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Strong barriers for weighted quasilinear equations

Takanobu Hara

Abstract. In potential theory, use of barriers is one of the most important techniques. We

construct strong barriers for weighted quasilinear elliptic operators. There are two applications:

(i) solvability of Poisson-type equations with boundary singular data, and (ii) a geometric version

of Hardy inequality. Our construction method can be applied to a general class of divergence form

elliptic operators on domains with rough boundary.

Painollisten kvasilineaaristen yhtälöiden vahvat esteratkaisut

Tiivistelmä. Esteiden käyttö on potentiaaliteorian tärkeimpiä menetelmiä. Tässä työssä raken-

netaan vahvoja esteratkaisuita painollisille kvasilineaarisille elliptisille operaattoreille. Tällä on kaksi

sovellusta: (i) Poissonin-tyyppisten yhtälöiden ratkeavuus singulaarisilla reuna-arvoilla ja (ii) Har-

dyn epäyhtälön geometrinen muotoilu. Työssä esitetty menetelmä soveltuu yleiseen luokkaan kar-

keareunaisten alueiden lähdemuotoisia elliptisiä operaattoreita.

1. Introduction

Let Ω ( Rn (n ≥ 1) be an open set with nonempty boundary, and let 1 < p < ∞.
We consider elliptic differential equations of the type

(1.1)

{

− divA(x,∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω,

where divA(x,∇·) is a weighted (p, w)-Laplacian type elliptic operator, w is a dou-
bling weight on Rn which admit a p-Poincaré inequality (see (2.1) and (2.2) for
detail), and f is a locally integrable function on Ω such that f/w is locally bounded.
The most simple example of w is w ≡ 1, and the reason for considering weighted
equations will be explained later. The precise assumptions on A : Ω×Rn → Rn are as
follows: For each z ∈ Rn, A(·, z) is measurable, for each x ∈ Ω, A(x, ·) is continuous,
and there exists 1 ≤ L < ∞ such that

A(x, z) · z ≥ w(x)|z|p,(1.2)

|A(x, z)| ≤ Lw(x)|z|p−1,(1.3)

(A(x, z1)−A(x, z2)) · (z1 − z2) > 0,(1.4)

A(x, tz) = t|t|p−2A(x, z)(1.5)

for all x ∈ Ω, z, z1, z2 ∈ Rn, z1 6= z2 and t ∈ R. When A(x, z) = w(x)|z|p−2z, the
operator divA(x,∇u) is called as the (p, w)-Laplacian. In particular, if A(x, z) = z,
then the operator coincides with the classical Laplacian.

The aim of this paper is to provide an existence result of weak solutions to (1.1)
for boundary singular data. The study of equation (1.1) has long history, and the
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standard approach to solve this problem is the variational method and its generaliza-
tion (see, [Lio69]). However, this method yields only solutions with finite energy. On
the other hand, we can confirm existence of infinite energy solutions for boundary
singular data by considering Poisson’s equation (in the classical sense) or ordinary
differential equations. To obtain such solutions, we divide the problem into three
steps: (i) find finite energy solutions to approximate problems, (ii) prove compact-
ness of solutions, and (iii) derive a uniform bound for solutions. The part (i) is
trivial in our setting, and we can find sufficient results for (ii) in prior work (e.g.,
[BM92, HKM06, TW02]). This sequel from [Har21, Har22] proposes a new perspec-
tive for (iii). More precisely, we construct supersolutions called strong barriers.

If there are known supersolutions to (1.1), they are an effective tool to control
boundary behavior of solutions. For concrete problems, direct calculations for the
distance from the boundary often yield sharp estimates (see, e.g., [Tol83, MS00,
BK06, AKSZ07, FMT07]). Unfortunately, this method can not be applied to general
elliptic equations on domains with rough boundary. When conditions of the form
(1.2)–(1.5) have to be considered, such as in applications to homogenization problems
(e.g., [BLP78]), it is needed to consider a construction method of supersolutions itself.

Ancona [Anc86] defined strong barriers for linear elliptic operators and con-
structed them under capacity density type conditions. In addition, a Hardy in-
equality was proved as one application of them. Since other proofs by Lewis [Lew88]
and Wannebo [Wan90], many authors have proved more general Hardy-type inequal-
ities under capacity density conditions (see, §2). However, another application of
strong barriers, to the Dirichlet problem of the type (1.1), seems not to be discussed
sufficiently.

We construct strong barriers for quasilinear operators (Theorem 5.1) and ap-
ply the result to (1.1) (Theorem 6.3). Specifically, we make auxiliary functions by
a boundary Hölder estimate in the De Giorgi–Nash–Moser theory and construct a
global function by gluing them. These results can be regarded as extensions of
[Anc86, Theorem 1 and Remark 6.2] or [Har22, Corollary 4.4] as well as analogs of
known facts for the p-Laplacian on C2 domains (see, [GT01, Problem 6.6], [MS00,
Theorem 1]). In addition, we prove a Hardy-type inequality (Corollary 5.3) by com-
bining the results and the Picone inequality (see [AH98]). For connection with prior
work on Hardy-type inequalities, we consider weighted operators borrowing a frame-
work in [HKM06] (see also [BB11, KLV21] for recent progress). Known results for
Hardy-type inequalities that seem to be particularly relevant to this study will be
discussed in §2. Throughout the paper, we assume only (1.2)–(1.5), (2.1)–(2.2) and
(p, w)-capacity density conditions. The quantitative statements in results are new
even for unweighted linear equations (compare with [Anc86, Remark 5.2]). Our
method seems to work for Cheeger differential equations on metric measure spaces
(see, [Che99, BMS01], [BB11, Chapter B.2], [Har18]). On the other hand, there are
large gaps in its direct application to minimizers of variational problems.

