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Weak limit of W 1,2 homeomorphisms

in R
3 can have any degree

Ondřej Bouchala, Stanislav Hencl and Zheng Zhu

Abstract. In this paper for every k ∈ Z we construct a sequence of weakly converging homeo-
morphisms hm : B(0, 10) → R

3, hm ⇀ h in W 1,2(B(0, 10)), such that hm(x) = x on ∂B(0, 10) and
for every r ∈

(

5

16
, 7

16

)

the degree of h with respect to the ball B(0, r) is equal to k on a set of positive
measure.

Avaruuden R
3 Sobolevin W 1,2-homeomorfismien

heikolla raja-arvolla voi olla mikä tahansa aste

Tiivistelmä. Jokaista kokonaislukua k ∈ Z kohti rakennetaan avaruuteen W 1,2(B(0, 10)) kuu-
luvien homeomorfismien hm : B(0, 10) → R

3 heikosti suppeneva jono hm ⇀ h, jonka jäsenet toteut-
tavat reunalla ∂B(0, 10) yhtälön hm(x) = x, ja jokaista arvoa r ∈

(

5

16
, 7

16

)

kohti rajafunktion h aste
kuulan B(0, r) suhteen on positiivismittaisella joukolla täsmälleen k.

1. Introduction

In this paper, we study classes of mappings that appear naturally in the modeling
of deformations in Continuum Mechanics models. Let Ω ⊆ R

3 be a domain, i.e. a
non-empty connected open set, and let h : Ω → R

3 be a mapping. Following the
pioneering papers of Ball [1] and Ciarlet and Nečas [7] we ask if our mapping is in
some sense injective, as the physical “non-interpenetration of the matter” indicates
that a deformation should be one-to-one.

One of the crucial tools in the study of the injectivity of such a mapping (if it
is continuous) is the use of the topological degree. Let B ⊆ Ω be a ball, let h be
continuous and y /∈ h(∂B). Informally speaking the topological degree deg(h,B, y)
is the number of preimages of y under h in B taking the orientation into account (see
Preliminaries for more about the degree). For example, the topological degree of a
homeomorphism is always 0 or 1 (if y /∈ h(B) or y ∈ h(B)) or always −1 or 0 (if h is
reversing the orientation), see e.g. [14] or Proposition 2.1.

The topological degree of a continuous mapping depends only on the boundary
mapping h|∂B, i.e. we can extend it in any continuous way inside and we get the
same value of deg(h,B, y). Given h ∈ W 1,p, p > 2, we know that h|∂B(c,r) ∈ W 1,p for
almost all r, and hence h has a continuous representative there (as p > 2 and 2 is
the dimension of the sphere) and we can thus define deg(h,B(x, r), y). This idea was
used by Müller and Spector [18] (see also e.g. [2, 13, 12, 19, 20, 21, 22]) to define and
study the class of mappings in W 1,p(Ω,R3), p > 2, that satisfy the so called (INV)
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condition. Informally speaking, the (INV) condition means that the ball B(c, r) is

mapped inside the image of the sphere h(S(c, r)) and the complement Ω \B(c, r) is
mapped outside h(S(c, r)) (see [18] for the formal definition). From [18] we know
that mappings in this class with Jh > 0 a.e. have many desirable properties: they are
one-to-one a.e., map disjoint balls into essentially disjoint balls, deg(h,B, ·) ∈ {0, 1}
for a.e. ball B, this class is weakly closed and so on.

In all results in the previous paragraph, the authors assume that h ∈ W 1,p(Ω,R3)
for some p > 2. However, in some real models for n = 3, one often works with
integrands containing the classical Dirichlet term |Df |2 and thus this assumption is
too strong. Therefore, for n = 3, Conti and De Lellis [8] introduced the concept of
the (INV) condition also for W 1,2∩L∞ (see also [4], [3], [10] and [11] for some recent
work). Note that mappings in W 1,2|∂B(c,r) do not need to be continuous, but we can
still define some notion of degree there using the ideas of Brezis and Nirenberg [6],
i.e. we can still define what “inside h(∂B(c, r))” is.

