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Further properties of accretive matrices
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∗

Abstract. To better understand the algebra Mn of all n × n complex matrices, we explore

the class of accretive matrices. This class has received renowned attention in recent years due to

its role in complementing those results known for positive definite matrices. Among many results,

we present order-preserving results, Choi–Davis-type inequalities, mean-convex inequalities, sub-

multiplicative results for the real part, and new bounds of the absolute value of accretive matrices.

These results will be compared with the existing literature. In the end, we quickly pass through

related entropy results for accretive matrices.

Lisää kasvattavien matriisien ominaisuuksia

Tiivistelmä. Kompleksikertoimisten n × n -matriisien algebran Mn paremmaksi ymmärtä-

miseksi tutkitaan tässä työssä ns. kasvattavien matriisien luokkaa. Tämä positiivisia matriiseja

yleistävä luokka näiden teoriaa täydentävine tuloksineen on saanut paljon huomiota viime vuosi-

na. Muiden muassa esitämme järjestyksen säilyttämistä koskevia tuloksia, Choin–Davisin-tyyppisiä

epäyhtälöitä, keskikonveksisuusepäyhtälöitä, reaaliosan alitulomuotoisuustuloksia sekä uusia rajo-

ja kasvattavien matriisien itseisarvolle. Näitä tuloksia verrataan aiempaan kirjallisuuteen. Lopuksi

käydään lyhyesti läpi kasvattavia matriiseja koskevia entropiatuloksia.

1. Introduction

Let Mn be the class of all n× n complex matrices, with identity I. Inequalities
among elements of Mn has been an active research area due to its applications in
various fields, not to mention its role in understanding the algebra Mn.

However, order among elements in Mn is restricted to the so-called Hermitian
matrices. A matrix A ∈ Mn is said to be Hermitian if A∗ = A, where A is the
conjugate transpose of A. A special class of the Hermitian matrices is the positive
ones. We recall that a matrix A ∈ Mn is said to be positive semi-definite, and we
write A ≥ 0, if it satisfies 〈Ax, x〉 ≥ 0, for all x ∈ Cn, where 〈·, ·〉 denotes the usual
inner product in C

n. The notation M+
n will denote the class of positive semidefinite

matrices in Mn. Further, if A ∈ M+
n is invertible, we say that A is positive definite,

and we write A ∈ Pn or A > 0. Having defined M+
n , a partial order on Hn, the class

of all Hermitian matrices in Mn, can be defined. For A,B ∈ Hn, we say that A ≤ B

if B − A ≥ 0. If B − A > 0, then we write B > A.
Defining this order on Hn then proposes the question about possible functional

ordering in a way that simulates the field of real numbers. For example, if f : J → R

is an increasing function on the interval J then f(a) ≤ f(b) for any a, b ∈ J satisfying
a ≤ b. The natural question then arises about the validity of the conclusion f(A) ≤
f(B) when A,B ∈ Hn are such that A ≤ B. This turns out to be much more
complicated.
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For A ∈ Hn, let σ(A) denote the spectrum of A. An interval J containing σ(A)
will be denoted as JA. If f : JA → R is a given function, then f(A) is defined
via the simple identity f(A) = U diag(f(λi))Uj, where U diag(λi)U

∗ is a spectral
decomposition of A, in which U is unitary and {λi : i = 1, · · · , n} = σ(A).

It is unfortunate that a monotone increasing function f : JA,B → R does not
satisfy f(A) ≤ f(B) even when A,B ∈ Hn are such that A ≤ B. This unpleasant
scenario can be also said about convex functions.

This urges the search for possible classes of functions or matrices that could satisfy
matrix inequalities as in the scalar case. For this, operator monotone functions were
defined as those functions preserving order among Hermitian matrices. That is, a
function f : J → R is said to be operator monotone if f(A) ≤ f(B) for any A,B ∈ Hn

are such that A ≤ B and σ(A), σ(B) ⊂ J . Further, f will be called operator convex
if f((1− t)A+ tB) ≤ (1− t)f(A)+ tf(B) for all t ∈ [0, 1], where A,B ∈ Hn are such
that σ(A), σ(B) ⊂ J . If −f is operator monotone, it is said to be operator monotone
decreasing, and if −f is operator convex it is said to be operator concave.

We refer the reader to [10, Chapter V] for an excellent discussion of operator
monotone and operator convex functions. We also refer the reader to [6, 12, 13, 20,
24, 26, 23, 32, 33, 37, 42, 41] for a good list of references treating matrix orders.

