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Equality of different definitions of conformal
dimension for quasiself-similar and CLP spaces

Sylvester Eriksson-Bique

Abstract. We prove that for a quasiself-similar and arcwise connected compact metric space
all three known versions of the conformal dimension coincide: the conformal Hausdorff dimension,
conformal Assouad dimension and Ahlfors regular conformal dimension. This answers a question
posed by Murugan. Quasisimilar spaces include all approximately self-similar spaces. As an ex-
ample, the standard Sierpiński carpet is quasiself-similar and thus the three notions of conformal
dimension coincide for it.

We also give the equality of the three dimensions for combinatorially p-Loewner (CLP) spaces.
Both proofs involve using a new notion of combinatorial modulus, which lies between two notions
of modulus that have appeared in the literature. The first of these is the modulus studied by
Pansu and Tyson, which uses a Carathéodory construction. The second is the one used by Keith
and Laakso (and later modified and used by Bourdon, Kleiner, Carrasco-Piaggio, Murugan and
Shanmugalingam). By combining these approaches, we gain the flexibility of giving upper bounds
for the new modulus from the Pansu–Tyson approach, and the ability of getting lower bounds using
the Keith–Laakso approach. Additionally the new modulus can be iterated in self-similar spaces,
which is a crucial, and novel, step in our argument.

Konformisen Hausdorffin ulottuvuuden eri määritelmien
yhtäsuuruus kvasi-itsesimilaarisille ja CLP-avaruuksille

Tiivistelmä. Osoitamme, että kvasi-itsesimilaarisilla ja polkuyhtenäisillä kompakteilla met-
risillä avaruuksille kaikki kolme tunnettua konformisen ulottuvuuden määritelmää ovat yhteneviä:
konforminen Hausdorffin dimensio, konforminen Assouadin dimensio ja Ahlforsin-säännöllinen kon-
forminen ulottuvuus. Tämä vastaa Muruganin esittämään avoimeen kysymykseen. Kvasi-itsesimi-
laariset avaruudet ovat approksimatiivisesti itsesimilaaristen avaruuksien yleistys. Tuloksiemme seu-
rauksena esimerkiksi Sierpińskin matolla kaikki konformisen ulottuvuuden määritelmät antavat sa-
man arvon.

Tarkastelemme myös avaruuksia, jotka toteuttavat p-kombinatorisen Loewnerin ehdon (CLP).
Osoitamme, että näilläkin avaruuksilla eri konformisen ulottuvuuden määritelmät antavat saman
arvon. Todistuksissa hyödynnämme uutta kombinatorisen moduluksen määritelmää, joka saadaan
yhdistelemällä yhtäältä Pansun ja Tysonin ja toisaalta Keithin ja Laakson moduluksien määritel-
miä. Tämä synteesi omaa molempien määritelmien hyviä puolia: saamme Pansun ja Tysonin lähes-
tymistavalla modulukselle ylärajoja, ja Keithin ja Laakson lähestymistavasta alarajoja. Olennaista
todistuksellemme on myös, että uutta modulusta voi iteroida algoritmisesti.
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1. Introduction

In this paper we study the equivalence of three different versions of the definition
of the conformal dimension. First, recall the definition of a quasisymmetry.

Definition 1.1. We say that a homeomorphic map f : X → Y is a quasisym-
metry, if there exists a homeomorphism η : [0,∞)→ [0,∞) so that for all x, y, z ∈ X
with x 6= z, we have

(1.2)
d(f(x), f(y))

d(f(x), f(z))
≤ η

(
d(x, y)

d(x, z)

)
.

We write X ∼q.s. Y , if there exists a quasisymmetry f : X → Y . We say that f is an
η-quasisymmetry, if it satisfies (1.2) with this specific function η.

We consider the effect of quasisymmetries on the a) Hausdorff dimension, b)
Assouad dimension and c) Ahlfors-regularity of the space. We briefly recall the
definitions of these. If s ∈ [0,∞), we define the Hausdorff s-content (at scale δ ∈
(0,∞]) of A ⊂ X as

(1.3) Hs
δ(A) = inf

{∑
i∈N

diam(Ai)
s : A ⊂

⋃
i∈N

Ai, diam(Ai) ≤ δ

}
.

For future reference, also define Hausdorff measure by

Hs(A) := lim
δ→0
Hs
δ(A).

The Hausdorff dimension of X can be defined as

dimH(X) = inf{s > 0: Hs
∞(X) = 0}.

Hausdorff dimension is not stable when sequences of spaces “converge” (e.g. in the
Gromov–Hausdorff sense), and this is one reason to introduce Assouad dimension. If
A ⊂ X is a subset, let

(1.4) N(A, r) = inf {N : ∃x1, . . . , xN , A ⊂
⋃
B(xi, r)} .

Define the Assouad dimension in terms of the scale-invariant asymptotic behaviour
of this quantity.

dimA(X) = inf{s > 0: ∃C > 0,∀R > r > 0,∀z ∈ X, N(B(z,R), r) ≤ CRsr−s}.

Finally, a special setting, where dimA(X) = dimH(X) is when X is Ahlfors
regular for some Q > 0. We say that X is Q-Ahlfors regular, if there exists a Radon
measure µ on X and some constant C ≥ 1, with

C−1rQ ≤ µ(B(z, r)) ≤ CrQ.

for every z ∈ X and r ∈ (0, diam(X)). In this case, Q = dimA(X) = dimH(X).
Even if the space is not Ahlfors regular, we always have the inequality dimH(X) ≤
dimA(X), where the inequality may be strict. Further, while not every space is Q-
Ahlfors regular, spaces often can be deformed into such. A more detailed discussion
on this and the three notions of dimension, as well as conformal dimension in general,
is given in [18, Chapter 2].

An example of a quasisymmetric map is the identity map (X, d) → (X, dθ), for
θ ∈ (0, 1). Such a map increases all of the three notions of dimension. It is consider-
ably harder to decrease dimension, and one is led to defining three quasisymmetric
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invariants.

Conformal Hausdorff dimension dimCH(X) = inf{dimH(Y ) : X ∼q.s. Y }
Conformal Assouad dimension dimCA(X) = inf{dimA(Y ) : X ∼q.s. Y }

Ahlfors regular conformal dimension dimCAR(X) = inf{Q = dimH(Y ) : X ∼q.s. Y,
Y is Q-Ahlfors regular}.

The first of these was defined in [21], while the final one was used in [6]. The Assouad
variant appeared already in [15].

In general, dimCH(X) ≤ dimCA(X) ≤ dimCAR(X). For uniformly perfect spaces
dimCAR(X) = dimCA(X), see [18, Proposition 2.2.6.] and [12, Chapters 14 and 15].
The relationship between dimCH(X) and dimCA(X) has so far not been studied in
detail, beyond giving simple examples such as the following, when they are not equal.

Example 1.5. Let X = Z × R. The conformal Assouad dimension can only
drop under blowing the space down, and thus dimCA(X) ≥ dimCA(R2) = 2. The
latter follows since the topological dimension of the plane is 2, and the Hausdorff
dimension is always greater than the topological dimension. However, dimCH(X) =
dimH(X) = 1.

If we set X = Z × R ∪ R × Z, we can even make X connected without altering
the previous argument. It is possible to make the space compact and connected as
well: Let X = ({ 1

n
: n ∈ N} ∪ {0})× [0, 1] ∪ [0, 1]× ({ 1

n
: n ∈ N} ∪ {0}). In this case,

a blow-up of the space is R2.

Assouad dimension involves a scale-invariant quantitative condition, while Haus-
dorff dimension is merely a qualitative statement on the dimension of the space.
Further, as the previous example indicates dimCA(X) has stability properties under
limits, while dimCH(X) does not. This means, that one may only hope for their
equality in the case where one assumes some form of self-similarity. Consequently
Mathav Murugan asked if the different definitions of conformal dimension agree for
self-similar spaces [19]. This question is quite natural, since many well-studied ex-
amples have self-similarity: iterated functions systems of finite type [20], Julia sets of
rational maps equipped with a visual metric [4] and boundaries of Gromov-hyperbolic
groups equipped with a visual metric [16].

Our main theorem answers this natural question in the affirmative. The notion of
quasiself-similarity is given in Definition 2.4, and (to our knowledge) was introduced
in [7].

Theorem 1.6. Let X be a compact quasiself-similar metric space, which is
connected and locally connected. Then,

dimCH(X) = dimCA(X) = dimCAR(X).

As stated, the equality dimCA(X) = dimCAR(X) for uniformly perfect spaces was
already known, and follows directly from [18, Proposition 2.2.6]. Our contribution
is to prove dimCH(X) = dimCA(X). Indeed, this equality has many further conse-
quences. One may define a zoo of other conformal dimensions, such as: conformal
upper and lower Minkowski dimension, conformal packing dimension,. . . Since these
dimensions lie between the Hausdorff dimension and the Assouad dimension, one gets
equality for the corresponding notions of conformal dimension as well. Indeed, our
results here clarify a central point of ambiguity in much of the literature on conformal
dimension, where the equality of the different notions is not addressed, but rather
avoided and bypassed.
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The only other result, which states equality of dimCH(X) with dimCAR(X) =
dimCA(X) is that of [24, Theorem 3.4] and [21, Proposition 2.9.], which apply when
X is Q-Ahlfors regular and possesses a curve family with positive continuous Q-
modulus. We will discuss this further below. We are not aware of any other instances,
where equality of all notions has been shown.

A concrete corollary of Theorem 1.6 is the following new result. The n-dimensional
Sierpiǹski sponge Mn is obtained by iteratively subdividing the side of an n-dimen-
sional cube by three, and removing the central cube.

Corollary 1.7. Let n ≥ 2. If Mn is an n-dimensional Sierpsiǹski sponge, then

dimCH(Mn) = dimCA(Mn) = dimCAR(Mn).

We will also give a result for non-self-similar spaces, where self-similarity is re-
placed with the combinatorial Loewner property (CLP) from [5, 9]; see Section 4 for
a definition. It is worth noting, that this assumption usually is verified in the self-
similar setting, and thus is not so much more general than Theorem 1.6. We present
this here, since the argument for it is a bit simpler than for the general self-similar
case. Further, it is worth to record a proof for this result here, since the developed
tools may be useful in tackling the question of Kleiner, which asks if self-similar
combinatorially Loewner spaces are quasisymmetric to Loewner spaces; see [16] for
further background and the question.

Theorem 1.8. Let p ∈ (1,∞). Let X be a compact, doubling and LLC space,
which is p-combinatorially Loewner metric space. We have

dimCH(X) = dimCA(X) = dimCAR(X) = p.

We note that Corollary 1.7 would also follow from this result, since Sierpiǹski
sponges are p-combinatorially Lowener spaces; see the proofs in [5]. In the course
of the proof of Theorem 1.8 we will present some stronger results for CLP spaces in
Section 4. In fact, while the statement dimCH(X) = p is qualitative, we will give a
quantitative statement, Proposition 4.9, which gives a lower bound for the Hausdorff
measure of the images of balls under quasisymmetries. This inequality may be useful
in other settings as well, and is a generalization of an inequality which appeared in
the work of Heinonen and Koskela [13, Theorem 3.6]. We next describe the main
idea of the proof.

The key tool in a majority of the research on conformal dimension is a notion
of modulus—in particular discretized versions of moduli of path families. These
generalize the notion of continuous modulus (later, often, modulus), see e.g. [11,
12, 14] for background. Our proof is also based on defining a new type of discrete
modulus—or rather, discrete admissibility—and relating it to conformal Hausdorff
dimension. At this point, there are several variants of discrete modulus, each with
its own setting and application see e.g. [21, 24, 15, 8, 23, 19, 17, 1]. (There are also
other notions, such as trans-boundary modulus, see e.g. [22, 3], but these are not
relevant for our discussion here.) We will not discuss all these moduli here, but will
focus on those which motivate our approach.