Mappings satisfying the (INV) condition in W 1,2 ∩ L∞ (as defined in [8]) still
have all desirable properties but unfortunately this class is not weakly closed and
therefore not suitable for the approach of Calculus of Variations. Conti and De Lellis
[8] constructed a sequence of bi-Lipschitz mappings um in R

3 (which can be easily
extended onto B(0, 10) with um(x) = x on ∂B(0, 10)) such that their weak limit u
does not satisfy the (INV) condition as the degree of the limit is −1 on a set of positive
measure. This somehow means that the weak limit of W 1,2 ∩ L∞ sense-preserving
homeomorphisms can in some sense “revert its orientation” or map something that
was inside the ball outside of the image of its sphere.

The main aim of this paper is to study if the weak limit of W 1,2 ∩ L∞ homeo-
morphisms can have even more pathological behavior, i.e. if the degree could be
any k ∈ Z. Our example shows that this is indeed possible, i.e. the weak limit of
W 1,2 ∩ L∞ homeomorphisms can somehow “fold itself k-times”.

Theorem 1.1. Let k ∈ Z. There exists a sequence of W 1,2-homeomorphisms

{hm} from B(0, 10) ⊆ R
3 onto B(0, 10) ⊆ R

3 such that:

(i) hm weakly converges to h in W 1,2(B(0, 10),R3).
(ii) h

∣

∣

∂B(0,10)
and hm

∣

∣

∂B(0,10)
are identity for every m ∈ N.

(iii) There exists a set A ⊆ B(0, 10) with positive measure such that for every

y ∈ A we have

Deg (h, B(0, r), y) = k

for every r ∈
(

5
16
, 7
16

)

.

Such an example of a weak limit of homeomorphisms cannot be constructed in
W 1,p, p > 2: homeomorphisms clearly satisfy the (INV) condition and so do their
weak limits in W 1,p, p > 2, (see [18, Lemma 3.3]) and mappings in the (INV) class
with Jh > 0 a.e. have deg(h,B, ·) ∈ {0, 1} for a.e. ball B (see [18, Lemma 3.5]). Also
(under some minor conditions) such an example of a strong limit of homeomorphisms
cannot be constructed in W 1,2, since the strong limit of W 1,2 - homeomorphism also
satisfies the (INV) condition, please see [10, Theorem 3.1(b)].

To give the reader some idea about the construction of mapping of Conti and De
Lellis we show in Fig. 1 (everything is radially symmetric around the x-axis) how the
image of single problematic sphere ∂B(0, r) by um and limiting u in the limit looks
like.
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∂B(0, r)

Cm,r

um
deg(um, B(0, r), y) = 0

um(∂B(0, r))

m→ ∞

deg(u,B(0, r), y) = −1

u(∂B(0, r))

Figure 1. Construction of Conti and De Lellis—a 2D slice of the 3D construction. The shapes
are radially symmetric along the horizontal axis. The arrows illustrate the orientation of the sphere
and its image.

The image of a spherical cap Cm,r ⊆ ∂B(0, r) (of size roughly 1/m) by um is the
outer “dashed” bubble (of size roughly 1) and this bubble disappears in the limit as

diam(Cm,r)
m→∞
→ 0. The limiting mapping has a degree equal to −1 inside the inner

bubble as the orientation of the bubble is reversed with respect to the original ball.
The derivative of hm on Cm,r is comparable to

ˆ

Cm,r

|Dum|
2 ≈ H2(Cm,r)

∣

∣

∣

∣

1
1
m

∣

∣

∣

∣

2

≈
1

m2
|m|2 = 1

and thus it remains uniformly bounded inm even when we integrate it over r and thus
um have weak limit in W 1,2. Of course, one needs to extend it as a homeomorphism
on all neighboring spheres, make it identity on ∂B(0, 10), estimate derivatives in
all directions but the essential idea is in the figure. To obtain degree k = 2 in
our example, we need to achieve something like the following behavior for the limit
mapping h, see the Fig. 2 (again everything is rotated around the x-axis), which is
more complicated. We need more than one spherical cap with strange behavior and
our hm are not radially symmetric.