Organization of the paper. In §2, we confirm our problem and pick up related
results on weighted Sobolev spaces. In §3, we define weak solutions to (1.1) and prove
a Kato-type inequality. In §4, we state regularity estimates that will be used in §5.
Proofs of two lemmas will be provided in §A. In §5, we construct strong barriers for
(1.1). In §6, we apply the result in §5 to (1.1) and achieve our goals.

Notation. Let Ω ( Rn be an open set.

• 1E(x) := the indicator function of a set E.
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• C∞
c (Ω) := the set of all infinitely-differentiable functions with compact sup-

port in Ω.
• Lp(Ω;µ) := the Lp space with respect to a measure µ on Ω.
• f+ := max{f, 0} and f− := −min{f, 0}.

For a closed set Γ ⊂ Rn, we denote by δΓ the distance from Γ. For a ball B =
B(x,R) = {y : dist(x, y) < R} and λ > 0, we denote B(x, λR) by λB. The letters c
and C denote various constants with and without indices.

2. Setting and related work

2.1. Admissible weights. Let 1 < p < ∞ be a fixed number. A function
w ∈ L1

loc(R
n; dx) is called the weight if w(x) > 0 a.e. in Rn. We write w(E) =

´

E
w dx

for a Lebesgue measurable set E ⊂ Rn. Throughout the below, we assume that w
satisfying the doubling condition

(2.1) w(2B) ≤ CDw(B)

and the p-Poincaré inequality

(2.2)

 

B

|u− uB| dw ≤ CP diam(B)

(
 

λB

|∇u|p dw

)1/p

, ∀u ∈ C∞
c (Rn),

where B is an arbitrary ball in Rn,
ffl

B
:= w(B)−1

´

B
, uB :=

ffl

B
u dw and CD, CP and

λ ≥ 1 are constants. A weight w satisfying (2.1) and (2.2) is said to be p-admissible.
It is well-known that (2.1) and (2.2) yield the following Sobolev type inequality:

(2.3)

(
 

B

|u|χp dw

)1/χp

≤ C diam(B)

(
 

B

|∇u|p dw

)1/p

, ∀u ∈ C∞
c (B).

where C and χ > 1 are constants depending only on p, CD, CP and λ. For detail,
we refer to [HKM06, Chapter 20] and the references cited therein.

Muckenhoupt Ap-weights are one typical example of p-admissible weights ([HKM06,
Chapter 15]). The power function |x|µ is an Ap-weight on Rn if and only if −n <
µ < n(p− 1). It seems to be known conventionally that if Ω is a bounded Lipschitz
domain, then w(x) = δ(x)µ is an Ap-weight on Rn for −1 < µ < p− 1. Finer results
can be found in [Hor89, Hor91, DLG10, DIL+19] and [KLV21, Chapter 10]. Roughly
speaking, if Γ is an s-dimensional set with 0 < s < n, then w(x) = δΓ(x)

µ is an
Ap-weight on Rn for −(n− s) < µ < (n− s)(p− 1).

2.2. Sobolev spaces and capacities. The weighted Sobolev space H1,p(Ω;w)
is the closure of C∞(Ω) with respect to the norm

‖u‖H1,p(Ω;w) :=

(
ˆ

Ω

|u|p + |∇u|p dw

)1/p

,

where ∇u is the gradient of u in the sense of Rn. The corresponding local space
H1,p

loc (Ω;w) is defined in the usual manner. We denote by H1,p
0 (Ω;w) the closure of

C∞
c (Ω) in H1,p(Ω;w). It is well-known that if u, v ∈ H1,p

loc (Ω;w), then min{u, v} ∈

H1,p
loc (Ω;w).

Let O ⊂ Rn be open, and let K ⊂ O be compact. The (p, w)-capacity capp,w(K,O)
of the condenser (K,O) is defined by

(2.4) capp,w(K,O) := inf
{

‖∇u‖pLp(O;w) : u ≥ 1 on K, u ∈ C∞
c (O)

}

.
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For a boundary point ξ ∈ ∂Ω (more generally, for ξ ∈ Rn \ Ω), we consider the
following (p, w)-capacity density condition: There exists γ > 0 such that

(2.5)
capp,w(B(ξ, R) \ Ω, B(ξ, 2R))

capp,w(B(ξ, R), B(ξ, 2R))
≥ γ.

If (2.5) holds for all small R > 0, then ξ is a regular point of the corresponding
Dirichlet problem (see Lemma 4.3 below, [HKM06, Theorem 6.31] and the references
cited therein). Sufficient conditions for (2.5) via exterior corkscrew-type conditions
can be found in [HKM06, Theorem 6.31] and [BB11, Corollary 11.25]. In particular,
every boundary point of a ball satisfies (2.5) for all R > 0.

When (2.5) holds for all ξ ∈ Rn\Ω and R > 0, the set Rn\Ω is called as uniformly

(p, w)-fat, and this condition is closely related to Hardy-type inequalities. The study
of Hardy-type inequalities on uniformly fat sets started with Ancona’s work [Anc81].
Three proofs have been proposed that differ in their use of the uniform assumption.
(i) Ancona [Anc86] constructed strong barriers using decay of harmonic measures.
(ii) Lewis [Lew88] developed theory of self-improvement property of uniformly (p, 1)-
fat sets using Havin–Maz’ya potentials. (iii) Wannebo [Wan90] proved higher order
Hardy inequalities using an estimate for the overlap of Whitney-type cubes. Later,
Mikkonen [Mik96] proved self-improvement property of uniformly (p, w)-fat sets using
a boundary Hölder estimates of (p, w)-harmonic functions. See also [BMS01] for the
extension to the metric measure space setting. We also refer to [Haj99, KM97, Leh08,
KLT11] for further properties of uniformly fat sets. Wannebo’s method was revisited
in [EHS05, BK04], and Korte, Lehrbäck and Tuominen [KLT11] gave a new proof
of Mikkonen’s result. Further related work can be found in [KLV21, Chapter 6] and
[BEL15, Chapter 3]. However, the proof in [Anc86] is not very similar to any of the
others.