The motivation for our argument and notion of modulus comes from a result
of Pansu [21, Proposition 2.9.], whose dual formulation1 was given by Tyson in
[24, Theorem 3.4]. Tyson shows that if X is a Q-Ahlfors regular metric measure

1As a side note, we remark that Pansu considers measures on families of curves, while Tyson
uses the notion of curve modulus in [24]. These two notions are roughly dual to each other, see e.g.
[2, 10] for more precise statements.



Equality of different definitions of conformal dimension for quasiself-similar and CLP spaces 409

space, and if it possesses a family of curves Γ with positive continuous modulus,
then dimCH(X) = Q. The proof of Tyson uses the discrete Q-modulus as introduced
by Pansu in [21]. To be very brief, this modulus is defined using a Carathèodory
construction and involves discrete sums. One shows, both in [21] and [24], that the
discrete Q-modulus is bounded from below by the continuous Q-modulus. Further,
the discrete modulus, up to a variation of parameters, is invariant under quasisym-
metries. The final nail in the coffin of the proof is that if dimH(Y ) < Q, then the
discrete Q-modulus vanishes on Y . Consequently, a family of curves with positive
continuous Q-modulus obstructs lowering the dimension of X by a quasisymmetry
below Q.

The previous proof relies heavily on the fact that we can use the notion of con-
tinuous modulus to give a lower bound for discrete modulus. In many settings, such
as the Sierpiński sponges mentioned above, the continuous moduli of all curves van-
ishes. Thus, we lack this lower bound, and we need to find a way around this by
giving a lower bound using a different quantity. In the quasiself-similar setting, and
in the combinatorially Loewner setting, we can obtain this lower bound by slightly
different mechanisms—and by employing a different modulus.

In the work [15, 8, 19], the inability to lower the dimension can be converted to
a lower bound on some moduli—see Theorem 3.5 for a precise statement. Thus, one
can use their result to obtain a lower bound for a different discrete modulus, which
we call the Keith–Laakso modulus and which is defined in Subsection 3.1. In the case
of combinatorially Loewner spaces, the setting is a bit simpler and the lower bound is
obtained directly by the assumption that the space is combinatorially Loewner [5, 9]:
see Definition 4.1.

At this juncture, we have two moduli: the Keith–Laakso modulus and that of
Pansu and Tyson. For the first we can obtain lower bounds. For the second, one can
show upper bounds. Indeed, for Pansu and Tyson, the notion of discrete modulus
is such that it is very easy to prove that if dimH(Y ) < Q, the discrete modulus
vanishes. In the absence of Q-Ahlfors regularity, it is harder to give lower bounds for
the modulus of Pansu and Tyson. On the other hand, for the Keith–Laakso modulus,
one lacks the ability to give good upper bounds and thus to directly say that the
discrete modulus vanishes if one has Hausdorff dimension lower than Q.

The reason for this inability is the following technical, but crucial, point. The defi-
nition of Keith–Laakso modulus can be summarized as assigning a value ModKLp (Γ,U)
for a specific curve family Γ and a cover U of X, which [5] calls a κ-approximation
at some level r. The key feature of their κ-approximations is that all sets in U have
roughly the same size. (See Subsection 2.4 for details.) This is also a key differ-
ence with the work in [21, 24], since there the Carathéodory construction involves
arbitrary covers.

Similarly, Assouad dimension involves covering the space by balls of the same
size, whereas Hausdorff dimension involves coverings by sets of various sizes. To
give estimates for Hausdorff dimension, we need to allow arbitrary covers in the
definition of discrete modulus. We bridge this gap, by introducing a new notion of
modulus Modp(Γ,U) which lies between those of Pansu and Tyson in [21, 24] and
Keith, Laakso and others in [15, 8, 19]. First, we get more flexibility by allowing
arbitrary covers U that consist of balls (or, in general, sufficiently round sets). This
forces us to introduce a new admissibility condition, to address several key technical
issues. Similar to Pansu’s discrete modulus, we can show that if dimH(Y ) < Q, then
this modulus is very small for a given cover. Further, in the self-similar and CLP
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space settings, we can relate the Keith–Laakso modulus and the new modulus to
each other.

For combinatorially Loewner spaces, the story is easier to finish. One can bound
Modp(Γ,U) from below using the Keith–Laakso modulus, which in term has a lower
bound from the combinatorial Loewner assumption. This estimate is given in Propo-
sition 4.4. This gives a contradiction to the previous paragraph’s conclusion of
Modp(Γ,U) being small. In fact, this argument is somewhat easier to discover, and
it served as a starting point for this paper and project. For this reason we also
include the argument in this paper. Quickly, however, the author realized that a
more technical version of the argument could be applied for general quasiself-similar
spaces.

For quasiself-similar spaces the argument is a bit different. Instead of directly
using a lower bound, we use the fact that the ability to lower dimension gives an
upper bound. Indeed, if there is a quasisymmetric map f : X → Y and if Y has
small Hausdorff measure, then we obtain a quantitative statement on moduli of
annuli, see Lemma 5.2 and Proposition 5.23. Our quantitative statement can be
converted algorithmically by using iteration to a statement on the smallness of the
Keith–Laakso modulus. This allows us to prove the equality dimCA(X) = dimCH(X)
for quasiself-similar spaces by using the result of Carrasco-Paggio, which we state
below in Theorem 3.5. The iteration is algorithmic, but quite technical. The basic
step of the iteration involves ideas from the proof of the result for CLP spaces. We
will describe it in more detail in Subsection 5.2.

1.1. Outline. We will present some general terminology in Section 2. Then, in
Section 3 we introduce the different notions of discrete modulus needed in this paper,
and present some known results on their relationships with the conformal dimension.
For technical reasons, we will use mostly a variant of this modulus, the Bourdon–
Kleiner modulus defined in [5], instead of the Keith–Laakso modulus. However, we
will relate the two moduli to each other. In Subsection 3.4, we give the new modulus
that is key to the approach of this paper. In Section 4 we focus on CLP spaces.
There, we prove Theorem 1.8, which is the equality of the definitions of conformal
dimension for CLP spaces. In the process, we give some useful stronger results on
discrete moduli, and precise quantitative estimates, which hold for CLP spaces. In
Section 5 we focus on quasiself-similar spaces. There, we study moduli of annuli, and
give a push-down algorithm to adjust the scale of covers. This is then used to give a
relationship between the two moduli used. Finally, in Subsection 5.4 we collect the
pieces and complete the proof of Theorem 1.6.

2. Notation and basic properties

2.1. Basic terminology. A compact metric space X is equipped with a metric
denoted by d, and open balls within it are B(z, r) := {w ∈ X : d(z, w) < r} for
z ∈ X, r > 0. An inflation of a ball B = B(z, r) is denoted CB := B(z, Cr)
for C > 0. Note that we consider each ball as having an associated center and
radius—and it may happen that a different center and radius defines the same set.
The radius of a ball is denoted rad(B). Diameters of sets A ⊂ X will be denoted
diam(A) = supa,b∈A d(a, b). A curve is a continuous map γ : I → X, where X is a
non-empty compact interval in R. We often conflate γ and it’s image set Image(γ).
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Recall the definition of N(A, r) from (1.4). We say that a metric space X is
metrically doubling, if there exists a constant D ≥ 1, so that N(B(z, r), r/2) ≤ D
for every z ∈ X and r > 0.

We will need some connectivity properties. A space X is called locally connected,
if it has a neighborhood basis consising of connected open sets. A metric space is LLC,
if for every x, y ∈ X, there exists a curve γ with x, y ∈ γ and diam(γ) ≤ Cd(x, y).

We will consider collections of balls, which are often denoted by a script letter
B. For these, we define unions by setting

⋃
B :=

⋃
B∈B B, inflations by setting

CB := {CB : B ∈ B} and radii rad(B) = supB∈B rad(B). If A is any finite set, we
denote by |A| its cardinality.

2.2. Relative distance and quasisymmetries. We need some standard
results on quasisymmetries, which we prove here simply for the sake of completeness.
See [12] for a general introduction, and in particular Poposition 10.6. therein for the
following.

Lemma 2.1. If f : X → Y is an η-quasisymmetry, then f−1 is a η̃-quasisymmetry
with η̃(t) = (η−1(t−1))

−1.

We note the convention that the value of η̃ at zero is given by η̃(0) = 0.

Proof of Lemma 2.1. Let x, y, z ∈ Y and let x′, y′, z′ ∈ X be such that f(x′) =
x, f(y′) = y, f(z′) = z. Since f is an η-quasisymmetry, we have

d(f(x′), f(z′))

d(f(x′), f(y′))
≤ η

(
d(x′, z′)

d(x′, y′)

)
.

Taking reciprocals and an inverse function, we get

d(x, y)

d(x, z)
≤

(
η−1

((
d(f(x′), f(y′))

d(f(x′), f(z′))

)−1
))−1

.

Replacing f(x′), f(y′), f(z′) with x, y, z and x′, y′, z′ with f−1(x), f−1(y), f−1(z) yields
that f−1 is an η̃-quasisymmetry. �

Let X be a complete metric space. A continuum E ⊂ X is a compact connected
set. A continuum is non-degenerate, if it contains more than one point. We define
the relative distance between two non-degenerate continua E,F as

∆(E,F ) :=
d(E,F )

min{diam(E), diam(F )}
.

The following Lemma is also standard, see [12, proof of Proposition 10.8].

Lemma 2.2. Let f : X → Y be an η-quasisymmetry and let E,F be two non-
degenerate disjoint continua in X. Then,

1

2η(∆(E,F )−1)
≤ ∆(f(E), f(F )) ≤ η(2∆(E,F )).

Proof. Assume by symmetry that diam(E) ≤ diam(F ). Let x ∈ E and y ∈ F
be such that d(E,F ) = d(x, y). Choose u ∈ E, v ∈ F so that d(x, u), d(y, v) ≥
diam(E)/2. This is possible by connectivity. Then, we have

d(x, y)

d(x, u)
≤ 2∆(E,F ) and

d(y, x)

d(y, v)
≤ 2∆(E,F ).
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Let x′ := f(x), y′ = f(y), u′ = f(u), v′ = f(v) be the image points in Y . We
have, since η is increasing and since f is an η-quasisymmetry:

d(f(E), f(F )) ≤ d(x′, y′) ≤ η

(
d(x, y)

d(x, u)

)
d(x′, u′) ≤ η (2∆(E,F )) diam(f(E)).

Similarly,

d(f(E), f(F )) ≤ d(y′, x′) ≤ η

(
d(y, x)

d(y, v)

)
d(y′, v′) ≤ η (2∆(E,F )) diam(f(F )).

The previous two inequalities combine to gives the inequality:

∆(f(E), f(F )) =
d(f(E), f(F ))

min{diam(f(E)), diam(f(F ))}
≤ η (2∆(E,F )) .

Applying this to the inverse f−1, which by Lemma 2.1 is an η̃-quasisymmetric map,
yields the other inequality of the claim. �

The following lemma will also prove useful on a few occasions. Note that the
additional assumption on the existence on y ∈ B(x, r) is automatically satisfied if X
is connected and r < diam(X).

Lemma 2.3. Let f : X → Y be a quasisymmetric map and let B(x, r) be a ball
in X for which there exists a y ∈ B(x, r) with d(x, y) ≥ r/2. Then, for every L ≥ 1,
we have

f(B(x, Lr)) ⊂ B(f(x), η(2L)d(f(x), f(y))).

Proof. Let z ∈ B(x, Lr), and apply the η-quasisymmetry to the triple of points
x, y, z. This gives

d(f(x), f(z))

d(f(x), f(y))
≤ η

(
d(x, z)

d(x, y)

)
≤ η(2L).

Consequently, we get the claim from

d(f(x), f(z)) ≤ η(2L)d(f(x), f(y)).

�

2.3. Quasiself-similarity. We define a notion of quasiself-similarity. This is
motivated by the notion of approximate self-similarity discussed in [5].