Let us also note that the class of weak limits of Sobolev homeomorphisms was re-
cently characterized in the planar case by Iwaniec and Onninen [15, 16] and De Philip-
pis and Pratelli [9]. For some other kind of pathological examples of limits of
W 1,2 ∩ L∞ homeomorphisms where the limit fails to be one to one a.e., we refer
the reader to Bouchala, Hencl and Molchanova [5]. For other interesting examples of
non-injective mappings, see [17].
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deg(h,B(0, r), y) = 2

deg(h,B(0, r), y) = 1

deg(h,B(0, r), y) = 0

h(∂B(0, r))h(∂B(0, r))

Figure 2. Our construction of the limit mapping—everything is radially symmetric.

2. Preliminaries

We use B(x, r) for a ball in R
3 with the center x ∈ R

3 and with the radius r > 0.
By int(A) we denote the interior of the set A. Throughout the paper, C will be a
generic positive constant, which may even be different in a single string of estimates.

2.1. Degree for continuous mappings. Let Ω ⊆ R
3 be a bounded open set.

Given a continuous map f : Ω → R
3 and y ∈ R

3\f(∂Ω), we can define the topological

degree as

deg(f, Ω, y) =
∑

x∈Ω∩f−1(y)

sgn(Jf(x))

if f is smooth in Ω and Jf(x) 6= 0 for each x ∈ Ω∩f−1(y). By uniform approximation,
this definition can be extended to an arbitrary continuous mapping f : Ω → R

3. Note
that the degree depends only on values of f on ∂Ω.

If f : Ω → R
n is a homeomorphism, then either deg(f,Ω, y) = 1 for all y ∈ f(Ω)

(f is sense preserving), or deg(f,Ω, y) = −1 for all y ∈ f(Ω) (f is sense reversing).
If, in addition, f ∈ W 1,n−1(Ω,Rn), then this topological orientation corresponds to
the sign of the Jacobian. More precisely, we have

Proposition 2.1. [14] Let f ∈ W 1,n−1(Ω,Rn) be a homeomorphism on Ω with

Jf > 0 a.e. Then

deg(f, Ω, y) = 1, y ∈ f(Ω).

2.2. Degree for W 1,2
∩ L∞ bounded mappings. Let B be a ball, f ∈

W 1,2(∂B,R3) ∩ C(∂B,R3), |f(∂B)| = 0, and u ∈ C1(R3,R3), then (see [18, Proposi-
tion 2.1])

(2.1)

ˆ

R3

deg(f, B, y) divu(y) dy =

ˆ

∂B

(u ◦ f) · (Λ2Dτf)ν dH
2,

where Dτf denotes the tangential gradient and Λ2Dτf is the restriction of cofDf to
the corresponding subspace (see [10] for details).

Following [8] (see also [6]) we need a more general version of the degree which
works for mappings in W 1,2 ∩ L∞ that are not necessarily continuous.

Definition 2.2. Let B ⊆ R
3 be a ball and let f ∈ W 1,2(∂B,R3) ∩ L∞(∂B,R3).

Then we define Deg(f, B, ·) as the distribution satisfying

(2.2)

ˆ

R3

Deg(f, B, y)ψ(y) dy =

ˆ

∂B

(u ◦ f) · (Λ2Dτf)ν dH
2

for every test function ψ ∈ C∞
c (R3) and every C∞ vector field u on R

3 satisfying
divu = ψ.
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As in [8] (see also [10]) it can be verified that the right-hand side does not
depend on the way ψ is expressed as divu and that the distribution Deg(f, B, ·) can
be represented as a BV function.

Remark 2.3. Let B be a ball and f ∈ W 1,2(∂B,R3)∩C(B,R3). If |f(∂B)| = 0,
then Deg(f, B, y) = deg(f, B, y) for a.e. y ∈ R

3.

