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An interpolation result for A1 weights with
applications to fractional Poincaré inequalities

Irene Drelichman

Abstract. We characterize the real interpolation space between weighted L1 and W 1,1 spaces

on arbitrary domains different from R
n, when the weights are positive powers of the distance to the

boundary multiplied by an A1 weight. As an application of this result we obtain weighted fractional

Poincaré inequalities with sharp dependence on the fractional parameter s (for s close to 1) and

show that they are equivalent to a weighted Poincaré inequality for the gradient.

A1-painoja koskeva interpolointitulos ja

sovelluksia murtoasteisiin Poincarén epäyhtälöihin

Tiivistelmä. Tässä työssä kuvaillaan avaruuden R
n mielivaltaisen aidon osa-alueen painol-

listen L1- ja W 1,1-avaruuksien väliset reaaliset interpolointiavaruudet, kun tarkasteltavat painot

ovat A1-painolla kerrottuja reunaetäisyyden positiivisia potensseja. Tuloksen sovelluksena saadaan

painollisia murtoasteisia Poincarén epäyhtälöitä, joilla on tarkka riippuvuus murtoasteisesta siley-

destä s (lähellä arvoa 1), ja osoitetaan, että nämä ovat yhtäpitäviä gradienttia koskevan painollisen

Poincarén epäyhtälön kanssa.

1. Introduction

Given a domain Ω ⊂ R
n, Ω 6= R

n, we denote by d(x) = d(x, ∂Ω) the distance
from x to the boundary. Let α, β ≥ 0, and ω be a weight in Muckenhoupt’s class A1,
that is, such that Mω(x) ≤ Cω(x) a.e., where M is the Hardy–Littlewood maximal
function. We consider the weighted Sobolev space

W 1,1
ω (Ω, dα, dβ) = {f ∈ L1

ω(Ω, d
α) : ‖∇f‖L1

ω(Ω,dβ) <∞}

where ‖f‖L1
ω(Ω,dβ) = ‖fωdβ‖L1(Ω).

The first goal of this paper is to show that, for any such domain, and any α ≥ 0,
one has

(1.1) (L1
ω(Ω, d

α),W 1,1
ω (Ω, dα, dα+1))s,1 = W̃ s,1

ω (Ω, dα, dα+s)

with equivalence of norms, where

W̃ s,1
ω (Ω, dα, dβ) =

{
f ∈ L1

ω(Ω, d
α) : |f |

W̃
s,1
ω (Ω,dβ) <∞

}

and

|f |
W̃

s,1
ω (Ω,dβ) =

ˆ

Ω

ˆ

|x−y|<τd(x)

|f(x)− f(y)|

|x− y|n+s
dy d(x)βω(x) dx.
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This result generalizes the one in [1, Theorem 1.1], which corresponds to the
case ω ≡ 1 (notice that that result is written for bounded domains, but the same

arguments apply as long as Ω 6= R
n). The proof of the embedding W̃ s,1

ω (Ω, dα, dα+s) ⊆
(L1

ω(Ω, d
α),W 1,1

ω (Ω, dα, dα+1))s,1 follows closely the one in that paper, modifying it to
include the A1 weight. But, because of the presence of the weight, the opposite
embedding requires a completely different proof. We borrow some ideas from [11],
but we adapt them to our seminorm and to the presence of different powers of the
distance to the boundary. We remark that, among other differences, in [11] both the
function and its (generalized) gradient belong to the same weighted space, which is
not our case.

The characterization in (1.1) is strongly related to the obtention of fractional
Poincaré inequalities with sharp dependence on the fractional parameter s, for s
close to 1.

Recall that, for a cube Q, 1 ≤ p < 1
s
, and 1

2
≤ s < 1, it was proved in [3,

Theorem 1] that

(1.2) ‖f − fQ‖
p

Lp(Q) .
(1− s)

(n− sp)p−1

ˆ

Q

ˆ

Q

|f(x)− f(y)|p

|x− y|n+sp
dx dy,

where fQ stands for the integral average of f over Q. Here, the implicit constant
depends on the side-length of Q but, in what follows, we will not be interested in
such dependence. Other proofs and extensions of this inequality can be found in
[14, 22, 18, 23].

For irregular domains, a more suitable fractional norm was introduced in [15],
and it was shown that for any bounded John domain Ω ⊂ R

n (see definition below)
and any fixed constant 0 < τ < 1,

(1.3) ‖f − fΩ‖
p

Lp(Ω) .

ˆ

Ω

ˆ

|x−y|<τd(x)

|f(x)− f(y)|p

|x− y|n+sp
dy dx.

Generalizations of this result can be found in [7, 9, 12, 17], but it should be noted
that the scaling factor (1−s) in the right-hand side of (1.2) cannot be obtained with
any of those proofs. This turns out to be a drawback, since this factor plays a key
role in the limiting behavior of the seminorm when s→ 1−, and it relates fractional
and classical Poincaré inequalities. Indeed, it was proved in [2] (see also [19]) that,
for a bounded extension domain Ω, 1 ≤ p <∞, and f ∈ W 1,p(Ω),

lim
s→1−

(1− s)

ˆ

Ω

ˆ

Ω

|f(x)− f(y)|p

|x− y|n+sp
dx dy = Kn,p‖∇f‖Lp(Ω)

where Kn,p is an explicit constant, so that one can recover from (1.2) the classical
Poincaré inequality for the gradient in Q.

