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Neargeodesics in Gromov hyperbolic
John domains in Banach spaces

Vasudevarao Allu and Abhishek Pandey

Abstract. In this paper, we prove that neargeodesics in Gromov hyperbolic John domains in

Banach space are cone arcs. This result gives an improvement of a result of Li (2014).

Gromovin mielessä hyperbolisten Banachin avaruuden Johnin alueiden liki-geodeesit

Tiivistelmä. Tässä työssä osoitetaan, että Gromovin mielessä hyperbolisten Banachin avaruu-

den Johnin alueiden liki-geodeesit ovat kartiokaaria. Tämä parantaa aiempaa Lin (2014) tulosta.

1. Introduction and main result

Let Ω be an open ball or half space in Rn. We denote by hΩ the hyperbolic metric
in Ω with constant curvature −1. If Ω is an upper half plane then hΩ is defined in Ω
by the means of the density

ρ(z) =
1

Im z
=

1

d(z, ∂Ω)
.

This density can be used to introduce an analogue of the hyperbolic metric in an
arbitrary subdomain D in Rn. The quasihyperbolic metric in Rn is a generalization
of hyperbolic metric, which was introduced by Gehring and Palka [5] and they have
studied the characterization of domains D in the one point compactification of Rn

which are quasiconformally equivalent to ball in Rn. Infact, such domains are homo-
geneous via quasiconformal mappings. Gehring and Palka [5] have proved that the
maximal dilatation of such quasiconformal mappings can be estimated in terms of
quasihyperbolic metric and using these estimates they obtained useful results related
to the homogeneity of domains with respect to quasiconformal family. Thus, the
importance of the quasihyperbolic metric is quite clear as it is well-behaved with the
quasiconformal mappings. The quasihyperbolic metric can be naturally defined on
a wide range of metric spaces, including Banach spaces. In this case quasiconformal
maps are defined in terms of quasihyperbolic metric and the study of this concept is
known as free quasiconformality which has been introduced and developed by Väisälä
(see [12, 13, 14]).

In this paper, our main focus is to study the geometric properties of quasihyper-
bolic quasigeodesic in John domains in Banach space.

It is well known that, in the Poincaré disk model of the hyperbolic space, hyper-
bolic geodesic between two points x, y ∈ D, denote it by γhyp[x, y], have the following
properties:

(i) l(γhyp[x, y]) ≤ C|x− y|, and
(ii) min{l(γhyp[x, z]), l(γhyp[z, y])} ≤ C d(z, ∂D),
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for all z ∈ γ, where C = π/2. The second condinition is known as the cone arc
condition by which we defined the John domains, see Definition 2.9, which was first
introduced by John [7] in the context of elasticity theory. If the curve satisfies
both conditions mentioned above it is called double cone arc by which we define the
uniform domains, see Definition 2.7. Gehring and Osgood [4] have proved that each
quasihyperbolic geodesic in a c-uniform domain D ∈ Rn is a double b-cone arc, where
the constant b depends only on c. Since John domains can be thought of one sided
uniform domains, it is natural to ask whether such result also holds for John domains
or not? In fact, this problem has been proposed by Gehring et al. [3] in the following
form.

Problem 1.1. Suppose D ⊂ Rn is a c-John domain and that γ is a quasihyper-
bolic geodesic in D. Is γ a b-cone arc for some b = b(c)?

In 1989, Gehring et al. [3] proved the following result.

Theorem A. [3, Theorem 4.1] If D ⊂ R2 is a simply connected c-John domain

then every quasihyperbolic or hyperbolic geodesic in D is a b-cone arc, where b only

depends on c.

In fact, Gehring et al. [3] have constructed several examples that shows that a
quasihyperbolic geodesic in a c-John domain need not be a b-cone arc with b = b(c)
unless n = 2 and D is simply connected. Thus, this suggests us that we need some
extra condition on the c-John domain so that the answer to the Problem 1.1 is
affirmative.

This raises the following natural problem:

Problem 1.2. Determine necessary and/or sufficient conditions for quasihyper-
bolic geodesics in a John space to be cone arcs.

In 1989, Heinonen [6, Question 2] posed the following problem.