Definition 2.4. We say that a compact space X is quasiself-similar, if there
exists a homeomorphism η : [0,∞) → [0,∞) and a constant δ > 0 so that for
B(x, r) ⊂ X there is a η-quasisymmetry f : B(x, r) → Ux,r where Ux,r ⊂ X is
an open set with diam(Ux,r) ≥ δ diam(X). We also say that X is η-quasiself-similar,
if this property holds for a given function η.

The principal advantage of defining quasiself-similar spaces is that they are more
general than approximately self-similar spaces. Further, quasiself-similarity is an
invariant under quasisymmetries: if X is quasiself-similar and Y ∼q.s. X, then Y is
also quasiself-similar. The same fails for approximate self-similarity.

Quasiself-similar spaces are quite general. They include attractors of iterated
functions systems of finite type [20], Julia sets of rational maps equipped with a
visual metric [4] and boundaries of Gromov-hyperbolic groups equipped with a visual
metric [16].

We recall the following result [7, Proposition 2.9.].

Lemma 2.5. If X is a compact quasiself-similar space, which is connected and
locally connected, then X is LLC.
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2.4. κ-approximations. We introduce some terminology on approximations.
Throughout this paper, U and V will denote finite collections of open sets.

Definition 2.6. Let κ ≥ 1. A finite collection of open sets U of a metric space
X is called a κ-round collection, if for every U ∈ U there exists a zU so that

B(zU , κ
−1rU) ⊂ U ⊂ B(zU , rU),

where rU = sup{d(zU , x) : x ∈ U} > 0. If further there is some r > 0, so that rU = r
for every U ∈ U , we call U a κ-round collection at level r.

From here on out, if U is any open set and zU ∈ U has been fixed, we define
rU := sup{d(zU , x) : x ∈ U}.

Definition 2.7. Let κ ≥ 1. A κ-round collection of open sets U of a metric
space X is called a κ-locally bounded collection, if there exist zU ∈ U for every U ∈ U
for which Definition 2.6 holds and for which moreover the following two properties
hold.

(1) The balls {B(zU , κ
−1rU), U ∈ U} are pairwise disjoint.

(2) For every L ≥ 1, there exists a constant κL so that ifB(zU , LrU)∩B(zV , LrV ) 6=
∅, then rU ≤ κLrV .

If U also covers X, then we call it a κ-approximation. If further there is some
r > 0, so that rU = r for every U ∈ U , we call U a κ-approximation at level r.

Let rad(U) = sup{rU : U ∈ U}. A standard way to obtain a κ-approximation is
the following. Let r > 0. A set N ⊂ X is called r-separated if for all x, y ∈ X we
have d(x, y) ≥ r. A maximal r-separated set is called an r-net. Given any r-net N
in a connected space X, with r ∈ (0, diam(X)/2), it is straightforward to show that
the collection U = {B(x, 2r) : x ∈ N} is a κ-approximation at level 2r with rU = 2r
and zU = x for every U = B(x, 2r) ∈ U , and κ = 2, κL = 1 for all L ≥ 1.

We note that we have made some adjustments in the notation and terminology
to bridge small differences in the literature, and in order to connect more directly to
our work. The following remark explains some of these choices and how the other
definitions/concepts can be expressed in our framework.

Remark 2.8. We briefly explain the relationships between different definitions
used in [15, 8, 19, 23] and [5]. In the first four of these, one takes α ≥ 2 and considers
a sequence Nk of α−k nets and a parameter λ > 1, and defines graphs Gn whose
vertex set is Nk, and with edges v, w if B(v, λ2−k)∩B(w, λ2−k) 6= ∅. In our case, this
would correspond to the κ-approximation given by U = {B(v, λ2−k)}, and setting
κ = 2λ. Doing so, the incidence graph associated to U is isomorphic to that of Gn.
This isomorphism is relevant in Section 3, since we will define discrete moduli using
incidences of sets in U , while in [15, 8, 19, 23] the moduli are defined in the graphs
Gn. Since these two graphs are isomorphic, the relevant notions of moduli coincide.

On the other hand, compared to [5] we use a slightly more general framework of
arbitrary κ-approximations. This is because we wish to ensure the quasisymmetry
invariance of our definitions. In [5], one only uses κ-approximations at a given level
r (and defines them slightly differently).

Let V be a κ-round collection in X, and let f : X → Y be a quasisymmetry. Then
define the image collection f(V) := {f(V ) : V ∈ V}. We then have the following.
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Lemma 2.9. Let V be a κ-round collection in a space X and if f : X → Y is an
η-quasisymmetric map, then f(V) is a κ′-round collection with κ′ = 2η(κ). Moreover,
if V is a κ-approximation, then f(V) is a κ′-approximation with κ′ = 2η(κ).

Proof. For every V ∈ V let zV ∈ V, rV > 0 be the center and radius specified in
Definition 2.6. Define zf(V ) = f(zV ) and rf(V ) = sup{d(y, f(zV )) : y ∈ f(V )}.

Suppose first that V is κ-round and let κ′ = 2η(κ). We will show that V is
κ′-round, that is, we prove

(2.10) B(zf(V ), κ
′−1rf(V )) ⊂ f(V ) ⊂ B(zf(V ), rf(V )).

The second of these inclusions follows from the definition of rf(V ). Now, let y ∈
B(zf(V ), κ

′−1rf(V )), and let b ∈ X be such that f(b) = y. By the definition of rf(V )

as a supremum, we can choose a point w ∈ f(V ) so that d(w, zf(V )) ≥ 2−1rf(V ). Let
c ∈ V be such that f(c) = w. Since f is a quasisymmetry, we get

κ′/2 =
2−1rf(V )

κ′−1rf(V )

≤
d(zf(V ), w)

d(zf(V ), y)
≤ η

(
d(zV , c)

d(zV , b)

)
.

Thus,
d(zV , b) ≤ d(zV , c)η

−1(κ′/2)−1 ≤ rV κ
−1.

Therefore b ∈ B(zV , rV κ
−1) ⊂ V and y ∈ f(V ). This yields the first of the inclusions

in (2.10). Thus, f(V) is κ′-round.
Let us know assume further that V is a κ-approximation. Indeed, it is κ-locally

bounded and covers X. Clearly f(V) covers Y . Thus, it suffices to prove that f(V)
is κ′-locally bounded.

The proof above showed in fact that

(2.11) B(zf(V ), κ
′−1rf(V )) ⊂ f(B(zV , κ

−1rf(V ))).

Thus, the balls {B(zf(V ), κ
′−1rf(V )) : V ∈ V} are pairwise disjoint. Therefore, we are

left to show that for every L ≥ 1 there exists a κ′L so that if

B(zf(V ), Lrf(V )) ∩B(zf(U), Lrf(U)) 6= ∅

for some U, V ∈ V , then rf(U) ≤ κ′Lrf(V ). This is obtained by first finding an L′ ≥ 1
so that B(zV , L

′rV )∩B(zU , LrU) 6= ∅, which yields an estimate for d(zU , zV ) in terms
of rV , and then using the quasisymmetry to translate this into a bound for rf(U) in
terms of rf(V ).

Let w ∈ B(zf(V ), Lrf(V )) ∩ B(zf(U), Lrf(U)) and let u ∈ B(zf(U), rf(U)), v ∈
B(zf(V ), rf(V )) be points with d(u, zf(U)) ≥ rf(U)/2 and d(v, zf(V )) ≥ rf(V )/2. The
points u, v exist by the definitions of rf(U), rf(V ). Let a ∈ X, bU ∈ U , bV ∈ V points
so that f(a) = w, f(bU) = u, f(bV ) = v.

By Lemma 2.1, the map f−1 is a η̃-quasisymmetry, with η̃(t) = (η−1(t−1))
−1. By

the quasisymmetry condition applied to the three points bU , a, zU , we have

d(w, zU) ≤ η̃

(
d(w, zf(U))

d(u, zf(U))

)
d(zU , bU) ≤ η̃(2L)rU .

Thus, a ∈ B(zU , η̃(2L)rU). Similarly, we get a ∈ B(zV , η̃(2L)rV ). Consequently

(2.12) a ∈ B(zU , η̃(2L)rU) ∩B(zV , η̃(2L)rV ).

Therefore, since U is locally bounded, there exists a constant κη̃(2L) for which

(2.13) η̃(2L)−1rV ≤ rU ≤ κη̃(2L)rV .
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From (2.12) and (2.13) we get

d(zU , zV ) ≤ d(zU , a) + d(zV , a) ≤ η̃(2L)(1 + κη̃(2L))rV .

We have zU ∈ B(zV , η̃(2L)(1 + κη̃(2L))rV ). Again, by Lemma 2.3, we get that

zf(U) = f(zU) ∈ B(zf(V ), η(2η̃(2L)(1 + κη̃(2L)))rf(V )).

In particular,

(2.14) d(zf(U), zf(V )) ≤ η(2η̃(2L)(1 + κη̃(2L)))rf(V ).

We also have zV 6∈ B(zU , κ
−1rU), and thus

(2.15) d(zU , zV ) ≥ κ−1rU .

Finally, apply the η-quasisymmetry to the points zU , zV and bU and use (2.15)
to give

(2.16)
rf(U)

2d(zf(V ), zf(U))
≤

d(zf(U), u)

d(zf(V ), zf(U))
≤ η

(
d(zU , bU)

d(zU , zV )

)
≤ η

(
κrU
rU

)
≤ η(κ).

Thus, by applying (2.14) we get

rf(U) ≤ 2η(κ)η(2η̃(2L)(1 + κη̃(2L)))rf(V ).

This is the desired estimate with κ′L = 2η(κ)η(2η̃(2L)(1+κη̃(2L))) and yields the local
boundedness. �

3. Discrete moduli

3.1. Discrete modulus of a collection. We will define all the relevant discrete
moduli in this section. First, we define a discrete modulus of a collection of discrete
subsets. Let U be a κ round collection and let P be a collection of subsets of U . (In-
deed, in general U could be any finite collection of objects, but in our application, we
will restrict to such collections.) We say that ρ : U → [0,∞) is discretely admissible
for P , and write ρ ∧U P , if∑

U∈P

ρ(U) ≥ 1, for all P ∈ P .

Define the discrete modulus by

ModDp (P ,U) := inf
ρ∧UP

∑
U∈U

ρ(U)p.

The sum on the right will often also be called the p-energy of ρ.
We recall some basic properties of modulus, whose proofs are standard. For

similar arguments, see e.g. [11, Section 1]. The existence of minimizers follows di-
rectly from the fact that U must be finite, and the optimization is done in a finite
dimensional space.

Lemma 3.1. Let U be a κ-round collection of X and let p ≥ 1.
(1) Monotonicity: If P ⊂ P ′ are two collections of sets, then

ModDp (P ,U) ≤ Modp(P ′,U).

(2) Sub-additivity: If P ,P ′ are two collections of subsets, then

ModDp (P ∪ P ′,U) ≤ ModDp (P ′,U) + ModDp (P ,U).
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(3) Majorization: If P ,P ′ are two collections of subsets so that every set P ∈ P
contains a subset in P ′, then

ModDp (P ,U) ≤ ModDp (P ′,U).

(4) Existence of minimizers: If X is compact, then there exists a ρ ∧U P with

ModDp (P ,U) =
∑
U∈U

ρ(U)p.

In what follows, since these properties are so standard, we will often simply apply
these facts without explicit reference to this Lemma.

3.2. Modulus of annulus. Let B be a ball in X and L > 1. Consider a
κ-round collection U . We say that P = {U1, . . . , Un} ⊂ U is a (U , B, L)-path, if
U1 ∩B 6= ∅, Un ∩X \LB 6= ∅ and if Ui ∩Ui+1 6= ∅ for all i = 1, . . . , n− 1. Let PU ,B,L
be the collection of all (U , B, L)-paths.

Then, we define the Keith–Laakso modulus as

ModKLp,L,U(B) := ModDp (PU ,B,L,U).

This notion of modulus coincides with that of [15, 8, 19] if we use the collection U
indicated in Remark 2.8.