For arbitrary bounded domains, the analogous result holds using the restricted
fractional seminorm. Namely, it was proved in [8] that, for f ∈ W 1,p(Ω), 1 < p <∞,

lim
s→1−

(1− s)

ˆ

Ω

ˆ

|x−y|<τd(x)

|f(x)− f(y)|p

|x− y|n+sp
dy dx = Kn,p‖∇f‖Lp(Ω),

and this result was extended to p = 1 in [20]. This suggests that (1.3) should also
hold with the (1 − s) factor. The second goal of this paper is to show that this is
indeed the case when p = 1, in the more general weighted setting. More precisely,
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we prove that for bounded John domains one has

inf
c∈R

‖f − c‖L1
ω(Ω,dα) .

(1− s)

s(n+ s)

ˆ

Ω

ˆ

|x−y|<τd(x)

|f(x)− f(y)|

|x− y|n+s
dy d(x)α+sω(x) dx

whenever ω ∈ A1. This is done by showing that this inequality is equivalent to a
weighted Poincaré inequality for the gradient, which is known. The proof of this
equivalence uses some ideas from Oscar Domínguez Bonilla, which relate bounds for
the K-functional corresponding to (1.1) to the obtention of sharp inequalities, so the
author would like to thank him for generously sharing them. It is worth noting that
K-functionals have also been recently used in a different way to derive self-improving
type inequalities of several classical inequalities in [5].

Finally, the author also wishes to thank the anonymous referee for carefully
reading the manuscript and giving many valuable suggestions.

2. Notation and preliminary results

As usual, we will write A . B to mean A ≤ CX whenever C is a positive constant
independent of relevant quantities. Throughout this paper we shall only keep track
of the dependence of the constants with respect to the interpolation parameter s,
that we will use later in our arguments.

Let L(Ω) denote the collection of measurable functions f : Ω → R. In what
follows, we will consider the following weighted Lebesgue and Sobolev spaces

L1
ω(Ω, d

α) = {f ∈ L(Ω) : ‖f‖L1
ω(Ω,dα) = ‖fωdα‖L1(Ω) <∞},

W 1,1
ω (Ω, dα, dα+1) = {f ∈ L1

ω(Ω, d
α) : ‖∇f‖L1

ω(Ω,dα+1) <∞}

and their fractional counterparts

W s,1
ω (Ω, dα, dα+s) = {f ∈ L1

ω(Ω, d
α) : |f |W s,1

ω (Ω,dα+s) <∞},

W̃ s,1
ω (Ω, dα, dα+s) = {f ∈ L1

ω(Ω, d
α) : |f |

W̃
s,1
ω (Ω,dα+s) <∞}

where

|f |
W

s,1
ω (Ω,dα+s) =

ˆ

Ω

ˆ

Ω

|f(x)− f(y)|

|x− y|n+s
dy d(x)α+sω(x) dx,

and

|f |
W̃

s,1
ω (Ω,dα+s) =

ˆ

Ω

ˆ

|x−y|<τd(x)

|f(x)− f(y)|

|x− y|n+s
dy d(x)α+sω(x) dx.

By definition, for 0 < s < 1, the real interpolation space between L1
ω(Ω, d

α) and
W 1,1

ω (Ω, dα, dα+1) is given by

(L1
ω(Ω, d

α),W 1,1
ω (Ω, dα, dα+1))s,1 = {f ∈ L1

ω(Ω, d
α) : ‖f‖(L1

ω(Ω,dα),W 1,1
ω (Ω,dα,dα+1))s,1

<∞}

with

(2.1) ‖f‖(L1
ω(Ω,dα),W 1,1

ω (Ω,dα,dα+1))s,1
=

ˆ ∞

0

λ−sK(f, λ)
dλ

λ

and

K(f, λ) = inf{‖g‖L1
ω(Ω,dα) + λ‖h‖W 1,1

ω (Ω,dα,dα+1) : f = g + h,

g ∈ L1
ω(Ω, d

α), h ∈ W 1,1
ω (Ω, dα, dα+1)}.

(2.2)

As announced, we will obtain the characterization

(L1
ω(Ω, d

α),W 1,1
ω (Ω, dα, dα+1))s,1 = W̃ s,1

ω (Ω, dα, dα+s)
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with equivalence of norms. The norm of the latter space is also equivalent to that of

W s,1
ω (Ω, dα, δα+s) = {f ∈ L1

ω(Ω, d
α) : |f |

W
s,1
ω (Ω,δα+s) <∞}

where δ(x, y) = min{d(x), d(y)} and

|f |W s,1
ω (Ω,δα+s) =

ˆ

Ω

ˆ

Ω

|f(x)− f(y)|

|x− y|n+s
δ(x, y)α+s dy ω(x) dx.

