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A quantitative version of the Hopf–Oleinik lemma
for a quasilinear non-uniformly elliptic operator

Diego Moreira, Jefferson Abrantes Santos

and Sergio H. Monari Soares

Abstract. This paper establishes a quantitative version of the Hopf–Oleinik lemma (HOL)

for a quasilinear non-uniformly elliptic operator of the form L∞u := 2∆∞u+∆u. One key point in

the proof is the passage from non-uniformly elliptic operators to locally uniformly ones via a new,

uniform, and, rescaled version of the gradient estimate obtained by Evans and Smart for solutions

to a family of non-uniformly quasilinear elliptic operators.

Hopfin–Oleinikin lemman suuruusarviollinen muotoilu

kvasilineaariselle epätasaisesti elliptiselle operaattorille

Tiivistelmä. Tässä työssä todistetaan Hopfin–Oleinikin lemman suuruusarviollinen muotoi-

lu kvasilineaariselle epätasaisesti elliptiselle operaattorille L∞u := 2∆∞u + ∆u. Yksi todistuksen

avainkohta on siirtyminen epätasaisesti elliptisistä operaattoreista paikallisesti tasaisesti elliptisiin

käyttäen uutta, tasaista ja uudelleen skaalattua muotoilua epätasaisesti kvasilineaaristen elliptisten

operaattoreiden perheiden ratkaisuita koskevasta Evansin ja Smartin gradienttiarviosta.

1. Introduction

An essential result in the theory of elliptic partial differential equations is the
Hopf–Oleinik lemma (HOL), which was proven independently by Hopf in [6] and
Oleinik in [12]. Among the many applications of this lemma in the field, the most
known one is the proof of the strong maximum principle for second-order uniformly
elliptic operators, and its use to study boundary regularity issues for solutions to
elliptic equations and free boundary problems. The HOL is essentially a qualitative
result which establishes that a nonnegative supersolution that is not identically zero
reaches the boundary, wherever it vanishes, with a nontrivial slope. We refer the
reader to Theorem 2.2 in [2] where some ideas related to HOL were an inspiration
to this quantitative version here. More precisely, if A is (λ,Λ)-uniformly elliptic
matrix1 in the unit ball B1 ⊂ R

N and Lu = Tr(A(x)D2u) = 0 in B1, where 0 ≤ u ∈
C2(B1) ∩ C(B1) is not identically zero, and ∂u/∂ν(x0) exists, where ν = −x0 is the
inner unit normal to ∂B1 at x0 ∈ ∂B1 and u(x0) = 0, then

∂u

∂ν
(x0) ≥ Cu(0),

where C = C(λ,Λ, N) > 0 is a universal constant. Now, let g ∈ C([0,∞)) ∩
C1((0,∞)) be a positive nondecreasing function satisfying g(0) = 0, g(t) > 0 for
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t > 0, and

(1) 0 < δ0 ≤
g′(t)t

g(t)
≤ g0, ∀ t > 0

for fixed positive constants δ0 and g0. These assumptions on the function g establish
the uniform ellipticity condition to operators in divergence form of the type

(2) Lgu := div

(

g(|∇u|) ∇u|∇u|

)

.

A thorough study of this theory was developed by Lieberman in the early 90’s in
[7]. A particular case of the results proved by Braga and Moreira [3] is the follow-
ing quantitative Hopf–Oleinik lemma for quasilinear uniformly elliptic operators in
divergence form satisfying (1).

Theorem 1.1. Let 0 ≤ u ∈ C0(BR) ∩W 1,G
loc

(BR) be a weak solution to

Lgu = 0 in BR,

where g satisfies (1) and G(t) =
´ t

0
g(s) ds for t ≥ 0. Then,

(3) u(x) ≥ C

R
sup
BR/2

u dist(x, ∂BR), ∀ x ∈ BR.

Moreover, if x0 ∈ ∂BR is a point such that u(x0) = 0 and there exists the inner
normal derivative ∂u

∂ν
(x0), where ν is the corresponding inner unit normal at x0, then

(4)
∂u

∂ν
(x0) ≥

C

R
sup
BR/2

u,

in a case where C = C(N, δ0, g0) > 0.

