology, and the dependence on the
parameter ~ is holomorphic. This gives a natural interpretation of the striking
similarities of A (Ĉ) and A (D) observed in [3, 22]. Moreover, the star product
?~ on H (Ω) is fully invariant under the distinguished subgroup

(1.1) M :=
⋃

ψ∈Aut(Ĉ)

{
(z, w) 7→

(
ψ(z),

1

ψ(1/w)

)
, (z, w) 7→

(
ψ(w),

1

ψ(1/z)

)}
of automorphisms of Ω, which corresponds to the full Möbius group Aut(Ĉ) of
all Möbius transformations.

(ii) While the group Aut(Ω) of all biholomorphic automorphisms is exceedingly large,
the distinguished subgroup M is characterized as the group of exactly those
automorphisms of Ω which leave the natural Laplacian on Ω invariant, see The-
orem 5.2 in Section 5 below.

(iii) The complement of the complexified unit circle has several other equivalent mod-
els such as the second configuration space {(z, w) ∈ Ĉ2 : w 6= z} of the Riemann
sphere Ĉ or the complex two-sphere S2

C = {(z1, z2, z3) ∈ C3 : z2
1 + z2

2 + z2
3 = 1},

see Section 3 below. By the invariance properties of the star product ?~ on Ω,
one therefore obtains a star product on H (S2

C), which is invariant under the
group SO(3,C) of all complex linear transformations preserving the quadratic
form z2

1 + z2
2 + z2

3 . In the complex two-sphere model, the restriction process of
Ω to its “rotated diagonal” {(z,−z) : z ∈ Ĉ} ⊆ Ω reveals that, algebraically, the
Fréchet algebra A (Ĉ) is the same as the set of spherical harmonics on the real
two-sphere. This aspect will be further discussed in the forthcoming paper [18]
of the second-named author where a coherent theory of complexified spherical
harmonics is developed.

(iv) The star product ?~ on H (Ω) has an explicit and simple formula in terms of
M -invariant differential operators acting on H (Ω), see [7, Sec. 6]. These differ-
ential operators are natural extensions to Ω of conformally invariant differential
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operators acting on Ĉ resp. D of Peschl–Minda type, which have been continu-
ously studied since the 1950s, see [12, 11, 19, 21, 23]. By restriction to Ĉ and
D one obtains explicit formulas for the star products ?~,Ĉ on Ĉ and ?~,D on D in
terms of those Peschl–Minda differential operators, see again [7, Sec. 6].

(v) The Fréchet space H (Ω) has an intriguing structure. It is the direct sum of
two complementary subspaces H−(Ω) and H+(Ω) which we call the past and
the future of H (Ω), see Theorem 4.2 below. These subspaces ultimately come
from composition operators induced by two biholomorphic maps from C2 onto
the open subsets

Ω+ := Ω \
{

(z,∞) : z ∈ Ĉ
}
, Ω− := Ω \

{
(∞, w) : w ∈ Ĉ

}
of Ω, which are obtained from Ω by removing the horizontal resp. vertical com-
plex line through the point (∞,∞) ∈ Ω, see Figure 1 below. In particular, the
Fréchet spaces H (Ω+) and H (Ω−) are both isomorphic to H (C2), the Fréchet
space of all entire functions on C2. Theorem 4.7 below shows that H (Ω+) and
H (Ω−) completely encode the Fréchet space structure of H (Ω). As a byprod-
uct, we get (see Corollary 4.8) that the functions

fp,q(z, w) =
zpwq

(1− zw)max{p,q} , p, q ∈ N0 := {0, 1, 2, . . . },

form a Schauder basis for H (Ω).
(vi) The Fréchet spaces H (Ω+) and H (Ω−) also play a crucial role for studying

invariant differential operators on Ω and its projections, the unit disk D and
the Riemann sphere Ĉ. In fact, it is shown in [7] that H (Ω+) and H (Ω−)
are identified as the “natural” function spaces on which the Peschl–Minda type
differential operators (see (iv) above) operate. Moreover, the Fréchet spaces
H (Ω+) and H (Ω−) are utilised in [6] as basic tools for a function-theoretic
characterization of the “exceptional” eigenspaces of the invariant Laplacian on
the unit disk, which have been studied by Rudin [20].

(vii) In addition, the second-named author shows in [18] that these “exceptional”
eigenspaces span all of H (Ω). In fact, much more is true: there is a “natural”
Schauder basis for H (Ω) consisting of eigenfunctions of the invariant Laplacian
on Ω. By restriction to Ĉ and D one obtains explicit Schauder bases of the
Fréchet algebras A (Ĉ) and A (D) consisting precisely of the eigenfunctions of
the invariant Laplacian on Ĉ resp. the “exceptional” eigenfunctions of Rudin [20]
of the invariant Laplacian on D. This provides a geometrically pleasing intrinsic
description of the algebras A (Ĉ) and A (D).
In summary, the study of the set of holomorphic functions on the complement

of the complexified unit circle provides a unified framework for investigating confor-
mally invariant differential operators on the disk and the sphere within their con-
jecturally natural habitat. In addition, our further investigations in [7, 6, 18] offer
a complex-analysis approach to Wick-type strict deformation quantization and the
spectral properties of the invariant Laplacians on the unit disk, the Riemann sphere
and the complex two-sphere as well as its various interactions that might otherwise
remain hidden.

The paper is organized in the following way. We start with two preliminary
sections. In Section 2 we briefly discuss the canonical Laplacian of Ω and its main
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properties. In Section 3 we construct two other very useful, biholomorphically equiv-
alent models of Ω, the second configuration space Conf2(Ĉ) = {(z, w) ∈ Ĉ2 : z 6= w}
of Ĉ and the complex two-sphere S2

C = {(z1, z2, z3) ∈ C3 : z2
1 + z2

2 + z2
3 = 1}. After

these preparations, we turn to a discussion of the main results of this paper. In Sec-
tion 4 we describe in detail the fine structure of the Fréchet space H (Ω). Section 5
is concerned with the group Aut(Ω) of all biholomorphic automorphisms of Ω. In
particular, we identify the Möbius subgroup M of Aut(Ω) as the set of those biholo-
morphisms of Ω which leave the Laplacian of Ω invariant. In Section 6 we introduce a
canonical holomorphic Riemannian metric on Ω and study its relation to the Möbius
subgroup M . The proofs of the results of Section 4 are given in Section 7, while
those of Sections 5 and 6 are presented in Section 8.

We finally note that there is a natural higher dimensional analogue for the com-
plement of the complexified unit circle, namely the complement of the complexified
unit ball in CN ,

ΩN :=
{

(z1, . . . , zN , w1, . . . , wN) ∈ Ĉ2N : z1w1 + . . .+ zNwN 6= 1
}
,

and one can define a star product on the unit ball of CN by working on ΩN instead
of Ω = Ω1, see [14]. Nevertheless, we have decided to present our work exclusively
in the N = 1 dimensional case. In fact, some of our results easily extend to the
N -dimensional situation, essentially without extra work except for adding more vari-
ables, while others conjecturally do not. Perhaps “this is a feature, not a bug” [10,
p. xiv].

2. The invariant Laplacian on Ω

The set Ω is a complex manifold of complex dimension 2. Its complex structure
is given by just two charts:

(i) Standard chart

φ+ : Ω ∩ (C× C)→ C2, φ+(u, v) = (u, v).

(ii) Flip chart

φ− : Ω ∩ (Ĉ \ {0} × Ĉ \ {0})→ C2, φ−(u, v) := (1/v, 1/u).