Problem 1.3. Suppose D ⊂ Rn is a bounded c-John domain, that is quasicon-
formally equivalent to the unit ball Bn in Rn, and γ is a quasihyperbolic geodesic in
D. Is γ a b = b(c)-cone arc for some constant b?

In 2001, Bonk, Heinonen, and Koskela [2, Proposition 7.12] gave an affirmative
answer to Probelm 1.3. To be more specific, every quasihyperbolic geodesic in a
bounded Gromov hyperbolic John domain in Rn is a cone arc, as can be seen in [9,
Theorem B] or [20, p. 228]. Note that their cone arc constant depends on the space
dimension n.

Recently, various contributions have been made in this line. In 2022, Zhou, Li,
and Rasila [20] consider the problem 1.2 in the setting of metric space and obtained
a dimension-free answer to the Problem 1.3. Precisely, they proved the following:

Theorem B. [20, Theorem 1.1] Let (D, d) be a locally compact, rectifiably

connected and non complete metric space, and k be the quasihyperbolic metric on

(D, d). Suppose (D, d) is a-John. If (D, k) is K-roughly starlike and Gromov δ-
hyperbolic, then every quasihyperbolic geodesic in D is b-cone arc, where b depends

only on a,K and δ.

Remark 1.1. [20, Corollary 1.2] Observe that any proper subdomain D in Rn

is locally compact, rectifiably connected and noncomplete with respect to the usual
metric. Moreover, every δ-hyperbolic domain is roughly starlike for some K depend-
ing only on δ (see [18, Theorem 3.22]).
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The next result of Zhou and Ponnusamy [22] shows that the condition of rough
starlikeness is not required in Theorem B. Thus, the following result of Zhou and
Ponnusamy [22] gives an improvement of Theorem B.

Theorem C. [22, Theorem 1.3] Let (D, d) be a locally compact, rectifiably

connected and non complete metric space, and k be the quasihyperbolic metric on

(D, d). Suppose (D, d) is a-John space. If (D, k) is Gromov δ-hyperbolic, then every

quasihyperbolic geodesic in D is a b-cone arc with b = b(a, δ).

The main aim of this paper is to study Problem 1.2 in the Banach space setting.
Note that the quasihyperbolic geodesic may not exists in the infinite-dimensional
Banach spaces (see [12, Example 2.9] and [14, Remark 3.5]). To overcome this short-
age, Väisälä [13] introduced the concept of neargeodesics. We recall the definition of
neargeodesic.

Definition 1.1. Let E be a real Banach space and D ( E be a domain. Let
c ≥ 1. A curve γ in D is said to be c-neargeodesic if for all x, y ∈ γ, we have

lk(γ[x, y]) ≤ c kD(x, y).

Thus a curve γ is a quasihyperbolic geodesic if, and only if, it is a 1-neargeodesic.
Neargeodesics can also be termed as quasihyperbolic quasigeodesics. In [13] Väisälä
proved the following existence theorem for neargeodesics.

Theorem D. [13, Theorem 3.3] Let c > 1. Then for every pair of points

z1, z2 ∈ D there exists a c-neargeodesic joining z1 and z2.

In 2014, Li [9, Theorem 1] considered the Problem 1.3 further in the Banach
space setting and proved the following

Theorem E. [9, Theorem 1] Suppose that D ⊂ E is an a-John domain which

is homeomorphic to an c-inner uniform domain via an (M,C)-CQH. Let z1, z2 ∈ D
and γ is a c0-neargeodesic joining z1 and z2 in D, then γ is a b-cone arc with b =
b(a, c, c0,M,C).

Remark 1.2. (1) A homeomorphism f : D → D′ is said to be C-coarsely,
M-quasihyperbolic, or briefly (M,C)-CQH if it satisfies

kD(x, y)

M
− C ≤ kD′(f(x), f(y)) ≤ MkD(x, y) + C

for all x, y ∈ D.
(2) Observe that the John domain in Theorem E is Gromov hyperbolic since it is

an image of a Gromov hyperbolic domain (an inner uniform domain) under
a quasihyperbolic (M,C) quasi-isometry).

This motivates us to ask does Theorem C type result still hold if we consider
John domains in Banach space? If the answer to this question is yes, then it will give
an improvement of Theorem E of Li. Indeed, using the ideas of [22], we prove that
the answer is yes. Our main result is as follows.