Remark 1.2. We point out that interesting results have been developed recently
related to Hopf–Oleinik lemma’s quantitative version. Namely, the results of Sirakov
et al in [14, 15] on the divergence case for linear uniformly elliptic operators with
general coefficients involving even low-order terms. These imply boundary Harnack-
type inequality, which by its turn encompasses HOL in quantitative form in this
uniformly elliptic and linear case.

The purpose of this paper is to prove Theorem 1.1 where the operator in focus
is given by L∞u := 2∆∞u +∆u. As a matter of fact, this is somehow equivalent to
treat (2) for the case where g(t) = G′(t) with G(t) = et

2 − 1. In this case δ0 = 1
and g0 = ∞ (see (5)–(8) and Lemma 1.6). The proof is not immediate as one can
readily suspect looking at the dependence C = C(N, δ0, g0) > 0 in the estimates (3)
and (4). The research on this type of equation has been active for several years now
with recent developments (see [1, 8, 10, 11]). Our strategy here is to mix the ideas
from [17], [3], and [5] in order to prove the result. More precisely, we obtain a precise
and rescaled version of the gradient estimate found in [5]. This allows one to pass
from non-uniform ellipticity to local uniform ellipticity in a precisely quantified way.
Moreover, here we also construct barriers that are more suitable for our operator
adapting ideas due to Vázquez in [17] and Braga and Moreira in [3, 4] regarding
the geometric behavior of the barriers. Under the possession of those ingredients,
we follow the geometric strategy developed in [3] to implement the proof of the
quantitative version of HOL via Harnack-type arguments combined with comparison
principles.
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We point out that the quantitative version of HOL obtained here was recently
used in [16] to prove Lipschitz regularity for local minimizers of variational two-phase
Bernoulli-type free boundary problems where the energy functionals are associated
with non-uniformly elliptic operators. The optimal regularity was obtained under
some restrictions on the size/geometry of the negative phase. This suggests a poten-
tial role that might be played by this quantitative version of the HOL to deal with
the study of free boundary problems or boundary regularity issues in the context
where non-uniformly elliptic operators are present.

From now on, we denote Φ(t) = et
2 − 1 and φ(t) = Φ′(t) = 2tet

2
. Note that

(5) 0 < 1 ≤ φ′(t)t

φ(t)
= 1 + 2t2, ∀ t > 0.

Thus

(6) g0 = sup
t>0

φ′(t)t

φ(t)
= ∞

and the strongly degenerate operator defined by

(7) Lφu := div

(

φ(|∇u|) ∇u|∇u|

)

= div
(

2e|∇u|2∇u
)

is a quasilinear non-uniformly elliptic operator that does not satisfy the Lieberman’s
condition (1) since g0 = ∞. A straightforward computation on the divergence above
shows that this operator can be written in nondivergence form as

Lφu = 2e|∇u|2 {2∆∞u+∆u} = 2e|∇u|2L∞u,(8)

where

∆∞u :=
N
∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
,

and

L∞u := 2∆∞u+∆u.

In what follows, we state a quantitative version of the Hopf–Oleinik lemma for a
quasilinear non-uniformly elliptic operator in nondivergence form.

Theorem 1.3. Let BR be an open ball of radius R > 0 in R
N (N ≥ 2), and let

0 ≤ w ∈ C2(BR) ∩ C0(BR) be such that

(9) L∞w ≤ 0 in BR.

Suppose that there are σ ∈ (0, 1) and M > 0 such that

(10) ‖∇w‖L∞(BσR) ≤ M.

Then for any τ ∈ (0, σ) and p ∈ (0, N/(N − 2)) if N > 2, p ∈ (0,∞) if N = 2, we
have

(i) There exists a constant C > 0 depending on N , p, σ, τ , and M such that

w(x) ≥ C

R

(
 

BτR

wp dx

)
1
p

d(x, ∂BR), ∀x ∈ BR,

where d(x, ∂BR) is the distance between x and the boundary ∂BR of BR.
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(ii) If x0 ∈ ∂BR is a point such that w(x0) = 0 and the inner normal derivative
∂w
∂ν
(x0) exists, then

∂w

∂ν
(x0) ≥

C

R

(
 

BτR

wp dx

)
1
p

,

where C > 0 is the constant given by item (i). In particular, if ∂w
∂ν
(x0) = 0,

then w ≡ 0 in BσR.