In local coordinates the canonical Laplacian ∆zw on Ω is defined by

∆zwF (z, w) := 4(1− zw)2∂z∂wF (z, w)

for z, w ∈ C. Here, ∂z and ∂w denote the complex Wirtinger derivatives for a function
F which is supposed to be twice partially differentiable in the real sense and defined
in an open neighborhood U ⊆ Ω of (z, w). We are mostly interested in the case when
F belongs to the set H (U) of holomorphic functions on U . It is not difficult to check
that ∆zw is a well-defined continuous linear operator acting on H (U) for every open
subset U of Ω. The canonical Laplacian ∆zw on Ω can be viewed as the complex
counterpart of both the hyperbolic Laplacian ∆D on the unit disk D defined by

∆Df(z) :=
(
1− |z|2

)2
∆f(z), z = x+ iy ∈ D,

as well as of the spherical Laplacian ∆Ĉ on the sphere Ĉ defined in local coordinates
by

∆Ĉf(z) :=
(
1 + |z|2

)2
∆f(z), z = x+ iy ∈ C.
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Here,

∆ :=
∂2

∂x2
+

∂2

∂y2

is the standard Euclidean Laplacian. It is an elementary fact that the hyperbolic
Laplacian ∆D is invariant under the group Aut(D) of all conformal automorphisms
T : D→ D of D. This means that ∆D(f ◦T ) = ∆Df ◦T for all T ∈ Aut(D) and all C2-
functions f : U → D defined on some open set U ⊆ D. In a similar way, the spherical
Laplacian ∆Ĉ is invariant under the group Rot(Ĉ) of holomorphic rigid motions of
Ĉ. Both Aut(D) and Rot(Ĉ) are subgroups of the group Aut(Ĉ) of all Möbius trans-
formations, that is, the biholomorphic self-maps ψ : Ĉ → Ĉ. Clearly, every Möbius
transformation ψ ∈ Aut(Ĉ) gives rise to the following two biholomorphic self-maps
of Ω:

(z, w) 7→
(
ψ(z),

1

ψ(1/w)

)
, (z, w) 7→

(
ψ(w),

1

ψ(1/z)

)
,

and the set of all such automorphisms of Ω is a subgroup of Aut(Ω), which we
denote by M . Slightly abusing language, we call M the Möbius subgroup of Aut(Ω)

and its elements Möbius automorphisms of Ω. Just as Aut(D) and Rot(Ĉ) operate
transitively on D resp. Ĉ, the Möbius subgroup M acts transitively on Ω. Moreover,
the canonical Laplacian ∆zw is invariant under every T ∈M :

∆zw (F ◦ T ) = ∆zwF ◦ T
for every F ∈H (Ω). For this reason we call ∆zw the invariant Laplacian on Ω.

3. Other models of Ω

While for applications to deformation quantization and to the spectral property
of the invariant Laplacian on the unit disk, the set Ω seems most suitable, some of
the proofs become more transparent in the Conf2(Ĉ)-setting, and the connections to
spherical harmonics are best discussed in the S2

C-model. We therefore briefly discuss
these two other biholomorphically equivalent models for the manifold Ω.

3.1. The second configuration space of the Riemann sphere. The map-
ping

T (z, w) := (z, 1/w)

defines a biholomorphic map from Ω onto

G =
{

(z, w) ∈ Ĉ : z 6= w
}
,

the so-called second configuration space of the sphere Ĉ, see [2]. In the literature,
the second configuration space of Ĉ is often denoted by Conf2(Ĉ), but for ease of
notation we write G instead of Conf2(Ĉ). Clearly, G is an open subset of Ĉ2 and
pathconnected. It is known that G = Conf2(Ĉ) is homotopy equivalent to Ĉ, see
[2, Example 2.4 (1)]. Thus its fundamental group π1(G) is trivial and G is simply
connected. Moreover, it is easy to see that every entire function g : C→ C gives rise
to the following biholomorphic self-map of G:

(z, w) 7→
(
z + g

(
1

z − w

)
, w + g

(
1

z − w

))
.
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In particular, the automorphism group Aut(G) of G is infinite-dimensional. By way
of the biholomorphic map T : Ω → G, these properties of G also hold for Ω. Thus
Ω is simply connected and Aut(Ω) is infinite-dimensional.

3.2. The complex two-sphere. Another useful model for Ω is the complex
two-sphere

S2
C =

{
(z1, z2, z3) ∈ C3 | z2

1 + z2
2 + z2

3 = 1
}
.

In fact, Ω is biholomorphically equivalent to S2
C by way of the biholomorphic map

S : Ω→ S2
C,

S(z, w) =


(
z − w
1− zw,−i

z + w

1− zw,−
1 + zw

1− zw

)
if (z, w) ∈ C2, zw 6= 1,

(1/z, i/z, 1) if z ∈ Ĉ \ {0}, w =∞,
(−1/w, i/w, 1) if w ∈ Ĉ \ {0}, z =∞.

The inverse map of S : Ω→ S2
C is given by π : S2

C → Ω,

π(z1, z2, z3) =


(
z1 + iz2

1− z3

,−z1 − iz2

1− z3

)
if z3 6= 1,

(1/z1,∞) if z3 = 1, z2 = iz1,

(∞,−1/z1) if z3 = 1, z2 = −iz1.

It is natural to call π : S2
C → Ω the “complex stereographic projection”, since if we

denote by
S2
R := S2

C ∩ R3 =
{

(x1, x2, x3) ∈ R3 | x2
1 + x2

2 + x3
2 = 1

}
the Euclidean two-sphere in R3, then

π(x1, x2, x3) =

(
x1 + ix2

1− x3

,−x1 − ix2

1− x3

)
for all (x1, x2, x3) ∈ S2

R

and
S2
R → Ĉ, (x1, x2, x3) 7→ x1 + ix2

1− x3

is the standard stereographic projection of S2
R onto Ĉ. In particular, π maps S2

R onto
the “rotated diagonal” {(z,−z) : z ∈ Ĉ} ⊆ Ω. Furthermore, if H2

R denotes the image
of the hyperboloid {(x1, x2, x3) ∈ R3 : − x2

1 − x2
2 + x2

3 = 1} under the biholomorphic
map (z1, z2, z3) 7→ (iz1, iz2, z3), then π maps the lower half {(x1, x2, x3) ∈ H2

R : x3 ≤
−1} onto {(z, z) : z ∈ D} and the upper half {(x1, x2, x3) ∈ H2

R : x3 ≥ 1} onto
{(z, z) : z ∈ Ĉ \ D}.

Remark 3.1. On the complex two-sphere S2
C, the subgroup M of Aut(Ω) defined

by (1.1) corresponds to

SO(3,C) :=
{
R ∈ C3×3 : RTR = I, detR = 1

}
.

4. The structure of the Fréchet space H (Ω)

In this section we describe the fine structure of the Fréchet space H (Ω). In
particular, we shall see that the functions

(4.1) fp,q : Ω→ C, fp,q(z, w) =
zpwq

(1− zw)max{p,q} , p, q ∈ N0,

are a Schauder basis for H (Ω). As immediate corollaries we obtain that the func-
tions z 7→ fp,q(z, z) are a Schauder basis for A (D) and the functions z 7→ fp,q(z,−z)
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are a Schauder basis for A (Ĉ). These corollaries have already been proven in [14,
Theorem 3.16] and [22, Proposition 6.4]. Our approach is much more conceptional,
and has various useful ramifications for studying invariant differential operators and
the spectral theory of the invariant Laplacian on Ω for which we refer to [7, 6]. The
basic tool is a natural decomposition of H (Ω) into a direct sum of two closed sub-
spaces H+(Ω) and H−(Ω), which are defined as follows. We denote by spanM the
closure of all finite linear combinations of a subset M of a Fréchet space X.

