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A geometric property of quadrilaterals

Efstathios-Konstantinos Chrontsios-Garitsis
and Aimo Hinkkanen

Abstract. Quadrilaterals in the complex plane play a significant part in the theory of planar
quasiconformal mappings. Motivated by the geometric definition of quasiconformality, we prove
that every quadrilateral with modulus in an interval [1/K,K], where K > 1, contains a disk lying
in its interior, of radius depending only on the internal distances between the pairs of opposite sides
of the quadrilateral and on K.

Eräs nelikulmioiden geometrinen ominaisuus

Tiivistelmä. Kompleksitason topologisilla nelikulmioilla on tärkeä asema tason kvasikonfor-
mikuvausten teoriassa. Työssä todistetaan, että tason nelikulmio sisältää kiekon, jonka säde on
verrannollinen nelikulmion vastakkaisten sivujen lyhimpään nelikulmion sisällä mitattuun etäisyy-
teen, missä verrannollisuuskerroin riippuu vain nelikulmion modulista. Motivaatio tarkasteluun tulee
kvasikonformikuvausten geometrisesta määritelmästä.

1. Introduction

A quadrilateral Q = Q(v1, v2, v3, v4) is a bounded Jordan domain in the complex
plane C with four distinct points, called vertices, selected on the boundary and
labeled in counter-clockwise order as v1, v2, v3, v4. Recall that a Jordan domain is an
open and connected set whose boundary is a homeomorphic image of the circle S1 ⊂
C. Quadrilaterals are essential for the geometric definition and properties of planar
quasiconformal mappings. More specifically, given a quadrilateral Q(v1, v2, v3, v4),
it can be mapped under a conformal map φ onto the rectangle Rec(Q) ⊂ C with
vertices (0,M(Q), i + M(Q), i) = (φ(v1), φ(v2), φ(v3), φ(v4)), for some M(Q) > 0.
This uniquely defined number M(Q) is called the modulus of Q. A homeomorphism
f : Ω→ Ω′ between domains in C is K-quasiconformal if there is K ≥ 1 such that

M(f(Q)) ≤ KM(Q)

for all quadrilaterals Q whose closure lies in Ω.
As a result, there is interest in determining properties that quadrilaterals of

uniformly bounded modulus might satisfy. Before stating our main result, we need
the notion of internal distances. Given a quadrilateral Q = Q(v1, v2, v3, v4) we define
its a-sides to be the two disjoint arcs on its boundary from v1 to v2 and from v3 to
v4 that do not contain any vertices in their interior, and its b-sides similarly the arcs
from v2 to v3 and from v4 to v1. The internal distance between the a-sides of Q is
defined as

sa(Q) := inf{`(C) : C ⊂ Q a Jordan arc with end points on different a-sides},
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where `(C) is the length of C. Similarly, we define the internal distance between the
b-sides of Q as

sb(Q) := inf{`(C) : C ⊂ Q a Jordan arc with end points on different b-sides}.
Our main result is the following geometric property for quadrilaterals.

Theorem 1. For every K ≥ 1 there is a constant δ ∈ (0, 1) depending only on
K such that every quadrilateral Q with M(Q) ∈ [1/K,K] contains a disk of radius
δmax{sa(Q), sb(Q)}.

Acknowledgements. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1600650. The authors also wish to thank
C. Bishop, P. Koskela and the anonymous referee for their valuable comments.

2. Notation

Let C be a closed Jordan arc, i.e., a homeomorphic image of the interval [0, 1] ⊂
R. We denote the length of C by `(C) ∈ [0,∞]. Moreover, if z, w ∈ C then we denote
by C(z, w) the closed sub-arc of C with end points z and w. The same notation for
sub-arcs will be used for open Jordan arcs and Jordan curves. The notation C will
not be used for constants to avoid confusion.

For z, w ∈ C we denote by [z, w] and (z, w) the closed and open line segment
connecting z to w, respectively.

For a given quadrilateral Q, we denote by ∂aQ and ∂bQ the union of the a-
sides and the union of the b-sides of Q respectively, and set ∂a1Q := ∂Q(v1, v2),
∂b1Q := ∂Q(v2, v3), ∂a2Q := ∂Q(v3, v4), ∂b2Q := ∂Q(v4, v1). Note that since ∂Q is
a Jordan curve, the notation ∂Q(vk, vl) denotes the closed sub-arc of ∂Q with end
points vk, vl that does not intersect other vertices.

For z ∈ C and r > 0, we write D(z, r) = {w ∈ C : |w − z| < r} and D(z, r) =
{w ∈ C : |w− z| ≤ r}. If E ⊂ C, we denote the Euclidean diameter of E by diamE.
If E and F are non-empty subsets of C, we denote the Euclidean distance between
E and F by dist(E,F ).

3. Preliminary reductions

3.1. Avoiding the vertices of Q. Let Q be a quadrilateral. For δ > 0 with

(1) 10δ < min{diam(∂a1Q), diam(∂a2Q), diam(∂b1Q), diam(∂b2Q)}
and

(2) 10δ < min{dist(∂a1Q, ∂a2Q), dist(∂b1Q, ∂b2Q)},
define

sδa(Q) := inf{`(C) : C ⊂ Q is a Jordan arc with end points on
∂a1Q \ (D(v1, δ) ∪D(v2, δ)) and ∂a2Q \ (D(v3, δ) ∪D(v4, δ))}

and
sδb(Q) := inf{`(C) : C ⊂ Q is a Jordan arc with end points on

∂b1Q \ (D(v2, δ) ∪D(v3, δ)) and ∂b2Q \ (D(v1, δ) ∪D(v4, δ))}.

Note that the Jordan arcs considered in the definitions of sδa(Q) and sδb(Q) may
contain points that are very close to the vertices of Q, for instance there might be
z ∈ C with |z − v1| < δ, as long as z is not an end point of C.
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Lemma 1. For all quadrilaterals Q and δ > 0 satisfying (1) and (2) we have

(3) sa(Q) ≤ sδa(Q) ≤ sa(Q) + 4πδ

and

(4) sb(Q) ≤ sδb(Q) ≤ sb(Q) + 4πδ.

Proof. Let Q = Q(v1, v2, v3, v4) be a quadrilateral and suppose that δ > 0 satisfies
(1) and (2). Note that by the definition of δ, the four disks D(vj, 2δ) for 1 ≤ j ≤ 4
have disjoint closures whose union does not completely contain any Jordan arc in Q
that joins the a-sides of Q, or that joins the b-sides of Q.

The left hand sides of inequalities (3) and (4) follow from the definitions of the
internal distances and those of sδa(Q) and sδb(Q).

To prove the right hand inequality (3), suppose that ε > 0 and that γ is a
rectifiable Jordan arc in Q with end points z1 ∈ ∂a1Q and z2 ∈ ∂a2Q, and with
`(γ) < sa(Q) + ε.

If z1 /∈ D(v1, δ)∪D(v2, δ) and z2 /∈ D(v3, δ)∪D(v4, δ), then the arc γ can be used
in the definition of sδa(Q), so that sδa(Q) < sa(Q) + ε. Otherwise, we modify γ close
to z1 and/or z2 to get another arc γ′ that can be used in the definition of sδa(Q), such
that `(γ′) ≤ `(γ) + 4πδ, which implies that sδa(Q) ≤ `(γ′) < sa(Q) + ε + 4πδ. Since
ε > 0 is arbitrary, this implies the right hand inequality (3). The same method can
be used to prove right hand inequality (4).

We explain how to modify γ close to z1, if necessary, to obtain an arc γ1 such
that `(γ1) ≤ `(γ) + 2πδ and such that the end point, say z3, of γ1 on ∂a1Q is outside
D(v1, δ) ∪D(v2, δ). Performing a similar modification close to z2, if necessary, gives
rise to an arc γ′ with the required properties.

We will need to modify γ close to z1 if z1 ∈ D(v1, δ) ∪D(v2, δ). Since these two
disks have disjoint closures, suppose that z1 ∈ D(v1, δ). The argument is similar if
z1 ∈ D(v2, δ).

Pick a point z0 ∈ γ such that z0 /∈
⋃4
j=1D(vj, 2δ). This is possible as we have

observed earlier.
Choose ρ > 0 such that |z1− v1| < ρ < δ. When following γ starting from z1, let

w be the first point on γ such that |v1−w| = ρ. Then w ∈ Q. Further, the open arc
of γ from z1 to w lies in Q and also in D(v1, δ).