In recent years, more interest has grown in studying inequalities among the so-
called accretive matrices. Recall that a matrix A ∈ Mn is said to be accretive if
R(A) > 0, where R(A) is the real part of A defined by R(A) = A+A∗

2
. The class of

accretive matrices in Mn will be denoted by Πn. It is clear that Pn ⊂ Πn. Since
elements of Πn are not necessarily Hermitian, the predefined order does not apply
to Πn. This is why inequalities among accretive matrices are usually stated in terms
of their real parts. We must introduce sectorial matrices to deal with inequalities in
Πn. If 0 ≤ α < π

2
, and if A ∈ Mn is such that

{〈Ax, x〉 : x ∈ C
n, ‖x‖ = 1} ⊂ {z ∈ C : R(z) > 0, |I(z)| ≤ (tanα)R(z)},

then A will be called a sectorial matrix and we simply write A ∈ Πα
n, where I(z)

denotes the imaginary part of z. We refer the reader to [6, 7, 8, 9, 14, 25, 30, 31, 40,
44, 45] for an almost comprehensive overview of the progress that has been made in
studying inequalities in Πn. We emphasize here that whenever we use the notation
Πα

n in this paper, we implicitly understand that 0 ≤ α < π
2
. We also remark that a

matrix is accretive if and only if it is sectorial [9].
The study of accretive matrices differs from that of Hermitian matrices because

a partial order among members of Πn is not as well established as that in Hn. So,
in studying inequalities among members of Πn, we usually refer to the real parts of
these elements, noting that the real part of any matrix is in Hn.

Our target in this paper is to study further possible inequalities among matrices
in Πn, where we extend some of the well-established inequalities in Pn or M+

n to
the class Πn. For this to be done, we first need to define f(A) where A ∈ Πn and
f : JA → R.

Given A ∈ Mn, let f : D → C be a complex-valued function defined on a domain
that contains σ(A) in its interior. If f is analytic in D, we define

(1.1) f(A) =
1

2πi

ˆ

C

f(z)(zI − A)−1 dz,

where C is any simple closed curve in D that surrounds σ(A). Practically, this
generalizes the well-known complex Cauchy integral formula.
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Now if A ∈ Πn, then σ(A) ∩ (−∞, 0] = ∅. Therefore, if f is analytic in any
domain that avoids the negative x−axis, then f(A) can be defined via (1.1). For
simplicity, we will use the notation

m = {f : (0,∞) → (0,∞); f is an operator monotone function with f(1) = 1}.
The following lemmas deserve mentioning here.

Lemma 1.1. [22, Theorem 4.9] Let f ∈ m. Then

f(x) =

ˆ 1

0

(1!tx) dνf(t),

where νf is a probability measure on [0, 1] and 1!tx = (1− t+ tx−1)−1.

Lemma 1.2. [10, Theorem V.4.7] Let f ∈ m. Then f has an analytic continua-
tion to C\(−∞, 0].

Thus, if f ∈ m, we may deal with its analytic continuation to find f(A) for
any matrix A whose spectrum avoids the negative x-axis, where we can use (1.1).
Operator monotone functions and operator concave functions are strongly related,
as follows [47, Theorem 2.4] and [5, Theorems 2.1, 2.3, 3.1, 3.7].

Proposition 1.1. Let f : (0,∞) → [0,∞) be continuous. Then

(i) f is operator monotone decreasing if and only if f is operator convex and
f(∞) < ∞,

(ii) f is operator monotone increasing if and only if f is operator concave.

Consequently, f ∈ m means that f is operator monotone and operator concave.
On the other hand, the following two lemmas from [6] will be needed in the

sequel.

Lemma 1.3. Let f ∈ m and A ∈ Πn. Then

R(f(A)) ≥ f(RA).

Consequently, if A is accretive, then so is f(A).

Lemma 1.4. Let f ∈ m and A ∈ Πα
n. Then

R(f(A)) ≤ sec2(α) f(RA).

We recall that a linear mapping Φ: Mn → Mn is said to be positive if Φ(A) ∈
M+

n whenever A ∈ M+
n . Further, if Φ(I) = I, then Φ is said to be a unital positive

linear mapping. The celebrated Choi–Davis inequality states that [4, 12]

Φ(f(A)) ≤ f(Φ(A)),

for f ∈ m and A ∈ M+
n , where Φ is a unital positive linear mapping. When A is

accretive, we have the following version of this inequality [6, Theorem 7.1].

Lemma 1.5. Let f ∈ m, Φ be a unital positive linear map and A ∈ Πα
n. Then

Rf(Φ(A)) ≥ cos2(α)RΦ(f(A)).

Related to these lemmas, we cite the following lemma from [29].

Lemma 1.6. Let A ∈ Πn. Then R(A−1) ≤ (RA)−1.

The so-called operator mean is strongly related to the class m. Given A,B ∈ Pn

and f ∈ m, we define σf : Pn ×Pn → Pn by

(1.2) AσfB = A
1

2f
(
A−

1

2BA−
1

2

)
A

1

2 .
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This binary operation is usually called operator mean, associated with f . If no
confusion arises, we use σ instead of σf . The theory of operator means has received
considerable attention in the literature, as seen in [3, 28, 35, 39]. The theory of
operator means has been extended to accretive matrices in [6], using the same identity
as in (1.2). We refer the reader to [6] for a detailed discussion of this topic. We also
refer the reader to [14, 40, 44] for interesting related discussion.

Extending some results from [14, 40], the following inequality was shown in [6]
for any A,B ∈ Πα

n and any operator mean σ (or σf for some f ∈ m):

(1.3) RAσRB ≤ R(AσB) ≤ sec2 αRAσRB.

The following lemma has also been shown in [6].