Definition 4.1 (The past and the future in H (Ω)). The closed subspace

H−(Ω) := span {fp,q : 0 ≤ p < q <∞}
is called the past in H (Ω) and the closed subspace

H+(Ω) := span {fp,q : 0 ≤ q ≤ p <∞}
is called the future in H (Ω).

Theorem 4.2. (Canonical decomposition of H (Ω)) H (Ω) is the topological
direct sum of the past H−(Ω) and the future H+(Ω), i.e.

(4.2) H (Ω) = H−(Ω)⊕H+(Ω).

The decomposition (4.2) is intimately tied to the decomposition of the domain Ω,

Ω = Ω+ ∪ Ω− ∪ {(∞,∞)}
into the two subdomains

Ω+ := Ω \
{

(z,∞) : z ∈ Ĉ
}
, Ω− := Ω \

{
(∞, w) : w ∈ Ĉ

}
.

Note that Ω− ∩ Ω+ = Ω ∩ C2 and

H (Ω−) ∩H (Ω+) = H (Ω).

Moreover, it is an immediate consequence of (4.1) and Definition 4.1 that

H±(Ω) ⊆H (Ω±),

and the inclusion is strict. The subdomains Ω+ and Ω− of Ω are visualized in Figure 1.
The edges of each square represent points near infinity. If the edge belongs to the
domain, it is dashed. The blue dots correspond to boundary points. Note that points
on opposite edges and in particular the four corners are identified.

z

w

D

Ĉ

Ω∂Ω

∂Ω

z

w

D

Ĉ

Ω+∂Ω+

∂Ω+

z

w

D

Ĉ

Ω−∂Ω−

∂Ω−

Figure 1. Schematic picture of the domains Ω (left), Ω+ (center) and Ω− (right) with points
at infinity.



264 Michael Heins, Annika Moucha and Oliver Roth

The following proposition provides the first step towards the proof of Theo-
rem 4.2. It shows that Ω+ and Ω− are simply connected subdomains of Ω which
can be mapped biholomorphically onto C2 by means of the elementary maps

Ψ+ : Ω+ → C2, Ψ+(z, w) =

(
z

1− zw,w
)
,

Ψ− : Ω− → C2, Ψ−(z, w) =

(
z,

w

1− zw

)
.

In terms of the induced composition operators

CΨ+ : H (C2)→H (Ω+), CΨ+(F ) := F ◦Ψ+,(4.3)

CΨ− : H (C2)→H (Ω−), CΨ−(F ) := F ◦Ψ−,(4.4)

this means that both Fréchet spaces, H (Ω+) and H (Ω−), are isomorphic to H (C2).

Proposition 4.3. The domains Ω+ and Ω− are biholomorphically equivalent to
C2 and the composition operators (4.3) and (4.4) are continuous and bijective.

The proof is by simple verification. The second ingredient for the proof of The-
orem 4.2 is the canonical decomposition of the Fréchet space H (C2) of all entire
functions F : C2 → C,

H (C2) = H+(C2)⊕H−(C2),

where H+(C2) denotes the closed linear hull of the monomials zpwq with p ≥ q, and
H−(C2) is the closed linear hull of the monomials zpwq with p < q. We call H−(C2)
the past and H+(C2) the future in H (C2). Roughly speaking, we shall show that
the direct sum of the restriction of the operator CΨ− to H−(C2) and the restriction
of the operator CΨ+ to H+(C2) provides a continuous linear bijection from H (C2)
onto H (Ω). Along the way, we will encounter several subtleties, which we carefully
have to bypass. The construction is in two steps. In the first step, we establish
the following proposition, which provides the bridge from the past and the future in
H (C2) to the past and the future in H (Ω).

Proposition 4.4. (a) For each F+ ∈H+(C2) the function CΨ+(F+) ∈H (Ω+)
has a holomorphic extension Φ+(F+) ∈H+(Ω), and the induced linear oper-
ator

Φ+ : H+(C2)→H+(Ω)

is continuous and one-to-one.
(b) For each F− ∈ H−(C2) the function CΨ−(F−) ∈ H (Ω−) has a holomorphic

extension Φ−(F−) ∈H−(Ω), and the induced linear operator

Φ− : H−(C2)→H−(Ω)

is continuous and one-to-one.

In particular, the linear operator Φ := Φ+⊕Φ− : H (C2)→H (Ω) is continuous
and one-to-one. In the second step, it remains to prove that Φ is onto in order to
complete the following diagram:
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H (C2) = H+(C2) ⊕ H−(C2)

H (Ω) = H+(Ω) ⊕ H−(Ω)

Φ = Φ+ ⊕ Φ−

Figure 2. Decomposition of H (Ω).

For the proof that Φ: H (C2) → H (Ω) is onto, we show that the natural pro-
jections that map from H (C2) onto its closed complementary subspaces H+(C2)
and H−(C2) also act as continuous projections from H (Ω±) onto H±(Ω). As
we shall see, in combination with Proposition 4.3, this will imply that the linear
operators Φ± : H±(C2) → H±(Ω) in Proposition 4.4 are surjective and also that
H (Ω) = H+(Ω)⊕H−(Ω).

Note that the bidisk D2 is contained in each of the domains Ω, Ω+ and Ω−, see
again Figure 1. We denote by π+ : H (D2) → H+(D2) and π− : H (D2) → H−(D2)
the natural projection maps defined by

(4.5) π+

( ∞∑
p,q=0

ap,qu
pvq

)
:=
∑
p≥q

ap,qu
pvq, π−

( ∞∑
p,q=0

ap,qu
pvq

)
:=
∑
p<q

ap,qu
pvq.

Clearly, the restrictions of π± to the subspace H (C2) of H (D2) are continuous pro-
jections from H (C2) onto H±(C2). The following result shows that the restrictions
of π± to the subspaces H (Ω±) of H (D2) are continuous projections from H (Ω±)
onto H±(Ω) as well.

Proposition 4.5. (a) For each f ∈ H (Ω+) the function π+(f) ∈ H (D2)
has a holomorphic extension to a function in H+(Ω), and the induced linear
operator

π+ : H (Ω+)→H+(Ω)

is continuous. Moreover, π+ : H (Ω+)→H (Ω+) is a projection onto H+(Ω),
and the diagram in Figure 3 (a) commutes.

(b) For each f ∈H (Ω−) the function π−(f) ∈H (D2) has a holomorphic exten-
sion to a function in H−(Ω), and the induced linear operator

π− : H (Ω−)→H−(Ω)

is continuous. Moreover, π− : H (Ω−)→H (Ω−) is a projection onto H−(Ω),
and the diagram in Figure 3 (b) commutes.

Note that we are systematically abusing language by using the same symbols,
π+ and π−, for denoting the projections (4.5) which act on different functions spaces
depending on the context. This should cause no serious confusion.
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H (C2) H (Ω+)

H+(C2) H+(Ω)

CΨ+

∼=

π+ π+

Φ+

∼=
(a)

H (C2) H (Ω−)

H−(C2) H−(Ω)

CΨ−
∼=

π− π−

Φ−
∼=

(b)

Figure 3. Commutation of composition operators and projections.

Remark 4.6. Proposition 4.5 implies that the set H+(Ω) is also closed w.r.t. the
Fréchet topology of the ambient space H (Ω+). Hence the map π+ : H (Ω+) →
H (Ω+) is a continuous projection onto the closed subspace H+(Ω) of H (Ω+). The
same remark applies to π−. However, for the proof of Theorem 4.2 we need the full
force of Proposition 4.5, that is, the continuity of π+ : H (Ω+) → H+(Ω) w.r.t. the
canonical Fréchet topology of H+(Ω).

