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Erratum to “The multiple-slit version of
Loewner’s differential equation and pointwise

Hölder continuity of driving functions”

Sebastian Schleissinger

Abstract. The proof of Theorem 1.2 of [S. Schleissinger, Ann. Acad. Sci. Fenn. Math. 37:1,

2012, 191–201] contains a gap and one implication in Theorem 1.3 of the same paper is wrong.

Oikaisu artikkeliin The multiple-slit version of Loewner’s differential equation and

pointwise Hölder continuity of driving functions (”Loewnerin differentiaaliyhtälö

usean viillon tapauksessa ja ohjausfunktioiden pisteittäinen Hölderin jatkuvuus”)

Tiivistelmä. Artikkelin [S. Schleissinger, Ann. Acad. Sci. Fenn. Math. 37:1, 2012, 191–201]

lauseen 1.2 todistuksessa on aukko, ja yksi lauseen 1.3 väitteistä on väärin.

1. Theorem 1.2

Let H = {z ∈ C | Im(z) > 0}. Theorem 1.2 considers the conformal mappings
gt : H \Kt → H, t ∈ [0, E], generated by the multiple-slit equation (1.3), and claims
that KE consists of n simple curves if the driving functions do not intersect and
satisfy a certain pointwise regularity condition.

The proof of Theorem 1.2 contains a gap. It ends (see p. 201) with showing that
for each j = 1, . . . , n and T ∈ (0, E], there exist two real numbers x0 and y0 such that
the solutions x(t) and y(t) of the backward equation (3.6) with initial value x0 and y0
respectively satisfy x(T ) = y(T ) = Uj(0). In this sense, each connected component
of the hull KE is “welded” together from two intervals.

However, this property alone does not allow the conclusion that the components
are simple curves. It still remains to show that g−1

E can be extended continuously
to R, which is not clear (see, e.g., the criterion in [RS05, Theorem 4.1]). In other
words, it is not shown that the hulls are “generated by curves”, i.e. that the domains
H \Kt are the unbounded connected components of H minus n disjoint, continuous
non-crossing (but possibly self-touching) curves in H. (This includes the case n = 1.
The statement at (1.2) is not justified.)

For literature concerning this problem, we refer to [Lin05, MR05] for the case of
1/2-Hölder continuous driving functions, and to [STW19] for certain locally regular
driving functions. See also [LMR10, LR12, Zha18, MM24].

Remark. The author does not know an explicit example for the setting of The-
orem 1.2, which does not generate simple curves. We note that the proof of Proposi-
tion 3.1 also contains a deficient argument. The mappings ft do not generate simple
curves and they are obtained as the limit of ft(z, d) as d → ∞. It is not clear,
however, why the mappings ft(z, d) do not generate simple curves neither.
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2. Theorem 1.3

Theorem 1.3 claims that if the hulls Kt approach R at Uj(0) in ϕ–direction,

then limt↓0(Uj(t) − Uj(0))/
√
t exists. The author would like to thank Huy Tran for

pointing out that this implication is wrong. (In the proof, the application of [LMR10,
Theorem 4.3] is not valid in general.)

We consider the case n = 1, U := U1 with U(0) = 0, and the angle ϕ =
π/2. Theorem 1.3 claims that limt↓0 U(t)/

√
t = 0. This is not true in the following

example.
We denote by diam(A) := supz,w∈A |z − w| the diameter of a subset A ⊂ C, and

by B(z, r) the open disk with center z ∈ C and radius r > 0.
Consider the region R in H between the two curves

{x+ iy ∈ H | x, y ∈ R, x = y2} and {x+ iy ∈ H | x, y ∈ R, x = −y2}.

Any hull inside this region clearly approaches 0 in π/2-direction. Now, for n ∈ N,
let an be the intersection point of Ln := {x + iy ∈ H | x, y ∈ R, x = −yn+2} and
Cn := {x+ 1

2n
i ∈ H | x ∈ R} and let bn be the intersection point of Rn := {x+ iy ∈

H | x, y ∈ R, x = yn+2} and Cn. First, we construct a curve γ̂ : [0, 1] → C in the
following way:

Connect 0 to a1 via L1 (i.e. by the subcurve of L1 connecting 0 to a1), then a1 to
b1 via C1 and b1 to 0 via R1. Assume that γ̂ : [0, 1/2] → C parametrizes this “triangle”
T1. Next we increase n and construct another, smaller triangle T2 (parametrized in
opposite direction): connect 0 to b2 via R2, b2 to a2 via C2 and then a2 to 0 via L2.
Now we may assume that γ̂ : [1/2, 3/4] → C parametrizes this curve. Now we continue
inductively and obtain a sequence (Tn)n∈N of nested triangles, each parametrized by
γ̂ : [1− 1/2n−1, 1− 1/2n] → C. As

diam(Tn) → 0 for n → ∞ and 0 ∈ Tn for all n ∈ N,

we can extend γ̂ continuously to the interval [0, 1] by setting γ̂(1) = 0.
Now consider the curve γ̂(1−t) and let γ : [0, T ] → C be a parametrization of this

curve such that hcap(Kt) = 2t, where we denote by Kt the smallest hull containing
γ[0, t] (and K0 is the empty set).

The family (Kt)t∈[0,T ] satisfies the local growth property and thus, see [LSW01,
Theorem 2.6] or [Law05, p. 96], it can be generated by the one-slit equation with
a continuous driving function U : [0, T ] → R. Finally, let t1 > t2 > t3 > . . . be
the decreasing sequence of zeros of γ(t), t > 0. We have U(tn) = limx↑0 gKtn

(x) or
U(tn) = limx↓0 gKtn

(x). However, as Ktn is symmetric with respect to the imaginary
axis, we certainly have

2|U(tn)| = lim
x↓0

gKtn
(x)− lim

x↑0
gKtn

(x) =: π · capH(Ktn).

The quantity capH is introduced in [Law05], p. 73, see also the first equation on p. 74.
There, it is shown that there exists a constant c1 > 0 such that

capH(Ktn) ≥ c1 · diam(Ktn),

see (3.14) on p. 74 in [Law05].
Finally, consider hsiz(Ktn) = area

(
⋃

x+iy∈Ktn

B(x+iy, y)
)

. Then we find another

constant c2 > 0 such that diam(Ktn) ≥ c2 ·
√

hsiz(Ktn). By [LLN09, Theorem 1], the
quantity hsiz is comparable to the half-plane capacity, i.e. there exists c3 > 0 such



Erratum to “The multiple-slit version of Loewner’s differential equation and pointwise Hölder. . . ” 335

that hsiz(Ktn) ≥ c3 · tn and we arrive at

|U(tn)| = π/2 · capH(Ktn) ≥ c1 · π/2 · diam(Ktn) ≥ c1c2
√
c3 · π/2 ·

√
tn.

We conclude that (Kt)t∈[0,T ] approaches R at 0 in π/2-direction, but

lim sup
t↓0

|U(t)|√
t

≥ c1c2
√
c3 · π/2 > 0.
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