In [5], a slightly different form of modulus is obtained by using a more restrictive
admissibility constraint. Note that this modulus is defined for collections of curves,
while the previous one is only defined for balls (and corresponds to a family of objects
which traverse an annulus). Let Γ be a family of curves, and let PΓ = {Pγ : γ ∈ Γ},
where Pγ = {U ∈ U : U ∩ γ 6= ∅}. We define the (Bourdon–Kleiner) modulus of the
curve family as

Modp,U(Γ) = ModDp (PΓ,U).

We relate the two moduli via the following lemma. This justifies using the
Bourdon–Kleiner modulus, instead of the Keith–Laakso modulus in the context of
conformal dimension, see Theorem 3.5. Let ΓB,L be the collection of curves γ con-
necting B to X \LB. In the statement the symbol ∼ means that the two quantities
are comparable, by a constant that just depends on the quantity L and the space X.

Lemma 3.2. Suppose that X is compact, metrically doubling and LLC. Then,
for any κ-approximation U , any ball B ⊂ X and any L > 1, we have

Modp,U(ΓB,L) ∼ ModKLp,L,U(B).

Proof. We have PΓ ⊂ PU ,B,L, where Γ = ΓB,L. From the definition of the
modulus, and Lemma 3.1 it is thus direct that

Modp,U(ΓB,L) = ModDp (PΓ,U) ≤ ModDp (PU ,B,L,U)) = ModKLp,L,U(B).

For the other direction of the proof we need the assumptions of X being LLC and
metrically doubling. Let X be C-LLC and D-metrically doubling. Next, let ρ∧U PΓ

be arbitrary. We will define another ρ̃ so that ρ̃ ∧U PU ,B,L and so that

(3.3)
∑
U∈U

ρ̃(U)p ≤M
∑
U∈U

ρ(U)p

for a constant M depending on C, the local boundedness constants and D. From
these the claim of the Lemma follows by taking an infimum over all ρ ∧U PΓ. The
rest of the proof consists of defining ρ̃, showing (3.3) and proving ρ̃ ∧U PU ,B,L.
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We do a small preliminary estimate. Fix V ∈ U and any constant S ≥ 1 and let

UV,S = {U ∈ U : U ∩B(zV , (1 + 2S)rV ) 6= ∅}.

If U1, U2 ∈ UV,S are distinct, we have by local boundedness

(3.4) κ−1
1+2SrV ≤ rU1 , rU2 ≤ κ1+2SrV .

Thus, the balls B(zUi , rV κ
−1
1+2Sκ

−1) are disjoint for i = 1, 2 and are contained in
B(zV , (1 + 2S + 2κ1+2S)rV ). Thus, by metric doubling, there are at most Dm sets
contained in UV,S for any V ∈ U as long as 2m ≥ 4κκ1+2S(1 + 2S + 2κ1+2S).

We will next consider UV,C . Let L = 1+κ1+2C(1+2C). Choose k, l ∈ N with l ≤ k
and so that 4κκ1+2C(1+2C+2κ1+2C) ≤ 2l and so that 4κκ1+2L(1+2L+2κ1+2L) ≤ 2k.
By the argument after (3.4) with S = C, we have that |UV,C | ≤ Dl ≤ Dk. Let

ρ̃(V ) = Dk max{ρ(U) : U ∈ UV,C}.

For each V ∈ U choose a UV ∈ UV,C so that ρ̃(V ) = Dkρ(UV )p. Let ŨU,C = {V ∈
U : UV = U}. For every V ∈ ŨU,C , we have UV = U and thus U ∈ UV,C . Thus
B(zU , rU) ∩ B(zV , (1 + 2C)rV ) 6= ∅, and V ⊂ B(zV , rV ) ⊂ B(zU , rU + (1 + 2C)rV ).
Consequently, from using (3.4) we get V ∩ B(zU , (1 + κ1+2C(1 + 2C))rU) 6= ∅. In
particular, we have ŨU,C ⊂ UU,L. Thus, we have by the argument after (3.4) with S
replaced with L that |ŨU,C | ≤ Dk.

Let P = {U1, . . . , Un} ∈ PU ,B,L. Define a sequence of points (xi)
n+1
i=1 as follows.

Let x1 ∈ U1 ∩B, xn+1 ∈ Un ∩X \LB, and let xi ∈ Ui ∩Ui−1 for i = 2, . . . n. Since X
is C-LLC, we can find curves γi connecting xi to xi+1 with diam(γi) ≤ Cd(xi, xi+1) ≤
C diam(Ui) for i = 1, . . . , n. Let γ be the concatenation of γi. We have that γ ∈ ΓB,L.

Now, let Pγ = {U ∈ U : U ∩ γ 6= ∅}. We have∑
U∈Pγ

ρ(U) ≥ 1,

since ρ ∧U PΓ. Now, for each U ∈ Pγ we have some i = 1, . . . , n so that U ∩ γi 6= ∅.
Therefore, we have d(U,Ui) ≤ C diam(Ui) ≤ 2CrUi . Thus, U ∈ UUi,C for some i. Let
Pγ,i = UUi,C ∩ Pγ. Since |UUi,C | ≤ Dk, we get

ρ̃(Ui) ≥
∑
U∈Pγ,i

ρ(U).

Summing these, we get

1 ≤
∑
U∈Pγ

ρ(U) ≤
n∑
i=1

∑
U∈Pγ,i

ρ(U) ≤
n∑
i=1

ρ̃(Ui).

Thus, ρ̃ ∧ PU ,B,L, since P was arbitrary.
Finally, we show (3.3) for M = Dk(1+p). We have by the size bound for ŨU,C that∑

V ∈U

ρ̃(V )p ≤
∑
U∈U

∑
V ∈ŨU,C

ρ̃(V )p ≤
∑
U∈U

DkDkpρ(U)p ≤ Dk(1+p)
∑
U∈U

ρ(U)p. �

3.3. Relationship to conformal dimension. The proof of the main Theo-
rem 1.6 is based on the following Theorem of Carrasco-Piaggio. An interested reader
may see also [23] and [19] for slightly different versions and proofs of this statement.
We have used Lemma 3.2 and Remark 2.8 to reformulate the theorem using our
notion of κ-approximations and moduli.
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Theorem 3.5. [8, Theorem 1.3] Suppose that X is a compact, metrically dou-
bling LLC space, and let Uk be κ-approximations at level 2−k. Then

dimCAR(X) = inf

{
Q > 0: lim inf

m→∞
sup

z∈X,k≥0
ModQ,Um+k

(ΓB(z,2−k),2) = 0

}
.

3.4. New discrete modulus. In this subsection, we introduce a new notion
of modulus, which allows for an arbitrary κ-round collection U , which may or may
not be a κ-approximation. Indeed, formally we shall permit that the collection even
fails to be a cover. This brings the definition closer to that considered by Pansu and
Tyson in [21, 24]. We note that it may be interesting to study more carefully the
relationships between their modulus and the one presented here. However, since it
would be a side track in the present paper, we do not pursue this here.

Definition 3.6. Fix τ ≥ 4. Let U be a κ-round collections of open sets of X,
and let Γ a family of sets in X. We say that ρ : U → [0,∞) is strongly discretely
τ -admissible for Γ, and write ρ∧τ,UΓ, if for every γ ∈ Γ there exists a collection
Uγ ⊂ U with the following properties:

i) {B(zU , τrU) : U ∈ Uγ} is pairwise disjoint;
ii) U ∩ γ 6= ∅ for all U ∈ Uγ; and
iii) we have ∑

U∈Uγ

ρ(U) ≥ 1.

Define
Modp,τ (Γ,U) = inf

ρ∧τ,UΓ

∑
U∈U

ρ(U)p.

The new modulus is an upper bound for the discrete modulus defined before,
when the collections are roughly at the same level.

Proposition 3.7. Let k ∈ N. Assume that X is metrically doubling, and that
κ ≥ 1, τ ≥ 4. There exists a constant C > 0 so that the following holds for r > 0.
Suppose that U is a κ-approximation at level r and V is a κ-round collection with
κ−1r ≤ rV ≤ r for every V ∈ V . If Γ is a collection of curves in X, then

Modp,U(Γ) ≤ CModp,τ (Γ,V).

Proof. Since X is metrically doubling, and by an argument similar to that in
Lemma 3.2, there is a constant D so that each U ∈ U intersects at most D pairwise
disjoint sets in V . Similarly, for each V ∈ V there are at most D many U ∈ U with
U ∩ V 6= ∅.

Without loss of generality, assume that Modp,τ (Γ,V) < ∞. Let ρ ∧τ,V Γ be any
admissible function so that ∑

V ∈V

ρ(V )p <∞.

For each U ∈ U , define
ρ(U) = Dmax{ρ(V ) : U ∩ V 6= ∅, V ∈ V},

if there exists some V ∈ V with U ∩ V 6= ∅. If there does not exist any V ∈ V with
V ∩ U 6= ∅, set ρ(U) = 0.

For each U ∈ U , for which it is possible, choose one VU ∈ V so that U ∩ VU 6= ∅
and ρ(U) = Dρ(VU). Let UV = {U ∈ U : VU = V } for V ∈ V . We have, by the first
paragraph of the proof, that |UV | ≤ D.
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We claim that ρ ∧U PΓ. Let γ ∈ Γ be arbitrary. Let Vγ ⊂ V be the collection,
where each set intersects γ and such that the collection {B(zV , τrV ) : V ∈ Vγ} is
disjoint with ∑

V ∈Vγ

ρ(V ) ≥ 1.

Let Uγ := {U ∈ U : U ∩ γ 6= ∅}. Since U is a cover of X, for each V ∈ Vγ, we may
choose a UV ∈ U so that U ∩ (V ∩ γ) 6= ∅. For each U ∈ U , let Vγ,U = {V ∈ Vγ :
UV = U}. This means that

(3.8) Vγ ⊂
⋃
U∈Uγ

Vγ,U

We also have by the first paragraph of the proof that |Vγ,U | ≤ D for every U ∈ Uγ.
Thus, for every U ∈ Uγ, we have

(3.9) ρ(U) ≥
∑

V ∈Vγ,U

ρ(V ).

By applying (3.8) and (3.9) we get:∑
U∩γ 6=∅

ρ(U) ≥
∑
U∩γ 6=∅

∑
V ∈Vγ,U

ρ(V ) ≥
∑
V ∈Vγ

ρ(V ) ≥ 1.

Note that U =
⋃
V ∈V UV . By using this, we estimate the p-energy of ρ using the

bound |UV | ≤ D for every V ∈ U .∑
U∈U

ρ(U)p ≤
∑
V ∈V

∑
U∈UV

ρ(U)p ≤
∑
V ∈V

Dp|UV |ρ(V )p ≤
∑
B∈B

Dp+1ρ(V )p.

Thus, the claim holds for C = Dp+1 after we take an infimum over ρ ∧τ,V Γ. �

One of the benefits of this notion of modulus, is that we can give simple bounds
for it in terms of the Hausdorff measure of the space. The following will be an
example of such a bound that will be useful for us. Recall the definition of Hausdorff
content Hp

δ from (1.3).

Proposition 3.10. Let κ ≥ 1, τ ≥ 4, R, r > 0. Let X be any connected
compact metric space, and suppose that Γ is a family of curves, where each curve in
Γ is contained in a ball B(x,R) ⊂ X and has diameter at least r. Then, for every
ε ∈ (0, 1), δ ∈ (0, diam(X)/2) there exists a κ-round collection V for which

Modp,τ (Γ,V) ≤ (20τ)pHp
δ(B(x,R)) + ε

rp
,

and supV ∈V rV ≤ δ and each ball in V intersects B(x,R) as well as some curve in Γ.

Proof. Fix ε > 0. From the definition of Hausdorff content in (1.3), and by
replacing each set in the cover by an enclosing ball, we can find a covering V of
B(x,R) by balls V = B = B(zV , rV ) with rV ≤ δ so that∑

V ∈V

diam(V )p ≤ 2pHp
δ(B(x,R)) + (10τ)−pε.