It follows at once from Proposition 4.5 that the operators Φ+ : H+(C2)→H+(Ω)
and Φ− : H−(C2) → H−(Ω) in Proposition 4.4 are not only continuous and one-
to-one, but also surjective. Their direct sum CΨ+ ⊕ CΨ− : H (C2) → H (Ω) is a
continuous bijection:

Theorem 4.7. (Canonical decomposition of H (Ω), fine structure) The map

Φ: H (C2)→H (Ω), F 7→ Φ(F ) := Φ+ (π+(F )) + Φ− (π−(F ))

is a continuous linear bijection. Its inverse map is given by

Φ−1 : H (Ω)→H (C2), f 7→ Φ−1(f) := π+

(
f ◦Ψ−1

+

)
+ π−

(
f ◦Ψ−1

−
)
.

In addition, the isomorphisms Φ: H (C2) → H (Ω) and Φ−1 : H (Ω) → H (C2)
preserve the past and the future,

Φ
(
H−(C2)

)
= H−(Ω), Φ

(
H+(C2)

)
= H+(Ω).

By construction, Φ maps each element upvq of the canonical Schauder basis
(upvq)p,q of H (C2) to fp,q ∈ H (Ω) defined in (4.1). Since Φ: H (C2) → H (Ω)
is a continuous bijection, we finally arrive at the following result.

Corollary 4.8. (fp,q)p,q∈N0 is a Schauder basis of H (Ω). In particular, each
f ∈H (Ω) has a unique representation as

f(z, w) =
∞∑

p,q=0

ap,qfp,q(z, w).

This series converges absolutely and locally uniformly in Ω, and the Schauder coeffi-
cients ap,q of f are given by

(4.6) ap,q =


− 1

4π2

ˆ
∂D

ˆ
∂D
f

(
z,

w

1 + zw

)
dz dw

zp+1wq+1
, p < q,

− 1

4π2

ˆ
∂D

ˆ
∂D
f

(
z

1 + zw
,w

)
dz dw

zp+1wq+1
, p ≥ q.
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Clearly, (fp,q)p<q is a Schauder basis of H−(Ω) and (fp,q)q≤p is a Schauder basis
of H+(Ω).

Remark 4.9. (Terminology) We briefly indicate why one might call H−(Ω)
the past and H+(Ω) the future in H (Ω). As described in the introduction, one
motivation for our study of the Fréchet space H (Ω) comes from the fact that the
restriction to the diagonal yields the Fréchet algebra A (D) for which a continuous
star product has been constructed in [14]. In view of Theorem 4.2, the Fréchet algebra
A (D) decomposes in

A (D) = A+(D)⊕A−(D)

where each element φ in A+(D) has the form

φ(reit) =
∑
p≥q

ap,q
rp+q

(1− r2)p
ei(p−q)t, z = reit ∈ D.

Hence t 7→ φ(reit) has no negatively indexed Fourier coefficients and thus belongs to
the Hardy space H2(∂D), see e.g. [9].

5. Automorphisms and the invariant Laplacian of Ω

The complex manifold Ω has a rich and highly symmetric structure. In particular,
Ω is a Stein manifold with the holomorphic density property, see [13, Sec. 3]. Roughly
speaking, the density property implies by way of Andersen–Lempert theory [4] that
Ω has a very large automorphism group Aut(Ω). In particular, Aut(Ω) is infinite-
dimensional. It is therefore of interest to characterize those subgroups of Aut(Ω)
whose elements have meaningful geometric or algebraic characteristic properties. For
instance, since one can think of Ω as a submanifold of the complex projective space
CP3, it is possible to speak about rational automorphisms of Ω, and these have been
completely characterized in [16]. In this section we give a characterization of those
automorphisms of Ω which leave the Laplacian ∆zw on Ω invariant in the following,
very weak, sense.

Definition 5.1. Let O ⊆ Ω be a nonempty open set and let T : O → Ω be a
holomorphic mapping. We say that the operator ∆zw is T -invariant if

(5.1) ∆zw(F ◦ T ) = ∆zw(F ) ◦ T for every F ∈H (Ω).

As it has been pointed out in Section 2, the operator ∆zw is T -invariant for every
automorphism T belonging to the Möbius subgroup M , see (1.1). Since Aut(Ω) is
much larger than M , one might ask if there exist other automorphisms T for which
∆zw is T -invariant. The following result shows that this is not the case: the Möbius
automorphisms of Ω are the only locally defined holomorphic maps on Ω, for which
the Laplacian ∆zw is invariant.

Theorem 5.2. Let O be a subdomain of Ω, and let T : O → Ω be a holomorphic
mapping. Then the following conditions are equivalent:

(a) ∆zw is T -invariant.
(b) T ∈M .

In short: The Möbius-invariant Laplacian is T -invariant if and only if T is Möbius.
Note that in Theorem 5.2 we only assume T : O → Ω is defined in some sub-

domain O of Ω. It is to emphasize that the T -invariance condition (5.1) is very
weak, since we only assume this condition holds for functions F which are defined
and holomorphic on all of Ω and not for functions which are holomorphic merely on
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some open subset of Ω, see Remark 8.2 below. The crucial point is to make sure
that H (Ω) contains sufficiently many functions to ensure that condition (5.1) forces
T ∈ M . In fact, condition (5.1) cannot be weakened any further, since there is no
open set in Ĉ2 which is strictly larger than Ω and carries nonconstant holomorphic
functions:

Theorem 5.3. Let F ∈H (Ω). Suppose ξ ∈ ∂Ω and there is an open neighbor-
hood U ⊆ Ĉ2 of ξ such that F is bounded on U . Then F is constant.

The proof of the non-trivial implication “(a)⇒ (b)” of Theorem 5.2 will be given
in Section 8. It is rather long and is therefore divided into several steps, which might
be of independent interest. We therefore briefly outline the idea of the proof of
Theorem 5.2. The situation becomes somewhat simpler on the second configuration
space G of Ĉ, see Section 3.1. By mapping Ω biholomorphically onto G as explained
in Section 3.1, it is easy to check that Theorem 5.2 is equivalent to

Theorem 5.4. (Invariance of the Laplacian on the second configuration space)
Let O be a subdomain of G and T = (T1, T2) : O → G a holomorphic mapping. Then
the following conditions are equivalent:

(a) (The Laplacian on G is T -invariant) For every F ∈H (G) and all (z, w) ∈ O,

(5.2) (z − w)2∂z∂w (F ◦ T ) (z, w) = (T1(z, w)− T2(z, w))2 (∂z∂wF )(T (z, w)).

(b) There exists ψ ∈ Aut(Ĉ) such that T (z, w) = (ψ(z), ψ(w)) or T (z, w) =
(ψ(w), ψ(z)).

The crucial part of the proof of Theorem 5.4 is to show that any holomorphic
mapping

T : O → G, (z, w) 7→ T (z, w) =

(
T1(z, w)
T2(z, w)

)
,

for which the T -invariance property (5.2) holds has “separated variables” in the sense
that either T1 depends only on z and T2 depends only on w, or vice versa. By carefully
choosing appropriate “test functions” F ∈ H (G), we shall show as a first step that
the difference T1(z, w)− T2(z, w) can be expressed as the difference H1(z)−H2(w)
of a holomorphic function H1 depending only on z and another holomorphic function
H2 depending only on w. In addition, the T -invariance property (a) in Theorem 5.4
then translates into an ODE-condition for H1 and H2:

Proposition 5.5. Let O ⊆ G be a nonempty open set and let T : O → G such
that the T -invariance condition (5.2) holds. Then there exist subdomains D1, D2 of
C with D1 × D2 ⊆ O and holomorphic functions H1 ∈ H (D1), H2 ∈ H (D2) such
that T1(z, w)− T2(z, w) = H1(z)−H2(w) and

(5.3)
(
H1(z)−H2(w)

z − w

)2

= H ′1(z)H ′2(w)

for all (z, w) ∈ D1 ×D2.