Corollary 1.4. Let BR be an open ball of radius R > 0 in R
N (N ≥ 2), and let

0 ≤ w ∈ C2(BR) ∩ C0(BR) be such that

(11) L∞w = 0 in BR.

Then for any τ ∈ (0, 1) we have

(i) There exists a constant C > 0 depending on N , τ and sup
BR

w/R such that

w(x) ≥ C

R

(

sup
BτR

w

)

d(x, ∂BR), ∀x ∈ BR,

where d(x, ∂BR) is the distance between x and the boundary ∂BR of BR.
(ii) If x0 ∈ ∂BR is a point such that w(x0) = 0 and the inner normal derivative

∂w
∂ν
(x0) exists, then

∂w

∂ν
(x0) ≥

C

R
sup
BτR

w,

where C > 0 is the constant given by item (i). In particular, if ∂w
∂ν
(x0) = 0,

then w ≡ 0 in BR.

To prove these results, we need first to develop some ingredients. We start by
stating the following gradient estimate.

Theorem 1.5. (The gradient estimate) Let w ∈ C2(BR)∩C0(BR) be a solution
of

(12) 2∆∞u+∆u = 0 in BR.

Then for any σ ∈ (0, 1) there is a positive constant C0 depending only on N and σ
such that

‖∇w‖L∞(BσR) ≤ C0

(

1 +
‖w‖L∞(BR)

R

)

.

The following lemma establishes the equivalence of (classical) solutions to L∞u =
0 in BR and (classical) weak solutions to div(2e|∇u|2∇u) =0 in BR.

Lemma 1.6. Let u ∈ C2(BR). Then, the following identity holds pointwise
everywhere

div
(

2e|∇u|2∇u
)

= 2e|∇u|2L∞u, in BR.(13)

Moreover,

(14) L∞u = 0 (≤ 0, ≥ 0) in BR

if and only if the following equation is satisfied in the weak sense

Lφu = div
(

2e|∇u|2∇u
)

= 0 (≤ 0, ≥ 0),
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i.e.
ˆ

BR

2e|∇u|2∇u∇ψ dx = 0 (≥ 0, ≤ 0)

for all ψ ∈ H1
c (BR) (0 ≤ ψ ∈ H1

c (BR)).

Proof. The identity (13) is a straightforward computation. From (13) and diver-
gence theorem,

(15) −
ˆ

BR

2e|∇u|2∇u∇ψ dx =

ˆ

BR

div(2e|∇u|2∇u)ψ dx =

ˆ

BR

ψ2e|∇u|2L∞u dx,

for all ψ ∈ C∞
c (BR). Now, once e|∇u|2|∇u| ∈ L∞

loc(BR) ⊂ L2
loc(BR), by Lemma 14.2

in [4], the identity (15) holds for every ψ ∈ H1
c (BR). This finishes the proof. �

In what follows, we will construct barriers using some ideas of Vázquez [17]. They
are subsolutions for the operators Lφ and L∞. Moreover, we recover the geometry of
the barriers as presented in [3, 4]. We postpone the proof until Section 4.

Theorem 1.7. (Existence and geometry of barriers) Assume ρ ∈ (0, 1), R > 0
and Aρ,R := BR \BρR. Given M ≥ 0, there exists Γ = ΓM

R ∈ C∞(Aρ,R) such that:

i) Γ|∂BR
= 0 and Γ|∂BρR

= M;
ii) There exists a constant C > 0 depending only on N and ρ such that

L∞Γ ≥ C
M
R2

≥ 0 in Aρ,R.

In particular, we also have

LφΓ ≥ C
M
R2

≥ 0 in Aρ,R;

iii) There exist constants C1, C2 > 0 depending only on N and ρ such that

0 ≤ C1
M
R
d(x, ∂BR) ≤ Γ(x) ≤ C2

M
R
d(x, ∂BR), ∀ x ∈ Aρ,R;

0 ≤ C1
M
R

≤ |∇Γ(x)| ≤ C2
M
R
, ∀ x ∈ Aρ,R.