Moreover, by possibly making the collection smaller, we assume that each ball V ∈ V
intersects B(x,R) and some curve in Γ. This modified collection still covers every
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curve γ ∈ Γ. Now, V is κ-round with κ = 1. Let ρ(V ) = 10τ diam(V )/r. We have
by the choice of V and ρ that∑

V ∈V

ρ(V )p ≤
∑
V ∈V

(10τ)p diam(V )pr−p ≤ (20τ)pHp
δ(B(x,R)) + ε

rp
.

Therefore, the claim will follow once we show that ρ∧τ,VΓ. Let γ ∈ Γ. We need
to find a collection Vγ so that the properties i, ii and iii from Definition 3.6 hold.
Since V is a cover of γ, we have that {B(zV , τrV )} is a cover of γ. Applying the 5r-
covering lemma, we get a finite subcollection Vγ ⊂ V so that i) {B(zV , τrV ) : V ∈ Vγ}
is pairwise disjoint, ii) so that γ ∩ V 6= ∅ for all V ∈ Vγ and so that we have that
V ′ = {B(zV , 5τrV ) : V ∈ Vγ} is a covering of γ. Note that

diam(B(zV , 5τrV )) ≤ 10τrV ≤ 10τ diam(V ) = ρ(V )r.

Since the balls {B(zV , 5τrV ) : V ∈ Vγ} cover γ, we get∑
V ∈V,V ∩γ 6=∅

ρ(V ) ≥
∑
V ∈V ′

diam(B(zV , 5τrV ))/r ≥ diam(γ)/r ≥ 1.

Thus, ρ∧τ,VΓ and the claim follows. �

The new notion of modulus is also invariant under quasisymmetries, except for
adjusting the τ parameter. In the following, if Γ is a collection of curves in X and
f : X → Y is a homeomorphism, we write f(Γ) = {f ◦ γ : γ ∈ Γ}. The opposite
inequality can be obtained by adjusting τ , and applying this lemma to the inverse
mapping f−1.

Lemma 3.11. Let τ ≥ 4 and let f : X → Y be an η-quasisymmetry. If V is a
κ-round collection, and if Γ is any collection of curves in X, then

Modp,τ (Γ,V) ≤ Modp,max{4,η(τ)}(f(Γ), f(V)).

Proof. Let τ ′ = max{4, η(2τ)}. By Lemma 2.9, we have that f(V) is a κ′-round
collection for some κ′. Let ρ∧τ ′,f(V)f(Γ). Define ρ(V ) = ρ(f(V )) for V ∈ V . We
clearly have ∑

V ∈V

ρ(V )p =
∑

V ∈f(V)

ρ(V )p.

Thus, the claim will follow, if we can show that ρ∧τ,VΓ.
In the following, elements of f(V) will be written as f(V ), where V ∈ V . Let

γ ∈ Γ. Then, f ◦ γ ∈ f(Γ) and, since ρ∧τ ′,f(V)f(Γ), there exists a collection Uf(γ) ⊂
f(V) so that

i) {B(zf(V ), τ
′rf(V )) : f(V ) ∈ Uf(γ)} is pairwise disjoint;

ii) f(V ) intersects γ for every f(V ) ∈ Uf(γ);
iii) we have ∑

U∈Uf(γ)

ρ(U) ≥ 1.

Let Uγ = {V ∈ V : f(V ) ∈ Uf(γ)}. We need to check the three properties from
Definition 3.6 of ρ∧τ,VΓ:

a) {B(zV , τrV ) : V ∈ Uγ} is pairwise disjoint;
b) V intersects γ for every V ∈ Uγ;
c) we have ∑

U∈Uγ

ρ(U) ≥ 1.



Equality of different definitions of conformal dimension for quasiself-similar and CLP spaces 421

From these, b) and c) follow immediately from the properties ii) and iii) above.
By Lemma 2.3, we have

f(B(zV , τrV )) ⊂ f(B(zf(V ), η(2τ)rf(V )),

for every V ∈ Uγ. Since τ ′ ≥ η(2τ), the disjointness in a) follows from that in i). �

4. Combinatorially Loewner spaces

4.1. Definition and basic property. For two closed sets E,F , let Γ(E,F ) be
the collection of curves which join them. We adapt the definition of Bourdon and
Kleiner of the combinatorial Loewner property slightly, as modified by Clais in [9,
Definition 2.6]. Let Uk be a sequence of κ-approximations at level 2−k.

Definition 4.1. Fix p > 1. We say that a compact LLC space X satisfies the
combinatorial p-Loewner property, if there exist some increasing continuous functions
φ, ψ : (0,∞)→ (0,∞) with limt→0 ψ(t) = 0, with the following two properties.

(1) For every pair of disjoint continua E,F ⊂ X and all k ≥ 0 with 2−k ≤
min{diam(E), diam(F )}, we have

φ(∆(E,F )−1) ≤ Modp,Uk(Γ(E,F )).

(2) For every z ∈ X and 0 < r < R and all k ≥ 0 with 2−k ≤ r, we have

Modp,Uk(Γ(B(z, r), X \B(z, R))) ≤ ψ

(
r

R− r

)
.

Spaces with the combinatorial p-Loewner property are also called CLP -spaces
or p-CLP spaces, if we wish to explicate the exponent p > 1.

We first note that a combinatorially p-Loewner space has conformal Assoad di-
mension, as well as Ahlfors regular conformal dimension, equal to p. This Lemma is
quite well known and is a rather direct consequence from the known Theorem 3.5.
However, we present a proof for the sake of clarity, and since its proof does not appear
to have been published elsewhere. The proof is very similar, or rather a localized
version, of the proof of [5, Corollary 3.7]. Later, we will prove Theorem 1.8, which
is one of our main contributions, and which improves the following statement by
showing that also dimCH(X) = p.

Lemma 4.2. For a compact LLC space X, which is combinatorially p-Loewner,
it holds that

dimCA(X) = dimCAR(X) = p.

Proof. Let ψ and ψ be the functions appearing in Definition 4.1. Since X is a
compact LLC space, it is uniformly perfect, and by [18, Proposition 2.2.6] and [12,
Chapters 14 and 15] we have dimCA(X) = dimCAR(X). Next, let Uk be a sequence
of κ-approximations at levels 2−k for k ∈ N. Let z ∈ X and 0 < r ≤ diam(X)/4.
Then, by the LLC property, there exists a continuum E ⊂ B(z, r) with diam(E) ≥ r

and another continuum F ⊂ B(z, 3r)\B(z, 2r) with diam(F ) ≥ r. Since every curve
connecting E to F contains a sub-curve within Γ(B(z, r), X \B(z, 2r)), we have

Modp,Uk(Γ(E,F )) ≤ Modp,Uk(Γ(B(z, r), X \B(z, 2r))).

Now, by the CLP property and since ∆(E,F ) ≤ 6, we get for all k ≥ 0 such that
2−k ≤ r that

φ(6−1) ≤ Modp,Uk(Γ(E,F )) ≤ Modp,Uk(Γ(B(z, r), X \B(z, 2r))).
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We thus get:
lim inf
m→∞

sup
z∈X,k≥0

Modp,Um+k
(ΓB(z,2−k),2) ≥ φ(6−1).

Thus, p ≤ dimCAR(X) by Theorem 3.5.
The inequality p ≥ dimCAR(X) follows by showing that for all ε > 0, we have

lim
m→∞

sup
z∈X,k≥0

Modp+ε,Um+k
(ΓB(z,2−k),2) = 0.

The idea in showing this is to compare the discrete moduli with exponents p+ ε and
p. Indeed, we will show that for all m ≥ 3 we have

(4.3) Modp+ε,Um+k
(ΓB(z,2−k),2) ≤ ψ(22−m)εModp,Um+k

(ΓB(z,2−k),2) ≤ ψ(22−m)εψ(1).

Then, since limt→0 ψ(t) = 0, the claim follows.
Let ρ be the optimal function for Modp,Um+k

(ΓB(z,2−k),2), which exists by Lemma 3.2.
We will show that ρ(U) ≤ ψ(21−m) for every U ∈ Um+k. This uses a bound for mod-
ulus coming from [5, Lemma 2.3], which in turn relies on estimating the modulus of
the curves which pass through the set U . Let U ∈ Um+k. Let ΓU be the collection of
curves in ΓB(z,2−k),2 which intersect U . Then any curve in ΓB(z,2−k),2 which intersects
U will contain a sub-curve connecting B(zU , rU) to X \B(zU , 2

m−1rU). Thus,

Modp,Uk(ΓU) ≤ Modp,Uk(Γ(B(zU , rU), X \B(zU , 2
m−1rU)) ≤ ψ(22−m).

By [5, Lemma 2.3], we get for all U ∈ Um+k

ρ(U) ≤ Modp,Uk(ΓU) ≤ ψ(22−m).

This, together with the optimality of ρ yields∑
U∈U

ρ(U)p+ε ≤ max
U∈U

ρ(U)ε
∑
U∈U

ρ(U)p ≤ ψ(22−m)εModp,Um+k
(ΓB(z,2−k),2),

which is the desired estimate (4.3). �

4.2. Estimates for modulus. If the space is combinatorially Loewner, then
we can give a lower bound of our modulus, which we introduced in Subsection 3.4, in
terms of the Bourdon–Kleiner modulus. This is a strengthening of the Proposition
3.7. In a sense, the following Proposition is the starting point of our paper, since its
argument was the first to be discovered.

Proposition 4.4. Let k ∈ N, p > 1. Assume that X is metrically doubling,
LLC and combinatorially p-Loewner, and that κ ≥ 1, τ ≥ 4. There exists a constant
C > 0 so that the following holds for r > 0. Suppose that U is a κ-approximation at
level r and V is a κ-round collection with inf{rV : V ∈ V} ≥ 2r. If Γ is a collection
of curves in X with 2τ supV ∈V rV ≤ diam(γ) for all γ ∈ Γ, then

Modp,U(Γ) ≤ CModp,τ (Γ,V).

Proof. Assume that Modp,τ (Γ,V) <∞, and that ρ ∧τ,V Γ with∑
V ∈V

ρp(V ) <∞.

For each V ∈ V consider the collection of curves ΓV = Γ(B(zV , rV ), X\B(zV , (τ−
1)rV )). By the p-combinatorial Loewner assumption and since r ≤ rV /2, we have

(4.5) Modp,U(ΓV ) ≤ C,
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for C = ψ( 1
τ−1

) > 0, where ψ is from Definition 4.1. Notice, that while the combi-
natorial Loewner property only gives a bound for coverings at dyadic scales r = 2−k.
Thus to obtain (4.5) requires also a the application of a simple result [5, Proposi-
tion 2.2.], which shows moduli with respect to κ approximations at comparable levels
are comparable. Let ρV : U → [0,∞) be such that ρV ∧U ΓV and so that

(4.6)
∑
U∈U

ρV (U)p ≤ 2C.

Let
ρ(U) = max{ρV (U)ρ(V ) : V ∈ V}.

We claim that ρ∧U Γ. Let γ ∈ Γ. Since ρ∧τ,V Γ, there exists a collection Vγ of V ∈ V
with

(1) V ∩ γ 6= ∅ for all V ∈ Vγ;
(2) {B(zV , τrV ) : V ∈ Vγ} is a pairwise disjoint collection of balls; and
(3)

(4.7)
∑
V ∈Vγ

ρ(V ) ≥ 1.

For each V ∈ Vγ, let γ|V be a minimal subcurve which connects B(zV , rV ) to
B(zV , (τ−1)rV ). Such a subcurve exists since diam(γ) ≥ 2τrV and γ∩B(zV , rV ) 6= ∅.
These subcurves are disjoint and d(γ|V , γ|V ′) ≥ 2 min{rV , rV ′} ≥ 4r, for distinct
V, V ′ ∈ Vγ. Therefore, if we let UV = {U ∈ U : U ∩ γ|V 6= ∅} for V ∈ Vγ, then
UV ∩ UV ′ = ∅ for distinct V, V ′ ∈ Vγ. We also have, since ρV ∧ ΓV and ρ ≥ ρV ρ(V )
that

(4.8)
∑
U∈UV

ρ(U) ≥
∑

U∈U ,U∩γ|V 6=∅

ρV (U)ρ(V ) ≥ ρ(V ).