In a next step, we show that equation (5.3) puts severe constraints on the func-
tions H1 and H2:

Proposition 5.6. Let D1, D2 be open sets in C. Suppose H1 ∈ H (D1) and
H2 ∈H (D2) satisfy condition (5.3) for all (z, w) ∈ D1 ×D2. Then either H1, H2 ∈
Aut(Ĉ) or H1, H2 are constant. In both cases, H1 = H2.
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Remark 5.7. As we shall explain in Remark 8.1 (a), Proposition 5.6 can be seen
as a generalization of a result of Hawley and Schiffer [5]. Their result is the special
case of Proposition 5.6 when D1 = D2 and H1 = H2 is assumed from the outset.
Note however that for applying Proposition 5.6 in the proof of Theorem 5.4, we need
D1×D2 ⊆ G and hence D1∩D2 = ∅. In particular, the result of Hawley and Schiffer
does not suffice for proving Theorem 5.4.

Taking Propositions 5.5 and 5.6 together shows that for a holomorphic mapping
T : O → G with the T -invariance property (5.2) there is H1 ∈ Aut(Ĉ) such that

(5.4) T1(z, w)− T2(z, w) = H1(z)−H1(w) for all (z, w) ∈ O.
The main trick now is to realize that the change of variables (z, w) 7→

(
H−1

1 (z),

H−1
2 (w)

)
is permissible, which simplifes condition (5.4) to

T1(z, w)− T2(z, w) = z − w,
or—equivalently—the T -invariance condition (5.2) becomes

(5.5) ∂z∂w(F ◦ T )(z, w) = (∂z∂wF ) (T (z, w)) .

Again choosing appropriate “test functions” F ∈ H (G), we finally show that (5.5)
implies T1 is either independent of z or independent of w. From here, it is then
immediate that T1 and T2 are Möbius.

Remark 5.8. If we restrict in Theorem 5.2 to the “diagonal” {(z, z) : z ∈ D} ⊂ Ω
which we identify with the unit disk D and to the “rotated diagonal” {(z,−z) : z ∈
Ĉ} ⊂ Ω which we identify with the Riemann sphere Ĉ, we get:

(i) Let O be a subdomain of D, and T : O → D holomorphic. Then the following
conditions are equivalent:
(a) ∆D is T -invariant, that is, ∆D (f ◦ T ) = ∆Df ◦ T for all f ∈ A (D).
(b) T ∈ Aut(D).

(ii) Let O be a subdomain of Ĉ, and T : O → Ĉ holomorphic. Then the following
conditions are equivalent:
(a) ∆Ĉ is T -invariant, that is, ∆Ĉ (f ◦ T ) = ∆Ĉf ◦ T for all f ∈ A (Ĉ).
(b) T ∈ Rot(Ĉ).

Similar to Theorem 5.2, in both cases X = D or X = Ĉ, condition (a) is fairly weak
in the sense that we assume ∆X(f ◦ T ) = ∆Xf ◦ T only for functions f belonging
to the set A (X), which is a comparatively small subset of the set of all real-analytic
functions on X.

6. Automorphisms and a canonical holomorphic Riemannian metric on Ω

Returning to Theorem 5.2 we now add a third equivalent condition in purely
differential geometric terms. For this purpose we define a holomorphic analogue gΩ

of the hyperbolic and spherical Riemannian metric on Ω in local coordinates by

(6.1) gΩ(z, w) =
1

(1− zw)2
dz ∨ dw.

It is easy to check that formula (6.1) defines a non-vanishing and holomorphic section.
In the literature, such a section is referred to as holomorphic Riemannian metric on
Ω, see e.g. [17]. It is not difficult to see that the (complex-valued) Riemannian
Laplacian corresponding to gΩ is exactly ∆zw.
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Theorem 6.1. Let O be a subdomain of Ω, and let T : O → Ω be a holomorphic
mapping. Then the following conditions are equivalent:

(a) T ∗gΩ = gΩ as two-forms.
(b) T ∈M .

Note that condition (a) of Theorem 5.2 is considerably weaker than condition (a)
of Theorem 6.1: the invariance of the two-form is a local condition, whereas (5.1)
merely poses a condition on globally defined holomorphic functions.

Remark 6.2. Let

λD(z) :=
1

1− |z|2 and λĈ(z) =
1

1 + |z|2
denote the density of the Poincaré metric on D and the density of the spherical metric
on Ĉ. If we restrict in Theorem 6.1 to the “diagonal” {(z, z) : z ∈ D} ⊂ Ω which we
identify with the unit disk D resp. to the “rotated diagonal” {(z,−z) : z ∈ Ĉ} ⊂ Ω

which we identify with the Riemann sphere Ĉ, we get
(i) Let O be a subdomain of D and T : O → D holomorphic. Then the following

conditions are equivalent:
(a) T ∗λD = λD.
(b) T ∈ Aut(D).

(ii) Let O be a subdomain of Ĉ and T : O → Ĉ holomorphic. Then the following
conditions are equivalent:
(a) T ∗λĈ = λĈ.
(b) T ∈ Rot(Ĉ).

7. Proofs of Propositions 4.4 and 4.5, Theorems 4.2 and 4.7,
and Corollary 4.8

Proof of Proposition 4.4. We only prove part (a) since the proof of (b) merely
requires some obvious modifications. For every F+ ∈ H+(C2) there are coefficients
ap,q(F

+) ∈ C such that

(7.1) F+(u, v) =
∑
p≥q

ap,q(F
+)upvq,

and the series converges uniformly and absolutely for (u, v) in any compact subset
of C2. Since Ψ+ : Ω+ → C2 is biholomorphic, it follows from Proposition 4.3 that

(7.2) CΨ+(F+)(z, w) =
(
F+ ◦Ψ+

)
(z, w) =

∑
p≥q

ap,q(F
+)

zpwq

(1− zw)p

for all (z, w) ∈ Ω+, and the convergence is absolute and locally uniform in Ω+.
Note that each individual term of the series in (7.2) has the form ap,q(F

+)fp,q and is
therefore a holomorphic function on the larger domain Ω. Our goal is to prove the
following.

Proposition 7.1. Every point (z0, w0) ∈ Ω has a neighborhood U ⊆ Ω with the
following properties:

(i) for each F+ ∈H+(C2) of the form (7.1) the series in (7.2) converges absolutely
and uniformly in U to some f+ ∈H (U);

(ii) if (F+
n ) ⊆ H+(C2) converges locally uniformly in C2 to F+ ∈ H+(C2), then

(f+
n ) converges uniformly in U to f+.
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Hence for each F+ ∈H+(C2) the holomorphic function CΨ+(F+) ∈H (Ω+) has
a holomorphic extension Φ+(F+) ∈H+(Ω) given by the series in (7.2), and this series
converges locally uniformly in Ω. Moreover, the mapping Φ+ : H+(C2)→ H+(Ω) is
continuous and linear, and is explicitly given by

Φ+

(∑
p≥q

ap,qu
pvq

)
:=
∑
p≥q

ap,qfp,q.(7.3)

Clearly, Φ+ : H+(C2) → H+(Ω) is one-to-one. Hence we have reduced Proposi-
tion 4.4 to Proposition 7.1.