Lemma 1.7. Let A,B ∈ Πα
n for some 0 ≤ α < π

2
. If f ∈ m is such that f ′(1) = t

for some t ∈ (0, 1), then

cos2(α)R(A!tB) ≤ R(AσfB) ≤ sec2(α)R(A∇tB),

where A!tB = ((1 − t)A−1 + tB−1)−1 and A∇tB = (1 − t)A + tB are the weighted
harmonic and arithmetic means, respectively.

The next section presents several new relations and inequalities for elements in Πn

and Πα
n. To make it easier for the reader to follow, we will emphasize the significance

of each result by presenting the existing related result in the literature. Our discus-
sion will include order-preserving inequalities, Choi–Davis-type inequalities, mean
inequalities, entropy results, and other characterizations.

Among the most interesting findings in this paper, we show that if A > 0, then

R
(
Y A−1Y

)
≤ RY A−1

RY,

for any Y ∈ Mn. We also show that if T ∈ Πα
n, then

|T | ≤ secα
∣∣∣(RT )

1

2U(RT )
1

2

∣∣∣

for some unitary U , where |X| = (X∗X)1/2, when X ∈ Mn.
Discussion of entropy-like results for accretive matrices will be presented, as a

new track in this field.

2. Main results

In this section, we present our results. To make it easier and more accessible for
the reader, we present these results in consequent subsections.

2.1. Order preserving results. In the next theorem, we show a Löwner–
Heinz theorem for accretive matrices. More precisely, if f ∈ m and 0 < A ≤ B, then
f(A) ≤ f(B). This is indeed the definition of operator monotony. The following
result extends this to the class of sectorial matrices by appealing to the real parts.

Theorem 2.1. Let f ∈ m and A,B ∈ Πα
n. Then

RA ≤ RB ⇒ Rf (A) ≤ sec2αRf (B) .

In particular,

(2.1) RA ≤ RB ⇒ RAr ≤ sec2αRBr; 0 ≤ r ≤ 1.
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Proof. We have

Rf (A) ≤ sec2α f (RA) (by Lemma 1.4)

≤ sec2α f (RB) (since f is operator monotone and RA ≤ RB)

≤ sec2αRf (B) (by Lemma 1.3).

This completes the proof. �

We know that if A ∈ Πα
n, then [15]

(2.2) (RA)−1 ≤ sec2αRA−1.

The following result is an application of the inequality (2.2),

RA♯RA−1 ≥ 1

secα

(
RA♯(RA)−1) = 1

secα
I.

Therefore,

RA♯RA−1 ≥ 1

secα
I.

Here the notation ♯ refers to the geometric mean, which is defined for any A,B ∈ Πn

as follows

A♯B = A
1

2

(
A−

1

2BA−
1

2

) 1

2

A
1

2 .

Remark 2.1. Notice that when A,B ∈ Πα
n, we have, for 0 ≤ r ≤ 1,

RA ≤ RB ⇒ RB−r ≤ sec4αRA−r,

since
RB−r ≤ (RBr)−1 (by Lemma 1.6)

≤ sec2α (RAr)−1 (by (2.1))

≤ sec4αRA−r (by (2.2)).

2.2. Choi–Davis type inequalities. It is known that if f ∈ m, Ai ∈ M+
n and

Ci ∈ Mn are such that
∑k

i=1C
∗

i Ci = I, then [20, Theorem 1.9]

f

(
k∑

i=1

C∗

i AiCi

)
≥

k∑

i=1

C∗

i f(Ai)Ci.(2.3)

At this point, we show the accretive version of this inequality. We notice that when
A ∈ Πα

n, then C∗AC ∈ Πα
n for any C ∈ Mn. In order to show the accretive version

of (2.3), we first present the following simple lemma.

Lemma 2.1. Let A,B ∈ Πα
n. Then A+B ∈ Πα

n.

Proof. By definition of Πα
n, we have

|I 〈Ax, x〉 | ≤ tanαR 〈Ax, x〉 and |I 〈Bx, x〉 | ≤ tanαR 〈Bx, x〉 , x ∈ C
n.

Adding these two inequalities, we get

tanαR 〈(A +B)x, x〉 ≥ |I 〈Ax, x〉 |+ |I 〈Bx, x〉 |
≥ |I 〈Ax, x〉 + I 〈Bx, x〉 |
= |I 〈(A +B)x, x〉 |.

This completes the proof. �

Consequently, if Ai ∈ Πα
n and Ci ∈ Mn, (i = 1, · · · , k), then

∑k
i=1C

∗

i AiCi ∈ Πα
n.

We are ready to show the sectorial version of (2.3).
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Proposition 2.1. Let Ai ∈ Πα
n and Ci ∈ Mn, (i = 1, · · · , k) be such that∑k

i=1C
∗

i Ci = I. Then

(2.4) R

(
n∑

i=1

C∗

i f (Ai)Ci

)
≤ sec2αRf

(
n∑

i=1

C∗

i AiCi

)
,

where
∑n

i=1C
∗

i Ci = I.

Proof. First, we notice that if C ∈ Mn is such that C∗C = I, then the map-
ping Φ: Mn → Mn defined by Φ(X) = C∗XC is unital positive linear mapping.
Therefore, Lemma 1.5 implies

(2.5) R (C∗f (A)C) ≤ sec2αRf (C∗AC)

where f ∈ m, C∗C = I and A ∈ Πα
n. Let

X =




A1 O

A2

. . .
O Ak


 and C̃ =




C1

C2
...
Ck


 .