Now, let Uγ = {U ∈ U : U ∩ γ 6= ∅}. We also have⋃
V ∈Vγ

UV ⊂ Uγ.

By the disjointness of the collections UV , for distinct V ∈ Vγ, and by applying (4.7),
(4.8) and the choice of ρ, we get∑

U∈Uγ

ρ(U) ≥
∑
V ∈Vγ

∑
U∈UV

ρ(U) ≥
∑
V ∈Vγ

ρ(V ) ≥ 1.

Thus, since γ is arbitrary, ρ ∧U Γ.
Next, we show a mass-bound for ρ. For each U ∈ U let VU ∈ V be such that

ρ(U) = ρVU (U)ρ(VU). This yields a partition of U into sets UV = {U ∈ U : VU = V }.
Thus, we have, since UV ⊂ U

Modp,U(Γ) ≤
∑
U∈U

ρ(U)p =
∑
V ∈V

∑
U∈UV

ρV (U)pρ(V )p ≤
∑
V ∈V

ρ(V )p
∑
U∈U

ρV (U)p

≤
∑
V ∈V

2Cρ(V )p = 2C
∑
V ∈V

ρ(V )p.

By infimizing over ρ such that ρ ∧τ,V Γ the claim follows. �

We obtain the following proposition, which gives a lower bound for the Haus-
dorff measure of a combinatorially Loewner space. In this way, this generalizes to
combinatorially Loewner spaces the classical estimate of Heinonen and Koskela, [13,
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Theorem 3.6]. That result is much easier to show using continuous modulus. For
discrete modulus one needs to do some extra work.

Proposition 4.9. Let X be a p-combinatorially Loewner LLC and metrically
doubling space. Then, there exists a constant C ≥ 1 so that for every r ∈ (0, diam(X))
and any x ∈ X we have

Hp(B(x, r)) ≥ Crp.

Proof. Let x ∈ X. It is sufficient to prove

(4.10) Hp(B(x, 2L′r)) ≥ Crp.

for some uniform constants L′ ≥ 1, C > 0 for all r ∈ (0, diam(X)/8). Since X is
LLC, we can find a continuum E ⊂ B(x, r) with r ≥ diam(E) ≥ r/2 and x ∈ E.
Further, there exists a continuum F ⊂ B(x, 4r) \ B(x, 3r) with 8r ≥ diam(F ) ≥ r.
We have

1 ≤ ∆(E,F ) ≤ 16.

Let Γ be the collection of continuous curves connecting E to F .
Next, our strategy in proving (4.10) is to show three estimates. We will show

that.
A) There is a collection ΓB of curves so that for any κ-approximation U at a

small enough level the quantity Modp,U(Γ \ ΓB) can be bounded from below
by using the CLP property, and each curve in Γ \ΓB is contained in a ball of
definite size.

B) Proposition 3.10 gives a lower bound for the Hausdorff measure in terms of
the discrete modulus Modp,τ (Γ \ ΓB,V).

C) Finally, Proposition 4.4 is used to find a small enough level so that Modp,τ (Γ\
ΓB,V) is bounded from below by Modp,U(Γ \ ΓB) for some κ-approximation
U at a small enough level. These estimates together yield the desired bound.

We focus on A) first and determine ΓB. Let U be a κ-approximation at level 2−k

for some k ∈ N s.t. 2−k ≤ min{diam(E), diam(F )}. We have

Modp,U(Γ) ≥ φ(16−1).

Let L ≥ 2 be such that ψ(2L−1) ≤ 2−1φ(16−1). Let ΓB be the collection of curves
γ ∈ ΓX with a subcurve in Γ(B(x, r), X \B(x, Lr)). We have, since X is CLP, that

Modp,U(ΓB) ≤ Modp,U(Γ(B(x, r), X \B(x, Lr))) ≤ ψ(2L−1) ≤ φ(16−1)

2
.

Thus, by subadditivity of modulus, we get for ΓG := ΓX \ ΓB the estimate

(4.11) Modp,U(ΓG) ≥ φ(16−1)

2
.

Next, we deduce B) in our strategy. Let τ ≥ 4. Choose δ ∈ (0, 4−1τ−1r). Each
of the curves in ΓG has diameter at least r and is contained in B(x, Lr). So, we can
apply Proposition 3.10 to find for any ε > 0 a 1-round collection V of balls which
intersect B(x, Lr) and some curve in ΓG with rad(V) ≤ δ and with
(4.12)

Modp,τ (ΓG,V) ≤ (20τ)p (Hp
δ(B(x, Lr)) + ε) r−p ≤ (20τ)p (Hp(B(x, Lr)) + ε) r−p.

Finally, we deduce C). Each curve in ΓG connects E to F , and thus we have
diam(γ) ≥ r for all γ ∈ ΓG. This means that 2τ supV ∈V rV ≤ infγ∈ΓG diam(γ). Thus,
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by Proposition 4.4, there exists a constant C so that

(4.13) Modp,U(ΓG) ≤ CModp,τ (ΓG,V),

if k is so large so that inf{rV : V ∈ V} ≥ 2−k−1.
By combining estimates A–C), we get the following once k is large enough

φ(η(16)−1)

2

(4.11)
≤ Modp,U(ΓG)

(4.13)
≤ CModp,τ (ΓG,V)

(4.12)
≤ (20τ)pC(Hp(B(x, Lr)) + ε)r−p.

Consequently, since this holds for all ε > 0, we get
φ(η(16)−1)

2(20τ)pC
rp ≤ Hp(B(x, L′r)).

This yields the desired estimate (4.10). �

4.3. Proof of Theorem 1.8. Using the previous properties, we are able to
prove the equality of different forms of conformal dimension for CLP spaces.

Proof of Theorem 1.8. Assume that X is combinatorially p-Loewner. By
Lemma 4.2, we have

dimCA(X) = dimCAR(X) = p.

We also have dimCH(X) ≤ dimCAR(X) = p. Thus, we only need to show that
dimCH(X) ≥ p. Let f : X → Y be a quasisymmetry. The space Y is p-combinatorially
Loewner, since the combinatorial Loewner property is invariant under quasisymme-
tries, see [5, Theorem 2.6 (2)]. It is also easy to see, that the LLC and metric doubling
properties are invariant under quasisymmetries, and thus Y is LLC and metric dou-
bling. Then, by Proposition 4.9 there exists a constant C so that we have for every
y ∈ Y and any r ∈ (0, diam(Y )) that

Hp(B(y, r)) ≥ Crp > 0.

From the definition of Hausdorff dimension, and since Hp(B(y, r)) > 0 if and only if
Hp
∞(B(y, r)) > 0, we have dimH(Y ) ≥ p. Consequently, by taking an infimum over

all Y which are quasisymmetric to X, we get dimCH(X) ≥ p. �

5. Quasiself-similar spaces

5.1. Uniform bound for annuli. As discussed in the introduction, the case
of quasiself-similar spaces requires some more care. We do this by considering first
moduli of annuli. Define an annulus as A(x, r, R) := B(x,R) \B(x, r).

Definition 5.1. Let p ∈ (1,∞). Let τ ≥ 4. We say that a metric space X has
uniformly small p-moduli of annuli, if there exists ε ∈ (0, 1) and constants 0 < δ− <
δ+ < τ−1, so that the following holds. For every annulus A(x, r, (τ − 2)r) in X, with
x ∈ X, r ∈ (0, 2−1τ−1 diam(X)), there exists a finite collection of balls Vx,r contained
in B(x, τr) and which intersect B(x, (τ−2)r), with rV ∈ [δ−r, δ+r] for each V ∈ Vx,r,
and there exists a function ρx,r : Vx,r → [0,∞) with

ρx,r∧τ,Vx,rΓ(B(x, r), X \B(x, (τ − 2)r))

and with ∑
B∈VB

ρx,r(B)p ≤ ε.
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The following lemma is a refinement of Proposition 3.10 to the quasiself-similar
setting.

Lemma 5.2. Suppose that dimCH(X) < p, p ∈ (1,∞), and X is an arcwise
connected quasiself-similar compact metric space. Then X has uniformly small p-
moduli of annuli.

Proof. Assume that X is η-quasiself-similar and let τ ≥ 4. Fix any δ+ ∈ (0, τ−1).
Since dimCH(X) < p, there exists a compact space Y with dimH(Y ) < p and a
quasisymmetry g : X → Y . Fix C ≥ 1, σ ∈ (0, 2−1) to be determined. By adjusting
η, we may assume that g is an η-quasisymmetry. Let ε > 0, and choose a covering of
Y by a collection of balls BY with∑

B∈BY

diam(B)p ≤ εC−p diam(Y )p,

and for which rad(B) ≤ σ diam(Y ) for every B ∈ BY . Let A(x, r, (τ − 2)r) be an
annulus in X with x ∈ X and r ∈ (0, 2−1τ−1 diam(X)). There is a homeomorphism
f : B(x, 2τr) → U , for some open set U ⊂ X, which is an η-quasisymmetry, where
diam(U) ≥ δ diam(X).

We first define the collection Vx,r used in Definition 5.1. For each B = B(y, s) ∈
BY with

B ∩ g(f(B(x, (τ − 2)r))) 6= ∅,
choose xVB ∈ (g ◦ f)−1(B) ∩ B(x, (τ − 2)r), and let rVB = sup{d(z, xB) : z ∈ (g ◦
f)−1(2B) ∩B(x, τr)}. Define VB := B(xVB , rVB). Let

Vx,r := {VB : B ∈ BY , B ∩ g(f(B(x, (τ − 2)r))) 6= ∅}
be the collection of balls we seek. Next, we give bounds for rVB by using the fact
that X is connected and that g ◦ f is a η̃-quasisymmetry with η̃ = η ◦ η.

Since diam(U) ≥ δ diam(X), we can choose a, b ∈ U with d(a, b) ≥ 2−1δ diam(X).
Choose a point c ∈ X so that d(g(c), g(a)) ≥ diam(Y )2−1. Since g is an η-
quasisymmetry, we have

d(g(a), g(c))

d(g(a), g(b))
≤ η

(
d(c, a)

d(b, a)

)
≤ η(2δ−1).

Thus,

(5.3) d(g(a), g(b)) ≥ η(2δ−1)−12−1 diam(Y ).

We will use (5.3) to give an upper bound for rVB for each VB ∈ Vx,r, where
B ∈ BY . Let u, v ∈ B(x, 2τr) be such that f(u) = a, f(v) = b. Choose s, t ∈
(g ◦ f)−1(2B) ∩ B(x, τr) so that d(s, t) ≥ rVB/2. Up to possibly switching u and v,
and a, b, we can assume by (5.3) that

(5.4) d(g(f(s)), g(a)) ≥ d(g(a), g(b))

2
≥ η(2δ−1)−1 diam(Y )2−2.

We have

(5.5)
d(g(f(s)), g(f(u)))

d(g(f(s)), g(f(t)))
≤ η̃

(
d(s, u)

d(s, t)

)
.

Since g(f(s)), g(f(t)) ∈ 2B, we get d(g(f(s)), g(f(t))) ≤ 4rad(B) ≤ 4σ diam(Y ).
Thus, from (5.4), we get

1

24η(2δ−1)σ
=

diam(Y )

24η(2δ−1)σ diam(Y )
≤ d(g(f(s)), g(a))

d(g(f(s)), g(f(t)))
.
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By combining this with (5.5), we deduce

η̃−1

(
1

24ση(2δ−1)

)
≤ d(s, u)

d(s, t)
≤ 6τr

rVB
.