The proof of this result is contained in the following lemma. Observe that it

implies, in particular, that the norms of the spaces W̃ s,1
ω (Ω, dα, dα+s) for different

values of 0 < τ < 1 are all equivalent.

Lemma 2.1. Let Ω be a domain, Ω 6= R
n, 0 < s < 1, and α ≥ 0. Then,

W̃ s,1
ω (Ω, dα, dα+s) = W s,1

ω (Ω, dα, δα+s)

with equivalent norms.

Proof. Fix 0 < τ < 1. Observe that, whenever |x − y| < τd(x), one has
d(x) ∼ d(y) and, therefore,

ˆ

Ω

ˆ

|x−y|<τd(x)

|f(x)− f(y)|

|x− y|n+s
dy d(x)α+sω(x) dx

.

ˆ

Ω

ˆ

Ω

|f(x)− f(y)|

|x− y|n+s
δ(x, y)α+s dy ω(x) dx.

For the other inequality, we have
ˆ

Ω

ˆ

|x−y|≥τd(x)

|f(x)− f(y)|

|x− y|n+s
δ(x, y)α+s dy ω(x) dx

.

ˆ

Ω

ˆ

|x−y|≥τd(x)

|f(x)|+ |f(y)|

|x− y|n+s
δ(x, y)α+s dy ω(x) dx.

Now,
ˆ

Ω

ˆ

|x−y|≥τd(x)

|f(x)|

|x− y|n+s
δ(x, y)α+s dy ω(x) dx

.

ˆ

Ω

(
ˆ

|x−y|≥τd(x)

1

|x− y|n+s
dy

)
|f(x)|d(x)α+sω(x) dx

. ‖f‖L1
ω(Ω,dα).

And, since |x− y| ≥ τd(x) ⇒ d(y) ≤ |x− y|+ d(x) ≤ (1 + 1
τ
)|x− y|, by Fubini and

[13, Lemma (b)]
ˆ

Ω

ˆ

|x−y|≥τd(x)

|f(y)|

|x− y|n+s
δ(x, y)α+s dy ω(x) dx

.

ˆ

Ω

(
ˆ

|x−y|≥ τ
1+τ

d(y)

ω(x)

|x− y|n+s
dx

)
|f(y)|d(y)α+s dy

.

ˆ

Ω

Mω(y) |f(y)| d(y)α dy . ‖f‖L1
ω(Ω,dα). �

Although our interpolation result holds for arbitrary domains, we will then apply
it to domains where a certain weighted Poincaré inequality holds (see Theorem 4.1).
A full characterization of domains supporting such inequalities is still missing, but
they are known to hold in bounded John domains. Moreover, under the additional
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assumption of a separation property, this is exactly the larger class where they hold
(see [16, Theorem 2.1]), so we recall their definition below.

Definition 2.1. A bounded domain Ω ⊂ R
n is a John domain if for a fixed

x0 ∈ Ω and any y ∈ Ω there exists a rectifiable curve given by γ(·, y) : [0, 1] → Ω such
that γ(0, y) = y and γ(1, y) = x0, and there exist constants δ and K, depending only
on the domain Ω and on x0, such that d(γ(s, y)) ≥ δs and |∂γ

∂s
(s, y)| ≤ K.

3. Proof of our main theorem

Theorem 3.1. Let Ω ⊂ R
n be a domain, Ω 6= R

n, 0 < s < 1, α ≥ 0, and

ω ∈ A1. Then

(L1
ω(Ω, d

α),W 1,1
ω (Ω, dα, dα+1))s,1 = W̃ s,1

ω (Ω, dα, dα+s) = W s,1
ω (Ω, dα, δα+s)

with equivalence of norms.

Proof. The proof follows by Lemma 2.1 and the following two lemmas. �

Lemma 3.1. Let Ω ⊂ R
n be a domain, Ω 6= R

n, 0 < s < 1, α ≥ 0, and ω ∈ A1.

Then

(L1
ω(Ω),W

1,1
ω (Ω, dα, dα+1))s,1 ⊆ W̃ s,1

ω (Ω, dα+s).

Proof. By Lemma 2.1 we may take τ = 1
16

and, rewriting the seminorm in a
similar fashion as in [11, Theorem 5.2], we have

ˆ

Ω

ˆ

|x−y|<
d(x)
16

|f(y)− f(x)|

|x− y|n+s
dy d(x)α+sω(x) dx

=

ˆ

Ω

∞∑

i=4

ˆ

B(x, d(x)
2i

)\B(x, d(x)

2i+1 )

|f(y)− f(x)|

|x− y|n+s
dy d(x)α+sω(x) dx

.

ˆ

Ω

∞∑

i=4

(d(x)
2i

)−(n+s)
ˆ

B(x,
d(x)

2i
)\B(x,

d(x)

2i+1 )

|f(y)− f(x)| dy d(x)α+sω(x) dx

.