Remark 1.8. We highlight the dependence of the constants describing the ge-
ometry of the barriers given in the Theorem 1.7 on the annulus radii ratio ρ. More
precisely,

C1 :=
2(N − 1)

ρ[e2(N−1)(1−ρ)/ρ − 1]
> 0,

C2 :=
2(N − 1)e2(N−1)(1−ρ)/ρ

ρ[e2(N−1)(1−ρ)/ρ − 1]
> 0.

Regarding the asymptotics of those constants, C1(ρ), C2(ρ) → +∞ as ρ → 1−.
Geometrically, this seems natural, as the annulus gets narrower and narrower, the
solution gets steeper and steeper. Moreover, when ρ → 0+, we have C1 → 0 and
C2 → +∞. This degenerate geometry somehow resembles the famous nonexistence
example given by Zaremba in [18] on the solution to the Dirichlet problem involving
harmonic functions on a punctured ball.
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2. Proofs of Theorem 1.3 and Corollary 1.4

We first prove the theorem for the case where R = 1. From (9) and Lemma 1.6,
w is a supersolution of Lφu = 0 in Bσ, i.e.,

0 ≥ Lφw = div
(

2e|∇w|2∇w
)

=

N
∑

i,j=1

(aij(x)wxi
)xj

in Bσ

where aij := 2δije
|∇w|2. From (10) there exists M > 0 such that

(16) 2|η|2 ≤
N
∑

i,j=1

aij(x)ηiηj ≤ 2eM
2 |η|2 in Bσ,

for all η = (η1, . . . , ηN) ∈ R
N . By the weak Harnack inequality (Theorem 3.13 in

[9]), for any τ ∈ (0, σ) and p ∈ (1, N/(N − 2)) if N > 2, p ∈ (0,∞) if N = 2, there
is a positive constant C = C(N, p, τ, σ,M) verifying

(17) T :=

(
 

Bτ

wp dx

)
1
p

≤ C inf
Bτ/2

w,

which implies

(18) w(x) ≥ inf
Bτ/2

w ≥ C−1T, ∀ x ∈ Bτ/2.

Now, applying Theorem 1.7 for M = C−1T ≥ 0 and ρ = τ/2, there exists a barrier
Γ ∈ C∞(Aτ/2,1) satisfying the properties (i)–(iii). By (i)–(ii), we have

{

−LφΓ ≤ 0 ≤ −Lφw in Aτ/2,1,

Γ ≤ w on ∂Aτ/2,1.

Since Γ, w ∈ C0(Aτ/2,1), we can use the comparison principle (see [13, Theorem 2.4.1
and Proposition 2.4.2]), to obtain

w(x) ≥ Γ(x), ∀ x ∈ Aτ/2,1.

From Theorem 1.7(iii), we obtain

w(x) ≥ C1C
−1Td(x, ∂B1), ∀ x ∈ Aτ/2,1.

On the other hand, by (18), we have

w(x) ≥ C−1T ≥ C−1Td(x, ∂B1), ∀ x ∈ Bτ/2.

Taking C0 = min{C−1, C1C
−1}, we have

(19) w(x) ≥ C0Td(x, ∂B1), ∀ x ∈ B1.

Note that C0 is a positive constant depending only on N , p, τ , σ, and M , and (i) is
proved in the case R = 1. Let x0 ∈ ∂B1 be a point such that w(x0) = 0 and the unit
inner normal derivative ∂w

∂ν
(x0) exists. By (19), since ν = −x0, we have

∂w

∂ν
(x0) = lim

t→0+

w(x0 + tν)− w(x0)

t
≥ lim

t→0+

C0Td(x0 + tν, ∂B1)

t

= lim
t→0+

C0T (1− |x0 + tν|)
t

= lim
t→0+

C0T t

t
= lim

t→0+
C0T = C0T.(20)
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In particular, if ∂w
∂ν
(x0) = 0, then w ≡ 0 in Bτ . As τ ∈ (0, σ) is arbitrary, w ≡ 0 in

Bσ, and (ii) is proved in the case R = 1. In order to prove the general case R > 0,
we consider the following rescaled function

u(x) =
1

R
w(Rx), x ∈ B1.