Thus,

rVB ≤
6τ

η̃−1
(

1
24ση(2δ−1)

)r.
Choose now σ ≤ η̃( 6τ

δ+
)−1η(2δ−1)−12−4. We then have, rVB ≤ δ+r. Since δ+ < 1, we

also have rVB ≤ r and since xVB ∈ B(x, (τ − 2)r) we clearly have VB ⊂ B(x, τr).
Next, we give a uniform lower bound for the radii rVB for VB ∈ Vx,r . Since BY

is finite, there exists a constant β > 0 so that rad(B) ≥ β diam(Y ) for all B ∈ BY .
Choose δ− = η̃−1(β)/2. Let c ∈ B(xVB , δ−r) be an arbitrary point. Also, choose
b ∈ B(x, 2τr) with d(b, xVB) ≥ r, which is possible by connectivity. Then, by the
quasisymmetry condition, we get

d(g(f(c)), g(f(xVB)))

d(g(f(b)), g(f(xVB)))
≤ η̃

(
d(c, xVB)

d(b, xVB)

)
≤ η̃ (δ−) .

The choice of δ− guarantees η̃(δ−) ≤ β, and thus

d(g(f(c)), g(f(xVB))) ≤ η̃(δ−) diam(Y ) ≤ rB.

Therefore, since g(f(xVB)) ∈ B, we get g(f(c)) ∈ 2B. This holds for all c ∈
B(xVB , δ−r), and thus

g(f(B(xVB , δ−r))) ⊂ 2B.

This yields, by connectivity and the definition of rVB that rVB ≥ δ−r.
Finally, we define the admissible function ρ. Define

ρ(V ) = max{C diamY (B) diamY (Y )−1 : VB = V,B ∈ BY }

for V ∈ Vx,r. We have

(5.6)
∑
V ∈Vx,r

ρ(V )p ≤ Cp
∑
B∈BY

diamY (B)p diamY (Y )−p ≤ ε,

since for every V ∈ Vx,r there exists at least one B ∈ BY so that VB = V , and for
every B ∈ BY there is only one V ∈ Vx,r for which VB = V .

Next, we show that ρ∧τ,Vx,rΓ(B(x, r), X \B(x, (τ − 2)r)). Let γ ∈ Γ(B(x, r), X \
B(x, (τ − 2)r)) be arbitrary. Let σ be a sub-curve of γ so that σ ⊂ (τ − 2)B and
σ ∈ Γ(B(x, r), X \ B(x, (τ − 2)r)). To show admissibility, we will combine the fact
that BY covers g ◦ f ◦ σ with a lower bound for the diameter of g ◦ f ◦ σ.

Since σ connects B(x, r) to X \B(x, (τ − 2)r) there exist j, k ∈ σ with d(j, k) ≥
(τ−3)r. Let a, b and u, v be as before. By possibly switching j and k, we can assume
that d(j, u) ≥ d(j, k)/2 ≥ 2−1(τ − 3)r. We get

d(g(f(j)), g(f(u)))

d(g(f(j)), g(f(k))
≤ η̃

(
d(j, u)

d(j, k)

)
≤ η̃

(
4τr

(τ − 3)r

)
≤ η̃(16).

Thus,

(5.7) diam(g ◦ f ◦ σ) ≥ d (g(f(j)), g(f(k))) ≥ d (g(f(j)), g(f(u))) η̃(16)−1.
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Next, d(j, u) ≥ 2−1(τ − 3)r ≥ d(u, v)/8. Thus, by a similar reasoning that uses the
quasisymmetry of g ◦ f and by employing (5.3), we get

d(g(f(j)), g(f(u))) ≥ d(g(f(u), g(f(v)))η̃(8)−1

≥ η̃(8)−1η(2δ−1)−12−1 diam(Y ).
(5.8)

By combining (5.7) and (5.8), we obtain

(5.9) diam(g ◦ f ◦ σ) ≥ d(g(f(j)), g(f(k)) ≥ η̃(16)−1η̃(8)−1η(2δ−1)−12−1 diam(Y ).

Recall that Vx,r consists of balls. The open sets Vx,r cover the ball B(x, 2(τ −2)),
and thus the curve σ. Therefore, by the Vitali covering theorem, there exists a finite
collection of balls Vγ with σ ⊂

⋃
5τVγ, and for which τVγ are disjoint, and so that

each ball in Vγ intersects γ. For each V ∈ Vγ, choose a ball B(V ) ∈ BY so that
V = VB(V ) and ρ(V ) = C diamY (B(V )) diamY (Y )−1.

First, we note that the quasisymmetry condition and Lemma 2.3, we have

g(f(5τV )) ⊂ η̃(10τ)B(V ).

Therefore, we get that the balls η̃(10τ)B(V ) for V ∈ Vγ cover g(f(σ)). Thus,∑
V ∈Vγ

ρ(V ) =
∑
V ∈Vγ

C diamY (B(V )) diamY (Y )−1

≥
∑
V ∈Vγ

C(2η̃(10τ))−1 diamY (Y )−1 diamY (η̃(10τ)B(V ))

(5.9)
≥ diam(g ◦ f ◦ σ)C(2η̃(10τ))−1 diamY (Y )−1

≥ C2−2η̃(16)−1η̃(8)−1η(2δ−1)−1η̃(10τ)−1.

If C ≥ 4η̃(16)η̃(8)η(2δ−1)η̃(10τ), then ρ∧τ,Vx,rΓ(B(x, r), X \ B(x, (τ − 2)r)) is
admissible and the claim follows. �

5.2. Algorithm for pushing down a cover. The following lemma describes
a “push down” algorithm. It uses admissible functions for annuli in order to push
down a collection of balls B and a strongly discretely τ -admissible function ρ. This
is done by replacing a ball B ∈ B by a collection BB and an associated function ρB.
A new admissible function ρ is defined by taking a maximum over B ∈ B, and a new
collection by taking a union of all the new balls. This arguments for admissibility
and the construction of ρ are similar to Proposition 4.4. To distinguish the “parent”
balls from the “descendant balls”, we will bold the parent balls. This replacement
algorithm is depicted and explained more in Figure 1. As seen in this figure, we
permit all sorts of overlaps, and balls of different sizes. This is one of the technical
reasons for using the new modulus from Subsection 3.4.

Recall that ΓB,L denotes the collection of curves γ connecting B to X \ LB.

Lemma 5.10. Let ε, η ∈ (0, 1). Assume that B is a finite collection of balls, Γ is
a collection of curves, 2(τ − 2)rad(B) ≤ infγ∈Γ diam(γ) and ρ ∧B Γ. Suppose further
that C ⊂ B is any finite collection of balls, and for every B ∈ C, there exists a finite
collection of balls BB and a function ρB : BB → [0,∞) with

(1) rad(BB) ≤ τ−1rad(B),
(2) ρB∧τ,BBΓB,(τ−2),
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(3) every ball in BB intersects (τ − 2)B, and satisfies∑
B∈BB

ρB(B)p ≤ η.

For B 6∈ C assume that BB = {B} and ρB(B) = 1. For the collection B :=
⋃

B∈B BB,
and function

ρ(B) := max{ρ(B)ρB(B) : B ∈ B s.t. B ∈ BB},

we have ρ∧τ,BΓ and ∑
B∈B

ρ(B)p ≤
∑
B∈C

ηρ(B)p +
∑

B∈B\C

ρ(B)p.

Figure 1. The push-down algorithm: As input we are given a collection of balls B, and a
function ρ which is strongly discretely admissible for some collection of curves Γ. For each ball B in
some sub-collection C ⊂ B we have a “replacement collection” BB, and a replacement function ρB.
We replace each ball in C by the associated collection BB , and keep the remaining balls fixed. A
new ρ is defined using ρB for this new collection, and is shown to be admissible under appropriate
assumptions. In the figure, the non-filled balls are the collection B, and C consists of the empty
balls with dashed boundaries. The figure shows how the dashed lined empty balls are replaced by
the filled balls, where each filled ball comes from a collection BB for some B ∈ C. We have not
indicated in detail which ball corresponds to which, as this is irrelevant for the proof. Note however
that condition (3) in Lemma 5.10. There is a darker shaded ball, which is in two of the collections
BB—an eventuality that we permit, but that could be avoided by allowing collections of balls to be
multi-sets. Also note, that the balls can intersect each other in unlimited ways, and there is also
one solid lined ball in B \ C which is not replaced.

Proof of Lemma 5.10. We first show that ρ∧τ,BΓ. Let γ ∈ Γ. Since ρ∧τ,BΓ,
there exists a collection Bγ ⊂ Γ so that τBγ is pairwise disjoint, so that B ∩ γ 6= ∅
for every B ∈ Bγ and

(5.11)
∑
B∈Bγ

ρ(B) ≥ 1.
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We next define Bγ ⊂ B. First, set B1
γ = Bγ \ C. Next, for each B ∈ Bγ ∩ C we

have ρB∧τ,BBΓB,(τ−2). Since γ ∩B 6= ∅, and diam(γ) ≥ 2(τ − 2)rad(B), we have that
γ ∩ (X \ (τ − 2)B) 6= ∅. Thus, γ contains a sub-arc in ΓB,(τ−2). Therefore, there
exists a collection Bγ,B ⊂ BB so that τBγ,B is pairwise disjoint, so that B ∩ γ 6= ∅ for
every B ∈ Bγ,B and ∑

B∈Bγ,B

ρB(B) ≥ 1.

Since ρ(B) ≥ ρB(B)ρ(B) for every B ∈ Bγ,B, we have

(5.12)
∑

B∈Bγ,B

ρ(B) ≥ ρ(B).

Set B2
γ =

⋃
B∈Bγ∩C Bγ,B. Finally, let Bγ = B1

γ∪B2
γ. Note that for every B ∈ Bγ∩C,

we have rad(τBγ,B) ≤ τrad(BB) ≤ rad(B) and B ∩ (τ − 2)B 6= ∅ for every B ∈ Bγ,B.
Thus, every B ∈ τBγ,B satisfies τB ⊂ τB. This inclusion implies that the collections
Bγ,B are pairwise disjoint for distinct B ∈ Bγ, and each of these is disjoint from τB1

γ.
Thus, the collection τBγ is pairwise disjoint; see also Figure 2 for an illustration.

B1
γ

B2
γ

γ

Figure 2. The construction of the collection Bγ . First, all balls in Bγ \C are included, and then,
within the balls Bγ ∩C we take the collections Bγ,B for each B ∈ Bγ . The newly replaced balls, and
their inflations, lie within the inflations of the previous the balls, which guarantees the disjointness.
The solid balls in the figure are the inflated balls τBγ , and the dashed and dotted balls show Bγ
and its inflation.

Next,∑
B∈Bγ

ρ(B) =
∑
B∈B1γ

ρ(B) +
∑
B∈B2γ

ρ(B) ≥
∑
B∈B1γ

ρ(B) +
∑

B∈Bγ∩C

∑
B∈Bγ,B

ρ(B)

(5.12)
≥

∑
B∈Bγ\C

ρ(B) +
∑

B∈Bγ∩C

ρ(B)
(5.11)
=

∑
B∈Bγ

ρ(B) ≥ 1.

Thus, since γ was arbitrary, we have ρ∧τ,BΓ.
Finally, we compute the p-energy of ρ. First, by construction, for every B ∈ C,

we have

(5.13)
∑
B∈BB

ρB(B)p ≤ η,

and for every B ∈ B \ C, we have

(5.14)
∑
B∈BB

ρB(B)p = ρB(B) = 1,
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For every B ∈ B, there may be multiple B ∈ B so that B ∈ BB. However, for every
B ∈ B, we have:

(5.15) ρ(B) = max{ρ(B)ρB(B) : B ∈ B s.t. B ∈ BB} ≤

 ∑
B∈B

s.t.B∈BB

(ρ(B)ρB(B))p


1
p

.

By combining these two we get:∑
B∈B

ρ(B)p
(5.15)
≤

∑
B∈B

∑
B∈BB

ρ(B)pρB(B)p

=
∑
B∈C

∑
B∈BB

ρ(B)pρB(B)p +
∑

B∈B\C

∑
B∈BB

ρ(B)pρB(B)p

(5.13),(5.14)
≤

∑
B∈C

ηρ(B)p +
∑

B∈B\C

ρ(B)p.