ˆ

Ω

∞∑

i=4

(d(x)
2i

)−s 1

|B(x, d(x)
2i

)|

ˆ

B(x,
d(x)

2i
)

|f(y)− f(x)| dy d(x)α+sω(x) dx

.

ˆ

Ω

∞∑

i=4

2is−

ˆ

B(x, d(x)
2i

)

|f(y)− f(x)| dy d(x)αω(x) dx(3.1)

Observe that
ˆ 2−i+1

2−i

−

ˆ

B(x,λd(x))

|f(x)− f(y)| dy
dλ

λ1+s

&

ˆ 2−i+1

2−i

1

|B(x, 2−i+1d(x))|

ˆ

B(x,2−id(x))

|f(x)− f(y)| dy
dλ

λ1+s

&

ˆ 2−i+1

2−i

1

2(−i+1)(1+s)

1

|B(x, 2−id(x))|

ˆ

B(x,2−id(x))

|f(x)− f(y)| dy dλ

&
2−i

2(−i+1)(1+s)
−

ˆ

B(x,2−id(x))

|f(x)− f(y)| dy

& 2is−

ˆ

B(x,2−id(x))

|f(x)− f(y)| dy
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So that, plugging this into (3.1), we obtain
ˆ

Ω

ˆ

|x−y|< d(x)
16

|f(y)− f(x)|

|x− y|n+s
dy d(x)α+sω(x) dx

.

ˆ

Ω

∞∑

i=4

2is−

ˆ

B(x,
d(x)

2i
)

|f(y)− f(x)| dy d(x)αω(x) dx

.

ˆ

Ω

∞∑

i=4

ˆ 2−i+1

2−i

−

ˆ

B(x,λd(x))

|f(x)− f(y)| dy
dλ

λ1+s
d(x)αω(x) dx

.

ˆ

Ω

ˆ 1
8

0

−

ˆ

B(x,λd(x))

|f(x)− f(y)| dy
dλ

λ1+s
d(x)αω(x) dx

=

ˆ 1
8

0

E(f, λ)
dλ

λ1+s
(3.2)

with

E(f, λ) :=

ˆ

Ω

−

ˆ

B(x,λd(x))

|f(x)− f(y)| dy d(x)αω(x) dx.

Now, for each λ ∈ (0, 1
8
), pick a decomposition f = gλ + hλ, with gλ ∈ L1

ω(Ω, d
α),

hλ ∈ W 1,1
ω (Ω, dα, dα+1), and ‖dαgλ‖L1

ω(Ω)+λ‖d
α+1∇hλ‖L1

ω(Ω) ≤ 2K(f, λ), withK(f, λ)
as in (2.2). We remark that we may assume that f 6≡ 0 to guarantee thatK(f, λ) > 0.
Since E(f, λ) ≤ E(gλ, λ) + E(hλ, λ), we may bound these terms separately.

Observe that, for x ∈ Ω, y ∈ B(x, λd(x)) and λ ∈ (0, 1
8
),

d(x) ≤ d(y) + |x− y| < d(y) + λd(x) ⇒ d(x) <
8

7
d(y),

d(y) ≤ d(x) + |x− y| < d(x) + λd(x) <
9

8
d(x).

Therefore, we have that x ∈ B(y, 8
7
λd(y)) and d(x) ∼ d(y). Hence, by Fubini,

E(gλ, λ) .

ˆ

Ω

1

(λd(x))n

ˆ

B(x,λd(x))

(|gλ(x)| + |gλ(y)|) dy d(x)
αω(x) dx

.

ˆ

Ω

|gλ(x)| d(x)
αω(x) dx+

ˆ

Ω

1

(λd(x))n

ˆ

B(x,λd(x))

|gλ(y)| dy d(x)
αω(x) dx

.

ˆ

Ω

|gλ(x)| d(x)
αω(x) dx+

ˆ

Ω

|gλ(y)|
d(y)α

(λd(y))n

ˆ

B(y, 8
7
λd(y))

ω(x) dx dy

.

ˆ

Ω

|gλ(x)| d(x)
αω(x) dx+

ˆ

Ω

|gλ(y)| d(y)
αMω(y) dy

. ‖gλ‖L1
ω(Ω,dα),(3.3)

where in the last inequality we have used that Mω(y) . ω(y) almost everywhere,
because ω ∈ A1.

To bound E(hλ, λ), let B = B(x, λd(x)) and hλ,B = 1
|B|

´

B
hλ(z) dz. Then, for

any y ∈ B, by [10, Lemma 7.16] we may write

|hλ(x)− hλ(y)| ≤ |hλ(x)− hλ,B|+ |hλ,B − hλ(y)|

.

ˆ

B

|∇hλ(z)|

|x− z|n−1
dz +

ˆ

B

|∇hλ(z)|

|y − z|n−1
dz.
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So, we obtain

E(hλ, λ) =

ˆ

Ω

1

(λd(x))n

ˆ

B(x,λd(x))

|hλ(x)− hλ(y)| dy d(x)
αω(x) dx(3.4)

.