The study of cases where (2.5) holds on a part of the boundary is more limited.
The most similar known result to Corollary 5.3 below is [LTV17, Proposition 5.4] (see
also [KLV21, Theorem 7.31]). They have used Wannebo’s idea. In [EHDR15], an-
other form of Hardy inequality and its applications are discussed under assumptions
on Sobolev extensibility of domains.

3. Quasilinear elliptic operator

Assume that A : Ω×Rn → Rn satisfies (1.2)–(1.5). For simplicity, we denote the
following extended function A by A again:

A(x, z) =

{

A(x, z) x ∈ Ω,

w(x)|z|p−2z otherwise,
z ∈ Rn.

Let f ∈ L1
loc(Ω). A function u ∈ H1,p

loc (Ω;w) is called weak (super-, sub-)solution to
− divA(x,∇u) = f in Ω if

(3.1)

ˆ

Ω

A(x,∇u) · ∇ϕdx = (≥, ≤)

ˆ

Ω

ϕf dx

for any nonnegative ϕ ∈ C∞
c (Ω).

If u is a weak supersolution to − divA(x,∇u) = 0 in Ω, then, by the Riesz
representation theorem, there is a unique Radon measure ν[u] in Ω such that

ˆ

Ω

A(x,∇u) · ∇ϕdx =

ˆ

Ω

ϕdν[u]
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for any ϕ ∈ C∞
c (Ω). The measure ν[u] is called the Riesz measure of u. We refer to

[HKM06, Chapter 21] for further detail.
By (1.2), if u is a solution to − divA(x,∇u) = f in Ω, then its truncation

min{u, k} is a supersolution to − divA(x,∇u) = min{f, 0} in Ω. The monotonicity
condition (1.4) yields the following more general result.

Lemma 3.1. Assume that u and v are weak supersolutions to − divA(x,∇u) =
0 in Ω. Then,

(3.2)

ˆ

Ω

ϕdν[min{u, v}] ≥

ˆ

Ω

ϕ1{u≤v} dν[u] +

ˆ

Ω

ϕ1{u>v} dν[v]

for any nonnegative ϕ ∈ C∞
c (Ω). Moreover, if u1, · · · , uk are weak supersolutions to

− divA(x,∇u) = 0 in Ω, and if there is a Radon measure σ such that ν[uk] ≪ σ for

all k, then

(3.3) ν[min{u1, · · · , uk}] ≥ min{f1, · · · , fk}σ in Ω

in the sense of distributions, where fk is the Radon–Nikodým derivative of ν[uk] with

respect to σ.

Proof. Note that u, v ∈ H1,p
loc (Ω;w). For ǫ > 0, consider the functions

Φǫ(u− v) :=
ǫ

(u− v)+ + ǫ
and Ψǫ(u− v) := 1− Φǫ(u− v).

These functions are globally Lipschitz continuous with respect to u − v; therefore,
Φǫ(u − v),Ψǫ(u − v) ∈ H1,p

loc (Ω;w). We also note that Φǫ(u − v)(x) → 1{u≤v}(x) for
all x. Fix a nonnegative function ϕ ∈ C∞

c (Ω). Then,
ˆ

Ω

ϕdν[min{u, v}] =

ˆ

Ω

ϕΦǫ(u− v) dν[min{u, v}] +

ˆ

Ω

ϕΨǫ(u− v) dν[min{u, v}].

By the definition of ν[min{u, v}], we have
ˆ

Ω

ϕΦǫ(u− v) dν[min{u, v}] =

ˆ

{u≤v}

A(x,∇u) · ∇(ϕΦǫ(u− v)) dx

+

ˆ

{u>v}

A(x,∇v) · ∇(ϕΦǫ(u− v)) dx.

Note that (A(x,∇v)−A(x,∇u)) · ∇Φǫ(u− v) ≥ 0 by (1.4). Therefore,
ˆ

{u>v}

A(x,∇v) · ∇(ϕΦǫ(u− v)) dx+ Iǫ ≥

ˆ

{u>v}

A(x,∇u) · ∇(ϕΦǫ(u− v)) dx,

where

Iǫ :=

ˆ

{u>v}

(A(x,∇u)−A(x,∇v)) · ∇ϕΦǫ(u− v) dx.

Adding the two inequalities, we get

(3.4)

ˆ

Ω

ϕΦǫ(u− v) dν[min{u, v}] + Iǫ ≥

ˆ

Ω

ϕΦǫ(u− v) dν[u].

Similarly, since
ˆ

Ω

ϕΨǫ(u− v) dν[min{u, v}] =

ˆ

{u≤v}

A(x,∇u) · ∇(ϕΨǫ(u− v)) dx

+

ˆ

{u>v}

A(x,∇v) · ∇(ϕΨǫ(u− v)) dx
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and (A(x,∇u)−A(x,∇v)) · ∇Ψǫ(u− v) ≥ 0, we have

(3.5)

ˆ

Ω

ϕΨǫ(u− v) dν[min{u, v}] + IIǫ ≥

ˆ

Ω

ϕΨǫ(u− v) dν[v],

where

IIǫ :=

ˆ

{u≤v}

(A(x,∇v)−A(x,∇u)) · ∇ϕΨǫ(u− v) dx.

Combining (3.4) and (3.5), we obtain
ˆ

Ω

ϕdν[min{u, v}] + Iǫ + IIǫ ≥

ˆ

Ω

ϕΦǫ(u− v) dν[u] +

ˆ

Ω

ϕΨǫ(u− v) dν[v].