Theorem 1.1. Let E be a real Banach space and D ( E be a c-John domain.

If D is Gromov hyperbolic, i.e. (D, kD) is δ-hyperbolic for some δ ≥ 0, then every

c0-neargeodesic in D is b-cone arc, where b depends only on c, c0 and δ.
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2. Preliminaries

In this section we mention some basic as well as advanced concepts and related
results in the literature, which are useful to prove our main result.

2.1. Metric geometry. Let (X, d) be a metric space. A curve is a continuous
function γ : [a, b] → X. If a curve γ : [a, b] → X is an embedding of [a, b], then it is
called an arc. Let P denote set of all partitions a = t0 < t1 < t2 < · · · < tn = b of
the interval [a, b]. The length of the curve γ in the metric space (X, d) is

ld(γ) = sup
P

n−1
∑

k=0

d(γ(tk), γ(tk+1)).

A curve is said to be rectifiable if ld(γ) < ∞. A metric space X is said to be rectifiably
connected if every pair of points x, y ∈ X can be joined by a rectifiable curve. For a
rectifiable curve γ we define arc length s : [a, b] → [0, ld(γ)] by s(t) = ld(γ|[a,t]). The
arc length function is of bounded variation. For any rectifiable curve γ : [a, b] → X,
there is a unique map γs : [0, ld(γ)] → X such that γ = γs ◦ s, and such a curve γs is
called the arclength parametrization of γ.

For x, y ∈ X, the inner length metric λX(x, y) is defined by

λX(x, y) = inf{ld(γ) : γ is a rectifiable curve joining x and y}.

Let ρ : X → [0,∞] be a Borel function. The ρ-length of a rectifiable curve γ is
ˆ

γ

ρ ds =

ˆ b

a

ρ(γ(t)) ds(t) =

ˆ ld(γ)

0

ρ ◦ γs(t) dt.

If X is rectifiably connected then ρ induces a distance function which is defined
by

dρ(x, y) = inf

ˆ

γ

ρ ds,

where infimum is taken over all rectifiable curves joining x and y in X. We note
that, in general, dρ need not to be a metric however dρ is a metric if ρ is positive and
continuous. If dρ is a metric, we say (X, dρ) is a conformal deformation of (X, d) by
the conformal factor ρ.

Definition 2.1. A curve γ : [a, b] → X is said to be geodesic if for all t, t′ ∈ [a, b],

d(γ(t), γ(t′)) = |t− t′|.

A metric space (X, d) is said to be

(1) a geodesic space if every pair of points x, y ∈ X can be joined by a geodesic,
(2) proper if every closed ball is compact in X,
(3) intrinsic or a path metric space or a length metric space if for all x, y ∈ X, it

holds that

d(x, y) = λX(x, y).

2.2. Gromov hyperbolicity. In the 1980s, Gromov established the concept
of Gromov hyperbolicity. The underlying space is frequently taken to be a geodesic
metric space, and in most cases, it is a proper metric space. We adapt the concept
of Gromov hyperbolicity, which is effective for non-geodesic spaces, since, as we shall
see later, an infinite-dimensional Banach space with quasihyperbolic metric need not
be a geodesic space. For this, we refer to the work of Väisälä [17], where the Gromov
product concept is applied.
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Definition 2.2. Let (X, d) be a metric space and let p ∈ X. The Gromov
product (x|y)p of x, y ∈ X with respect to p is defined by

(x|y)p =
1

2
(d(x, p) + d(y, p)− d(x, y)) .

Therefore, (x|y)p measures to what extent the triangle inequality for the triangle
∆xyp differs from equality.

Definition 2.3. Let δ ≥ 0. A metric space (X, d) is said to be δ-hyperbolic if
for every x, y, z, p ∈ X, the following inequality holds

(x|z)p ≥ min {(x|y)p, (y|z)p} − δ.

A metric space (X, d) is said to be Gromov hyperbolic if it is δ-hyperbolic for some
δ ≥ 0.

2.3. Examples. Clearly, R is a 0-hyperbolic. Any tree T is 0-hyperbolic. The
unit disk with hyperbolic metric is Gromov hyperbolic with δ = log 3. The complex
plane is not Gromov hyperbolic.