It follows, by the same argument preceding the theorem, that C̃∗XC̃ ∈ Πα
n. Now,

noting that C̃∗C̃ = I, we have

R

(
n∑

i=1

C∗

i f (Ai)Ci

)
= R

(
C̃∗f (X) C̃

)

≤ sec2αRf
(
C̃∗XC̃

)
(by (2.5))

= sec2αRf

(
n∑

i=1

C∗

i AiCi

)
.

This completes the proof. �

Extending (2.5), we can state the following result.

Theorem 2.2. Let f ∈ m and let C ∈ Mn be such that C∗C ≤ I. Then

R (C∗f (A)C) ≤ sec2αRf (C∗AC) ,

for any A ∈ Πα
n.

Proof. Put D =
√
I − C∗C, where C is a contraction (i.e., C∗C ≤ I), and

let Xn = 1
n
I, where n ∈ N. Notice that f(Xn) ≥ 0 because f ∈ m, and hence

D∗f(Xn)D ≥ 0. Since C∗C +D∗D = I, we can write from (2.4) that

R (C∗f (A)C) ≤ R (C∗f (A)C +D∗f (Xn)D)

≤ sec2αRf (C∗AC +D∗XnD) .

Letting n → ∞ implies the desired result. �

2.3. Means inequalities. We have seen in (1.3) that

RAσRB ≤ R (AσB) ≤ sec2 αRAσRB.
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In one way or another, this inequality is related to the so-called Callebaut inequality,
whose matrix version states that if Ai, Bi ∈ Pn, and if σ is an operator mean, then [34]

k∑

i=1

(Ai♯Bi) ≤
(

k∑

i=1

AiσBi

)
♯

(
k∑

i=1

Aiσ
⊥Bi

)
≤
(

k∑

i=1

Ai

)
♯

(
k∑

i=1

Bi

)
,(2.6)

where σ⊥ is the operator mean associated with the function t
f(t)

. Here f ∈ m is the

function characterizing σ as in (1.2).
If A,B ∈ Pn, (2.6) reduces to (for k = 1)

(2.7) A♯B = (AσB)♯(Aσ⊥B).

Related to the above inequality and in connection with our argument below, the
following inequality is useful [36, Theorem 5.7]

(2.8)

k∑

i=1

(AiσBi) ≤
(

k∑

i=1

Ai

)
σ

(
k∑

i=1

Bi

)
.

Now we present the sectorial version of Callebaut inequality.

Theorem 2.3. Let Ai, Bi ∈ Πα
n and let σ = σf for some f ∈ m. Then

n∑

i=1

RAi♯RBi ≤
(

k∑

i=1

RAiσRBi

)
♯

(
k∑

i=1

RAiσ
⊥
RBi

)

≤ sec2αR

(
k∑

i=1

Ai

)
♯R

(
k∑

i=1

Bi

)
.

Proof. We have

n∑

i=1

RAiσRBi ≤
(

k∑

i=1

RAi

)
σ

(
k∑

i=1

RBi

)
(by (2.8))

=

(
R

k∑

i=1

Ai

)
σ

(
R

k∑

i=1

Bi

)

≤ R

((
k∑

i=1

Ai

)
σ

(
k∑

i=1

Bi

))
(by (1.3)).

Thus, we have shown that

(2.9)
k∑

i=1

RAiσRBi ≤ R

((
k∑

i=1

Ai

)
σ

(
k∑

i=1

Bi

))
.

We also have

(2.10)

k∑

i=1

RAiσ
⊥
RBi ≤ R

((
k∑

i=1

Ai

)
σ⊥

(
k∑

i=1

Bi

))
.
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Notice that

(2.11)

(
k∑

i=1

RAiσRBi

)
♯

(
k∑

i=1

RAiσ
⊥
RBi

)

≤ R

((
k∑

i=1

Ai

)
σ

(
k∑

i=1

Bi

))
♯R

((
k∑

i=1

Ai

)
σ⊥

(
k∑

i=1

Bi

))

≤ sec2α

(
R

(
k∑

i=1

Ai

)
σR

(
k∑

i=1

Bi

))
♯

(
R

(
k∑

i=1

Ai

)
σ⊥

R

(
k∑

i=1

Bi

))

= sec2αR

(
k∑

i=1

Ai

)
♯R

(
k∑

i=1

Bi

)
,

where we have used (2.9) and (2.10) to obtain the first inequality, (1.3) to obtain the
second inequality and (2.7) to obtain the last equality. Further,

k∑

i=1

RAi♯RBi =

k∑

i=1

(RAiσRBi) ♯
(
RAiσ

⊥
RBi

)
(by (2.7))

≤
(

k∑

i=1

RAiσRBi

)
♯

(
k∑

i=1

RAiσ
⊥
RBi

)
(by (2.6)).

Thus, using (2.11),

k∑

i=1

RAi♯RBi ≤
(

k∑

i=1

RAiσRBi

)
♯

(
k∑

i=1

RAiσ
⊥
RBi

)

≤ sec2αR

(
k∑

i=1

Ai

)
♯R

(
k∑

i=1

Bi

)
,

which completes the proof. �

Another mean-convex inequality can be stated as follows.