Take the limit ǫ → 0. By the dominated convergence theorem, the right-hand side
of this inequality goes to the right-hand of (3.2). By the same reason, Iǫ, IIǫ → 0.
Therefore, (3.2) holds. The latter statement is a consequence of induction. �

4. Regularity estimates

By standard techniques in the De Giorgi–Nash–Moser theory, the Sobolev in-
equality (2.3) yields the following global L∞ estimate and weak Harnack inequality.
Abbreviated proofs of them will be provided in §A.

Lemma 4.1. Let u ∈ H1,p(Ω;w) be a weak subsolution to − divA(x,∇u) = f

in Ω. Let F+ =
(

diam(Ω)p‖f+/w‖L∞(Ω)

)1/(p−1)
. Then,

ess sup
Ω

u ≤ sup
∂Ω

u+ CF+,

where sup∂Ω u := inf{k ∈ Rn : (u− k)+ ∈ H1,p
0 (Ω;w)} and C is a constant depending

only on p, CD and {CP , λ}. In particular, there is a constant c1 = c1(p, CD, {CP , λ})
such that if ‖f+/w‖L∞(Ω) ≤ c1 diam(Ω)−p, then ess supΩ u ≤ sup∂Ω u+ 1/4.

Lemma 4.2. Let u ∈ H1,p(2B;w) be a nonnegative weak supersolution to

− divA(x,∇u) = f in 2B, and let F− =
(

Rp‖f−/w‖L∞(2B)

)1/(p−1)
. Then, (i) for

each 0 < s < χ(p− 1), there exists a constant C depending only on p, CD, {CP , λ},
L and s such that

(4.1)

(
 

B

us dw

)1/s

≤ C
(

ess inf
B

u+ F−

)

.

(ii) there exists a constant C depending only on p, CD, {CP , λ} and L such that

(4.2) Rp−1

 

B

|∇u|p−1 dw ≤ C
(

ess inf
B

u+ F−

)p−1

.

It is well-known that Lemma 4.2 yields a local Hölder estimate (see, e.g., [GT01,
Theorem 8.24]). Below, we always assume that f/w is locally bounded. Under this
assumption, any weak solution u to − divA(x,∇u) = f can be regard as a locally
Hölder continuous function.

We use the exterior condition (2.5) via the following boundary Hölder estimate.
The proof below is the same as [GT01, pp. 206–209] (see also [GZ77] and [Str84]).

Lemma 4.3. Let B be a ball centered at ξ ∈ ∂Ω with radius R. Assume that

(2.5) holds. Let u ∈ H1,p(Ω;w) ∩ L∞(Ω) satisfy − divA(x,∇u) = f in Ω ∩ 4B. Let
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F± =
(

Rp‖f±/w‖L∞(2B)

)1/(p−1)
. Then,

osc
Ω∩B

u ≤

(

1−
γ1/(p−1)

C

)

osc
Ω∩4B

u+
γ1/(p−1)

C
osc
∂Ω∩B

u+ F+ + F−,

where C is a constant depending only on p, CD, {CP , λ} and L and osc u := sup u−
inf u.

Proof. We first assume that u is a nonnegative supersolution to − divA(x,∇u) =
f in Ω ∩ 4B. Let m = inf∂Ω∩B u, and let

u−
m(x) =

{

min{u(x), m} x ∈ Ω,

m otherwise.

Note that 0 ≤ u−
m ≤ m and u−

m = m on B \Ω. Take η ∈ C∞
c (2B) such that 0 ≤ η ≤ 1

in 2B, η = 1 on B and |∇η| ≤ C/R. Then, (2.5) gives

mpγ ≤
mpcapp,w(B \ Ω, 2B)

capp,w(B, 2B)
≤ CRp

 

2B

|∇(u−
mη)|

p dw.

By the product rule, ∇(u−
mη) = ∇u−

mη + u−
m∇η a.e. Therefore,

(4.3)

ˆ

2B

|∇(u−
mη)|

p dw ≤ C

(

R−p

ˆ

2B

(u−
m)

pdµ+

ˆ

2B

|∇u−
m|

pηp dw

)

.

By Lemma 4.2 (i), the former term on the right-hand side is estimated by

(4.4)

 

2B

(u−
m)

p dw ≤ m

 

2B

(u−
m)

p−1 dw ≤ Cm
(

inf
B

u−
m + F−

)p−1

.

Consider the test function (m−u−
m)η

p. Since u−
m is a supersolution to − divA(x,∇u) =

min{f, 0} in Ω, we have
ˆ

Ω

A(x,∇u−
m) · ∇(m− u−

m)η
p dx+ p

ˆ

Ω

A(x,∇u−
m) · ∇ηηp−1(m− u−

m) dx

≥

ˆ

Ω

(m− u−
m)η

pmin{f, 0}

w
dw.

By (1.2) and (1.3), this inequality yields
ˆ

2B

|∇u−
m|

pηp dw =

ˆ

2B

|∇(m− u−
m)|

pηp dw

≤ Cm

(

R−1

ˆ

2B

|∇u−
m|

p−1 dw + F p−1
− R−pw(2B)

)

.

By Lemma 4.2 (ii), the former term on the right-hand side is estimated by

(4.5) R−1

 

2B

|∇u−
m|

p−1 dw ≤ CR−p
(

inf
B

u−
m + F−

)p−1

.

Combining (4.3), (4.4) and (4.5), we obtain

(4.6) m ≤
C

γ1/(p−1)

(

inf
B

u−
m + F−

)

.

Let M(R) = supΩ∩B(ξ,R) u and m(R) = infΩ∩B(ξ,R) u. Applying (4.6) to M(4R)−
u and u−m(4R), we obtain

(4.7) M(4R)− sup
∂Ω∩B

u ≤
C

γ1/(p−1)
(M(4R)−M(R) + F+) ,
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inf
∂Ω∩B

u−m(4R) ≤
C

γ1/(p−1)
(m(R)−m(4R) + F−) .