We shall mention an important result here due to Väisälä [17, 3.7], which is
known as the stability theorem. In fact, the stability theorem says that in an intrinsic
hyperbolic space any two quasi-isometric paths with same initial and terminal points
x, y run close to each other even if |x− y| is large. To mention this theorem, we first
need to mention the concepts of quasi-isometry and Hausdorff distance.

Definition 2.4. Let X and Y be two non-empty subsets of a metric space (M, d).
We define their Hausdorff distance dH(X, Y ) by

dH(X, Y ) = max

{

sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)

}

,

where d(a, B) = infb∈B d(a, b) denotes the distance from a point a ∈ M to a subset
B ⊂ M .

Definition 2.5. Let λ ≥ 1 and µ ≥ 0 and (X, d) and (Y, d′) be metric spaces.
We say that a map f : X → Y is a (λ, µ)-quasi-isometry if

λ−1d(x, y)− µ ≤ d′(f(x), f(y)) ≤ λd(x, y) + µ

for all x, y ∈ X. In the case where f : I → Y is a map of a real interval I, we say
that such a map (λ, µ)-quasi-isometric path.

Remark 2.1. An arc γ joining x and y in a metric space X is said to be λ-
quasigeodesic, λ ≥ 1, if

l(γ[u, v]) ≤ λd(u, v)

for all u, v ∈ γ. In such a case the arc length parametrization γs : [0, l(γ)] → γ
satisfies the inequality

λ−1|t− t′| ≤ d(γs(t), γs(t
′)) ≤ λ|t− t′|.

Thus γ is (λ, 0)-quasi-isometry.

The following theorem (see [17, 3.7]) is vital to prove our main result.

Theorem F. Suppose that X is an intrinsic δ-hyperbolic space and that γ and

α are (λ, µ)-quasi-isometric path with same initial and terminal points. Then there

exists a constant M such that

dH(γ, α) ≤ M,
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where M depends only on δ, λ, µ and dH denote the Hausdorff distance between γ
and α.

Next we mention an important result due to Väisälä (see [17, Theorem 3.18])
which says that quasi-isometries preserves hyperbolicity.

Theorem G. Let X and Y be intrinsic spaces and let f : X → Y be a (λ, µ)-
quasi-isometry. If Y is δ-hyperbolic, then X is δ′-hyperbolic with δ′ = δ′(δ, λ, µ).

2.4. Quasihyperbolic metric. In view of our frame work, we consider the
quasihyperbolic metric in the setting of Banach spaces.

Definition 2.6. Let E be a real Banach space of dimension at least 2 and let
D ( E be a domain (open, connected nonempty set). Let the metric induced by
norm on D is d. Define k : D → (0,∞) by

k(z) =
1

∆(z)
=

1

d(z, ∂D)
.

Define the quasihyperbolic length of a rectifiable curve γ in D by

lk(γ) =

ˆ

γ

ρ(z) ds =

ˆ

γ

ds

d(z, ∂D)
.

Let kD denote the quasihyperbolic metric in D which is defined by

(2.1) kD(x, y) = inf
γ
lk(γ)

where the infimum is taken over all rectifiable curves γ in D joining x to y.

Observe that (D, kD) is always an intrinsic space. For further geometric proper-
ties of the quasihyperbolic metric, we refer to [4] and [19]. Quasihyperbolic metric
satisfies the following properties.

(i) kD = hD when D is a half space in Rn.
(ii) kD ≤ hD ≤ 2kD when D is a ball in Rn.

Finally, we recall some estimates for the quasihyperbolic metric which have been
first introduced by Gehring and Palka [5, 2.1] in Rn. Later, Väisälä [12, Lemma 2.2]
have proved these inequalities in the case of Banach spaces. Let D ( E be a domain
and x, y ∈ D and let γ be a rectifiable curve joining x and y. Then we have the
following:

(2.2) k(x, y) ≥ log

(

1 +
|x− y|

min{∆(x),∆(y)}

)

≥

∣

∣

∣

∣

log
∆(y)

∆(x)

∣

∣

∣

∣

and

(2.3) lk(γ) ≥ log

(

1 +
l(γ)

min{∆(x),∆(y)}

)

.

We are going to frequently use (2.2) and (2.3) to prove our main results.