ˆ

Ω

1

(λd(x))n

ˆ

B(x,λd(x))

(
ˆ

B(x,λd(x))

|∇hλ(z)|

|x− z|n−1
dz

+

ˆ

B(x,λd(x))

|∇hλ(z)|

|y − z|n−1
dz

)
dy d(x)αω(x) dx

= I + II(3.5)

If z ∈ B(x, λd(x)) and λ ∈ (0, 1
8
), observe that by the computations right before

(3.3) (replacing y by z), we can deduce that x ∈ B(z, 8
7
λd(z)) and that d(x) ∼ d(z).

Hence, by Fubini and [13, Lemma (a)],

I .

ˆ

Ω

ˆ

B(x,λd(x))

|∇hλ(z)|

|x− z|n−1
dz d(x)αω(x) dx

.

ˆ

Ω

ˆ

B(z, 8
7
λd(z))

ω(x)

|x− z|n−1
dx |∇hλ(z)| d(z)

αdz

.

ˆ

Ω

λd(z)Mω(z)|∇hλ(z)| d(z)
αdz

. λ‖∇hλ‖L1
ω(Ω,dα+1).

Similarly, to bound II, recall that for y ∈ B(x, λd(x)) and λ ∈ (0, 1
8
), we have that

x ∈ B(y, 8
7
λd(y)) and that 7

8
d(x) < d(y) < 9

8
d(x), so that, if z ∈ B(x, λd(x)),

|z − y| < |z − x|+ |x− y| < λd(x) +
8

7
λd(y) <

16

7
λd(y).

Therefore, by Fubini,

II =

ˆ

Ω

1

(λd(x))n

ˆ

B(x,λd(x))

ˆ

B(x,λd(x))

|∇hλ(z)|

|y − z|n−1
dz dy d(x)αω(x) dx

.

ˆ

Ω

1

(λd(y))n

ˆ

B(y, 16
7
λd(y))

ˆ

B(y, 8
7
λd(y))

ω(x) dx
|∇hλ(z)|

|y − z|n−1
dz d(y)αdy

.

ˆ

Ω

ˆ

B(y, 16
7
λd(y))

Mω(y)
|∇hλ(z)|

|y − z|n−1
dz d(y)αdy

.

ˆ

Ω

ˆ

B(y, 16
7
λd(y))

ω(y)
|∇hλ(z)|

|y − z|n−1
dz d(y)αdy.

Now, observe that for z ∈ B(y, 16
7
λd(y)) and λ ∈ (0, 1

8
) we have

d(y) < d(z) + |z − y| < d(z) +
16

7
λd(y) < d(z) +

2

7
d(y) ⇒ d(y) <

7

5
d(z),

d(z) < d(y) + |z − y| < d(y) +
16

7
λd(y) <

9

7
d(y),
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Hence, d(y) ∼ d(z) and |z − y| < 16
7
λd(y) < 16

5
λd(z), so by Fubini and [13,

Lemma (a)],

II .

ˆ

Ω

ˆ

B(z, 16
5
λd(z))

ω(y)

|y − z|n−1
dy |∇hλ(z)| d(z)

α dz

.

ˆ

Ω

λd(z)Mω(z) |∇hλ(z)| d(z)
α dz . λ‖∇hλ‖L1

ω(Ω,dα+1).

Finally, we arrive at
ˆ

Ω

ˆ

|x−y|< d(x)
16

|f(y)− f(x)|p

|x− y|n+sp
dy d(x)α+s ω(x) dx

.

ˆ 1

0

(
‖gλ‖L1

ω(Ω,dα) + λ‖∇hλ‖L1
ω(Ω,dα+1)

) dλ

λ1+s
.

ˆ 1

0

λ−sK(f, λ)
dλ

λ
.

This completes the proof. �

Lemma 3.2. Let Ω ⊂ R
n be a domain, Ω 6= R

n, 0 < s < 1, α ≥ 0, and ω ∈ A1.

Then

W̃ s,1
ω (Ω, dα+s) ⊆ (L1

ω(Ω),W
1,1
ω (Ω, dα, dα+1))s,1.

Proof. Observe first that, by the trivial bound K(f, λ) ≤ ‖f‖L1
ω(Ω,dα), we always

have
ˆ ∞

1

λ−sK(f, λ)
dλ

λ
≤ ‖f‖L1

ω(Ω,dα)

ˆ ∞

1

λ−s dλ

λ
. ‖f‖L1

ω(Ω,dα).

Also, for a given decomposition f = g + h as in (2.2),
ˆ 1

0

λ1−s‖h‖L1
ω(Ω,dα)

dλ

λ
.

ˆ 1

0

λ1−s‖f‖L1
ω(Ω,dα)

dλ

λ
+

ˆ 1

0

λ1−s‖g‖L1
ω(Ω,dα)

dλ

λ

. ‖f‖L1
ω(Ω,dα) +

ˆ 1

0

λ−s‖g‖L1
ω(Ω,dα)

dλ

λ
.