We will use the following theorem due to Kerékjártó ([9], p. 172). Let J1 and J2
be Jordan curves in the Riemann sphere C = C ∪ {∞} such that J1 ∩ J2 contains
at least two points. Then every connected component of C \ (J1 ∪ J2) is a Jordan
domain. We will apply this theorem twice. For the first application, we take J1 = ∂Q
and J2 = ∂D(v1, δ). Since each of ∂a1Q and ∂b2Q must intersect J2 and not at v1,
the intersection J1 ∩ J2 contains at least two points. Note that both z0 and w lie in
C \ (J1 ∪ J2). Let Ω0 be the component of C \ (J1 ∪ J2) that contains z0. Then Ω0 is
a Jordan domain and Ω0 ⊂ Q. Further, ∂Ω0 ⊂ J1 ∪ J2.

We next apply Kerékjártó’s theorem to the Jordan curves J1 = ∂Q and J3 = ∂Ω0.
The part of γ traced from z0 to z1 has a first point z′ that intersects J2, and z′ lies
on an arc of J2 whose end points lie on J1. These two end points cannot coincide
since J1 ∩ J2 contains at least two points. This arc of J2 is a subset of J3, so J1 ∩ J3
contains at least two points. We find that every connected component of C\ (J1∪J3)
is a Jordan domain. Two such components are Ω0 and C \Q. All other components
are also components of Q \Ω0. Let Ω1 be the component of C \ (J1 ∪ J3) containing
w. We have Ω1 6= Ω0 since one cannot connect z0 to w without intersecting J2. The
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open arc of γ from w to z1 lies in Ω1 since it does not intersect either J1 or J2 (note
that ∂Ω1 ⊂ J1 ∪ J2).

Recall that ∂Ω0 ⊂ J1 ∪ J2. The set ∂Ω0 \ ∂Q = ∂Ω0 \ J1 is an open subset of
the Jordan curve ∂Ω0 and hence consists of at most countably many Jordan arcs,
each of which is an arc of J2 = ∂D(v1, δ). Now ∂Ω1 must contain such an arc of
J2, say γ′′. Then the end points, say w1 and w2, of γ′′ lie on ∂Q, hence γ′′ is a
cross cut of Q and divides Q into exactly two components, say Q1 and Q2, each of
which is a Jordan domain. Now w1 and w2 divide ∂Q into two Jordan arcs, and if
the corresponding closed Jordan arcs are denoted by J4 and J5, then, with proper
labeling, ∂Q1 = γ′′ ∪ J4 and ∂Q2 = γ′′ ∪ J5. One of Q1 and Q2, say Q1, contains Ω0,
and the other one coincides with Ω1, so Q2 = Ω1. Note that wj 6= v1 for j = 1, 2
since |wj − v1| = δ > 0.

By the definition of δ, each of the points w1 and w2 (since they lie on J2 =
∂D(v1, δ) and on ∂Q) can only belong to ∂a1Q or ∂b2Q. To get a contradiction,
suppose that they both belong to ∂b2Q and hence to the interior of ∂b2Q since they
are different from v1. Then ∂Ω1\γ′′ either is contained in ∂b2Q, or contains ∂Q\∂b2Q
and in particular contains z2. Since w ∈ Ω1, we have Ω1 ⊂ D(v1, δ), hence z2 /∈ ∂Ω1.
It follows that ∂Ω1 ∩ ∂Q ⊂ ∂b2Q. But then Ω1 cannot contain the arc of γ from w to
z1 ∈ ∂a1Q, a contradiction.

It follows that at least one of w1 and w2, say w1, lies on ∂a1Q. When we trace
γ from z0 towards z1, we must enter Ω1 at some point, hence there will be a first
point where we intersect ∂Ω1. This point, which is the same as the point z′ discussed
above, is also in Q, hence on γ′′. We form the arc γ1 by following γ from z2 through
z0 to z′ and then along the arc γ′′ from z′ to w1. Then γ1 joins the a−sides of Q in
Q and `(γ1) ≤ `(γ) + 2πδ, as required.

This completes the proof of Lemma 1. �

3.2. A consequence of Rengel’s inequality. Lehto and Virtanen ([7], see
also [8], Lemma 4.1) obtained the following consequence of Rengel’s inequality ([8],
p. 22).

Proposition A. The modulus of a quadrilateral Q satisfies the inequality
(log(1 + 2sb(Q)/sa(Q)))2

π + 2π log(1 + 2sb(Q)/sa(Q))
≤M(Q) ≤ π + 2π log(1 + 2sa(Q)/sb(Q))

(log(1 + 2sa(Q)/sb(Q)))2
.

Due to Proposition A, we can replace the condition on the modulus in Theorem 1
by the equivalent condition that the ratio of internal distances lies in a bounded
interval. More specifically, if QM(K) is the collection of all quadrilaterals Q with
M(Q) ∈ [1/K,K], then by Proposition A there exists L̃ > 1 depending only on K
such that the collection of all quadrilaterals Q̃ with ratio sa(Q̃)/sb(Q̃) ∈ [1/L̃, L̃],
denoted by Q(L̃), contains QM(K). Similarly, for L̃ > 1 there is K̃ > 1 larger than
K, for which Q(L̃) ⊂ QM(K̃). We will thus prove the assertion of Theorem 1 for all
Q ∈ Q(L̃), for fixed L̃ > 1 and for δ ∈ (0, 1) depending on L̃.

Remark 1. A sharper form of the inequality in Proposition A was later proved
by Hanson and Herron in [5], which could be useful in obtaining a sharper constant
δ in Theorem 1.

3.3. Approximation of quadrilaterals. Lemma 2 below allows us to only
consider quadrilaterals Q ∈ Q(L) that have boundary consisting of finitely many
line segments, each line segment being parallel to one of the coordinate axes, where
L = 3L̃. Denote the collection of all such quadrilaterals by Qls(L).
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Lemma 2. For every Q ∈ Q(L̃) and every τ ∈ (0, 1/2] there is a quadrilateral
Qτ ∈ Qls(Lτ ) contained in Q with |sa(Qτ ) − sa(Q)| ≤ τ min{sa(Q), sb(Q)} and
|sb(Qτ )− sb(Q)| ≤ τ min{sa(Q), sb(Q)}, where Lτ = 1+τ

1−τ L̃ ≤ L.

Proof. Let Q = Q(v1, v2, v3, v4) ∈ Q(L̃), ρ(z) = sup{ρ > 0: D(z, ρ) ⊂ Q} for all
z ∈ Q, ρ0 = sup{ρ(z) : z ∈ Q} and consider a closed disk D = D(z0, ρ0/2) that lies
in Q. We can map the quadrilateral Q onto a rectangle Rec(Q) using a conformal
map φ so that φ(∂a1Q) = (0,M), φ(∂b1Q) = (M,M + i), φ(∂a2Q) = (i,M + i),
φ(∂b2Q) = (0, i), where M = Mod(Q). Let lj be the line segment in the closure
of Rec(Q) connecting φ(z0) to φ(vj), for all j ∈ {1, 2, 3, 4}. Let Cj = φ−1(lj) be
Jordan arcs that lie in Q except for their end points and connect z0 to vj, for all
j ∈ {1, 2, 3, 4}.

By Lemma 1, for each ε > 0 there are some positive δε < ε and Jordan arcs
Caε, Cbε connecting the a-sides and b-sides of Q, respectively, both with end points
outside

⋃4
j=1D(vj, δε) and with `(Caε) ≤ sa(Q) + ε and `(Cbε) ≤ sb(Q) + ε. Fix

positive ε < 10−3 min{sa(Q), sb(Q)} and denote by za1 ∈ ∂a1Q, za2 ∈ ∂a2Q the end
points of Caε and by zb1 ∈ ∂b1Q, zb2 ∈ ∂b2Q the end points of Cbε. Fix a positive
δ < ρ0/10 satisfying all of the following inequalities:

δ <
min{|zai − zbj | : i = 1, 2, j = 1, 2}

100
,(5)

δ <
min{|zai − vj| : i = 1, 2, j = 1, 2, 3, 4}

100
,(6)

δ <
min{|zbi − vj| : i = 1, 2, j = 1, 2, 3, 4}

100
,(7)

δ <
min{diam(∂a1Q), diam(∂a2Q), diam(∂b1Q), diam(∂b2Q)}

100
,(8)

δ <
min{dist(∂a1Q, ∂a2Q), dist(∂b1Q, ∂b2Q), δε}

100
.(9)

Denote by Caεδ the closed sub-arc of Caε from z̃a1 to z̃a2 , where z̃aj is the point
such that `(Caε(z̃aj , zaj)) = δ for j = 1, 2, and similarly denote by Cbεδ the closed
sub-arc of Cbε from z̃b1 to z̃b2 , where z̃bj is the point such that `(Cbε(z̃bj , zbj)) = δ for
j = 1, 2.