2.5. Quasihyperbolic geodesic. A rectifiable curve γ from a to b in D is
said to be quasihyperbolic geodesic if kD(a, b) = lk(γ). Obviously each subarc of a
quasihyperbolic geodesic is again a geodesic. Observe that quasihyperbolic geodesic
is curve γ for which the infimum in (2.1) is attained.

At this juncture, the natural question is: does quasihyperbolic geodesic always
exist? A result of Gehring and Osgood [4] shows that for a proper subdomain D
in Rn, the answer to this question is affirmative. For important results on quasi-
hyperbolic geodesics in domain in Rn, we refer to Martin [10]. Moreover, Martin
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[10] has proved that quasihyperbolic geodesics in Rn are C1,1 smooth, i.e. the arc
length parametrization has Lipschitz continuous derivatives. It is well known that
a quasihyperbolic geodesic between any two points exists if dim (E) is finite (see
[4, Lemma 1]). Note that the quasihyperbolic geodesic may not exist in infinite-
dimensional Banach spaces (see [12, Example 2.9] and [14, 3.5]). These examples
of domains are in Hilbert spaces, such that the complements of these domains are
uncountable. For an example of a domain that is not geodesic with respect to quasi-
hyperbolic metric such that the complement of the domain is countable, we refer to
[8, Example 4.1]. However, Väisälä [16, Theorem 2.1] has proved the existence of
quasihyperbolic geodesic when E is reflexive Banach space and D is a convex domain.
Furthermore, in 2011, Martio and Väisälä [11, Theorem 2.11] proved the existence
as well as uniqueness of a quasihyperbolic geodesic when E is a uniformly convex
Banach space and D is a convex domain.

2.6. Uniform domains.

Definition 2.7. Let c ≥ 1. A domain D in E is said to be c-uniform in the
norm metric if for each pair of points x, y ∈ D, there exists a rectifiable arc γ in D
joining x to y such that

(i) min{l(γ[x, z]), l(γ[z, y])} ≤ c d(z, ∂D), for all z ∈ γ, and
(ii) l(γ) ≤ c|x− y|,

where l(γ) denotes the arc length of γ in (D, |. |), where |. | is metric induced by
norm, and γ[x, z] denotes the part of γ between x and z. Also we say that curve γ
is a double c-cone arc.

2.7. Inner uniform domains.

Definition 2.8. Let c ≥ 1. A domain D is said to be c-inner uniform in the
norm metric if for each pair of points x, y ∈ D, there exists a rectifiable cuve γ in D
joining x to y such that

(i) min{l(γ[x, z]), l(γ[z, y])} ≤ c d(z, ∂D), for all z ∈ γ,
(ii) l(γ) ≤ cλD(x, y).

2.8. John domain.

Definition 2.9. Let c ≥ 1. A domain D is said to be c-John in the norm metric
if for each pair of points x, y ∈ D there exists a rectifiable curve γ in D joining x to
y such that for all z ∈ γ

(2.4) min{l(γ[x, z]), l(γ[z, y])} ≤ c d(z, ∂D)

and we say that such a curve γ is a c-cone arc.

Remark 2.2. We mention some of the remarks with regards to the connection
between the aforesaid domains.

(i) c-uniform implies inner c-uniform implies c-John
(ii) R2 \ {(x, 0) : x ≥ 0} is inner uniform but not uniform.
(iii) R2 \ {(n, 0) : n ∈ N} is a John domain but not inner uniform.

2.9. Gromov hyperbolicity of domains.

Definition 2.10. Let δ ≥ 0. A domain D in a Banach space E is said to be
δ-hyperbolic if (D, kD) is δ-hyperbolic.

Definition 2.11. A domain D in a Banach space E is said to be Gromov hy-
perbolic if (D, kD) is δ-hyperbolic for some δ ≥ 0.
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All c-uniform and c-inner uniform domains are Gromov δ = δ(c) hyperbolic.
R2 \ {(n, 0) : n ∈ N} is a John domain which is not hyperbolic. The broken tube
(see [12, 2.12] and for a detailed treatment we refer to [15]) in an infinite dimensional
seperable Hilbert space is a classical example of a domain which is hyperbolic but
not John and hence not uniform.