Therefore,

(3.6)

ˆ ∞

0

λ−sK(λ, f)
dλ

λ
. ‖f‖L1

ω(Ω,dα)+

ˆ 1

0

λ−s(‖g‖L1
ω(Ω,dα)+λ‖∇h‖L1

ω(Ω,dα+1))
dλ

λ
,

and to prove the claimed embedding it suffices to bound the integral on the right-hand
side for specific choices of g and h that we will define below.

As in [1, Section 4], given a cube Q ⊂ R
n, the distance from Q to the boundary of

Ω is denoted by d(Q, ∂Ω), while diam(Q) and ℓQ are the diameter and length of the
edges of Q, respectively. We pick a Whitney decomposition W = {Q} of Ω and, for
every fixed 0 < λ ≤ 1, we build a new dyadic decomposition Wλ = {Qλ} by dividing
each Q ∈ W in such a way that 1

2
λℓQ ≤ ℓQλ ≤ λℓQ. Notice that, in particular,

this means that 1
2
λdiam(Q) ≤ diam(Qλ) ≤ λdiam(Q). The center of Qλ

j in this new

partition is denoted by xλj , and we write ℓλj instead of ℓQλ
j
.

For each Wλ we can define the covering of expanded cubes Wλ∗ = {(Qλ
j )

∗} where
Q∗ is the cube with the same center as Q but expanded by a factor 9/8. Observe
that it satisfies

∑
j χ(Qλ

j )
∗(x) ≤ C for every x ∈ Ω, and that, for x ∈ (Qλ

j )
∗,

(3.7)
3

4

diam(Qλ
j )

λ
≤ d(x) ≤

41

4

diam(Qλ
j )

λ
.
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Associated to this covering we consider a smooth partition of unity {ψλ
j } such

that supp(ψλ
j ) ⊂ (Qλ

j )
∗, 0 ≤ ψλ

j ≤ 1,
∑

j ψ
λ
j = 1 in Ω, and ‖∇ψλ

j ‖∞ ≤ C

ℓλj
.

For a given (fixed) C∞ function ϕ ≥ 0 such that supp(ϕ) ⊂ B(0, 1
4
) and

´

ϕ =
1, and for each t > 0, we define ϕt(x) = t−nϕ(t−1x). Then, for a given f ∈

W̃ s,1
ω (Ω, dα, dα+s) we define

(3.8) hλ(y) =
∑

j

fλ
j ψ

λ
j (y),

with

fλ
j =

ˆ

Rn

f ∗ ϕℓλj
(z)ϕℓλj

(z − xλj ) dz,

which is a smooth approximation of f . Moreover, by [1, page 9], one has that, for
y ∈ (Qλ

j )
∗,

|f(y)− fλ
j |

≤

ˆ 1

0

ˆ

|x−y|<Ctℓλj

ˆ

|x−w|< d(x)
2

|f(x)− f(w)|χ|x−w|< 1
4
tℓλj
dw

χ(Qλ
j )

∗(x)

t2n+1
dx dt (ℓλj )

−2n.

Since the family Wλ∗ has finite overlapping, we have that

‖f − hλ‖L1
ω(Ω,dα) ≤ C

∑

j

‖f − fλ
j ‖L1

ω((Q
λ
j )

∗,dα).

Using that, for x ∈ (Qλ
j )

∗, ℓλj ∼ λd(x) and that |x − y| < Ctℓλj ⇒ d(y) . d(x), we
have

ˆ 1

0

λ−s‖f − hλ‖L1
ω(Ω,dα)

dλ

λ

.

ˆ 1

0

∑

j

ˆ

(Qλ
j )

∗

ˆ 1

0

ˆ

|x−y|<Ctℓλj

ˆ

|x−w|< d(x)
2

|f(x)− f(w)|χ|x−w|< 1
4
tℓλj
dw

·
(ℓλj )

−2nλ−s

t2n+1
dt dx d(y)αω(y) dy

dλ

λ

.

ˆ 1

0

∑

j

ˆ

(Qλ
j )

∗

ˆ 1

0

ˆ

|x−w|< d(x)
2

|f(x)− f(w)|χ|x−w|< 1
4
tℓλj
dw

·

(
ˆ

|x−y|<Ctℓλj

ω(y) dy

)
(ℓλj )

−2nλ−s

t2n+1
dt d(x)αdx

dλ

λ

.

ˆ 1

0

∑

j

ˆ

(Qλ
j )

∗

ˆ 1

0

ˆ

|x−w|< d(x)
2

|f(x)− f(w)|χ|x−w|< 1
4
tℓλj
dw(tℓλj )

n

·Mω(x)
(ℓλj )

−2nλ−s

t2n+1
dt d(x)αdx

dλ

λ

.

ˆ 1

0

∑

j

ˆ

(Qλ
j )

∗

ˆ 1

0

ˆ

|x−w|< d(x)
2

|f(x)− f(w)|χ|x−w|< 1
4
tℓλj
dw ω(x)

·
(ℓλj )

−nλ−s

tn+1
dt d(x)αdx

dλ

λ
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.