Theorem 2.4. Let A,B,C,D ∈ Πα
n. Then

R (λ (A♯tC) + (1− λ) (B♯tD)) ≤ sec2α (R (λA + (1− λ)B) ♯tR (λC + (1− λ)D))

for any 0 ≤ t, λ ≤ 1.

Proof. Noting (1.3) and implementing basic properties of means, we have

λR (A♯tC) + (1−λ)R (B♯tD) ≤ sec2α (λ (RA♯tRC) + (1− λ) (RB♯tRD))

≤ sec2α ((λRA + (1−λ)RB) ♯t (λRC + (1−λ)RD))

= sec2α (R (λA+ (1− λ)B) ♯tR (λC + (1− λ)D)) .

This completes the proof. �

2.4. A sub-multiplicative result for the real part. We have seen that the
real part plays a key role in studying accretive matrices. This is due to the ability
to compare Hermitian matrices only. Defining Φ: Mn → Mn by Φ(X) = RX, we
immediately see that Φ is a unital positive linear mapping. It is well known that for
any such Φ and any A,B ∈ Pn, one has [20, Theorem 1.19]

Φ(B)Φ(A)−1Φ(B) ≤ Φ(BA−1B).
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Notice that when Φ = R, this inequality becomes an identity because of A,B ∈ Pn.
Interestingly, this inequality can be extended to the following form: one matrix is
positive definite, but the other is arbitrary.

Theorem 2.5. Let A > 0. Then

R
(
Y A−1Y

)
≤ RY A−1

RY,

for any Y ∈ Mn.

Proof. We can see that for any X ∈ Mn and positive definite A,

(2.12) RX = A−
1

2 R

(
A

1

2XA
1

2

)
A−

1

2 .

Noting that RX2 = (RX)2 − (IX)2 ≤ (RX)2, and letting X = A−
1

2Y A−
1

2 , we have

RA−
1

2Y A−1Y A−
1

2 ≤
(
RA−

1

2Y A−
1

2

)2
.

Using (2.12) now, we have

(2.13) A−
1

2 R
(
Y A−1Y

)
A−

1

2 ≤ A−
1

2 RY A−1
RY A−

1

2 .

Multiplying both sides of (2.13) by A
1

2 , we reach the desired result. �

2.5. On the absolute value of accretive matrices. If X ∈ Πα
n, and 0 ≤ r ≤

1, then
1

sec2α
RX2r ≤

(
RX2

)r
(by Lemma 1.4)

≤ (RX)2r,

where the second inequality follows from the facts that RX2 ≤ (RX)2 for any X ∈
Mn and that f(t) = tr is operator monotone when 0 ≤ r ≤ 1.

Thus, we have shown that if X ∈ Πα
n, one has

RX2r ≤ sec2α (RX)2r; 0 ≤ r ≤ 1.

In [48], it has been shown that

(2.14) ‖T‖ ≤ secα ‖RT‖ .
In this subsection, we present refinements and further related results. More precisely,
we show better bounds for |T | rather than ‖T‖. First, we have the following basic
lemmas.

Lemma 2.2. [27, Lemma 1] Let A,B,C ∈ Mn be such that A,B ≥ 0. Then
[
A C

C∗ B

]
≥ 0 ⇔ |〈Cx, y〉|2 ≤ 〈Ax, x〉 〈By, y〉 , ∀x, y ∈ C

n.

Lemma 2.3. [11, Proposition 1.3.2] Let A,B ≥ 0. Then

[
A X

X∗ B

]
≥ 0 if and

only if X = A
1

2KB
1

2 for some contraction K.

Lemma 2.4. [43] Let T ≥ 0. Then for any vectors x, y ∈ Cn,

|〈Tx, y〉| ≤ ‖T‖
2

(|〈x, y〉|+ ‖y‖ ‖x‖) .

Now we show the following preliminary result, which we will need.
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Proposition 2.2. Let A ∈ Mn with the polar decomposition A = U |A|. Then
for any vectors x, y ∈ Cn,

|〈Ax, y〉| ≤ ‖A‖
2

(|〈x, U∗y〉|+ ‖U∗y‖ ‖x‖) .

Proof. Lemma 2.4 gives

(2.15) |〈|A|x, y〉| ≤ ‖ |A| ‖
2

(|〈x, y〉|+ ‖y‖ ‖x‖) = ‖A‖
2

(|〈x, y〉|+ ‖y‖ ‖x‖)

for any A ∈ Mn . Assume that A = U |A| be the polar decomposition of A. If we
replace y by U∗y, in the inequality (2.15), we get

|〈Ax, y〉| = |〈U |A|x, y〉| = |〈|A|x, U∗y〉|

≤ ‖A‖
2

(|〈x, U∗y〉|+ ‖U∗y‖ ‖x‖) ,

from which the required result follows. �

The next lemma will be the key tool to obtain our result about a possible bound
of T , where T ∈ Πα

n.