Thus, we have

a) sup
B1

u = sup
BR

w/R;

b) ∇u(x) = ∇w(Rx), x ∈ B1;

c)
∂u

∂ν

(x0
R

)

=
∂w

∂ν
(x0), x0 ∈ ∂BR and ν = − x0

|x0|
;

d) d(x, ∂BR) = Rd
( x

R
, ∂B1

)

, x ∈ BR;

e) L∞u(x) = RL∞w(Rx), x ∈ B1.

From (19), it follows that

1

R
w(Rx) ≥ C0

(
 

Bτ

(

w(Rx)

R

)p

dx

)
1
p

d(x, ∂B1), ∀ x ∈ B1

where C0 is a positive constant depending only on N , p, τ , and M . Consequently,

w(x) ≥ C0

R

(
 

BτR

wp(x) dx

)
1
p

d(x, ∂BR), ∀ x ∈ BR,

which gives (i) of Theorem 1.3. If in addition, w(x0) = 0 and ∂w
∂ν
(x0) exists, by

applying (20) to u at x0/R ∈ ∂B1, we have

∂u

∂ν

(x0
R

)

≥ C0

(
 

Bτ

up(x) dx

)
1
p

.

By translating this back in terms of w, we obtain the estimate (ii) for the general
case R > 0. The case where there is a vanishing of normal derivative of w at x0 in
the boundary of BR follows as before. �

Proof of Corollary 1.4. The proof of Corollary 1.4 goes similarly to the proof
of Theorem 1.3. Once more, by scaling, it is enough to treat the case where R = 1.
A careful inspection of that proof reveals that once the estimates (16) and (17) are
recovered, the proof can be repeated ipsis litteris. Since w is a classical solution to
L∞w = 0 in B1, the interior gradient estimate (Theorem 1.5) assures that we can
take M := C0(1 + ‖w‖L∞(B1)), for some positive constant C0 depending on N and σ,
where σ is an arbitrary number in (0, 1). This renders (16). By Lemma 1.6, Lφw = 0
in B1 in a weak sense. In fact, this is a uniform elliptic equation with ellipticity
constants given by λ = 2 and Λ = 2eM

2
, as guaranteed by (16). Now, we can use

Harnack inequality (Theorem 3.14 in [9]) to obtain, for τ ∈ (0, σ),

T = sup
Bτ

w ≤ C inf
Bτ

w,

for some positive constant C depending only on N , τ , and σ. This recovers (17).
From this point on, the proof goes exactly as the remaining part of the proof of
Theorem 1.3. �
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3. Proof of Theorem 1.5

We begin by stating an essential result due to Evans and Smart [5].

Proposition 3.1. Given ǫ ∈ (0, 1], assume that uǫ ∈ C2(B1) ∩ C0(B1), with
‖uǫ‖L∞(B1) ≤ 1, is a solution of the quasilinear equation

(21) Lǫu := ∆∞u+ ǫ∆u = 0 in B1.

Then for any σ ∈ (0, 1) there is a positive constant C depending only N and σ such
that

‖∇uǫ‖L∞(Bσ) ≤ C, ∀ǫ ∈ (0, 1].

We first prove Theorem 1.5 in the case R = 1 and ‖w‖L∞(B1) ≤ 1. By applying
Proposition 3.1 with ǫ = 1/2 to w, we obtain

‖∇w‖L∞(Bσ) ≤ C.

In the case of ‖w‖L∞(B1) > 1, we consider
√
ǫ := 1/‖w‖L∞(B1) ∈ (0, 1) and uǫ :=

√
ǫw.

Thus, ‖uǫ‖L∞(B1) = 1 and

Lǫuǫ = 2∆∞(
√
ǫw) + ǫ∆(

√
ǫw) = 2ǫ3/2∆∞w + ǫ3/2∆w = ǫ3/2L∞w = 0 in B1.

Proposition 3.1 again shows that
∥

∥

∥

∥

∇
(

w

‖w‖L∞(B1)

)
∥

∥

∥

∥

L∞(Bσ)

= ‖∇uǫ‖L∞(Bσ) ≤ C,

which gives

‖∇w‖L∞(Bσ) ≤ C‖w‖L∞(B1).