Moreover, for all j ∈ {1, 2, 3, 4}, denote by Cδ
j the closed Jordan arc Cj(z0, ṽj),

where ṽj = rj(tj) for

tj = max{t ∈ [0, 1] : rj(t) ∈ ∂D(vj, δ), rj((t, 1]) ⊂ D(vj, δ)}

and rj : [0, 1] → C is a homeomorphism onto Cj with rj(0) = z0. In other words, ṽj
is the “last” point of Cj intersecting the boundary of D(vj, δ) with the direction on
Cj from z0 towards vj, after which Cj lies in D(vj, δ).

Similarly to how we defined Cj, j = 1, 2, 3, 4, we can find Jordan arcs C0,a and
C0,b inside Q that connect z0 to Caεδ and Cbεδ, respectively. Set

K =

(
4⋃
j=1

Cδ
j

)
∪D ∪ Caεδ ∪ Cbεδ ∪ C0,a ∪ C0,b,

which is schematically depicted in Figure 1 (it is not intended that the curves shown
would be the actual curves obtained, among other things, by applying a conformal
mapping to the quadrilateral shown in Figure 1).
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Figure 1. An example of a set K constructed inside a quadrilateral Q.

Similarly to how the points ṽj were defined, we set av1 to be the unique point of
∂a1Q with direction from v2 towards v1 that intersects the boundary of D(v1, δ) such
that the arc ∂a1Q(av1 , v1) stays in D(v1, δ), and bv1 to be the unique point of ∂b2Q
with direction from v4 towards v1 that intersects the boundary of D(v1, δ) such that
the arc ∂b2Q(bv1 , v1) stays in D(v1, δ). In the same way we can define avj , bvj for all
j ∈ {1, 2, 3, 4}. Note that (8) ensures that such points exist and (9) guarantees that
for all j ∈ {1, 2, 3, 4} the only sides of the boundary of Q intersecting D(vj, 2δ) are
the ones that meet at vj.

Let C̃j := Cj(ṽj, vj) be the closed sub-arc of Cj from ṽj to vj for all j ∈ {1, 2, 3, 4}
and fix positive d1 and d2 so that for all j ∈ {1, 2, 3, 4} we have

d1 < dist(∂Q(avj , bvj) ∪ C̃j, (∂Q \ ∂Q(avj , bvj)) ∩D(vj, δ)),

where ∂Q(avj , bvj) denotes the closed sub-arc of ∂Q passing through avj , bvj and vj,
and

d2 < dist(∂a′Q, ∂b′Q),

where ∂a′Q := ∂aQ \
⋃4
j=1 ∂Q(avj , bvj) and ∂b′Q := ∂bQ \

⋃4
j=1 ∂Q(avj , bvj). Note

that by definition of avj and bvj all distances defined above are positive, even if ∂Q
were to contain an arc of ∂D(vj, δ).

We are now ready to start the approximation of ∂Q by finitely many line seg-
ments. Fix some s > 0 such that

(10) s <
min{dist(K, ∂Q), d1, d2, δ}

100

and cover the plane with closed axes oriented squares of side length s, i.e., with sides
parallel to the coordinate axes that have length s.
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Note that squares that do not intersect the closure of
⋃4
j=1D(vj, δ) and contain

points of one of the sides of Q, cannot contain points of any of the other three sides,
because their diameter is much smaller than d2 and δ (see (8)).

Let S0 be an arbitrary closed square like this that intersects ∂Q. Then there is
a point ζ1 ∈ S0 ∩ ∂Q. If there is also a point ζ2 ∈ S0 ∩K, then

dist(K, ∂Q) ≤ |ζ1 − ζ2| ≤ diamS0 = s
√

2,

which contradicts (10). Let S be the union of those closed squares that intersect ∂Q.
Hence

∂Q ⊂ S, S ∩K = ∅.
Since S is a compact subset of C, its complement C\S is the union of open connected
components, and each bounded component is a subset of Q. One of the bounded
components contains the connected set K. We denote this component by Qτ . The
boundary of Qτ consists of finitely many line segments, each parallel to one of the
coordinate axes.

Figure 2. An illustration of what would happen if we assumed ∂Qτ is not a Jordan curve.

We next prove that Qτ is a Jordan domain. To show that, it is enough to show
there are no self-intersections on ∂Qτ . Assume towards a contradiction that there are
self-intersections on ∂Qτ . Since ∂Qτ consists only of sides of axes oriented squares,
the only self-intersections that could occur are due to two of said squares intersecting
each other at a corner, say v∗, for which there is an open disk D(v∗, r∗) of a tiny
radius r∗ ∈ (0, s/2) such that it only intersects the two aforementioned squares and
no other squares intersecting ∂Qτ , and the domain Qτ . Let q1 be a point in one of the
connected components of Qτ ∩D(v∗, r∗) and q2 be a point in the other component.
Since Qτ is connected, there is a path Cq ⊂ Qτ that connects q1 to q2 and intersects
no point of ∂Qτ , and, as a result, no point of ∂Q. Note that by the choice of the
squares contained in S, the corner v∗ cannot lie on the boundary of Q, since then all
four squares that meet at v∗ would lie in S and the boundary of Qτ would have no
self-intersection at v∗. Hence, the Jordan curve ∂Q has points lying in the bounded
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domain bounded by [q1, v∗]∪ [v∗, q2]∪Cq and cannot intersect its boundary. But then
it would be impossible to have points of ∂Q in the square lying in the complement of
the aforementioned domain and intersecting it at v∗, since ∂Q is connected, leading
to a contradiction. See Figure 2.

Hence, Qτ is a Jordan domain. We choose four vertices v′j for 1 ≤ j ≤ 4 on ∂Qτ

to obtain a quadrilateral Qτ (v
′
1, v
′
2, v
′
3, v
′
4) that lies in Q, with boundary consisting of

finitely many line segments. We choose the points v′j as follows.
Note that squares that intersect ∂Q(av1 , bv1)∪ C̃1 cannot intersect points of (∂Q\

∂Q(av1 , bv1))∩D(v1, δ) due to (10). Similarly, squares that intersect ∂a′Q∪∂b′Q cannot
contain points of C1. So the only squares containing boundary points of Q that may
intersect C1 are those containing points of ∂Q(av1 , bv1). More specifically, they may
only intersect points of C̃1 = C1(ṽ1, v1) because the side lengths of the squares are
also smaller than dist(Cδ

1 , ∂Q)/100 by definition of K and (10). Set v′1 to be the first
point of S that C̃1 intersects with direction from ṽ1 towards v1. Similarly the other
three v′j for j ∈ {2, 3, 4} can be defined.

Set C ′j = Cj(z0, v
′
j) to be the open sub-arc of Cj from z0 to v′j for all j ∈ {1, 2, 3, 4}.

Now Qτ contains the connected set K ∪
(⋃4

j=1C
′
j

)
.

Note that Q \Qτ may be large, and there may be points on ∂Q that have a large
distance to the set ∂Qτ . However, we shall show that every point of ∂Qτ is close to
some point of ∂Q. Indeed, outside small disks centered at the old vertices vj each
point on a side of ∂Qτ is close to the corresponding side of ∂Q.