Proof of Proposition 7.1. Throughout the proof, we write

‖f‖K := max
(z,w)∈K

|f(z, w)|

for K ⊆ Ω compact and continuous functions f : K → C. Fix a compact set K ⊆ Ω
and consider the compact subsets K1 := {(z, w) ∈ K : |w| ≤ 1} as well as K2 :=
{(z, w) ∈ K : |w| ≥ 1}. Here, we define |∞| :=∞. By continuity of the functions

f1,0(z, w) =
z

1− zw and f1,1(z, w) =
zw

1− zw
we have

M := max
{

1, ‖f1,0‖K1
, ‖f1,1‖K2

}
<∞ .

Let B := {(z, w) ∈ C2 : |z| ≤ 2M, |w| ≤ 2M}. As F+ ∈ H+(C2), the Cauchy
estimates show ∣∣ap,q(F+)

∣∣ ≤ ‖F+‖B
(2M)p+q

, p ≥ q.

Using the submultiplicativity of the norms ‖ · ‖K1
and ‖ · ‖K2

, we estimate∑
p≥q
|ap,q(F+)| · ‖fp,q‖K1

≤
∑
p≥q
|ap,q(F+)| · ‖f1,0‖pK1

· ‖wq‖K1

≤
∑
p≥q

‖F+‖B
(2M)p+q

Mp ≤ 8

3
‖F+‖B

as well as ∑
p≥q
|ap,q(F+)| · ‖fp,q‖K2

≤
∑
p≥q
|ap,q(F+)| · ‖f1,1‖pK2

· ‖wq−p‖K2

≤
∑
p≥q

‖F+‖B
(2M)p+q

Mp ≤ 8

3
‖F+‖B .

As K = K1 ∪K2, this implies

(7.4)
∑
p≥q
|ap,q(F+)| · ‖fp,q‖K ≤

8

3
‖F+‖B <∞.

Thus, the series (7.2) converges uniformly and absolutely on K. Varying K, we
see that the series (7.2) converges uniformly on compact subsets of Ω to a limit
f+ ∈ H (Ω). Finally, note that every (z0, w0) ∈ Ω has a compact neighborhood K
in Ω. This completes the proof of the first statement by setting U := K. Let now
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(F+
n ) ⊆ H+(C2) converge locally uniformly in C2 to F+ ∈ H+(C2). By linearity of

the coefficient functionals ap,q, the estimate (7.4) implies∥∥f+ − f+
n

∥∥
U
≤
∑
p≥q
|ap,q(F+ − F+

n )| · ‖fp,q‖U ≤
8

3
‖F+ − F+

n ‖B, n ∈ N.

As B ⊆ C2 is compact, (f+
n ) therefore converges uniformly to f+ on U . �

Proof of Proposition 4.5. The proof of Proposition 4.5 is based on Proposition 4.4
and the following simple observation.

Proposition 7.2. Let p, q ∈ N0. Then

π+

(
zpwq

(1− zw)p

)
=


zpwq

(1− zw)p
if p ≥ q,

0 if p < q,

π−

(
zpwq

(1− zw)p

)
=

0 if p ≥ q,
zpwq

(1− zw)p
if p < q.

Proof. This follows from

zpwq

(1− zw)p
=


(zw)q

(1− zw)p
zp−q ∈H+(D2) if p ≥ q,

(zw)p

(1− zw)p
wq−p ∈H−(D2) if p < q.

�

Proof of Proposition 4.5. It suffices to prove part (a). Let f ∈ H (Ω+). Then,
by Proposition 4.3, F := f ◦Ψ−1

+ ∈H (C2), so

F (u, v) =
∞∑

p,q=0

ap,qu
pvq, (u, v) ∈ C2,

or, equivalently,

f(z, w) =
∞∑

p,q=0

ap,q
zpwq

(1− zw)p
, (z, w) ∈ Ω+.

In particular, this series converges absolutely and locally uniformly in D2, so

π+(f)(z, w) =
∞∑

p,q=0

ap,qπ+

(
zpwq

(1− zw)p

)
=
∑
p≥q

ap,qfp,q(z, w), (z, w) ∈ D2

by Proposition 7.2. Recall that by slight abuse of notation, we denote both projec-
tions H (C2)→H+(C2) and H (Ω+)→H+(Ω) by the same symbol π+. In view of
(7.3), this implies

(7.5) π+(f) = Φ+(π+(F )) =
(
CΨ+ ◦ π+ ◦ C −1

Ψ+

)
f.

Note that the right-hand side is a composition of the three continuous operators

C −1
Ψ+

: H (Ω+)→H (C2), π+ : H (C2)→H+(C2), CΨ+ : H+(C2)→H+(Ω),

see Proposition 4.3 and Proposition 4.4. Thus π+ : H (Ω+) → H+(Ω) is continuous
and (7.5) also shows that the diagram in Figure 3 (a) commutes. Using (7.5) twice



Function theory off the complexified unit circle: Fréchet space structure and automorphisms 273

and the fact that π+ : H (C2)→H+(C2) is a projection implies

π+(π+(f)) = π+ ◦ (CΨ+ ◦ π+ ◦ C −1
Ψ+

)f = (CΨ+ ◦ π+ ◦ π+ ◦ C −1
Ψ+

)f

= (CΨ+ ◦ π+ ◦ C −1
Ψ+

)f = π+(f)

for all f ∈ H (Ω+), so π+ : H (Ω+) → H+(Ω) is a projection as well. It remains
to prove that π+(f) = f for all f ∈ H+(Ω). However, recalling that H+(Ω) is the
closed linear span of the functions fp,q with p ≥ q in H (Ω), this follows at once from
Proposition 7.2 since π+(fp,q) = fp,q whenever p ≥ q. �

Proof of Theorem 4.2 and Theorem 4.7. Proposition 4.3 and Proposition 4.4
imply that the direct sum Φ := Φ+ ⊕ Φ− : H+(C2) ⊕H−(C2) → H (Ω) is linear,
continuous and injective. To prove its surjectivity, let f ∈H (Ω). Then

F+ := π+(f ◦Ψ−1
+ ) ∈H+(C2) and F− := π−(f ◦Ψ−1

− ) ∈H−(C2).

Therefore, f+ := Φ+(F+) ∈H+(Ω) and f− := Φ−(F−) ∈H−(Ω), and we deduce

Φ(F+ + F−) = Φ+(F+) + Φ−(F−) = Φ+

(
π+(f ◦Ψ−1

+ )
)

+ Φ−
(
π−(f ◦Ψ−1

− )
)

= π+

(
CΨ+(f ◦Ψ−1

+ )
)

+ π−
(
CΨ−(f ◦Ψ−1

− )
)

in view of the commutation relations of Figure 3. Thus

Φ(F+ + F−) = π+(f) + π−(f) = f ,

and Φ is surjective. Note that

F+ + F− = π+(f ◦Ψ−1
+ ) + π−(f ◦Ψ−1

− ) = Φ−1(f) .

The proof of Theorem 4.7 (and Theorem 4.2) is complete. �

Proof of Corollary 4.8. Let f ∈H (Ω). By Theorem 4.7, F := Φ−1(f) ∈H (C2),
so

F (u, v) =
∞∑

p,q=0

ap,qu
pvq

with

(7.6) ap,q =
1

(2πi)2

ˆ
∂D

ˆ
∂D

F (z, w)

zp+1wq+1
dz dw.

We can write

F (u, v) = π+(F )(u, v) + π−(F )(u, v) =
∑
p≥q

ap,qu
pvq +

∑
p<q

ap,qu
pvq.

Hence, again by Theorem 4.7,

f(z, w) = Φ(F )(z, w) = Φ+(π+(F ))(z, w) + Φ−(π−(F ))(z, w)

=
∑
p≥q

ap,qfp,q(z, w) +
∑
p<q

ap,qfp,q(z, w).