Therefore, in any case,

(22) ‖∇w‖L∞(Bσ) ≤ C
(

1 + ‖w‖L∞(B1)

)

,

and the theorem is proved if R = 1. In order to prove the general case R > 0, we set
v(x) = w(Rx)/R for x ∈ B1 and observe that

L∞v = L∞

(

w(Rx)

R

)

= 2R∆∞w(Rx) +R∆w(Rx) = RL∞w(Rx) = 0 in B1.

From (22), we have

‖∇w‖L∞(BσR) = ‖∇v‖L∞(Bσ) ≤ C
(

1 + ‖v‖L∞(B1).

)

= C

(

1 +
‖w‖L∞(BR)

R

)

,

and the proof is complete. �

4. Proof of Theorem 1.7

Let ρ ∈ (0, 1), R > 0, and Aρ,R be the set given by

Aρ,R =
{

x ∈ R
N : ρR <| x |< R

}

⊂ BR.

Define the constants

α :=
M

eβ(1−ρ)R − 1
> 0, β :=

2(N − 1)

ρR
.(23)

Following the arguments of Vázquez in [17], we define the barrier Γ by setting

Γ(x) := v(R− | x |) := α(eβ(R−|x|) − 1), x ∈ Aρ,R,
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where v(t) := α(eβt − 1). Clearly Γ ∈ C∞(Aρ,R). For x ∈ ∂Aρ,R, we have

Γ(x) = v(R− | x |) =
{

v(0) = 0, | x |= R,

v((1− ρ)R) = M, | x |= ρR

this proves (i). We now observe that Γ satisfies for each i, j ∈ {1, . . . , N}

Γxi
= −v′(R− | x |) xi| x | ,

Γxixi
= v′′(R− | x |) x2i

| x |2 − v′(R− | x |) | x |2 −x2i
| x |3 ,

Γxixj
= v′′(R− | x |) xixj| x |2 − v′(R− | x |)δij |x|

2 − xixj
| x |3 .

Thus,

| ∇Γ |2=
N
∑

i=1

(Γxi
)2 =

N
∑

i=1

v′(R− | x |)2 x2i
| x |2 = v′(R− | x |)2, x ∈ Aρ,R,

and

∆Γ =

N
∑

i=1

Γxixi
=

N
∑

i=1

(

v′′(R− | x |) x2i
| x |2 − v′(R− | x |) | x |2 −x2i

| x |3
)

=

(

v′′(R− | x |)− (N − 1)

| x | v′(R− | x |)
)

, x ∈ Aρ,R.

In particular,

(24) | ∇Γ |= v′(R− | x |), x ∈ Aρ,R.

Furthermore,

∆∞Γxi
=

N
∑

i,j=1

Γxi
Γxj

Γxixj

=
N
∑

i,j=1

v′(R − |x|)2xixj|x|2
(

v′′(R− | x |) xixj| x |2 − v′(R− | x |)δij|x|
2 − xixj
| x |3

)

=

N
∑

i,j=1

(

v′(R− |x|)2v′′(R− | x |)
x2ix

2
j

| x |4 − v′(R− | x |)3
xixjδij|x|2 − x2ix

2
j

| x |5
)

= v′(R− |x|)2v′′(R− |x|)− v′(R− |x|)3 |x|
4 − |x|4
|x|5

= v′(R− |x|)2v′′(R− |x|).

As a consequence, given x ∈ Aρ,R, we have

L∞Γ = 2v′(R− |x|)2v′′(R − |x|) +
(

v′′(R− | x |)− (N − 1)

| x | v′(R− | x |)
)

.



346 Diego Moreira, Jefferson Abrantes Santos and Sergio H. Monari Soares

Since v′′(t) = βv′(t) for all t ∈ R, we obtain

L∞Γ = 2βv′(R− |x|)3 +
(

β − (N − 1)

| x |

)

v′(R− | x |)

=

(

2βv′(R− |x|)2 +
(

β − (N − 1)

| x |

))

v′(R− | x |)

≥
(

β − (N − 1)

| x |

)

v′(R− | x |)

≥
(

β − (N − 1)

ρR

)

v′(R− | x |)(25)

for every x ∈ Aρ,R, once for every for every x ∈ Aρ,R, by (23),

(26)

(

β − (N − 1)

|x|

)

≥ β − (N − 1)

ρR
=
β

2
.