We will now prove that away from the disks D(vj, 2δ), we can connect within Q
boundary points of Qτ to boundary points of the corresponding side of Q. Let a11 be
the last point of ∂a1Qτ with direction from v′1 towards v′2 that intersects ∂D(v1, 2δ)

so that the open sub-arc ∂a1Qτ (a11, v
′
2) of ∂a1Qτ does not intersect D(v1, 2δ). Simi-

larly, let a12 be the last point of ∂a1Qτ with direction from v′2 towards v′1 that inter-
sects ∂D(v2, 2δ) so that the open sub-arc ∂a1Qτ (v

′
1, a12) of ∂a1Qτ does not intersect

D(v2, 2δ).
Let z ∈ ∂a1Qτ (a11, a12). Then z lies in a closed square Sz ⊂ S. Indeed, at least one

of the four boundary segments of Sz is contained in ∂Qτ . By definition, Sz ∩∂Q 6= ∅.
Let T ′ be the last such segment in ∂Sz when moving along ∂a1Qτ (a11, a12) from
a11 towards a12 in case there is more than one such segment. Then there is the
next segment T ′′, after T ′ in the same direction, on ∂Qτ that is contained in the
boundary of another closed square S ′ in S and is not contained in the boundary of
Sz. The intersection of the closed squares Sz and S ′ is non-empty. Suppose that
ζ1 ∈ Sz ∩ ∂Q and ζ2 ∈ S ′ ∩ ∂Q. It is already clear by the definition of d2 and (10)
that Sz cannot contain points from two different sides of Q, and the same applies to
S ′. Now |ζ1 − ζ2| ≤ 2

√
2s. By (10) and the definitions of d1 and d2, the points ζ1

and ζ2 must belong to the same side of Q. Thus there is a unique side of Q that is
followed by the sub-arc ∂a1Qτ (a11, a12) of ∂a1Qτ all the way from a11 to a12, and this
sub-arc stays bounded away by a definite distance from all other sides of ∂Q. (Note
that this relation does not go in the other direction: this side of ∂Q may contain
points that are far away from every point of ∂Qτ .)

We claim that this unique side of ∂Q, say γ, is ∂a1Q. Now γ contains a point
ζ0 in a closed square that also contains a11, and hence |ζ0 − v1| ≤ 2δ + s

√
2. By (9)

and (10), and since v1 belongs to the closure of each of ∂a1Q and ∂b2Q, neither ∂a2Q
nor ∂b1Q can contain any point that close to v1. Hence γ can only be ∂b2Q nor ∂a1Q.
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Similarly close to a12, the side γ contains a point ζ ′0 with |ζ ′0 − v2| ≤ 2δ + s
√

2. By
(9) and (10) ∂b2Q cannot contain any point that close to v2. Hence γ must be ∂a1Q.

The argument runs similarly for points on other sides of ∂Qτ that lie on parts
of the sides that have exited the corresponding disks D(vj, 2δ) and do not intersect
them again. This shows that those sub-arcs of the sides of ∂Qτ are close to the
corresponding sides of ∂Q and only those sides of ∂Q.

We will first show that sa(Qτ ) ≤ sa(Q) + ε, and the proof for sb(Qτ ) ≤ sb(Q) + ε
follows similarly. Consider the definition of Caεδ ⊂ Q and the fact that the end points
of Caε lie outside

⋃4
j=1D(vj, 2δ) due to (6). At each end of Caεδ ⊂ Q we continue

outwards along Caε until we come to the first point that lies on ∂Qτ . This gives rise
to an arc C of length ≤ sa(Q) + ε joining two points of ∂Qτ . Now we only need
to show that these two points lie on the two a-sides of Qτ . It suffices to give the
argument for one side and the case of the other side is similar. Let ζ3 = z̃a1 be the
end point of Caεδ after which the remaining part of Caεδ when going towards ∂a1Q
has length δ. Let ζ4 ∈ ∂a1Q be the end point of Caε. Recall that |ζ4−vj| ≥ δε > 100δ
for all j with 1 ≤ j ≤ 4. Hence the arc of Caε from ζ4 to ζ3 lies outside D(vj, 99δ)
for 1 ≤ j ≤ 4.

Let ζ5 be the first point on ∂Qτ that we encounter when moving towards ∂a1Q
from ζ3 along Caε. Then ζ5 lies on a side γ of ∂Qτ , and by the definition of S, there
is a point ζ6 ∈ ∂Q in a closed square S1 in S with ζ5 ∈ S1 such that |ζ5 − ζ6| ≤ s

√
2.

Now |ζ5 − vj| > 99δ so that by what we have proved above, there is a unique side
γ′ of ∂Q associated with γ, and ζ6 ∈ γ′. The point ζ4 lies on ∂a1Q and has distance
< δ + s

√
2 from ζ6. Hence, by the definitions of δ and s, we have γ′ = ∂a1Q, and

consequently γ = ∂a1Qτ , as desired.
On the other hand, let Ca,ε,τ be a Jordan arc that connects the a-sides of Qτ , lies

in Qτ except for its end points, which lie in the complement of
⋃4
j=1D(v′j, 4δ), and has

length at most s4δa (Qτ )+ε. But by the definition ofQτ and the fact that the end points
of Ca,ε,τ lie outside

⋃4
j=1D(vj, 2δ), there are line segments inside Q of length at most√

2s connecting the end points of Ca,ε,τ to points on ∂Q and hence, by the argument
already given, to the a-sides ofQ. Thus, sa(Q) ≤ s4δa (Qτ )+ε+2

√
2s. By the definition

of Qτ and (8), (9), the constant 4δ > 0 satisfies (1) and (2), so applying Lemma 1 to
Qτ we get that sa(Q) ≤ sa(Qτ ) + ε+ 2

√
2s+ 16πδ, which by the choice of s implies

that sa(Q) ≤ sa(Qτ ) + ε + 67δ. Similarly, the inequality sb(Q) ≤ sb(Qτ ) + ε + 67δ
also holds. Thus, we have shown that for all ε < 10−3 min{sa(Q), sb(Q)} we have

(11) |sa(Q)− sa(Qτ )| ≤ ε+ 67δ < 2ε,

and

(12) |sb(Q)− sb(Qτ )| ≤ ε+ 67δ < 2ε.

Let τ ∈ (0, 1/2]. Applying (11) and (12) for ε = τ min{sa(Q), sb(Q)}/2 we get

(13) |sa(Q)− sa(Qτ )| ≤ τ min{sa(Q), sb(Q)} ≤ τsa(Q),

and

(14) |sb(Q)− sb(Qτ )| ≤ τ min{sa(Q), sb(Q)} ≤ τsb(Q).

It is now clear by (13) and (14) that
(1− τ)sa(Q)

(1 + τ)sb(Q)
≤ sa(Qτ )

sb(Qτ )
≤ (1 + τ)sa(Q)

(1− τ)sb(Q)
,
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but since Q ∈ Q(L̃) we get

1− τ
1 + τ

L̃ ≤ sa(Qτ )

sb(Qτ )
≤ 1 + τ

1− τ
L̃.

Hence, for Lτ = 1+τ
1−τ L̃ and because τ ≤ 1/2 we have

Qτ ∈ Qls(Lτ ) ⊂ Qls(3L̃)

as needed. �

Remark 2. Note that Lemma 2 is particularly useful for τ very close to 0. In that
case it practically guarantees that the “approximation” quadrilateral Qτ ∈ Qls(Lτ )
has in fact internal distances very close to those of the original quadrilateral Q. The
reason we decided to state Lemma 2 in its current form is to point out that all the
approximations are contained in the collection Qls(L) for L independent of τ .

Thus, by Lemma 2, for τ very close to 0, if we prove that a disk of radius
δ′max{sa(Qτ ), sb(Qτ )} lies in Qτ ∈ Qls(L) for some δ′ ∈ (0, 1) depending only on L̃
and L = 3L̃, then a disk of radius δmax{sa(Q), sb(Q)} lies in Q with δ = δ′/4, which
proves Theorem 1.

With the above reduction in mind, it is enough to prove the following:

Theorem 2. For every quadrilateral Q in Qls(L) there is a disk of radius r :=
sa(Q)
1000L

that lies inside Q.

Indeed, suppose Q(v1, v2, v3, v4) ∈ Qls(L). Then Q′ = Q(v2, v3, v4, v1) also lies in
Qls(L), since ∂a1Q′ = ∂b1Q, ∂a2Q′ = ∂b2Q, ∂b1Q′ = ∂a1Q and ∂b2Q

′ = ∂a2Q, which
implies sa(Q′) = sb(Q) and sb(Q′) = sa(Q). Applying Theorem 2 to Q and Q′ along
with Proposition A proves Theorem 1.