In the last step, we have used identity (7.3) for Φ+ and the corresponding identity
for Φ−. Since both series converge absolutely and locally uniformly in Ω, we can
rearrange the order of summation. The explicit formula for the Schauder coefficients
ap,q in terms of f follows immediately from (7.6). Indeed, if p ≥ q, then ap,q is the
corresponding Taylor coefficient of π+(F ) and

π+(F ) = π+

(
f ◦Ψ−1

+

)
= π+(f) ◦Ψ−1

+ ,
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in view of Figure 3 (a). On the other hand, π+(f) ◦ Ψ−1
+ ∈ H+(C2), so the Cauchy

integral formula shows that

ap,q =
1

(2πi)2

ˆ
∂D

ˆ
∂D

π+(F )(z, w)

zp+1wq+1
dz dw =

1

(2πi)2

ˆ
∂D

ˆ
∂D

(f ◦Ψ−1
+ )(z, w)

zp+1wq+1
dz dw.

Inserting the explicit expression for Ψ−1
+ proves (4.6) for p ≥ q. The proof for p < q

is identical. �

8. Proofs of Propositions 5.5 and 5.6, Theorems 5.2 and 5.3,
and Theorem 6.1

Proof of Proposition 5.5. Let T = (T1, T2) : O → G be a holomorphic mapping
defined on some nonempty open subset O of G such that

(8.1) (z − w)2∂z∂w (F ◦ T ) (z, w) = (T1(z, w)− T2(z, w))2 (∂z∂wF )(T (z, w))

for all F ∈ H (G) and all (z, w) ∈ O. We shall make use of condition (8.1) by
inserting several carefully chosen specific functions F ∈H (G).

First, we insert

F ∈H (G), F (z, w) =
1

z − w
into (8.1). By an elementary, but lengthy computation we find that condition (8.1)
for this choice of F is equivalent to

2

(
T1(z, w)− T2(z, w)

z − w

)2

= (T1 − T2) (∂z∂wT1 − ∂z∂wT2)

− 2 (∂wT1 − ∂wT2) (∂zT1 − ∂zT2) .

(8.2)

If we take
F ∈H (G), F (z, w) =

1

(z − w)2

in (8.1), then another computation implies that condition (8.1) for this choice of F
is equivalent to

3

(
T1(z, w)− T2(z, w)

z − w

)2

= (T1 − T2) (∂z∂wT1 − ∂z∂wT2)

− 3 (∂wT1 − ∂wT2) (∂zT1 − ∂zT2) .

(8.3)

Together, the two conditions (8.2) and (8.3) clearly imply

(T1 − T2) (∂z∂wT1 − ∂z∂wT2) = 0.

Since T = (T1, T2) maps the open set O ⊆ G into G, we get T1(z, w) 6= T2(z, w) for
all (z, w) ∈ O by definition of G, and hence

∂z∂w(T1 − T2) = 0 on O.

Consequently, all terms with mixed derivatives in the Taylor expansion of T1 − T2

about each (z0, w0) ∈ O vanish. This way, we obtain auxiliary functions H1 ∈
H (D1), H2 ∈H (D2) for certain domains D1, D2 ⊆ C with D1 ×D2 ⊆ O such that

T1(z, w)− T2(z, w) = H1(z)−H2(w), (z, w) ∈ D1 ×D2.

Note that we can choose D1, D2 ⊆ C since O and G ∩ C2 always have a non-empty
intersection. Inserting this expression into (8.2), it is easily checked that condition
(5.3) holds for H1 and H2, and the proof of Proposition 5.5 is complete. �
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Proof of Proposition 5.6. If H2 is constant on D2, then (5.3) implies H1 is
constant on D2 and H1 = H2. If H2 is not constant on D2, then (5.3) implies H1 is
not constant on D1 either and in fact H1 has vanishing Schwarzian derivative away
from possible zeros of H ′1, that is,

SH1(z) :=

(
H ′′1 (z)

H ′1(z)

)′
− 1

2

(
H ′′1 (z)

H ′1(z)

)2

= 0.

This follows by fixing w ∈ D2 and differentiating (5.3) twice w.r.t. z ∈ D1. It is a
classical fact (see [15]) that SH1 = 0 is equivalent to H1 ∈ Aut(Ĉ). Switching the
roles of H1 and H2, we see that either H1, H2 are both constant or H1, H2 ∈ Aut(Ĉ).
Finally, if H1 ∈ Aut(Ĉ) and H2 ∈ Aut(Ĉ), then the right-hand side of (5.3) is never
zero. Hence the left-hand side is never zero either, and thus H1(z) 6= H2(w) for all
z, w ∈ C such that z 6= w. This is clearly only possible if H1 = H2. �

Remark 8.1. (a) As noted earlier in Remark 5.7, Proposition 5.6 is an extension
of a result of Hawley and Schiffer [5], who considered the special case D1 = D2. We
therefore briefly discuss this case a bit further in order to put Proposition 5.6 into a
somewhat broader context. Note that if D1 = D2 or merely D1 ∩D2 6= ∅, it follows
immediately from (5.3) that H1 ≡ H2. Let H := H1 and D := D1. Excluding
the trivial case that H is constant, condition (5.3) implies H is univalent in D1.
Therefore, the function

ŜH : D ×D → C, ŜH(z, w) :=


H ′(z)H ′(w)

(H(z)−H(w))2 −
1

(z − w)2
for z 6= w,

SH(z) for z = w,

is well-defined and it is not difficult to show that ŜH is holomorphic on D × D.
A discussion of this fact and its implications can be found in [5]. The difference
between the point of view of Hawley–Schiffer [5] and the one we pursue in this paper
is now apparent: while [5] extends the Schwarzian derivative SH , a function of one
variable, to a holomorphic function ŜH of two variables (z, w) in a neighborhood of
the “diagonal” (z, z), our approach to Theorem 5.4 is based on Proposition 5.6 for
the opposite case D1 ∩D2 = ∅, so we exclude the diagonal.

(b) Fixing w ∈ D2, equation (5.3) is a Riccati differential equation for the un-
known function H1 : D1 → C. It is an elementary fact that each Riccati equation can
be transformed in a canonical way into normal form u′ = A(z) +u2 (see [15, p. 165]).
For the specific Riccati equation (5.3) the canonical transformation is given by

H1(z) = H ′2(w)(z − w)2u(z) +H2(w) +
H ′2(w)

2
(z − w)

and turns the Riccati equation (5.3) into

u′ = u2,

whose set of solutions is given by {(z+c)−1 : c ∈ C}∪{0}. Elementary considerations
then again lead to the conclusion that either H1 is constant or belongs to Aut(Ĉ).
This provides a slightly different approach to Proposition 5.6.

Proof of Theorem 5.4 “(a) ⇒ (b)” . Let T = (T1, T2) : O → G be a holomorphic
mapping defined on some subdomain O of G such that condition (5.2) holds for all
F ∈H (G) and all (z, w) ∈ O.
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(i) By Proposition 5.5 and Proposition 5.6 there exists a function H := H1 : Ĉ→
Ĉ, which is either constant or belongs to Aut(Ĉ), such that

(8.4)
(
H(z)−H(w)

z − w

)2

= H ′(z)H ′(w)

and

(8.5) T1(z, w)− T2(z, w) = H(w)−H(z)

for all (z, w) ∈ O. Since T maps intoG, we have T1(z, w) 6= T2(z, w) for all (z, w) ∈ O,
so the case H is constant cannot occur, and therefore H ∈ Aut(Ĉ).

(ii) We claim, without loss of generality, that we may assume

(8.6) T1(z, w)− T2(z, w) = w − z for all (z, w) ∈ O.
To prove this claim, consider

S(z, w) :=
(
H−1(z), H−1(w)

)
, (z, w) ∈ G.