Since v′(t) = αβeβt ≥ αβ for every t ∈ R, from (25) and (26), we obtain

(27) L∞Γ ≥ β2α

2
= C

M
R2

, ∀ x ∈ Aρ,R,

where

C =
2(N − 1)2

ρ2(e2(N−1)(1−ρ)/ρ − 1)
.

From (8) and (27), we conclude the proof of (ii). Now, defining

ϕ(t) := v(R− t), t ∈ [ρR,R],

we have, ϕ(R) = v(0) = 0 and

ϕ′(t) = −v′(R− t) < 0, t ∈ [ρR,R].

Hence ϕ′(R) = −v′(0) = −αβ < 0. Since v′′(t) = αβ2eβt > 0 for all t ∈ R,

ϕ′′(t) = v′′(R − t) > 0, t ∈ [ρR,R].

Therefore, ϕ is a convex function in [ρR,R], which implies

ϕ(t) ≥ ϕ′(R)(t−R) = αβ(R− t) =
2(N − 1)M

ρR(eβ(1−ρ)R − 1)
(R− t),

for every t ∈ [ρR,R]. Consequently,

(28) Γ(x) ≥ 2(N − 1)M
ρR(eβ(1−ρ)R − 1)

d(x, ∂BR), ∀ x ∈ Aρ,R,

and since β =
2(N − 1)

ρR
, we obtain

Γ(x) ≥ 2(N − 1)

ρ(e2(N−1)(1−ρ)/ρ − 1)

M
R
d(x, ∂BR), ∀ x ∈ Aρ,R,

which shows that (iii) is true for C1 = 2(N − 1)/(ρ(e2(N−1)(1−ρ)/ρ − 1)) > 0. On the
other hand, given t ∈ (ρR,R) by mean value theorem there exists ξt ∈ (t, R) such
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that

ϕ(t) = ϕ(t)− ϕ(R) = ϕ′(ξt)(t− R) = αβeβ(R−ξt)(R− t)

=
2(N − 1)M

ρR(eβ(1−ρ)R − 1)
eβ(R−ξt)(R − t)

=
2(N − 1)

ρ(e
2(N−1)(1−ρ)

ρ − 1)

M
R
e

2(N−1)
ρR

(R−ξt)(R− t)

≤ 2(N − 1)e2(N−1)(1−ρ)/ρ

ρ(e
2(N−1)(1−ρ)

ρ − 1)

M
R

(R− t),

where in the last inequality we have used that |ξt − R| ≤ |R − ρR| = (1 − ρ)R.
Therefore,

Γ(x) ≤ 2(N − 1)e2(N−1)(1−ρ)/ρ

ρ(e
2(N−1)(1−ρ)

ρ − 1)

M
R
d(x, ∂BR), ∀ x ∈ Aρ,R,

and so (iii) is true for C2 = 2(N − 1)e2(N−1)(1−ρ)/ρ/ρ(e
2(N−1)(1−ρ)

ρ − 1) > 0. In order
to show the gradient estimates in (iii), note that

|∇Γ(x)| = |v′(R− |x|)| = αβeβ(R−|x|)

=
2(N − 1)

ρ(e2(N−1)(1−ρ)/ρ − 1)

M
R
e

2(N−1)(R−|x|)
ρR , ∀ x ∈ Aρ,R,

whence, once again, since R − |x| ≤ R− ρR = (1− ρ)R,

2(N − 1)

ρ[e2(N−1)(1−ρ)/ρ − 1]

M
R

≤ |∇Γ(x)| ≤ 2(N − 1)e2(N−1)(1−ρ)/ρ

ρ[e2(N−1)(1−ρ)/ρ − 1]

M
R
,

for every x ∈ Aρ,R. Finally,

Lφu = 2e|∇u|2L∞u ≥ L∞u ≥ C
M
R2
.

This finishes the proof of Theorem 1.7. �
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