Note that the opposite implication might not be true, i.e., Theorem 1 does not
necessarily imply Theorem 2, since the radius of the disk contained in Q might not
have exactly the form r = sa(Q)

1000L
. However, by Proposition A and the discussion

afterwards, Theorem 1 is in fact equivalent to the following:

Theorem 3. For every L ≥ 1 there is a constant δ ∈ (0, 1) depending only on L
such that every quadrilateral Q inQls(L) contains a disk of radius δmax{sa(Q), sb(Q)}.

4. Proof of Theorem 2

Let Q = Q(v1, v2, v3, v4) ∈ Qls(L) and set sa := sa(Q), sb := sb(Q). Note that
one can find a Jordan arc that is the union of finitely many line segments, connects
the a-sides of Q with length sa and lies in the closure of Q. The reason why such an
arc exists lies in the fact that Q is a connected union of finitely many closed squares
with sides parallel to the axes (due to Lemma 2). Every Jordan arc connecting the
a-sides of Q inside the interior of Q intersects at most finitely many squares, which
forms a chain of squares connecting one side to the other. There is a minimal number
of squares needed to perform such a connection. Note that in each such square, the
part of the arc lying inside can be made shorter by connecting with a line segment
the first point from where the arc enters the square with the last point from where
the arc exits. This line segment may either lie in the interior of the square, or on
its boundary. Thus, by definition of sa and the finiteness of the number of minimal
square-chains connecting the a-sides, an arc lying in Q that connects the a-sides while
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being of the shortest length possible can indeed be found (as a union of sides of the
squares in Q and line segments lying in said squares).

Define r as in the statement of Theorem 2. We fix the following:
• Let Ca ⊂ Q be a Jordan arc that is the union of finitely many line segments
and connects the a-sides of Q with `(Ca) = sa.
• For small ε, ε′ > 0 with ε < 10−3r let Cε :=

⋃N
i=1[zi, zi+1] be a finite union of

line segments that connects the a-sides of Q with `(Cε) ≤ sa + ε and

Cε ⊂
⋃
w̃∈Ca

D(w̃, ε′).

We essentially “modify" Ca within an ε′-neighborhood to get the arc Cε, which
lies in the interior of Q (except its end points) and has length at most sa + ε.
Note that the arcs Ca and Cε can differ in general (see Figure 11).

In addition, we can choose Cε such that Cε \ {z1, zN+1} ⊂ Q and z1 ∈
∂a1Q \ ∂bQ, zN+1 ∈ ∂a2Q \ ∂bQ.
• Write R := 10r = sa(Q)

100L
,

(15) F := {w ∈ Cε : min{`(Cε(z1, w)), `(Cε(w, zN+1))} ≥ 15R},
and

(16) F ′ := {w ∈ Cε : min{`(Cε(z1, w)), `(Cε(w, zN+1))} ≥ 16R + 2ε},
so that F and F ′ are two sets of points of Cε that are sufficiently far from the
end points of Cε.

It is not difficult to see that if a line segment (x, y) ⊂ Q intersects Ca with x, y
on the same b-side, then the intersection would either be one of the end points of
(x, y) or the entire line segment [x, y]. That is because an arc connecting the a-sides
with the shortest length would not enter a region of Q enclosed by a sub-arc of one
of the b-sides and a line segment lying in Q. This ensures that Cε can be chosen so
that there is no line segment with end points on the same b-side that intersects Cε
and lies in Q (except for its end points).

We split the proof of Theorem 2 in three Propositions. The first one asserts that
the arc Cε exits every disk centered at points of F and of radius R in both directions
(towards z1 and zN+1).

Proposition 1. Let w0 ∈ F . If z̃1 ∈ Cε(z1, w0) with `(Cε(z̃1, w0)) ≥ 15R, then
Cε(z̃1, w0)∩(C\D(w0, R)) 6= ∅. Similarly, if z̃N+1 ∈ Cε(zN+1, w0) with `(Cε(z̃N+1, w0))

≥ 15R, then Cε(z̃N+1, w0) ∩ (C \D(w0, R)) 6= ∅.
Proof. Let w0 ∈ F and z̃1 ∈ Cε(z1, w0) with `(Cε(z̃1, w0) ≥ 15R. Assume towards

a contradiction that
Cε(z̃1, w0) ⊂ D(w0, R).

Define the map g : D(w0, R) \ {w0} → ∂D(w0, R) by

g(z) :=
R(z − w0)

|z − w0|
+ w0

for all z ∈ D(w0, R) \ {w0}. What g does to a point z of the closed punctured disk
D(w0, R) \ {w0} is to map it to the point g(z) ∈ ∂D(w0, R) for which (w0, z) ⊂
(w0, g(z)).

Let w1, w2 ∈ Cε(z̃1, w0) with `(Cε(z̃1, w1)) = 2R and `(Cε(w0, w2)) = 2ε + 2R. If
g(w1) = g(w2) then we can move along Cε and replace, for instance, w1 with some w′1
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with `(Cε(z̃1, w′1)) ∈ [2R, 3R] and g(w′1) 6= g(w2), since Cε ⊂ D(w0, R) and it takes
at most the length of R to move to a different radius. As a result, we can assume
w1, w2 do not lie on the same radius for the slightly “worse” scenario where

2R ≤ `(Cε(z̃1, w1)) ≤ 3R,(17)
`(Cε(w2, w0)) = 2R + 2ε.(18)

Let w ∈ Cε(w1, w2), which implies that

`(Cε(z̃1, w)) ≥ 2R,(19)
`(Cε(w,w0)) ≥ 2ε+ 2R.(20)

If (w0, w) ⊂ Cε then `(Cε(w0, w)) = |w−w0| ≤ R which contradicts (20). Hence,
(w0, w) 6⊂ Cε. Additionally, since Cε is a union of finitely many line segments,
there are points of Cε(w1, w2) not on the boundary ∂D(w0, R). So we can pick
w /∈ ∂D(w0, R).

If (w,w0) ⊂ Q then we can replace Cε(w,w0) by [w,w0] and, hence, we should
have

sa + ε− `(Cε(w,w0)) + |w − w0| ≥ sa,

so that
ε+ |w − w0| ≥ `(Cε(w,w0)),

which by (20) implies that
ε+R ≥ 2R + 2ε,

which is a contradiction. Therefore, (w,w0) ∩ ∂Q 6= ∅.
Let zw ∈ ∂Q ∩ (w,w0) be the boundary point that is closest to w, i.e., with

minimum |z − w| among all boundary points z of Q on (w,w0). Since (zw, w) ⊂ Q,
if zw ∈ ∂aQ then replacing part of Cε by the segment [zw, w] we see that either

zw ∈ ∂a1Q⇒ sa + ε− `(Cε(z1, w)) + |zw − w| ≥ sa,

or
zw ∈ ∂a2Q⇒ sa + ε− `(Cε(zN+1, w)) + |zw − w| ≥ sa.

Recalling that w ∈ Cε(z̃1, w0) ⊂ Cε(z1, w0), in both cases, because of (19) and (15)
respectively, we would get that

ε ≥ 2R− |zw − w| ≥ R,

which is a contradiction because we chose ε < 10−3r < R. Hence, zw ∈ ∂bQ.
Suppose zw ∈ ∂b1Q. The proof is identical if zw ∈ ∂b2Q.
Suppose [w, g(w)]∩∂Q 6= ∅. Then there exists Bw ∈ ∂Q∩ [w, g(w)] that is closest

to w, i.e., with minimum |Bw − w|. If Bw ∈ ∂a1Q, then

sa + ε− `(Cε(z1, w)) + |Bw − w| ≥ sa,

which by (19) implies that
ε− 2R +R > 0,

but that is a contradiction since ε < 10−3r < R.
Similarly, if Bw ∈ ∂a2Q then

sa + ε− `(Cε(w, zN+1)) + |Bw − w| ≥ sa

which by (15) leads to the contradiction ε− 15R +R > 0.
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Hence, Bw ∈ ∂bQ. However, we assumed that there are no line segments with end
points on the same b-side intersecting Cε, so Bw ∈ ∂b2Q, which means that [Bw, zw]
connects the two b-sides of Q, so

sb ≤ |Bw − zw| ≤ R =
sa

100L
< sb,

which is a contradiction.
As a result, there is no Bw ∈ ∂Q ∩ [w, g(w)], which means that g(w) ∈ Q.
Since w was arbitrary, we have shown that the arc

A = {g(w) : w ∈ Cε(w1, w2)}

lies entirely in Q, and so does every segment [w, g(w)] for w ∈ Cε(w1, w2). Hence,
the arc

C ′ε = Cε(z1, w1) ∪ A ∪ Cε(w2, zN+1) ∪ [w1, g(w1)] ∪ [w2, g(w2)] ⊂ Q

joins the a-sides of Q and needs to have length greater than or equal to sa. But

`(C ′ε) = `(Cε(z1, w1)) + `(A) + `(Cε(w2, zN+1)) + |w1 − g(w1)|+ |w2 − g(w2)|.