Lemma 2.5. [21] Let A,X,B ∈ Mn. Then

[
A X

X∗ B

]
≥ 0, if and only if for any

vectors x, y ∈ Cn,

|〈Xx, y〉| ≤ 1

2

(∣∣∣
〈
A

1

2UB
1

2x, y
〉∣∣∣ +

√
〈Ay, y〉 〈Bx, x〉

)

for some unitary U .

Lemma 2.5 can be used to obtain the following bound of the inner product of
accretive matrices, which entails a refinement of (2.14).

Corollary 2.1. Let T ∈ Πα
n, and let x, y ∈ Cn be arbitrary vectors. Then

|〈Tx, y〉| ≤ secα

2

(∣∣∣
〈
(RT )

1

2U(RT )
1

2x, y
〉∣∣∣+

√
〈RTy, y〉 〈RTx, x〉

)

for some unitary matrix U ∈ Mn. In particular,

(2.16) ‖T‖ ≤ secα

2
(r (URT ) + ‖RT‖) ,

where r(·) is the spectral radius.

Proof. It has been shown in [2, Theorem 2.2] that if T ∈ Πα
n, then

(2.17)

[
secαRT T

T secαRT

]
≥ 0.

Now Lemma 2.5 implies the first desired inequality. For the second inequality, take
the supremum over all unit vectors x, y in the first inequality to get

(2.18)

‖T‖ ≤ secα

2

(∥∥∥(RT )
1

2U(RT )
1

2

∥∥∥+ ‖RT‖
)

=
secα

2

(
r
(
(RT )

1

2U(RT )
1

2

)
+ ‖RT‖

)

=
secα

2
(r (URT ) + ‖RT‖) .

This completes the proof. �
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Remark 2.2. The inequality (2.18) is a refinement of (2.14), since

r (URT ) ≤ ‖URT‖ = ‖RT‖ .
Now we show the main result in this subsection.

Theorem 2.6. Let T ∈ Πα
n. Then

|T | ≤ secα
∣∣∣(RT )

1

2U(RT )
1

2

∣∣∣
for some unitary U . More precisely, U is the unitary matrix in the polar decomposi-
tion of T (RT )−

1

2 .

Proof. We know that if

[
A X

X∗ B

]
≥ 0, then [23]

X∗X ≤ B
1

2U∗AUB
1

2 , for some unitary U.

Here we present another proof of this result using a different method. It has been

shown in [16, Theorem 7] that

[
A X

X∗ B

]
≥ 0 if and only if there is an operator C

such that X = C∗B
1

2 and C∗C ≤ A. We can write

X∗X = |X|2 = B
1

2CC∗B
1

2 = B
1

2 |C∗|2B 1

2 .

Thus,

B−
1

2 |X|2B−
1

2 = |C∗|2.
Let C = V |C| be the polar decomposition of C. We have

V ∗

(
B−

1

2 |X|2B−
1

2

)
V = V ∗|C∗|2V = |C|2 = C∗C.

Therefore, by the assumption,

V ∗

(
B−

1

2 |X|2B−
1

2

)
V ≤ A.

So,

|X|2 ≤ B
1

2 (V AV ∗)B
1

2 =
(
B

1

2V A
1

2

)(
A

1

2V ∗B
1

2

)
=
∣∣∣A

1

2V ∗B
1

2

∣∣∣
2

.

The proof is complete by assigning V ∗ to new unitary U . Consequently, we showed
that

|X|2 ≤
∣∣∣A

1

2UB
1

2

∣∣∣
2

.

Since the function f (t) =
√
t is operator monotone, we get

|X| ≤
∣∣∣A

1

2UB
1

2

∣∣∣ .

By (2.17), [
secαRT T

T ∗ secαRT

]
≥ 0.

Combining the two inequalities above, we get the desired result. �

Remark 2.3. In [1], it is shown that if T ∈ Πα
n, then

(2.19) |T | ≤ sec(α) (RT♯(V ∗
RTV )) ,

where V is the unitary matrix in the polar decomposition T = V |T |. Simplifying
(2.19) we reach

(2.20) |T | ≤ sec(α)(RT )
1

2

∣∣∣(RT )
1

2V (RT )−
1

2

∣∣∣ (RT )
1

2 .
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We point out that this bound and the bound we found in Theore 2.6 are incomparable.

For this purpose, we give the following example. If we let T =

(
2 + 3i 1 + 2i
1 + 2i 1 + 2i

)
,

then numerical calculations show that

X1 :=
∣∣∣(RT )

1

2U(RT )
1

2

∣∣∣ ≈
(

1.91617 1.01305 + 0.0955262i
1.01305 − 0.0955262i 1.06222

)
,

where U ≈
(

0.643783 + 0.748255i −0.0607125 + 0.148231i
−0.159823 + 0.0107223i 0.506275 + 0.847365i

)
is the unitary

part in the polar decomposition of T (RT )−
1

2 as in Theorem 2.6.
On the other hand, the unitary part in the polar decomposition of T is

V =

(
0.61125 + 0.781936i −0.0991922 + 0.0714937i

−0.0991922 + 0.0714937i 0.548515 + 0.827152i

)
,

which then implies, according to (2.20),

X2 := (RT )
1

2

∣∣∣(RT )
1

2V (RT )−
1

2

∣∣∣ (RT )
1

2

≈
(

1.77883 + 0.0590931i 0.195047 + 0.0393954i
0.199136 − 0.0590931i 0.812152 − 0.0393954i

)
.