3. Proof of Theorem 1.1

We shall divide the proof of Theorem 1.1 into two theorems. Theorem 3.1 below
gives a sufficient condition for a neargeodesic to be a cone arc and Theorem 3.2
below says that in Gromov hyperbolic John domains, every neargeodesic satisfies
this sufficient condition. Therefore, combining these two theorem we obtain the
proof of our main result.

Theorem 3.1. Let γ be a c0- neargeodesic joining x, y such that the following

holds: If z1, z2 ∈ γ such that each w ∈ γ[z1, z2] satisfies ∆(w) ≤ 2min{∆(z1),∆(z2)},
then there exists a constant A ≥ 1 such that

kD(z1, z2) ≤ A.

Then γ is a C-cone arc, where C depends only on A and co.

Proof. Suppose γ is a c0- neargeodesic joining x, y and if z1 and z2 are points on
γ satisfying for each w ∈ γ[z1, z2], ∆(w) ≤ 2min{∆(z1),∆(z2)}, then there exists a
constant A ≥ 1 such that

kD(z1, z2) ≤ A.

Since ∆ is continous and γ is compact, choose a point z0 ∈ γ with

∆(z0) = max
z∈γ

∆(z).

Then there exists a unique non-negative integer n such that

2n∆(x) ≤ ∆(z0) ≤ 2n+1∆(x).

Let x = x0 and for each i = 1, 2, . . . , n, let xi be the first point on γ[x, z0] such that

∆(xi) = 2i∆(x0).

Similarly, there exists m ≥ 0 such that

2m∆(y) ≤ ∆(z0) ≤ 2m+1∆(y).

Let y = y0 and for each j = 1, 2, . . . , m, let yj be the last point on γ[z0, y] such that

∆(yj) = 2j∆(y0).

In this manner we have devided the arc γ into (n +m+ 1) subarcs

γ[x0, x1], . . . , γ[xn−1, xn], γ[xn, ym], γ[ym, ym+1], . . . , γ[y1, y0].

It is easy to observe that all these subarcs are also c0-neargeodesic between their
respective end points. Let u and v be any two adjacent points along γ. That is u
and v are xi, xi+1 or xn, ym or yj+1, yj, 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1. By the
construction, it is clear that for each z ∈ γ[u, v], we have

∆(z) ≤ 2min{∆(u),∆(v)}.

By assumption, there exists a constant A ≥ 1 such that

kD(u, v) ≤ A.



Neargeodesics in Gromov hyperbolic John domains in Banach spaces 481

To show that γ is a C-cone arc for some C, we need to show that

(3.1) min{l(γ[x, w]), l(γ[w, y])} ≤ C∆(w) for all w ∈ γ.

In order to prove (3.1), it is sufficient to prove either l(γ[x, w]) ≤ C∆(w) or l(γ[w, y])
≤ C∆(w). For this we need to consider three cases depending upon the location of
w on γ.

Case 1. Suppose w ∈ γ[xi, xi+1] for some 0 ≤ i ≤ n − 1. Then in view of (2.2),
we have

log
∆(xi)

∆(w)
≤ kD(w, xi) ≤ lk(γ[xi, w]) ≤ lk(γ[xi, xi+1]) ≤ c0 kD(xi, xi+1) ≤ c0A.

Therefore, we have

(3.2) ∆(xi) ≤ ec0A∆(w).

Moreover, we have

(3.3) l(γ[x, w]) ≤

i
∑

s=0

l(γ[xs, xs+1])

In view of (2.3), we have

log

(

1 +
l(γ[xs, xs+1])

min{∆(xs),∆(xs+1)}

)

≤ lk(γ[xs, xs+1]) ≤ c0 kD(xs, xs+1) ≤ c0A.

Therefore, this gives us that

log
l(γ[xs, xs+1])

∆(xs)
≤ log

(

1 +
l(γ[xs, xs+1])

∆(xs)

)

≤ c0A

and hence

(3.4) l(γ[xs, xs+1]) ≤ ec0 A∆(xs)

Using (3.4) in (3.3), we obtain

(3.5) l(γ[x, w]) ≤

i
∑

s=0

ec0 A∆(xs) ≤ 2 ec0 A ∆(xi) ≤ 2 e2 c0 A∆(w) (by (3.2))

and hence we have

l(γ[x, w]) ≤ C∆(w), where C = 2e2 c0A.