2.3. Matrix of derivatives in different coordinates. Let (x1, r, ϕ) denote
the usual cylindrical coordinates in R

3 and let a : R3 → R
3 be a mapping from

cylindrical to cylindrical coordinates, i.e.

a(x1, r, ϕ) = (ax1(x1, r, ϕ), a
r(x1, r, ϕ), a

ϕ(x1, r, ϕ))

It is well-known that the matrix of derivatives of a in this coordinate system is

(2.3) Da(x1, r, ϕ) =









∂ax1

∂x1

∂ax1

∂r
1
r
·∂a

x1

∂ϕ

∂ar

∂x1

∂ar

∂r
1
r
·∂a

r

∂ϕ

ar·∂a
ϕ

∂x1

ar·∂a
ϕ

∂r
ar

r
·∂a

ϕ

∂ϕ









.

Let (r, θ, ϕ) denote the usual spherical coordinates in R
3, i.e. ϕ ∈ (0, 2π) and

θ ∈ (0, π). Let b : R3 → R
3 be a mapping from cylindrical to spherical coordinates,

i.e.

b(x1, r, ϕ) = (br(x1, r, ϕ), b
θ(x1, r, ϕ), b

ϕ(x1, r, ϕ)).

It is well-known that the matrix of derivatives of a in this coordinate system is

(2.4) Db(x1, r, ϕ) =









∂br

∂x1

∂br

∂r
1
r
·∂b

r

∂ϕ

br· ∂b
θ

∂x1

br·∂b
θ

∂r
br

r
·∂b

θ

∂ϕ

br sin bθ·∂b
ϕ

∂x1

br sin bθ·∂b
ϕ

∂r
br sin bθ

r
·∂b

ϕ

∂ϕ









.

3. Proof of main theorem for k = 2

3.1. Overview. In this subsection, we roughly explain the construction of the
mappings h and hm from the Theorem 1.1. To create a degree of two somewhere we
need to go around that area twice (imagine the planar case). To achieve that for the
limit function h, we will define hm to go around three times, twice in the positive
and once in the negative direction (or orientation). Using the idea and the mapping
um from [8, Section 6] we can create such loops (or bubbles). And by preparing the
set before applying the mapping um we can control which bubbles will disappear in
the limit.

The mappings hm will be the composition of three homeomorphisms,

hm(x) := um ◦ lm ◦ b(x).

The Figure 2 roughly explains what these three homeomorphisms do.
The mapping b is bi-Lipschitz and it does not depend on m. It moves the dashed

part of the circle/sphere (that will not disappear) and the dotted part (which will
disappear) close together so that the image of the dashed bubble will be inside the
image of the dotted one at the end.

The mappings lm are Lipschitz, and they squash the dashed part (of size compa-
rable to 1) to something smaller (of size comparable to 1

m
). In this way, the dashed

arc does not disappear in the limit (as it was big at the start) even after applying
the Conti–De Lellis mapping um. After this careful preparation, we can take the
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mapping um exactly as in the paper [8]. Of course, it would be possible to use also
a mapping from [10, Theorem 1.2].

b

lm

um

Figure 3. Overview of the construction.

3.2. Definition of b. The mapping b is an identity on the set K, where

K :=

{

(x1, x2, x3) ∈ B(0, 10) :
2

8
< x1 <

4

8
, 0 ≤

√

x22 + x23 <
1

8

}

.

We define for every m ∈ N (see Fig. 4)

Cm :=

{

(x1, x2, x3) ∈ B(0, 10) :
2

8
< x2 <

4

8
, 0 ≤

√

x21 + x23 <
1

8m

}

.

On the cylinder C1 the mapping b is defined by

b(x1, x2, x3) =
(

−x2 +
9
8
, x1, x3

)

.

That means that on C1 the mapping b is just translation and rotation, see Figure 4.
For every m ∈ N it maps Cm onto the set

b(Cm) =

{

(x1, x2, x3) ∈ B(0, 10) :
5

8
< x1 <

7

8
, 0 ≤

√

x22 + x23 <
1

8m

}

.

The Jacobian matrix of b for x ∈ C1 is

Db(x) =





0 −1 0
1 0 0
0 0 1



 .

It is not difficult to see that we can extend b to be a bi-Lipschitz homeomorphism
which maps B(0, 10) onto B(0, 10) and which is the identity on the boundary, for
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example by defining it by hand. We do not give the exact formula here because it
would be too lengthy and confusing.