It can be easily seen that neither X1 ≥ X2 nor X2 ≥ X1. This shows that the bounds
in theorem 2.6 and in [1] are incomparable, in general.

Remark 2.4. It follows from Theorem 2.6 that

‖T‖ = ‖ |T | ‖ ≤ secα
∥∥∥
∣∣∣(RT )

1

2U(RT )
1

2

∣∣∣
∥∥∥

= secα
∥∥∥(RT )

1

2U(RT )
1

2

∥∥∥ = secα r (URT ) .

Therefore,
‖T‖ ≤ secα r (URT ) ;

which is a significant refinement of (2.16) and (2.14).

3. On the difference of two perspectives

It is not hard to check that the function lnt(x) := xt−1
t

defined on x > 0 with
0 < t ≤ 1, is operator monotone. Tsallis relative operator entropy is defined as

Tt(A|B) := AσlntB = A1/2 lnt

(
A−1/2BA−1/2

)
A1/2 =

A♯tB − A

t
.

In [18], the mathematical properties of Tt(A|B) as the Tsallis relative operator en-
tropy were studied.

We may define a difference between two perspectives as

Df,g (A|B) = AσfB − AσgB,

for f, g ∈ m. Here we mention some examples.

(i) If we take f(x) := (1− t) + tx and g(x) = xt for t ∈ [0, 1], then Df,g(A|B) =
A∇tB − A♯tB, where ∇t and ♯t are the means associated with f and g re-
spectively.

(ii) If we take f(x) := xt−1
t

+ 1, g(x) := 1, then we get Df,g(A|B) = Tt(A|B) the
Tsallis relative operator entropy. In addition, if we take f(x) := log x + 1,
g(x) := 1, then we get Df,g(A|B) = S(A|B) the relative operator entropy.
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(iii) If we take f(x) := xt
−1
t

+ 1, g(x) := log x + 1, then Df,g(A|B) = Tt(A|B) −
S(A|B), which gives the difference between the Tsallis relative operator en-
tropy and the relative operator entropy. And it is known that S(A|B) ≤
Tt(A|B) for 0 < t ≤ 1.

In this section, we study Df,g(A|B) for accretive matrices A,B; as a new track in
this research field.

Theorem 3.1. Let A,B ∈ Πα
n and f, g ∈ m. Then for any invertible C ∈ Mn,

C∗Df,g (A|B)C = Df,g (C
∗AC|C∗BC) .

Proof. We have

C∗Df,g (A|B)C = C∗ (AσfB − AσgB)C

= C∗ (AσfB)C − C∗ (AσgB)C

= C∗ (AσfB)C − C∗ (AσgB)C

= C∗ACσfC
∗BC − C∗ACσgC

∗BC

= Df,g (C
∗AC|C∗BC) . �

With the inclusion of real parts of sectorial matrices, one may obtain further
bounds as follows.

Theorem 3.2. Let A,B ∈ Πα
n and f, g ∈ m. Then

Df,g (RA|RB) +
(
1−sec2α

)
(RAσgRB) ≤ R (Df,g (A|B))

≤ Df,g (RA|RB) +
(
sec2α−1

)
(RAσfRB) .

Proof. We have

R (Df,g (A|B)) = R (AσfB −AσgB)

= R (AσfB)−R (AσgB)

≥ RAσfRB − sec2α (RAσgRB)

= RAσfRB −RAσgRB +
(
1− sec2α

)
(RAσgRB)

= Df,g (RA|RB) +
(
1− sec2α

)
(RAσgRB) ,

where we have used (1.3) to obtain the first inequality in these computations. Noting
(1.3), we also have

R (Df,g (A|B)) = R (AσfB − AσgB)

= R (AσfB)−R (AσgB)

≤ sec2α (RAσfRB)− (RAσgRB)

= RAσfRB −RAσgRB +
(
sec2α− 1

)
(RAσfRB)

= Df,g (RA|RB) +
(
sec2α− 1

)
(RAσfRB) ,

which completes the proof. �

We give an example for Theorem 3.2. If we take f(x) := xt−1
t

+ 1, (0 < t ≤ 1)
and g(x) := 1 in Theorem 3.2, then we have

Dt(RA|RB)+(1−sec2 α)RA ≤ R (Dt(A|B)) ≤ sec2 αDt(RA|RB)+(sec2 α−1)RA.

Since it is known the relation Dt(RA|RB) ≤ R (Dt(A|B)) for accretive matrices
A,B and 0 < t < 1 in [40], the lower bound of R (Dt(A|B)) in the inequalities above
does not give a refined bound. However, we obtain the upper bound of R (Dt(A|B)).
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Finally, we have the following double inequality, which bounds Df,g(A|B) between
certain differences between the harmonic mean !t and the arithmetic mean ∇t.

Theorem 3.3. Let A,B ∈ Πα
n and f, g ∈ m be such that f ′(1) = g′(1) = t.

Then

cos2αR (A!tB)− sec2αR (A∇tB) ≤ R (Df,g (A|B))

≤ sec2αR (A∇tB)− cos2αR (A!tB).