Adding the two inequalities, we arrive at the desired estimate. �

Using (4.7) in Lemma 4.3 iteratively, we get the following lemma.

Lemma 4.4. Let B be a ball centered at ξ ∈ ∂Ω with radius R0. Assume

that (2.5) holds for all 0 < R ≤ R0. Then, there are positive constants c2 and

θ ∈ (0, 1) depending only on p, CD, {CP , λ}, L and γ such that if u ∈ H1,p
0 (Ω;w)

is a nonnegative bounded weak subsolution to − divA(x,∇u) = f in Ω ∩ B, and if

‖f+/w‖L∞(Ω) ≤ c2R
−p
0 (supΩ∩B u)p−1

, then supΩ∩θB u ≤ (1/4) supΩ∩B u.

5. Construction of strong barriers

We prove Theorem 5.1 using Lemma 5.2 infinitely many times. Lemma 5.2 itself
is a consequence of regularity estimates in the previous section. Also, we prove
Corollary 5.3 as a corollary of Theorem 5.1.

Theorem 5.1. Let Γ ⊂ ∂Ω be a closet set, and assume that (2.5) holds for all

ξ ∈ Γ and R > 0. Then, there exists a nonnegative function sΓ ∈ H1,p
loc (Ω;w) ∩ C(Ω)

satisfying

(5.1) − divA(x,∇sΓ) ≥ cH
sΓ(x)

p−1

δΓ(x)p
w(x) in Ω

and

(5.2) δΓ(x)
α ≤ sΓ(x) ≤ 30 δΓ(x)

α

for all x ∈ Ω, where cH and α > 0 are positive constants depending only on p, CD,

{CP , λ}, L and γ.

Lemma 5.2. Let B be a ball centered at ξ ∈ ∂Ω with radius R0. Assume that

(2.5) holds for all 0 < R ≤ R0. Let c3 := min{c1, c2}, where c1 and c2 are constants in

Lemmas 4.1 and 4.4. Then, there exists a function uB ∈ H1,p(Ω;w)∩C(Ω) satisfying

− divA(x,∇uB) = c3R
−p
0 w in Ω ∩ B,(5.3)

1

4
≤ uB ≤

5

4
in Ω,(5.4)

uB = 1 on Ω \B, uB ≤
1

2
on Ω ∩ θB,(5.5)

where θ is a constant in Lemma 4.4.

Proof. We follow the method in [Lio69, p. 177]. Take ηB ∈ C∞(Ω) such that

ηB =
1

4
on Ω ∩ B/2, ηB = 1 on Ω \B,

1

4
≤ ηB ≤ 1 in Ω.

Consider the Dirichlet problem
{

− divA(x,∇ (vB + ηB)) = c3R
−p
0 w in Ω ∩ B,

vB ∈ H1,p
0 (Ω ∩ B;w).

By (2.3), the right-hand side belongs to the dual of H1,p
0 (Ω ∩ B;w). Therefore, by

the Minty–Browder theorem, there exists a unique solution uB ∈ ηB+H1,p
0 (Ω∩B;w)

to (5.3). By Lemma 4.2, uB is continuous in Ω∩B. Meanwhile, if x ∈ Ω ∩ ∂B, then
uB is continuous at x by Lemma 4.3. Consequently, uB is continuous in Ω. By the
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comparison principle, uB ≥ 1/4 in Ω. Also, by Lemma 4.1, uB ≤ sup∂Ω u+1/4 ≤ 5/4
in Ω. The latter bound in (5.5) follows from Lemma 4.4. �

Proof of Theorem 5.1. First, we construct a function s by the following two
steps. (i) For k ∈ Z, set Ek = {x ∈ Ω: δΓ(x) ≤ (θ/2)k}, where θ is a constant in
Lemma 5.2. Choosing {ξj}j∈Jk ⊂ Γ, we construct a locally finite covering

{B(ξj, 2(θ/2)
k+1)}j∈Jk

of Ek+1. Note that

Ek+1 ⊂ Dk := Ω ∩
⋃

j∈Jk

B(ξj, (θ/2)
k) ⊂ Ek.

Using Lemma 5.2, we define a function vk ∈ H1,p
loc (Ω;w) ∩ C(Ω) by

vk(x) = min
ξj∈Jk

B(ξj ,(θ/2)
k)∋x

uB(ξj ,(θ/2)k)(x) for x ∈ Dk

and vk = 1 on Ω \Dk. By (5.4) and (5.5), we have

(5.6)
1

4
≤ vk ≤

5

4
in Ω

and

(5.7) vk ≤
1

2
on Ek+1.

Moreover, by Lemma 3.1, we have

(5.8) − divA(x,∇vk) ≥ c3

(

2

θ

)kp

w in Dk.

(ii) Define a function s on Ω by

s(x) = inf
Ek∋x

(

3

4

)k

vk(x).

By (5.6) and the inequality (3/4)6 ≤ 1/5 < (3/4)5,
(

3

4

)k−6

vk−6(x) ≥

(

3

4

)k−6
1

4
≥

(

3

4

)k
5

4
≥

(

3

4

)k

vk(x)

for any x ∈ Ek. Therefore,

(5.9) s(x) = min

{

(

3

4

)k−5

vk−5(x), · · · ,

(

3

4

)k

vk(x)

}

for all x ∈ Ek \ Ek+1. In particular, s ∈ H1,p
loc (Ω;w) ∩ C(Ω).