So `(C ′ε) ≥ sa implies

sa + ε− `(Cε(w1, w2)) + |w1 − g(w1)|+ |w2 − g(w2)|+ `(A) ≥ sa,

which leads to

ε+ 2R + 2πR ≥ `(Cε(w1, w2)) = `(Cε(z̃1, w0))− `(Cε(z̃1, w1))− `(Cε(w2, w0)).

But by (17) and (18) the above implies that 3ε ≥ R, which is a contradiction. This
finishes the proof for z̃1. The proof is similar for z̃N+1. �

Figure 3. Boundary points of Q can only lie in one component and the shaded areas.

The second Proposition asserts that every disk centered at points of F ′ and of
radius R is split into two components by Cε, only one of which may include boundary
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points ofQ outside the disk with same center of radius R−ε and within neighborhoods
of the end points of the sub-arc of Cε lying in the disk (see Figure 3).

Proposition 2. For every w0 ∈ F ′ there are points w0,1 ∈ Cε(z1, w0)∩∂D(w0, R)
and w0,2 ∈ Cε(w0, zN+1)∩∂D(w0, R) so that D(w0, R)\Cε(w0,1, w0,2) has exactly two
connected components with closures D+ and D−. Moreover, at least one of D+∩∂Q,
D− ∩ ∂Q is contained in (D(w0,1, 2ε) ∪D(w0,2, 2ε)) \D(w0, R− ε).

Proof. Let w0 ∈ F ′. Note that since F ′ ⊂ F , by Proposition 1 for z̃1 = z1 there
are two points w0,1 ∈ Cε(z1, w0) ∩ ∂D(w0, R) and w0,2 ∈ Cε(w0, zN+1) ∩ ∂D(w0, R)
with minimal `(Cε(w0,1, w0)) and `(Cε(w0, w0,2)) respectively so that D(w0, R) \
Cε(w0,1, w0,2) has exactly two connected components, say D+ and D−. In addi-
tion, if `(Cε(w0,1, w0)) ≥ 15R, by Proposition 1 for z̃1 = w0,1 we would get a con-
tradiction regarding the minimality of `(Cε(w0,1, w0)) among the points of Cε on
∂D(w0, R). Similarly for z̃N+1 = w0,2, we conclude that `(Cε(w0,1, w0)) < 15R and
`(Cε(w0, w0,2)) < 15R. In the arguments that follow, note that D+ ∪ D− may still
contain points of Cε \ Cε(w0,1, w0,2).

Assume without loss of generality that D−∩∂Q is not contained in (D(w0,1, 2ε)∪
D(w0,2, 2ε))\D(w0, R−ε). We will show that D+∩∂Q ⊂ (D(w0,1, 2ε)∪D(w0,2, 2ε))\
D(w0, R− ε). Let

z̃− ∈
(
D− ∩ ∂Q

)
\ ((D(w0,1, 2ε) ∪D(w0,2, 2ε)) \D(w0, R− ε)) .

Denote by z− the boundary point of Q on [z̃−, w0] that lies in D− and is closest to
w0. Then, denote by w− the point of Cε(w0,1, w0,2) that lies on [z−, w0] and is closest
to z− (so w− could be w0). Hence, we end up with z− ∈ D−∩∂Q, w− ∈ Cε(w0,1, w0,2)
and (z−, w−) ⊂ D− ∩Q.

If z− ∈ ∂a1Q, then

sa + ε− `(Cε(z1, w−)) + |z− − w−| ≥ sa,

so that
ε+R ≥ `(Cε(z1, w−)) = `(Cε(z1, w0))± `(Cε(w−, w0)),

with “+” if w− ∈ Cε(w0, w0,2) and “−” if w− ∈ Cε(w0,1, w0). In either case, since
`(Cε(w−, w0)) ≤ `(Cε(w0,1, w0)) < 15R and w0 ∈ F ′, the right hand side of the
above inequality is greater or equal to 16R + 2ε − 15R = R + 2ε, which leads to
the contradictory inequality ε < 0. We get a similar contradiction if we assume that
z− ∈ ∂a2Q. Hence, z− ∈ ∂bQ.

Suppose z− ∈ ∂b1Q. IfD+∩∂Q = ∅ then the statement of the Proposition follows.
Suppose D+ ∩ ∂Q 6= ∅ and consider an arbitrary point z̃+ ∈ D+ ∩ ∂Q. Denote by
z+ the boundary point of Q on [z̃+, w0] that lies in D+ and is closest to w0. Then,
denote by w+ the point of Cε(w0,1, w0,2) that lies on [z+, w0] and is closest to z+.
Hence, we end up with z+ ∈ D+ ∩ ∂Q, w+ ∈ Cε(w0,1, w0,2) and (z+, w+) ⊂ D+ ∩Q.

Similarly to z−, we can show that z+ /∈ ∂aQ, so z+ ∈ ∂bQ. If z+ ∈ ∂b2Q then we
can join ∂b1Q to ∂b2Q in Q by the path consisting of the line segments [z−, w−] and
[z+, w+] and the arc Cε(w−, w+). Hence, by the definition of sb we have

|z− − w−|+ `(Cε(w−, w+)) + |z+ − w+| ≥ sb

But since `(Cε(w0,1, w0)) < 15R and `(Cε(w0, w0,2)) < 15R, we have

sb ≤ |z− − w−|+ `(Cε(w−, w+)) + |z+ − w+| < R + 30R +R.
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However, R = sa
100L

, so the above implies

sb <
32sa
100L

≤ 32

100
sb,

which is a contradiction. Hence, z+ ∈ ∂b1Q.
Suppose [w0, w−] * Q. In this case, let z′− be the boundary point of Q on (w0, w−)

that is closest to w−. Similarly to z− this implies that z′− ∈ ∂bQ. But z′− cannot lie on
∂b1Q because of our assumption on line segments with end points on the same b-side
not intersecting Cε. Thus, z′− ∈ ∂b2Q, which is a contradiction because (z−, z

′
−) ⊂ Q

and |z− − z′−| ≤ R < sb. Following the same argument for [w0, w+], we get that
[w0, w−], [w0, w+] ⊂ Q.

Assume towards a contradiction that there are no points of Cε on (z−, w−) ∪
(z+, w+). Denote by T the union of the closed line segments of Cε that intersect w−
and w+ and denote by |T | the number of said line segments. Note that |T | ∈ {2, 3, 4}
based on whether w−, w+ are end points of some [zi, zi+1] or not. Set z′1, z′N+1 ∈ Cε
with `(Cε(z1, z′1)) = `(Cε(z

′
N+1, zN+1)) = R/2 and pick some tiny positive ε̃ < 10−5ε

so that D(w, ε̃) ⊂ Q for all w ∈ Cε(z′1, z′N+1). Let

NCε = {z ∈ D(w, ε̃) : w ∈ Cε(z′1, z′N+1)}
∪ {z ∈ D(w, ε̃) ∩Q : w ∈ Cε(z1, z′1) ∪ Cε(z′N+1, zN+1)}

be a neighborhood of Cε \ {z1, zN+1} inside Q so that
• (z−, w−) intersects the boundary of only one connected component of NCε\Cε,
for instance by taking ε̃ < dist((z−,w−), Cε\T )

2
,

• (z+, w+) intersects the boundary of only one connected component of NCε\Cε,
for instance by taking ε̃ < dist((z+,w+), Cε\T )

2
.

Figure 4. An example of NCε
.

As a result, (z−, w−) and (z+, w+) intersect ∂NCε at unique points n− and n+,
respectively. If both (n−, w−), (n+, w+) lie in the same connected component of
NCε \Cε, then we could find a arc C± that connects n− with n+ inside the closure of
the same component of NCε \ Cε. But for ε̃ small enough, this arc can be chosen so
that it lies inside D(w0, R) and does not intersect Cε, implying that the arc (z−, n−)∪
C± ∪ (n+, z+) connects z− with z+ without intersecting Cε.