Proof. Noting Lemma 1.7, we have

R (Df,g (A|B)) = R (AσfB)−R (AσgB)

≤ sec2αR (A∇tB)− cos2αR (A!tB) ,

and
R (Df,g (A|B)) = R (AσfB)− R (AσgB)

≥ cos2αR (A!tB)− sec2αR (A∇tB) .

This completes the proof. �

Taking f(x) := (1− t) + tx and g(x) := {(1− t) + tx−1}−1 in Theorem 3.3, then
we obtain cos2 αR (A!tB) ≤ R (A∇tB) which is a special case of the inequality in
Lemma 1.7. If we take f(x) := {(1− t)+ tx−1}−1 and g(x) := (1− t)+ tx in Theorem
3.3, then we obtain the same inequality. If we take f(x) := (1− t)+ tx and g(x) := xt

in Theorem 3.3, then we obtain

(1−sec2 α)R (A∇tB) + cos2 αR (A!tB) ≤ R (A♯tB)

≤ (1 + sec2 α)R (A∇tB)− cos2 αR(A!tB).

If we take f(x) := xt and g(x) := {(1− t) + tx−1}−1 in Theorem 3.3, then we obtain

(1 + sec2 α)R (A!tB)− sec2 αR (A∇tB) ≤ R (A♯tB)

≤ sec2 αR (A∇tB) + (1−cos2 α)R(A!tB).

However, we find from the inequality cos2 αR (A!tB) ≤ R (A∇tB) that both inequal-
ities above do not improve the known inequality [46]:

cos2 αR (A!tB) ≤ R (A♯tB) ≤ sec2 αR (A∇tB) .

Finally, we give bounds of the weighted logarithmic mean for sectorial matrices A,B
using Theorem 3.3. To this end, we review the representing function of the weighted
logarithmic mean [38] given by

ℓt(x) :=
1− t

t

xt − 1

log x
+

t

1− t

x− xt

log x
, (x > 0, 0 < t < 1).

For A,B > 0 and 0 < t < 1, the operator version of the weighted logarithmic mean
can be defined as

AℓtB :=
1− t

t

ˆ t

0

A♯pB dp+
t

1− t

ˆ 1

t

A♯pB dp.

Then we have the following corollary.

Corollary 3.1. Let A,B ∈ Πα
n. Then

cos2 αR (A!tB) +R (A♯tB)− sec2αR (A∇tB) ≤ R (AℓtB)

≤ sec2 αR (A∇tB) +R (A♯tB)− cos2 αR (A!tB) .
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Proof. We show dℓt(x)
dx

∣∣∣
x→1

= t. By elementary calculations, we have

d

dx

(
xt − 1

log x

)
=

1− xt + xt log xt

x(log x)2
,

d

dx

(
x− xt

log x

)
=

xt − x+ x log x− xt log xt

x(log x)2
.

Applying L’Hopital’s rule, we have

lim
x→1

1− xt + xt log xt

x(log x)2
= lim

x→1

txt−1 log xt

2 log x+ (log x)2
= lim

x→1

t2xt−1 − t(1− t)xt−1 log xt

2 + 2 log x
=

t2

2
.

Since we have similarly

lim
x→1

xt − x+ x log x− xt log xt

x(log x)2
=

1− t2

2
,

we have
ℓt(x)

dx

∣∣∣∣
x→1

=
1− t

t
× t2

2
+

t

1− t
× 1− t2

2
= t.

We also show ℓt(x) ∈ m. It is trivial limx→1 ℓt(x) = 1. We take a spectral decom-
position of the bounded linear operator A ≥ 0 as A =

´

∞

0
λ dEλ. For a continuous

function f : (0,∞) → (0,∞), we have f(A) =
´

∞

0
f(λ) dEλ by a standard functional

calculus. From Fubini’s theorem with f1(x) := xt
−1

logx
=
´ t

0
xp dp, we have for any

vector u ∈ H

〈f1(A)u, u〉 =
〈
ˆ

∞

0

f1(λ) dEλu, u

〉
=

〈
ˆ

∞

0

ˆ t

0

λp dp dEλu, u

〉

=

〈
ˆ t

0

ˆ

∞

0

λp dEλ dpu, u

〉
=

ˆ t

0

〈Apu, u〉 dp.

From 0 < t < 1, we have 0 < p < 1. Then we have 0 ≤ A ≤ B =⇒ f1(A) ≤ f1(B).

Similarly we have 0 ≤ A ≤ B =⇒ f2(A) ≤ f2(B) for the function f2(x) :=
x−xt

log x
=

´ 1

t
xp dp. Therefore f(x) = 1−t

t
f1(x) +

t
1−t

f2(x) ∈ m for 0 < t < 1. Thus we can

apply Theorem 3.3 with f(x) := ℓt(x) and g(x) := xt and then we obtain the desired
inequalities. �

To our knowledge, the bounds for the weighted logarithmic mean for the positive
matrices case and/or scalar case have not been known yet; see [17, 19] for example.

As we have seen, Theorem 3.2 and Theorem 3.3 give some interesting bounds
using appropriate functions easily, although their estimations are not so sharp. We
gave there the general forms for general functions.
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