Next, we claim that

(5.10) − divA(x,∇s) ≥ c3

(

3

4

)k(p−1)(
2

θ

)(k−5)p

w

in an open neighborhood of Ek \Ek+1. By Lemma 3.1 and (5.8), this inequality holds
in Dk \ Ek+1. Meanwhile, by (5.7), we have

vk−1 ≤
1

2
<

3

4
=

3

4
vk in Ek \Dk.
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By continuity of vk and vk−1, we can take an open set Ok such that vk−1 < (3/4)vk
in Ok. Note that

s(x) = min

{

(

3

4

)k−5

vk−5(x), · · · ,

(

3

4

)k−1

vk−1(x)

}

for all x ∈ Ok. Since vk−5, . . . , vk−1 satisfy (5.8) in Dk−1, (5.10) holds in Ok ∩Dk−1

by the same reason as above. The open set (Dk \Ek+1)∪ (Ok∩Dk−1) has the desired
property.

Finally, we consider pointwise behavior of s. Fix x ∈ Ek \ Ek+1. By (5.9), we
have

(5.11)
1

4

(

3

4

)k

≤ s(x) ≤
5

4

(

4

3

)5(
3

4

)k

.

By the latter inequality and the definition of Ek, the right-hand side of (5.10) is
estimated from below by

c3

(

3

4

)k(p−1)(
2

θ

)(k−5)p

w(x) ≥ sp−1 cH
δΓ(x)p

w(x),

where cH = c3
{

(5/4) (4/3)5
}1−p

(θ/2)6p. Therefore, s satisfies (5.1). Take α > 0
such that 3/4 = (θ/2)α. By (5.11), we have

1

4
δΓ(x)

α ≤ s(x) ≤
5

4

(

4

3

)6

δΓ(x)
α ≤

30

4
δΓ(x)

α

for all x ∈ Ω. Thus, the function sΓ := 4s has the desired properties. �

Corollary 5.3. Assume that w is a p-admissible weight on Rn. Let Γ ⊂ ∂Ω be

a nonempty closed set, and assume that (2.5) holds for all ξ ∈ Γ and R > 0. Let

cH = cH(p, CD, {CP , λ}, L = 1, γ) > 0 be the constant in Theorem 5.1. Then,

cH

ˆ

Ω

|ϕ|p

δpΓ
dw ≤

ˆ

Ω

|∇ϕ|p dw

for all ϕ ∈ C∞
c (Ω).

Proof. Applying Theorem 5.1 to A(x, z) = w(x)|z|p−2z, we get a nonnegative
function sΓ ∈ H1,p

loc (Ω;w) ∩ C(Ω) satisfying

−∆p,wsΓ ≥ cH
sΓ(x)

p−1

δΓ(x)p
w(x) in Ω.

Take ϕ ∈ C∞
c (Ω) such that ϕ ≥ 0. Then,

cH

ˆ

Ω

ϕp

δpΓ
dw = cH

ˆ

Ω

ϕp

sp−1
Γ

sp−1
Γ

δpΓ
dw ≤

ˆ

Ω

ϕpdν[sΓ]

sp−1
Γ

,

where ν[sΓ] is the Riesz measure of sΓ with respect the (p, w)-Laplacian. Applying
the Picone inequality ([AH98, Theorem 1.1]) to the right-hand side (for detail, see
also [HS20, Lemma 3.2]), we get

ˆ

Ω

ϕpdν[sΓ]

sp−1
Γ

≤

ˆ

Ω

|∇ϕ|p dw.

Combining the two inequalities, we obtain the desired inequality. �
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6. Applications to Dirichlet problems

We discuss the substitutions into concave functions of the barriers constructed
in the previous section. Taking them as super-solutions, we derive Theorem 6.3.

Lemma 6.1. Assume that there exists a function sΓ on Ω satisfying (5.1) and

(5.2). Let h : (0,∞) → (0,∞) be a continuously differentiable nondecreasing concave

function such that

g(s) :=

ˆ s

0

h(t)
dt

t
< ∞

for some s > 0. Then, v(x) := g(sΓ(x)) ∈ H1,p
loc (Ω;w) ∩ C(Ω) is a nonnegative weak

supersolution to

− divA(x,∇v) ≥ cH
h(δΓ(x)

α)p−1

δΓ(x)p
w(x) in Ω.

Moreover, g(δΓ(x)
α) ≤ v(x) ≤ g(30 δΓ(x)

α) for all x ∈ Ω.

Proof. For the sake of simplicity, we denote sΓ by s and the derivative of f(t) by
f ′(t). By assumption, h′(t)t ≤ h(t) for all t ∈ (0,∞); therefore, g is increasing and
concave on (0,∞). Fix a nonnegative function ϕ ∈ C∞

c (Ω). Since g′′ ≤ 0, we have
ˆ

Ω

A(x,∇s) · ∇
(

g′(s)p−1
)

ϕdx ≤ 0.

By the chain rule, (1.5) and (5.1), we get
ˆ

Ω

A(x,∇g(s)) · ∇ϕdx =

ˆ

Ω

A(x, g′(s)∇s) · ∇ϕdx

≥

ˆ

Ω

A(x,∇s) · ∇
(

g′(s)p−1ϕ
)

dx

≥ cH

ˆ

Ω

sp−1

δpΓ

(

g′(s)p−1ϕ
)

dw.

Since h is nondecreasing, (5.2) gives

sp−1g′(s)p−1 = h (s)p−1 ≥ h(δαΓ)
p−1.

The latter statement is a consequence of the monotonicity of g. �

Proposition 6.2. Let Ω be a bounded open set, and let Γ ⊂ ∂Ω be a nonempty

closed set satisfying (2.5) for all ξ ∈ Γ and R > 0. Let f ∈ L1
loc(Ω), and assume that

there exists a function h satisfying the assumption in Lemma 6.1 and

|f(x)| ≤ cH
h(δΓ(x)

α)p−1

δΓ(x)p
w(x)

for almost every x ∈ Ω, where cH and α are constants in Theorem 5.1. Then, there

exists a nonnegative unique weak solution u ∈ H1,p
loc (Ω;w)∩C(Ω) to (1.1) in the sense

that (i) the zero extension of u belongs to H1,p
loc (R

n \ Γ;w), and (ii) limx→ξ u(x) = 0
for all ξ ∈ Γ.