But this contradicts the fact that z− ∈ D− and z+ ∈ D+, which are different
connected components of D(w0, R) \Cε(w0,1, w0,2). Hence, (n−, w−) and (n+, w+) lie
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in different components of NCε \Cε. If Q1 and Q2 are the two connected components
of Q \ Cε that contain ∂b1Q and ∂b2Q on their boundary, respectively, then the two
connected components of NCε \ Cε would lie in Q1 and Q2, say the one including
(n−, w−) lies in Q1 and the other in Q2 and the proof is identical if it is the other way
around. To see why this is not possible, unless one of (z−, w−), (z+, w+) intersects
Cε, it helps to map the quadrilateral Q onto a rectangle Rec(Q) using a conformal
map φ so that φ(∂a1Q) = (0,M), φ(∂b1Q) = (M,M + i), φ(∂a2Q) = (i,M + i),
φ(∂b2Q) = (0, i), where M = Mod(Q).

Figure 5. Showing how thin NCε
is chosen to be, even inside D(w0, R) and compared to

|z+ − w+|, |z− − w−|.

Figure 6. In case [z+, n+] ⊂ Q2, there is no way to connect φ(z+) to φ(n+) without crossing
φ(Cε) or the boundary of Rec(Q). Similarly in the case [z+, n+] ⊂ Q1 for φ(z−) and φ(n−).

What we have shown is that there is a point on the right vertical side of Rec(Q),
specifically φ(z+), which can be connected to a point of φ(Q2), specifically φ(n+), by
a arc inside Rec(Q) that does not intersect φ(Cε). But since such a arc would start on
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the right vertical side and φ(n+) ∈ φ(Q2), it intersects both φ(Q1) and φ(Q2), which
can only be achieved either by crossing φ(Cε) or the boundary of Rec(Q). However,
our hypothesis is that none of these two cases occurs, which leads to a contradiction.

We reached the above contradiction because we assumed that there are no points
of Cε on (z−, w−) ∪ (z+, w+). As a result, Cε intersects at least one of (z−, w−),
(z+, w+). Suppose it intersects (z+, w+). Note that by the definition of w+, there
are no points of Cε(w0,1, w0,2) on (z+, w+). Thus, there is some w′+ ∈ Cε\Cε(w0,1, w0,2)
that lies on (z+, w+). But we showed that (z+, w0) ⊂ Q, which implies that (w′+, w0) ⊂
Q. By minimality of sa we have

sa + ε− `(Cε(w0, w
′
+)) + |w′+ − w0| ≥ sa,

so that

(21) |w′+ − w0| ≥ `(Cε(w0, w
′
+))− ε.

Similarly, if Cε intersects (z−, w−) as well, we get

(22) |w′− − w0| ≥ `(Cε(w0, w
′
−))− ε.

Recall that w′− ∈ Cε(z1, w0,1) ∪ Cε(w0,2, zN+1). If w′− ∈ Cε(z1, w0,1) then

`(Cε(w0, w
′
−)) = `(Cε(w0, w0,1)) + `(Cε(w0,1, w

′
−)) ≥ R + |w0,1 − w′−|,

which combined with (22) and |w′− − w0| ≤ R implies that

ε ≥ |w0,1 − w′−|.
But |z̃− − w′−| = |z̃− − w0| − |w′− − w0| ≤ R− `(Cε(w0, w

′
−)) + ε ≤ ε. As a result,

(23) |z̃− − w0,1| ≤ |z̃− − w′−|+ |w0,1 − w′−| ≤ 2ε,

which contradicts the choice of z̃− ∈ (D−∩∂Q)\(D(w0,1, 2ε)∪D(w0,2, 2ε)). Similarly,
w′− ∈ Cε(w0,2, zN+1) implies that |z̃− − w0,2| ≤ 2ε, which is also a contradiction.

Hence, Cε can only intersect (z+, w+). Suppose w′+ ∈ Cε(z1, w0,1). Since

|z̃+ − w0,1| ≤ |z̃+ − w′+|+ |w0,1 − w′+|,
and because the right hand side equals |z̃+ − w0| − |w′+ − w0| + |w0,1 − w′+|, we get
by (21) and |z̃+ − w0| ≤ R that

(24) |z̃+ − w0,1| ≤ R− `(Cε(w0, w
′
+)) + ε+ |w0,1 − w′+|.

Because w′− ∈ Cε(z1, w0,1) we get

`(Cε(w0, w
′
+)) = `(Cε(w0, w0,1)) + `(Cε(w0,1, w

′
+)) ≥ R + |w0,1 − w′+|,

which combined with (24) implies that

|z̃+ − w0,1| ≤ ε.

Similarly, if w′+ ∈ Cε(w0,2, zN+1) we can show that |z̃+−w0,2| ≤ ε. Hence, |z̃+−w0,1| ≤
ε or |z̃+ − w0,2| ≤ ε, each of which implies that |z̃+ − w0| ≥ R− ε.

Note that the assumption z̃− ∈ (D−∩∂Q)\ (D(w0,1, 2ε)∪D(w0,2, 2ε)) was neces-
sary because of (23). Since z̃+ ∈ D+ ∩ ∂Q was arbitrary, the proof is complete. �

Remark 3. For the rest of the paper we assume without loss of generality that
D+∩∂Q ⊂ (D(w0,1, 2ε)∪D(w0,2, 2ε))\D(w0, R−ε). Observe that if for the boundary
point z̃+ ∈ D+ ∩ ∂Q the corresponding w′+ lies in Cε(z1, w0,1), then by (21) we have
`(Cε(w0,1, w0)) < R + 2ε, and similarly if w′+ ∈ Cε(w0,2, zN+1) then `(Cε(w0,2, w0)) <
R + 2ε. This means that at least one of Cε(w0,1, w0), Cε(w0, w0,2) cannot deviate
much from being the line segment [w0,1, w0], [w0, w0,2] respectively. In other words,



298 Efstathios-Konstantinos Chrontsios-Garitsis and Aimo Hinkkanen

at least one of them lies in a 3ε-neighborhood of the respective line segment. In the
case D+ ∩ ∂Q 6= ∅ assume for what follows that

Cε(w0,1, w0) ⊂ N3ε = {z ∈ D(w, 3ε) : w ∈ [w0,1, w0]}

without loss of generality, since in case Cε(w0, w0,2) ⊂ N ′3ε = {z ∈ D(w, 3ε) : w ∈
[w0, w0,2]} the proof is identical.

The following Proposition finishes the proof of Theorem 2 by placing a disk of
radius r inside the part of the “good” component D+ that contains no points of ∂Q.

Proposition 3. Let D+, D− be as in Proposition 2 and Remark 3. Then there
is w′0 ∈ D+ such that

D(w′0, r) ⊂ D+ ∩D(w0, R− ε) ⊂ Q.

Proof. Suppose D+ ∩ ∂Q 6= ∅. Denote by n0 and n′0 the points where ∂N3ε

intersects the line E perpendicular to [w0,1, w0] at w2r ∈ [w0,1, w0] with |w0,1−w2r| =
2r. Set y2r to be the point of Cε(w0,1, w0) that lies on [w2r, n0] and is closest to n0

and similarly set y′2r ∈ Cε(w0,1, w0) to be the point on [w2r, n
′
0] that is closest to n′0.

Moreover, set yw and y′w to be the two points on E with |yw−w2r| = |y′w−w2r| = r+3ε,
where n0 ∈ [yw, w2r] and n′0 ∈ [y′w, w2r]. Assume towards a contradiction that both
yw, y

′
w ∈ D−. Then at least one of the line segments [y2r, yw], [y′2r, y

′
w] intersects

Cε(w0, w0,2). Assume without loss of generality that [y2r, yw] ∩ Cε(w0, w0,2) 6= ∅ and
the proof is identical in the other case. Let ỹw be the point on [y2r, yw]∩Cε(w0, w0,2)
that is closest to y2r. Then [ỹw, y2r] ⊂ D+ and since it does not lie in D(w0,1, 2ε) ∪
D(w0,2, 2ε), by Proposition 2 and Remark 3 we have that [ỹw, y2r] ⊂ Q. However,
the Jordan arc (Cε \ Cε(y2r, ỹw)) ∪ [ỹw, y2r] lies in Q apart from its end points and
connects its a-sides with length less or equal to

sa + ε− `(Cε(y2r, ỹw)) + |ỹw − y2r| ≤ sa + ε− 8R/10− 8R/10 + r + 3ε,

in which the right hand side, by choice of ε and r = R/10, is strictly less than sa and
leads to a contradiction. Thus, at least one of yw, y′w lies in D+, which we denote by
w′0. Assume without loss of generality that yw = w′0 and the proof is identical in the
other case.