This is the desired estimate and the proof is complete. �

Figure 3. The equalizing algorithm: By using replacement and a uniform bound on moduli of
annuli, we can “uniformize” a wild cover B. Let B be a covering using balls, where the size of the
largest ball is much bigger than the smallest. We take all the “large” balls, and form a collection C of
them. To them, we apply the push-down procedure to reduce their size. We repeat this process until
all large balls have been pushed down to a size comparable to the smallest ball in our collection. In
the figure B consists of balls filled with white. The two large balls have solid line boundaries, and
are replaced by smaller light gray filled balls. Two of these light gray balls are still too large, and
are replaced by even smaller dark gray filled balls.

If the space has uniformly small moduli of annuli, then we have readily available
collections BB and functions ρB as in the statement of the previous lemma. Suppose
now that Γ is any collection of curves and ρ∧τ,B0Γ for some collection of balls B0 with
sufficiently small radii compared to the diameter of the curves γ ∈ Γ. If the space
has uniformly small moduli of annuli, we can first use the push-down procedure on
all of the balls, in order to reduce the discrete modulus of Γ below any threshold we
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want. This process is called “weight reduction”. The balls in the resulting collection
can have arbitrarily large and small radii. However, any “large” balls can be further
replaced by smaller ones with controlled size. This process can be repeated until all
the balls in a collection are roughly the same size. This phase is called “size reduction”.
As a consequence, the push-down algorithm in conjunction with the uniformly small
moduli of annuli leads to the ability to convert the collection B into a collection of
balls B which is roughly at the same scale, and so that Modp,τ (Γ,B) is as small as we
want. This process is called the “equalizing algorithm”, and is depicted in Figure 3.

The next lemma and its proof expresses formally the effect of the equalizing
algorithm.

Lemma 5.16. Let p ∈ (1,∞), τ ≥ 4. Let X be an LLC compact metric space
which has uniformly small p-moduli of annuli, with constant δ− ∈ (0, 1) as in Defini-
tion 5.1. Then there exists a κ ≥ 1 so that for every ε0 > 0 and every M ≥ 1 there
exists a N ≥ 1 with the following property. If there exists a collection of balls B0 for
which infγ∈Γ diam(γ) ≥ τrad(B0), and

Modp,τ (Γ,B0) < M,

then for every r > 0 with δN− inf{rad(B) : B ∈ B0} ≥ r there exists a collection of
balls V with

Modp,τ (Γ,V) ≤ ε0.

and κ−1r ≤ rV ≤ r for all V ∈ V .
We briefly remark, that is is crucial for our later arguments, that κ is independent

of ε0 > 0. That is, there exists a κ, which controls the ratio of the largest ball in V
to the smallest one. Given this κ, we can choose any ε0 to obtain a modulus smaller
than that. The cost of decreasing ε0 is to increase N and thus reduce the scale r of
V .

Proof of Lemma 5.16. Let τ ≥ 4, and let 0 < δ− < δ+ < τ−1 and ε ∈ (0, 1)
be the parameters from the definition of having uniformly small p-moduli of annuli,
see Definition 5.1. Let κ = 2δ−1

− , N = dlog2(max{M/ε0, 1})/ log2(ε−1)e + 1 and
r ≤ δN− inf{rad(B) : B ∈ B0}.

Further, for any ball B = B(x, s) in X, let BB and ρB denote the functions Vx,s
and ρx,s given in Definition 5.1 with

(5.17)
∑
B∈BB

ρB(B)p ≤ ε,

and ρ∧τ,BBΓB,τ−2.
Let B0 be a finite cover of X by balls with infγ∈Γ diam(γ) ≥ τrad(B0) for which

Modp,τ (Γ,B0) < M . Then, there exists a ρ0 : B0 → [0,∞) with ρ∧τ,B0Γ and with
mass ∑

B∈B0

ρ(B)p < M.

First, we replace B0 through a finite sequence of replacements by a collection of
balls with respect to which Γ has small modulus. This we call the “weight reduction
phase”. We construct a sequence of covers Bk, for k ∈ N, as follows. Proceed
inductively and apply Lemma 5.10 for each k ∈ N with B = Bk, ρ = ρk and C = Bk,
and with ρB,BB and ε = η satisfying (5.17), to obtain a collection Bk+1 = B and
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function ρk+1 = ρ with ρk+1∧τ,Bk+1
Γ and∑

B∈Bk+1

ρ(B)p ≤ εkM.

We note that for each ball B ∈ BB we have rad(B) ≥ δ−rad(B), by the assumption
of uniformly small moduli of annuli. Therefore, for all k ∈ N we get

(5.18) inf{rad(B) : B ∈ Bk+1} ≥ δ− inf{rad(B) : B ∈ Bk}.
By iteration of this inequality, we get

(5.19) inf{rad(B) : B ∈ BN} ≥ δN− inf{rad(B) : B ∈ B0}.
By the choice of N , we have εNM ≤ ε0. Thus, ρN and BN satisfy the desired mass
bound:

(5.20)
∑
B∈BN

ρN(B)p ≤ ε0.

The balls in BN have various different sizes. Next, we will embark on a “size
reduction phase”. Let B0 = BN , and ρ0 = ρN . Let s := min{rad(B) : B ∈ BN}, and
let S0 = rad(B0). From the assumption and (5.19), we obtain

(5.21) s ≥ δN− inf{rad(B) : B ∈ B0} ≥ r.

If S0 ≤ κr, then we do not do anything and we let L = 0. If on the other hand
S0 > κr, we start running the following algorithm.

Set k = 0. While Sk > κr, let Ck = {B ∈ Bk : rad(B) > κr}. Apply Lemma 5.10
with B = Bk, ρ = ρk and C = Ck and with ρB,BB and with ε = η satisfying
(5.17). This gives a collection Bk+1 and strongly admissible function ρk+1. Set
Sk+1 = rad(Bk+1), and increment k by one. Once Sk ≤ κr, terminate the algorithm.
We will soon show that the algorithm terminates in finite time. Let L = k be the
time it terminates.

We have, as part of Lemma 5.10, that ρk∧τ,BkΓ for every k ∈ [0, L]∩Z. Further,
by noting that ε ∈ (0, 1), we get for all k = 0, . . . , L− 1 that∑

B∈Bk+1

ρk+1(B)p ≤
∑
B∈Bk

ρk(B)p.

By iterating this L times, we get from (5.20) that

(5.22)
∑
B∈BL

ρL(B)p ≤
∑
B∈B0

ρ0(B)p ≤ ε0.

Let us analyse the effect of the algorithm on the radii of the collections Bk, and the
termination of the algorithm. Assume that k ≥ 0. At each step, a ball B in Bk+1 is
either equal to a ballB ∈ Bk with rad(B) ≤ κr, orB ∈ BB for someB ∈ Bk with κs <
rad(B) ≤ Sk. By construction, in either case rad(B) ≤ max{δ+rad(B), sκ}. Thus,
by taking a supremum over all balls B ∈ Bk+1, we get that Sk+1 ≤ max{κr, δ+Sk}.
In particular, while Sk > κr, then the values Sk form a geometrically decreasing
sequence. This can only last for finitely many steps. Therefore, there must exist
some L ≥ 0, when the algorithm terminates with SL ≤ κr.

We show now that by induction each ball B ∈ Bk, for k = 0, . . . , L satisfies
rad(B) ∈ [r, Sk]. The upper bound is obvious, so we focus on the lower bound.
The case of k = 0 is also obvious. So, we focus on the induction step. During the
algorithm, for k = 0, . . . , L−1, each ball B ∈ Bk+1 is either equal to a ball B ∈ Bk or
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for some B ∈ Bk we have B ∈ BB and rad(B) > κr. In the first case, rad(B) ∈ [r, κr].
In the second case rad(B) ∈ [δ−rad(B), δ+rad(B)], and thus rad(B) ≥ δ−κr > r since
δ− > κ−1 by choice of κ at the beginning of the proof. In either case r ≤ rad(B) ≤ Sk.
Therefore, for all B ∈ Bk, for k = 0, . . . , L we have rad(B) ∈ [r, Sk].

Now, for k = L, we have rad(B) ∈ [r, κr], since SL ≤ κr. Now set V = BL. We
thus get the desired claim, since (5.22) gives the desired mass bound for Modp,τ (Γ,V),
since ρL∧τ,BLΓ, and we have already observed that for all V ∈ V we have κ−1r ≤
rV ≤ r. �

5.3. Estimate for Bourdon–Kleiner modulus. In this section, we use the
algorithm in the previous subsection to give an explicit relationship between the
Bourdon–Kleiner modulus from Subsection 3.1 and our new discrete modulus from
Subsection 3.4. The basic idea is to use doubling to give an initial collection V ,
and then to use Lemma 5.16 to push the collection down to roughly uniform size
with small modulus. This push-down operation is quantitative. Once the collection
consists of balls of roughly the same size, we can apply Proposition 3.7 to compare
the modulus to the Bourdon–Kleiner modulus of the same collection.

Proposition 5.23. Fix κ ≥ 1, p ∈ (1,∞). For each k ∈ N, let Uk be a κ-
approximations at scale 2−k for a compact LLC space X. If X has uniformly small
p-moduli of annuli, then for every ε > 0, there exists a l ∈ N for which for all z ∈ X
and all k ≥ 0, we have

Modp,Ul+k(ΓB(z,2−k),2) ≤ ε.

Proof. Fix k ∈ N and ε > 0. Let τ = 4 and let l0 = dlog2(τ)e + 4. Let X have
uniformly small p-moduli of annuli with constant δ− ∈ (0, τ−1). Choose κ′ ≥ κ be
the constant from Lemma 5.16, and let C be the constant associated to κ′, τ and the
space X which comes from Proposition 3.7. Set ε0 = C−1ε.

By doubling, we have that there is a constant D independent of k so that there
are at most D many sets in Uk+l0 which intersect B(z, 21−k). Set

B0 = {B(xU , rU) : U ∈ Uk+l0 , U ∩B(z, 21−k) 6= ∅}

and set ρ0(B) = 1 for all B ∈ B0. Then, by applying the definition, and since B0

covers B(z, 21−k), we see ρ0∧τ,B0ΓB(z,2−k),2. By the size bound for B0, we get∑
B∈B0

ρ0(B)p ≤ D.

By Lemma 5.16, there exists an integer N ∈ N (which depend on ε, D and the
constants in the uniformly small moduli condition) with the following properties.
For any r > 0 with δN− inf{rad(B) : B ∈ B0} ≥ r there is a collection of balls V with

Modp,τ (Γ,V) ≤ ε0 = C−1ε.

and rV ∈ [κ′−1r, r] for all V ∈ V .
Now, if l ≥ l0 + Ndlog2(δ−1

− )e + 1, then we can choose r = 2−k−l. Then, by
Proposition 3.7, we get for the κ-approximation Ul+k at level r that

Modp,Ul+k(ΓB(z,2−k),2) ≤ CModp,τ (Γ,V) ≤ ε. �

5.4. Proof of main theorem.

Proof of Theorem 1.6. Because the Ahlfors regular conformal dimension is always
greater than the conformal Hausdorff dimension, we have dimCH(X) ≤ dimCAR(X).
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We are left to prove the converse inequality. Since X is connected, compact, locally
connected and quasiself-similar, by Lemma 2.5 X is LLC.

Suppose that p is arbitrary and dimCH(X) < p. Fix any sequence of κ-approx-
imations {Uk}k∈N, where Uk is at scale 2−k. By Lemma 5.2, we have that X has
uniformly small moduli of annuli. Then, by Proposition 5.23, we have that

lim inf
m→∞

sup
x∈X,k∈N

{Modp(ΓB(x,2−k),2,U) : U is a κ-approximation at level 2−k−m} = 0.

Then, Theorem 3.5 implies that dimCAR(X) ≤ p. Since p > dimCH(X) is arbitrary,
this completes the proof. �
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