Proof. Using Theorem 5.1 and Lemma 6.1, we get a nonnegative supersolution
v(x) = g(s(x)) to − divA(x,∇u) = |f | in Ω. Set Dk = {x ∈ Ω: dist(x,Γ) > 1/k},
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and consider the sequence of weak solutions {vk}
∞
k=1 ⊂ H1,p

0 (Ω;w) ∩ C(Ω) to
{

− divA(x,∇vk) = |f |1Dk
in Ω,

vk = 0 on ∂Ω.

Since Ω is bounded, the right-hand side belongs to the dual of H1,p
0 (Ω;w). By the

comparison principle in [Har22, Theorem 3.5],

(6.1) 0 ≤ vk(x) ≤ v(x)

for all x ∈ Ω. Also, consider the sequence of weak solutions {uk}
∞
k=1 ⊂ H1,p

0 (Ω;w) ∩
C(Ω) to

{

− divA(x,∇uk) = f1Dk
in Ω,

uk = 0 on ∂Ω.

By the comparison principle for weak solutions, we have

−vk(x) ≤ uk(x) ≤ vk(x)

for all x ∈ Ω; therefore,

(6.2) |uk(x)| ≤ v(x)

for all x ∈ Ω. Fix j ≥ 1, and take a nonnegative function η ∈ C∞(Rn) such that
η ≡ 1 on Dj and η ≡ 0 on Ω \Dj+1. Testing the equation of uk with ukη

p, we get
ˆ

Ω

A(x,∇uk) · ∇ukη
p dx+ p

ˆ

Ω

A(x,∇uk) · ∇ηηp−1uk dx =

ˆ

Ω

fukη
p dx.

By (1.2) and (1.3), this inequality yields

(6.3)

ˆ

Dj

|∇uk|
p dw ≤ C

ˆ

Dj+1

|uk|
p dw + C

∥

∥

∥

∥

f

w

∥

∥

∥

∥

p/(p−1)

L∞(Dj+1)

w(Dj+1).

By (6.2) and assumption on f , the right-hand side is bounded with respect to k.
Meanwhile, Lemma 4.2 yields a local Hölder estimate of uk. Therefore, for each
j ≥ 1, there are constants Cj and α ∈ (0, 1) independent of k such that

‖uk‖Cα(Dj)
+ ‖∇uk‖Lp(Dj ,w) ≤ Cj.

Take a subsequence of {uk}
∞
k=1 and a function u on Ω such that uk → u locally

uniformly in Ω and ∇uk ⇀ ∇u weakly in Lp(Dj;w) for all j. Let η be the function
defined before. By the product rule, we have

ˆ

Ω

|∇(ukη)|
p dw ≤ C

(

ˆ

Dj+1

|∇uk|
pηp dw +

ˆ

Dj+1

|uk|
p|∇η|p dw

)

.

The left-hand side belong to H1,p
0 (Ω;w), and thus, uη ∈ H1,p

0 (Ω;w). This implies
that the zero extension of u belongs to H1,p

loc (R
n \ Γ;w). Using the test function

uη − ukη ∈ H1,p
0 (Ω;w), we obtain

ˆ

Ω

A(x,∇uk) · ∇(u− uk)η dx = −

ˆ

Ω

A(x,∇uk) · ∇η(u− uk) dx

+

ˆ

Ω

f(u− uk)η dx.

(6.4)
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Take the limit k → ∞. The latter term on the right-hand side goes to zero. Moreover,
by (1.3), the former term is estimated by

∣

∣

∣

∣

ˆ

Ω

A(x,∇uk) · ∇η(u− uk) dx

∣

∣

∣

∣

≤ C

(

ˆ

Dj+1

|∇uk|
p dw

)(p−1)/p(
ˆ

Dj+1

|u− uk|
p dw

)1/p

.

The right-hand side goes to zero because uk → u uniformly in Dj+1. Thus, the
left-hand side of (6.4) goes to zero. Meanwhile, by the weak convergence of ∇uk in
Lp(Dj+1;w), we have

(6.5)

ˆ

Ω

A(x,∇u) · ∇(u− uk)η dx → 0.

Combining (6.4), (6.5) and (1.4), we find that
ˆ

Dj

A(x,∇u)−A(x,∇uk) · ∇(u− uk)η dx → 0.

It follows from [HKM06, Lemma 3.73] that u satisfies − divA(x,∇u) = f in Ω.
Interior regularity of u follows from Lemma 4.2. If ξ ∈ Γ, then u is continuous at ξ
by the upper bound (6.2).

Let u, v ∈ H1,p
loc (Ω;w) ∩ C(Ω) be weak solutions to (1.1) satisfying the Dirichlet

boundary condition in the statement. Assume that u(x) > v(x) for some x ∈ Ω.
Then, D = {x ∈ Ω: u(x) > v(x)+ǫ} is a nonempty bounded open set for some ǫ > 0.
If dist(D,Γ) = 0, then there is a boundary point ξ ∈ D ∩ Γ. This contradicts to
assumption because (u−v)(ξ) = 0 and infD(u−v) ≥ ǫ > 0. Therefore, dist(D,Γ) > 0
and u, v ∈ H1,p(D;w). By density,

ˆ

D

(A(x,∇u)−A(x,∇v)) · ∇ϕdx = 0

for all ϕ ∈ H1,p
0 (D;w). Testing this equation with ϕ = u− v − ǫ and using (1.4), we

find that u = v on D. This contradicts to the assumption. �

Theorem 6.3. Assume that Ω is a bounded open set and that Rn\Ω is uniformly

(p, w)-fat. Let f ∈ L1
loc(Ω), and assume that there are constants K > 0 and 0 < β ≤

α such that

|f(x)| ≤ Kδ∂Ω(x)
β(p−1)−p w(x)

for almost every x ∈ Ω, where α is a positive number in Theorem 5.1. Then, there

exists a unique weak solution u ∈ H1,p
loc (Ω;w) ∩ C(Ω) to (1.1). Moreover,

(6.6) |u(x)| ≤ CK1/(p−1)δ∂Ω(x)
β

for all x ∈ Ω, where C = c1−p
H 30β/α(α/β).