ˆ 1

0

∑

j

ˆ

(Qλ
j )

∗

ˆ 1

0

ˆ

|x−w|<
d(x)
2

|f(x)− f(w)|χ|x−w|<c
4
tλd(x) dw ω(x)

·
d(x)α−nλ−n−s

tn+1
dt dx

dλ

λ

.

ˆ 1

0

ˆ

Ω

ˆ 1

0

ˆ

|x−w|<
d(x)
2

|f(x)− f(w)|χ|x−w|<c
4
tλd(x) dw ω(x)

d(x)α−nλ−n−s

tn+1
dt dx

dλ

λ

.

ˆ

Ω

ˆ 1

0

ˆ

|x−w|< d(x)
2

|f(x)− f(w)| dw

ˆ ∞

4|x−w|
ctd(x)

λ−n−s−1 dλ
d(x)α−n

tn+1
dt ω(x) dx

.
1

n+ s

ˆ

Ω

ˆ 1

0

ˆ

|x−w|< d(x)
2

|f(x)− f(w)|

|x− w|n+s
dw ts−1d(x)α+s dt ω(x) dx

.
1

s(n+ s)

ˆ

Ω

ˆ

|x−w|<
d(x)
2

|f(x)− f(w)|

|x− w|n+s
dw d(x)α+sω(x) dx

On the other hand, recalling that supp(ψλ
j ) ⊂ (Qλ

j )
∗, that ‖∇ψλ

j ‖∞ ≤ C

ℓλj
, and

that ∇(
∑

j ψ
λ
j ) = 0,

|∇hλ(y)| =
∣∣∣
∑

j

fλ
j ∇ψ

λ
j (y)

∣∣∣ .
∑

j

|fλ
j − f(y)|

1

ℓλj
χ(Qλ

j
)∗(y).

Therefore,

ˆ 1

0

λ1−s‖∇hλ‖L1
ω(Ω,dα+1)

dλ

λ
.

ˆ 1

0

∑

j

λ1−s‖(f − fλ
j )(ℓ

λ
j )

−1‖L1
ω((Q

λ
j )

∗,dα+1)

dλ

λ

.

ˆ 1

0

∑

j

λ1−s‖(f − fλ
j )λ

−1‖L1
ω((Q

λ
j )

∗,dα)

dλ

λ

.

ˆ 1

0

∑

j

λ−s‖(f − fλ
j )‖L1

ω((Q
λ
j )

∗,dα)

dλ

λ

so this term can be bounded as before.
Summing up,

ˆ 1

0

λ−s
(
‖f − hλ‖L1

ω(Ω,dα) + λ‖∇hλ‖L1
ω(Ω,dα+1)

)dλ
λ

.
1

s(n + s)

ˆ

Ω

ˆ

|x−y|<
d(x)
2

|f(y)− f(x)|

|x− y|n+s
dy d(x)α+sω(x) dx.

(3.9)

This concludes the proof. �

Remark 3.1. It is immediate that inequality (3.9) also holds for every 1
2
< τ < 1.

If one wishes to obtain it for 0 < τ < 1
2
, it suffices to choose supp(ϕ) ⊂ B(0, ε) for

sufficiently small ε in the above proof, as the reader can check by following the
computations in [1, page 8].
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4. Applications to fractional Poincaré inequalities

In the forthcoming results we will make use of two well-known properties of
weighted norms contained in the following lemma. We include a proof for the sake
of completeness.

Lemma 4.1. Let Ω be a bounded domain, ν a locally integrable nonnegative

function, and fν = 1
ν(Ω)

´

Ω
f(x)ν(x) dx. Then,

(1) infc∈R ‖f − c‖L1
ν(Ω) ∼ ‖f − fν‖L1

ν(Ω),

(2) ‖f − fν‖L1
ν(Ω) ≤ 2‖f‖L1

ν(Ω).

Proof. (1) It is immediate that infc∈R ‖f − c‖L1
ν(Ω) ≤ ‖f −fν‖L1

ν(Ω). For the other
inequality, it suffices to observe that, for any c ∈ R,

‖f − fν‖L1
ν(Ω) ≤ ‖f − c‖L1

ν(Ω) + ‖c− fν‖L1
ν(Ω)

≤ ‖f − c‖L1
ν(Ω) + ν(Ω)

∣∣∣∣c−
1

ν(Ω)

ˆ

Ω

f(x)ν(x) dx

∣∣∣∣
≤ 2‖f − c‖L1

ν(Ω).

(2) Write

‖f − fν‖L1
ν(Ω) ≤

1

ν(Ω)

ˆ

Ω

ˆ

Ω

|f(x)− f(y)| ν(x)ν(y) dx dy

≤

ˆ

Ω

|f(x)|ν(x) dx+

ˆ

Ω

|f(y)|ν(y) dy = 2‖f‖L1
ν(Ω). �

Theorem 4.1. Let Ω be a bounded domain, α ≥ 0, ω ∈ A1 and ‖∇f‖L1
ω(Ω,dα+1) <

∞. Then, the following are equivalent:

(1) inf
c∈R

‖f − c‖L1
ω(Ω,dα) . ‖∇f‖L1

ω(Ω,dα+1).