Theorefore, we have

(3.6) min{l(γ[x, w]), l(γ[w, y])} ≤ C∆(w) for all w ∈ γ[xi, xi+1].

Case 2. Suppose w ∈ γ[xn, ym]. Then it is easy to see that

log
∆(xn)

∆(w)
≤ kD(w, xn) ≤ lk(γ[w, xn]) ≤ lk(γ[xn, ym]) ≤ c0 kD(xn, ym) ≤ c0A,

which implies
∆(xn) ≤ ec0 A ∆(w).

An easy computation shows that

l(γ[x, w]) ≤

n−1
∑

i=0

l(γ[xi, xi+1]) + l(γ[xn, ym]) ≤

m−1
∑

i=0

ec0 A∆(xi) + ec0 A∆(xn)

≤ 3 ec0 A∆(xn) ≤ 3 e2 c0 A ∆(w).
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That is,

l(γ[x, w]) ≤ C∆(w), where C = 3 e2 c0 A,

and hence we have

(3.7) min{l(γ[x, w]), l(γ[w, y])} ≤ C∆(w) for all w ∈ γ[xn, ym].

Case 3. Suppose w ∈ γ[yj+1, yj] for some 0 ≤ j ≤ m − 1. Using the same
argument as in earlier case, we obtain

l(γ[w, y]) ≤ C∆(w), where C = 2 e2c0A,

and hence

(3.8) min{l(γ[x, w], l(γ[w, y]))} ≤ C∆(w) for all w ∈ γ[yj, yj+1].

Thus, combining (3.6), (3.7) and (3.8), we conclude that γ is a C- cone arc, where
C = 3 e2c0A. �

Theorem 3.2. Let D be a c-John domain in a Banach space E such that (D, kD)
is Gromov hyperbolic space. Fix x, y ∈ D and let γ be a c0 neargeodesic joining

x, y ∈ D. Then there exists a constant A ≥ 1 depending only c, c0 and δ such

that the following holds: If there are u, v ∈ γ such that each w ∈ γ[u, v] satisfies

∆(w) ≤ 2min{∆(u),∆(v)}, then

kD(u, v) ≤ A.

Proof. Let D be a c-John domain in a Banach space E such that (D, kD) is
Gromov δ-hyperbolic. By definition (D, kD) is an intrinsic space. Fix x, y ∈ D and
c0 > 1. In view of Theorem D, let γ be a c0-neargeodesic joining x and y. In view
of Remark 2.1, it is clear that a c0-neargeodesic γ is (c0, 0)- quasi-isometry. Since D
is a c-John, there is a c-cone arc α joining x and y. We want to use Theorem F, for
this we will prove the following lemma

Lemma 3.9. Let D be a c-John domain in a Banach space E and let α be a

c-cone arc joining x, y ∈ D. Let x0 be a midpoint of α, then for any z1, z2 ∈ α[x, x0],
we have

lk(α[z1, z2]) ≤ 3c kD(z1, z2) + 3c log 3c,

and hence the quasihyperbolic arc length parametrization of α[x, x0] is (λ, µ)-quasi-

hyperbolic quasi-isometry with λ = 3c and µ = 3c log(3c).

Proof of Lemma 3.9. Let z1, z2 ∈ α[x, x0]. Without loss of generality we can
assume that z2 ∈ α[z1, x0]. Since α is a c-cone arc and x0 is a mid point, for any
w ∈ α[z1, z2], we have

(3.10) l(α[z1, w]) ≤ l(α[x, w]) ≤ min{l(α[x, w]), l(α[w, y])} ≤ c∆(w).

Next, our aim is to show that ∆(z1) ≤ 2c∆(w). To prove this, we only need to
consider the case when d(w, z1) ≥ ∆(z1)/2 because the case d(w, z1) < ∆(z1)/2 is
trivial. If d(w, z1) ≥ ∆(z1)/2, then, since α is a c-cone arc, we have

c∆(w) ≥ l(α[z1, w]) ≥ d(z1, w) ≥ ∆(z1)/2

and hence

(3.11) ∆(z1) ≤ 2c∆(w).