Proof. Applying to Proposition 6.2 to Γ = ∂Ω and h(t) = (K/cH)
1/(p−1)tβ/α,

we obtain the desired unique weak solution u. The upper bound (6.6) follows from
(6.2). �
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Appendix A. Proofs of Lemmas 4.1 and 4.2

The proofs below are combinations of [KS80, p. 63, Lemma B.2], [GT01, Theo-
rem 8.18] and [HKM06, Theorems 3.59 and 7.46]. See also [Str84, Chapter 3.1.0].

Proof of Lemma 4.1. Fix any k > sup∂Ω u, and consider the test function
(u− k)+ ∈ H1,p

0 (Ω;w). By (1.2), we have
ˆ

Ω

|∇(u− k)+|
p dw ≤

ˆ

Ω

A(x,∇u) · ∇(u− k)+ dx =

ˆ

Ω

f(u− k)+ dx.

By Hölder’s inequality, the right-hand side is estimated by
ˆ

Ω

f(u− k)+ dx ≤

(
ˆ

Ω

(u− k)χp+ dw

)1/χp ∥
∥

∥

∥

f+
w

∥

∥

∥

∥

L∞(Ω)

w([u > k])1−1/χp.

Meanwhile, by taking a ball B with radius diam(Ω) such that Ω ⊂ B, (2.3) yields
(

1

w(B)

ˆ

Ω

(u− k)χp+ dw

)1/χ

≤ C diam(Ω)p
1

w(B)

ˆ

Ω

|∇(u− k)+|
p dw.

Combining the three inequalities, we obtain
(

1

w(B)

ˆ

Ω

(u− k)χp+ dw

)1/χp

≤ A

(

w([u > k])

w(B)

)(1−1/χp)/(p−1)

,

where A = C diam(Ω)p/(p−1) ‖f+/w‖
1/(p−1)
L∞(Ω) . By Chebyshev’s inequality,

w([u > h])

w(B)
≤

Aχp

(h− k)χp

(

w([u > k])

w(B)

)(χp−1)/(p−1)

for any h > k. From [KS80, p. 63, Lemma B.1], the desired estimate follows. �

Proof of Lemma 4.2. Set ū = u + F−. Consider the test function ūβηp, where
β < 0 and η ∈ C∞

c (2B). Since ∇ū = ∇u, we have

(A.1) β

ˆ

2B

A(x,∇ū) ·∇ūūβ−1ηp dx+p

ˆ

2B

A(x,∇ū) ·∇ηηp−1ūβ dx ≥

ˆ

2B

fūβηp dx.

By the definition of F−, the right-hand side is estimated from below by
ˆ

2B

f−ū
βηp dx ≤

C

Rp

ˆ

2B

ūp−1+βηp dw.

Hence, by (1.2) and (1.3), we obtain

(A.2) |β|

ˆ

2B

|∇ū|pūβ−1ηp dw ≤ C
(

|β|1−p‖∇η‖pL∞(2B) +R−p
)

ˆ

supp η

ūp−1+β dw.

Fix a ball B(x, r) such that B(x, 4λr) ⊂ 2B, where λ is a constant in (2.2). Assume
that β 6= 1− p. Let r ≤ r1 < r2 ≤ 2r. By the chain rule, (A.2) and (2.3), we have

(A.3)

(
 

B(x,r1)

ūχ(p−1+β) dw

)1/χ

≤
C · c(β)

(r2 − r1)p

 

B(x,r2)

ūp−1+β dw,

where c(β) = |(p− 1 + β)/p|p(|β|−p + |β|−1). First, we consider the case β > 1 − p.
Using (A.3) finitely many times, we get

(A.4)

(
 

B(x,r)

ūs dw

)1/s

≤ C

(
 

B(x,2r)

ūs0 dw

)1/s0

,
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where s > s0 > 0 and C is a constant depending also on s0. Next, for k = 0, 1, 2, · · · ,
we consider βk = (1 − p) − χks0 and the sequence of balls Bk = B(x, (1 + 2−k)r).
Then, (A.3) gives

(
 

Bk+1

ū−χk+1s0 dw

)−1/χk+1s0

≥
1

(

C1Ck
2

)1/χk

(
 

Bk

ū−χks0 dw

)−1/χks0

,

where C1 and C2 are constants depending also on s0, but independent of k. Since
∑

k 1/χ
k and

∑

k k/χ
k are finite, we obtain

(A.5) ess inf
B(x,r)

ū ≥
1

C

(
 

B(x,2r)

ū−s0 dw

)−1/s0

.

Finally, we consider β = 1− p. Then, (A.2) yields
ˆ

B(x,2λr)

|∇ log ū|p dw ≤ Cr−pw(B(x, 4λr)).

Applying (2.2) to the left-hand side, we obtain

(A.6)

 

B(x,2r)

| log ū− c|p dw ≤ Crp
 

B(x,2λr)

|∇ log ū|p dw ≤ C,

where c =
ffl

B(x,2r)
log ū dw. Combining (A.4), (A.5) and (A.6) and using the John-

Nirenberg lemma in [HKM06, Chapter 19] (see also [SC02, Lemma 2.2.6]), we arrive
at

(
 

B(x,r)

ūs dw

)1/s

≤ C ess inf
B(x,r)

ū.

The desired inequality (4.1) follows from this inequality and a covering argument.
The latter inequality (4.2) is a consequence of (4.1) and (A.2). �
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