Note that S is a biholomorphic self-map of G and Õ := S−1(O) is a subdomain of
G. The holomorphic mapping

T̃ := T ◦ S : Õ → G

then satisfies

T̃1(z, w)− T̃2(z, w) = T1 (S(z, w))− T2 (S(z, w)) = H
(
H−1(w)

)
−H

(
H−1(z)

)
in view of (8.5), and hence

(8.7) T̃1(z, w)− T̃2(z, w) = w − z for all (z, w) ∈ Õ.
To finish the proof of Theorem 5.4 it therefore suffices to show that the Laplacian on
G is T̃ -invariant, that is, condition (5.2) holds with T replaced by T̃ . To check this,
observe that

(z − w)2∂z∂w

(
F ◦ T̃

)
(z, w) = (z − w)2∂z∂w ((F ◦ T ) ◦ S) (z, w)

= (z − w)2 (∂z∂w (F ◦ T ) (S(z, w)))
(
H−1

)′
(z)
(
H−1

)′
(w)

(8.8)

by the chain rule and the particular form of S(z, w) = (H−1(z), H−1(w)). Since T
satisfies condition (5.2), we have

∂z∂w (F ◦ T ) (S(z, w)) =

(
H−1(z)−H−1(w)

H−1(z)−H−1(w)

)2

∂z∂w (F ◦ T ) (S(z, w))

=

(
T̃1(z, w)− T̃2(z, w)

H−1(z)−H−1(w)

)2

(∂z∂wF )
(
T̃ (z, w)

)
=

(
z − w

H−1(z)−H−1(w)

)2

(∂z∂wF )
(
T̃ (z, w)

)
(8.9)

where we have taken (8.7) into account in the last identity. Being a Möbius trans-
formation, H−1 has the property(

z − w
H−1(z)−H−1(w)

)2

=
1

(H−1)′ (z) (H−1)′ (w)
.
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This is exactly condition (8.4), but for the inverse H−1 of H instead of H. Therefore,
combining (8.8) and (8.9), leads to

(z − w)2∂z∂w

(
F ◦ T̃

)
(z, w) = (z − w)2 (∂z∂wF )

(
T̃ (z, w)

)
=
(
T̃1(z, w)− T̃2(z, w)

)2

(∂z∂wF )
(
T̃ (z, w)

)
again making use of (8.7) in the last step. Consequently, (5.2) holds with T replaced
by T̃ .

(iii) In view of (ii) it remains to prove Theorem 5.4 under the additional assump-
tion that T satisfies (8.6).

We therefore return to (5.2), where we choose

F ∈H (G), F (z, w) =
z

(z − w)2
.

It is easily seen that equation (5.2) then takes the form

(8.10)
2 (∂wT1(z, w)− ∂zT1(z, w)− 1)

w − z + ∂z∂wT1(z, w) = 0.

With

F ∈H (G), F (z, w) =
z2

(z − w)2
,

equation (5.2) has the form

2∂wT1(z, w)∂zT1(z, w)

+ 2T1(z, w)

(
2 (∂wT1(z, w)− ∂zT1(z, w)− 1)

w − z + ∂z∂wT1(z, w)

)
= 0.

Taken together with (8.10), this implies

(∂wT1(z, w))(∂zT1(z, w)) = 0,

and either T1 is independent of z or independent of w. Going back to (8.10), we see
that either T1(z, w) = w + γ or T1(z, w) = z + γ for some γ ∈ C. In a similar way,
we can deduce that either T2(z, w) = w + γ′ or T2(z, w) = z + γ′ for some γ′ ∈ C.
Finally, since T1(z, w)− T2(z, w) = w − z, we see that

either T (z, w) = (z + γ, w + γ) or T (z, w) = (w + γ, z + γ)

for some γ ∈ C. The proof is complete. �

Remark 8.2. The preceding proof would become much simpler under the much
stronger assumption that (5.2) holds for all F holomorphic merely in a neighborhood
of the origin in C2, since then one could choose the monomials znwm, n,m = 0, 1, . . .
as “test functions” instead of functions holomorphic on all of Ω resp. onG = Conf2(Ĉ).

Proof of Theorem 5.3. Let ξ = (z0, w0) ∈ ∂Ω and choose r > 0 such that
Kr(z0)×Kr(w0) ⊆ U . For fixed w1 ∈ Kr(w0) consider the holomorphic function

Fw1 : Ĉ \ {1/w1} → C, z 7→ F (z, w1).

By assumption, Fw1 is bounded on Ĉ \ {1/w1}, and thus by Liouville’s theorem
there is a constant c(w1) ∈ C such that Fw1(z) = c(w1) for all z ∈ Ĉ \ {1/w1}. A
similar argument shows that for each z1 ∈ Kr(z0) there is a constant c̃(z1) such that
Fz1(w) := F (z1, w) = c̃(z1) for all w ∈ Ĉ \ {1/z1}. Notice that for (z1, w1) ∈ U ∩ Ω,
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we have c(w1) = F (z1, w1) = c̃(z1). This clearly implies that F is constant in U ∩Ω,
and hence on Ω. �

Proof of Theorem 6.1. We only prove the non-trivial implication “(a) ⇒ (b)”.
Note again that O and C2 ∩ Ω always have a nonempty intersection, i.e. we may
work in the standard chart and assume O ⊆ C2. Let T (z, w) = (T1(z, w), T2(z, w)).
Suppressing the arguments, we compute

T ∗gΩ

∣∣
(z,w)

=
(
1− T1T2

)−2
d(T1) ∨ d(T2)

=
(
1− T1T2

)−2(
∂zT1dz + ∂wT1dw

)
∨
(
∂zT2dz + ∂wT2dw

)
=
(
1− T1T2

)−2
((

(∂zT1)(∂wT2) + (∂wT1)(∂zT2)
)
dz ∨ dw

+ (∂zT1)(∂zT2)dz2 + (∂wT1)(∂wT2)dw2
)
.

Comparing coefficients with (6.1) yields first that (∂zT1)(∂zT2) = 0 = (∂wT1)(∂wT2).
That is, each component of T only depends on z or w. If T depended on z only, then
T ∗dw = 0, which is absurd in view of T ∗gΩ = gΩ. Consequently, we may assume
T1(z, w) = T1(z) and T2(z, w) = T2(w). Making this more precise, we fix (z0, w0) ∈ O
and define the holomorphic auxiliary functions

H1 : O1 =
{
z ∈ C

∣∣ (z, w0) ∈ O
}
→ Ĉ, H1(z) = T1(z, w0)

and H2 : O2 =
{
w ∈ C

∣∣ (z0, w) ∈ O
}
→ Ĉ, H2(z) = T2(z0, w).

As O is open, the same is true for its nonempty projections O1 and O2. By con-
struction, we have H ′1(z) = ∂zT1(z, w0) and H ′2(w) = ∂wT2(z0, w) for every (z, w) ∈
O1 ×O2. Comparing the remaining coefficients this way yields

H ′1(z)H ′2(w) =

(
1−H1(z)H2(w)

)2

(1− zw)2
, (z, w) ∈ O1 ×O2.

This is the Ω-version of (5.3), hence Proposition 5.6 now implies H1, H2 ∈ Aut(Ĉ)

and H1(z) = 1/H2(1/z) for all z ∈ Ĉ, as both functions H1, H2 being constant would
imply T ∗gΩ = 0. By construction, this means(

T1(z, w), T2(z, w)
)

=
(
H1(z), H2(w)

)
=
(
H1(z), 1/H1(1/w)

)
for all (z, w) ∈ Ω, that is, T ∈M , see again (1.1). �
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