Then the disk D(w′0, r) = D(w′0, R/10) with w′0 ∈ D+ is tangent to ∂N3ε at n0.
We claim that D(w′0, r) ⊂ D+. This would finish the proof, because by the choice of
w′0 it is easy to see that D(w′0, r) ⊂ D(w0, R− ε).

Figure 7. The disk D(w′0, r) tangent to N3ε.
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To show this, it would be enough to show that no point of Cε(w0, w0,2) can lie
in the interior of D(w′0, r), something we know already for Cε(w0, w0,1) because it
lies in N3ε. Assume towards a contradiction that this is not the case, and let wm be
the point of Cε(w0, w0,2) inside D(w′0, r) that is closest to n0. The way to reach a
contradiction is to show that this leads to an arc connecting the a-sides with length
less than sa. Let wε be the point of Cε(w0,1, w0) that lies on the line defined by
(w′0, n0) and is closest possible to n0. Then the arc

C̃ε = Cε(z1, wε) ∪ [wε, n0] ∪ [n0, wm] ∪ Cε(wm, zN+1)

lies in Q, joins the a-sides of Q, and has length that must be at least sa. But

`(C̃ε) = sa + ε− `(Cε(wε, w0))− `(Cε(w0, wm)) + |wε − n0|+ |n0 − wm|

and |wε − n0| ≤ 6ε, |n0 − wm| ≤ 2r. Hence, `(C̃ε) ≥ sa implies that

ε+ 6ε+ 2r ≥ `(Cε(wε, w0)) + `(Cε(w0, wm)).

But by the definition of D(w′0, r) and wε, the points wm and wε cannot lie in
D(w0, R/2). Hence, since `(Cε(wε, w0)) ≥ |wε − w0| and `(Cε(wm, w0)) ≥ |wm − w0|,
we get

7ε+ 2r ≥ R,

and recalling r = R/10 the above yields

ε ≥ 4R/35,

which is a contradiction. As a result, D(w′0, r) ⊂ D+ ∩D(w0, R− ε) ⊂ Q.
Suppose D+ ∩ ∂Q = ∅. Let θ be the angular measure of the arc A+ = ∂D+ ∩

∂D(w0, R). Let d1, . . . , d7 ∈ A+ be such that the angle of the sub-arc of A+ connect-
ing dj with dj+1 has measure θR/8 for all 0 ≤ j ≤ 7, where d0 = w0,1 and d8 = w0,2.
For every j with 1 ≤ j ≤ 7 denote by Dj the disk D(wdj , r) ⊂ D(w0, R) that is
tangent to ∂D(w0, R) at the point dj. If there is j for which Dj ∩ Cε(w0,1, w0,2) = ∅
then Dj ⊂ D+ ⊂ Q and the proof is complete.

Assume towards a contradiction that all Dj intersect Cε(w0,1, w0,2) and denote
by cj a point of Cε(w0,1, w0,2) in Dj with minimal distance |dj − cj|. Then [cj, dj] ⊂
D+ ⊂ Q and |cj − dj| ≤ 2r = R/5.

We will first show that all cj need to lie in the same component of Cε(w0,1, w0,2)\
{w0}. Indeed, suppose that there is j ∈ [1, 6] such that cj ∈ Cε(w0,1, w0) and cj+1 ∈
Cε(w0, w0,2) (the proof is similar if the roles of cj and cj+1 are reversed). If Aj,j+1 is
the sub-arc of A+ connecting dj and dj+1, then the arc

C ′ε = Cε(z1, cj) ∪ (cj, dj) ∪ Aj,j+1 ∪ (dj+1, cj+1) ∪ Cε(cj+1, zN+1)

connects ∂a1Q and ∂a2Q inside Q. Hence, `(C ′ε) ≥ sa, which implies

sa + ε− `(Cε(cj, w0))− `(Cε(w0, cj+1)) + |cj − dj|+ |cj+1 − dj+1|+ `(Aj,j+1) ≥ sa.

But then

ε+ 2r + 2r + θR/8 ≥ `(Cε(cj, w0)) + `(Cε(w0, cj+1)) ≥ 8R/10 + 8R/10,

which by r = R/10 and θ < 2π implies

ε ≥ 12R/10− πR/4 > 2R/10,

which is a contradiction.
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Figure 8. The disks Dj tangent to ∂D(w0, R) from the inside.

As a result, all cj’s lie in the same component of Cε(w0,1, w0,2) \ {w0}, for all
j ∈ [1, 7] . Assume that cj ∈ Cε(w0,1, w0) for all j ∈ [1, 7], since the proof is identical
in the case where all cj lie in Cε(w0, w0,2) instead. Then the arc

C ′′ε = Cε(z1, c7) ∪ (c7, d7) ∪ A7,8 ∪ Cε(w0,2, zN+1)

connects ∂a1Q and ∂a2Q inside Q. Similarly to C ′ε, this implies

ε+ 2R/10 + θR/8 ≥ 8R/10 + 8R/10,

which gives the contradiction ε > 14R/10−πR/4 > 4R/10 and completes the proof.
�

5. Final remarks

A natural question to ask is whether some kind of converse to Theorem 1 could
potentially hold. For instance, for a fixed sufficiently small ε > 0 and a fixed δ > 0,
and for the collection Qδ of quadrilaterals Q for which for every w0 ∈ F ′ as in (16)
there is a disk of radius r = δmax{sa(Q), sb(Q)} within D(w0, 10r) that lies in Q, is
there a global bound on the modulus M(Q) for all Q ∈ Qδ that depends only on δ?
Such a converse cannot be true, as demonstrated in Figures 9 and 10, even under the
stronger assumption that there is a Jordan arc of length sa and every disk of radius
r = δmax{sa(Q), sb(Q)} centered on said arc lies entirely in Q.

Despite Theorem 1 not being a complete characterization of such collections of
quadrilaterals with globally bounded modulus, it might still contribute to character-
izations of planar quasiconformal maps. For instance, a result of similar geometric
flavor was used in [2] to prove that if a homeomorphism maps all equilateral trian-
gles onto topological triangles whose vertices satisfy a condition related to bounded
distortion, then it has to be quasiconformal. Other a priori weaker properties that
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ended up being enough to define quasiconformality have been given by Hinkkanen [6],
Aseev [4], and Ackermann [1].

Figure 9. No matter how small the red disks are, the two pointy parts of the b-sides can be as
close as needed to make the modulus too large.

Figure 10. Zooming in around the left end point of Ca from Figure 9.

It is also important to point out that Propositions 1, 2, and 3 provide interesting
properties regarding the boundary points within components of certain disks in a
quadrilateral, as well as an approximate location of the desired disk of Theorem 1
lying inside the quadrilateral. Indeed, we prove that if w0 is an arbitrary point of
the set F ′ defined by (16) (that is, the set of points on the arc joining the a−sides of
the quadrilateral not too close to the end points of the arc), then the disk D(w0, R)
contains a disk of radius r contained in the quadrilateral Q, where R and r are as
just above (15).

A lot of the arguments in our proofs would be simplified if the arc Cε defined in
the second paragraph of Section 4 had length equal to sa. Namely, if Ca could be
chosen to lie in the interior of Q with end points not on the vertices of Q, in which
case Cε = Ca. It was pointed out already after the definition of Cε that the two arcs
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need not be the same, as it is depicted in Figure 11. This raises the question (also
proposed to us by the anonymous referee), whether there is a characterization for
quadrilaterals Q in Qls for which Ca can be selected to lie in the interior of Q. To
the best of our knowledge, this is an open problem with interest on its own, which
would require a closer analysis of properties of “linear” quadrilaterals.

Figure 11. Example where Ca (in green) and Cε (in red) differ.
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