By adding (3.10) and (3.11), we obtain

l(α[z1, w]) + ∆(z1) ≤ 3c∆(w),
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which gives

(3.12)
1

∆(w)
≤

3c

l(α[w, z1]) + ∆(z1)
.

A simple computation shows that

lk(α[z1, z2]) ≤

ˆ

α[z1,z2]

ds

∆(w)
≤

ˆ l(α[z1,z2])

0

3c

t +∆(z1)
dt (by (3.12))

≤ 3c(log(l(α[z1, z2]) + ∆(z1))− log(∆(z1)) ≤ 3c log

(

1 +
l(α[z1, z2])

∆(z1)

)

≤ 3c log

(

1 +
c∆(z2)

∆(z1)

)

≤ 3c

(

log

(

∆(z2)

∆(z1)

)

+ log 3c

)

,

lk(α[z1, z2]) ≤ 3c kD(z1, z2) + 3c log 3c.

Theorefore, it is clear that the quasihyperbolic arc length parametrization of α[x, x0]
is (3c, 3c log(3c))-quasi-isometry. This completes the proof. �

Since γ is (c0, 0)-quasi-isometry and α[x, x0] is (3c, 3c log(3c))-quasi-isometry, in
view of Theorem F, we have that quasihyperbolic Hausdorff distance satisfies the
following inequality

kH

D(γ, α[x, x0]) ≤ R = R(c, c0, δ).

Let u, v ∈ γ such that each w ∈ γ[u, v] satisfies ∆(w) ≤ 2min{∆(u),∆(v)}. Our aim
is to show that there exists a constant A ≥ 1 such that kD(u, v) ≤ A. For this we
need to estimate kD(u, v). Since kH

D(γ, α[x, x0]) ≤ R i.e.,

max

{

sup
x∈γ

kD(x, α[x, x0]), sup
y∈α[x,x0]

kD(γ, y)

}

≤ R.

Theorefore,

sup
x∈γ

kD(x, α[x, x0]) ≤ R.

In particular,

M1 = kD(u, α[x, x0]) = inf
b∈α[x,x0]

kD(u, b) ≤ R

and

M2 = kD(v, α[x, x0]) = inf
b∈α[x,x0]

kD(v, b) ≤ R.

There exist sequences {ai} and {bi} such that kD(u, ai) converges to M1 and kD(v, bi)
converges to M2. Since α[x, x0] is compact, ai and bi have convergent subsequence
which converges to say Zu and Zv respectively such that kD(u, Zu) ≤ R and kD(v, Zv)
≤ R. Therefore, the following inequality

log
∆(u)

∆(Zu)
≤ kD(u, Zu) ≤ R

gives us that e−R∆(u) ≤ ∆(Zu). Similarly, we have ∆(Zv) ≤ eR∆(v). Since each
w ∈ γ[u, v] satisfies ∆(w) ≤ 2min{∆(u),∆(v)}, therefore ∆(v) ≤ 2∆(u) and ∆(u) ≤
2∆(v). This gives us that ∆(Zv) ≤ 2 e2R∆(Zu). Hence it easily follows that

(3.13) kD(Zu, Zv) ≤ lk(α[Zu, Zv]) ≤ 3c log

(

1 +
c∆(Zv)

∆(Zu)

)

≤ 3c log
(

1 + 2 c e2R
)

.
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Therefore, we have

kD(u, v) ≤ kD(u, Zu) + kD(Zu, Zv) + kD(Zv, v) ≤ 2R + kD(Zu, Zv)

≤ 2R + 3c log(1 + 2c e2R) (by (3.13)).

This completes the proof of Theorem 3.2 by taking A = 2R+ 3c log(1 + 2ce2R). �

Proof of Theorem 1.1. Let D be a c-John domain such that (D, kD) is δ-hyperbolic
for some δ and let γ be a c0-neargeodesic in D. Then from Theorem 3.2 we have that
if there are u, v ∈ γ such that each w ∈ γ[u, v] satisfies ∆(w) ≤ 2min{∆(u),∆(v)},
then kD(u, v) ≤ A. Therefore, by Theorem 3.1, we conclude that γ is a b-cone arc,
where b depends only on c, δ and c0. This completes the proof of Theorem 1.1. �
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