(2) inf
c∈R

‖f − c‖L1
ω(Ω,dα) .

(1− s)

s(n+ s)

ˆ

Ω

ˆ

|x−y|<τd(x)

|f(x)− f(y)|

|x− y|n+s
d(x)α+sω(x) dy dx

for every 0 < τ < 1 and every 0 < s < 1.

(3) inf
c∈R

‖f − c‖L1
ω(Ω,dα) .

(1− s)

s(n+ s)

ˆ

Ω

ˆ

|x−y|<τd(x)

|f(x)− f(y)|

|x− y|n+s
d(x)α+sω(x) dy dx

for every 0 < τ < 1 and some 0 < s < 1.

Proof. (1) ⇒ (2) This is a straightforward generalization of an unpublished result
by Oscar Domínguez Bonilla for the case α = 0, ω ≡ 1. Define hλ as in (3.8) and
ν = dαω. By hypothesis and the previous lemma,

‖f − fν‖L1
ν(Ω) . ‖f − hλ − (fν − (hλ)ν)‖L1

ν(Ω) + ‖hλ − (hλ)ν‖L1
ν(Ω)

. ‖f − hλ‖L1
ν(Ω) + ‖d∇hλ‖L1

ν(Ω).

Then, for λ ≤ 1,

λ‖f − fν‖L1
ν(Ω) . λ‖f − hλ‖L1

ν(Ω) + λ‖d∇hλ‖L1
ν(Ω)

. ‖f − hλ‖L1
ω(Ω,dα) + λ‖∇hλ‖L1

ω(Ω,dα+1).

Therefore,
ˆ 1

0

λ−s+1‖f − fν‖L1
ν(Ω)

dλ

λ
.

ˆ 1

0

λ−s
(
‖f − hλ‖L1

ω(Ω,dα) + λ‖∇hλ‖L1
ω(Ω,dα+1)

)dλ
λ
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for every 0 < s < 1. Then, by (3.9) and Remark 3.1,

1

(1− s)
‖f − fν‖L1

ν(Ω) .

ˆ 1

0

λ−s
(
‖f − hλ‖L1

ω(Ω,dα) + λ‖∇hλ‖L1
ω(Ω,dα+1)

)dλ
λ

.
1

s(n+ s)
|f |

W̃
s,1
ω (Ω,dα+s)

for all values of 0 < τ < 1.
So that, again by the previous lemma,

inf
c∈R

‖f − c‖L1
ω(Ω,dα) .

(1− s)

s(n + s)
|f |

W̃
s,1
ω (Ω,dα+s).

(2) ⇒ (3) Trivial.
(3) ⇒ (1) By (3.2), for τ = 1

16
and repeating for f the computations previoulsy

made for hλ in (3.5), we get

(1− s)

ˆ

Ω

ˆ

|x−y|<τd(x)

|f(y)− f(x)|

|x− y|n+s
dy d(x)α+sω(x) dx . ‖∇f‖L1

ω(Ω,dα+1),

and the result follows. �

By the previous theorem one immediately has:

Corollary 4.1. Let Ω ⊂ R
n be a bounded John domain, α ≥ 0, ω ∈ A1, and

‖∇f‖L1
ω(Ω,dα+1) <∞. Then,

inf
c∈R

‖f − c‖L1
ω(Ω,dα) .

(1− s)

s(n+ s)

ˆ

Ω

ˆ

|x−y|<τd(x)

|f(x)− f(y)|

|x− y|n+s
d(x)α+sω(x) dy dx

for every 0 < τ < 1 and every 0 < s < 1.

Proof. It suffices to check that

inf
c∈R

‖f − c‖L1
ω(Ω,dα) . ‖∇f‖L1

ω(Ω,dα+1).

This can be seen with a slight modification of the proof in [6, Theorem 3.4] (which
is the case α = 0), we briefly indicate the necessary steps.

Following that proof, by duality it suffices to bound
´

Ω
(f − fϕ)(y)g(y)d(y)

α dy
for any g such that ‖ω−1g‖L∞(Ω) ≤ 1.

As in [6, equation (3.2)] and noting that |x−y| ≤ Cd(x) ⇒ d(y) . d(x), we have
ˆ

Ω

|(f(y)− fϕ)g(y)|d(y)
α dy .

ˆ

Ω

ˆ

|x−y|≤Cd(x)

|g(y)|χΩ(y)

|x− y|n−1
dy|∇f(x)|d(x)α dx

.

ˆ

Ω

M(χΩg)(x)d
α+1(x)|∇f(x)| dx(4.1)

. ‖ω−1M(χΩg)‖L∞(Ω)‖ω d
α+1∇f‖L1(Ω)

. ‖ω−1g‖L∞(Ω)‖∇f‖L1
ω(Ω,dα+1)(4.2)

. ‖∇f‖L1
ω(Ω,dα+1)

where in (4.1) we have used [13, Lemma (a)], and in (4.2) we have used [21, Theo-
rem 4] (actually, the remark at the end of [21, Section 7] regarding its extension to
the n-dimensional case). �
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