Later we add additional requirements about the behavior on spheres near ∂B(0, 3
8
)

so that their images do not cross some “forbidden” regions but this can be clearly
satisfied as well.

x2

x1

2
8

4
8

1
8

2
8

4
8

−1
8

C1C1

KK
b

x2

x1
2
8

4
8

5
8

7
8

1
8

−1
8

b(K)b(K) b(C1)b(C1)

Figure 4. The mapping b in the plane {x1, x2}.

3.3. Definition of lm. First, we define a thick cylinder (containing the sets
K = b(K) and b(Cm) from earlier) by setting

D0 :=

{

(x1, x2, x3) ∈ B(0, 10) :
1

8
< x1 <

7

8
, 0 ≤

√

x22 + x23 <
2

8

}

.

The mapping lm is the identity outside of this cylinder. For every m ∈ N, we define
a slim cylinder by setting

Dm :=

{

(x1, x2, x3) ∈ B(0, 10) :
1

8
< x1 <

7

8
, 0 ≤

√

x22 + x23 <
1

8m

}

,

and we define two cones TL
m and TR

m by setting (see Fig. 5)

TL
m :=

{

(x1, x2, x3) ∈ B(0, 10) :
1

8
≤ x1 ≤

2

8
, 0 ≤

√

x22+x
2
3 <

(

1−
1

m

)

x1 +
2−m

8m

}

,

TR
m :=

{

(x1, x2, x3) ∈ B(0, 10) :
4

8
≤ x1 <

5

8
, 0 ≤

√

x22+x
2
3 <

(

1

m
−1

)

x1−
5m−4

8m

}

.

Then, we define a “bonbon-like” domain Bm by setting

Bm := TL
m ∪ b(K) ∪ TR

m ∪ b(Cm).

The mapping lm squeezes Bm into the slim cylinder Dm and stretches the set
D0 \Bm onto D0 \Dm.

To be precise, we define the homeomorphism lm inside D0 using the cylindrical
coordinates (x1, r, ϕ), that is (x1, x2, x3) = (x1, r cos(ϕ), r sin(ϕ)):
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− 1
8m

x2

x1
2
8

7
8

1
8

TL
mT
L
m b(K) = Kb(K) = K TR

mT
R
m b(Cm)b(Cm)

4
8

5
8

7
8

1
8

Figure 5. The set Bm in the plane {x1, x2}.

The definition of lm for x = (x1, r, ϕ) ∈ Bm is

lm(x) :=



































(

x1,
r

(8m− 8)x1 + 2−m
,ϕ

)

, x ∈ TL
m,

(

x1,
r

m
, ϕ

)

, x ∈ b(K),
(

x1,
r

(8− 8m)x1 + 5m− 4
, ϕ

)

, x ∈ TR
m ,

x, x ∈ b(Cm).

On the set D0 \ Bm we define lm to be linear, with respect to the radius r (and
mapping x1 to x1 and ϕ to ϕ), such that it maps the set D0 \Bm onto the “annulus”
D0 \Dm . It is not difficult to see that lm is Lipschitz on D0 \Bm.

Next, we compute the matrix of derivatives of lm. Obviously, this matrix is the
identity on Cm. The matrix of derivatives of lm on TL

m, with respect to the cylindrical
coordinates (x1, r, ϕ), is (see (2.3))

(3.1) Dlm(x) =







1 0 0
(8−8m)r

((8m−8)x1+2−m)2
1

(8m−8)x1+2−m
0

0 0 1
(8m−8)x1+2−m






.

The matrix of derivatives of lm on b(K) with respect to the cylindrical coordinates
is

(3.2) Dlm(x) =





1 0 0
0 1

m
0

0 0 1
m



 .

And on TR
m the matrix of derivatives w.r.t. the cylindrical coordinates is

(3.3) Dlm(x) =







1 0 0
(8m−8)r

((8−8m)x1+5m−4)2
1

(8−8m)x1+5m−4
0

0 0 1
(8−8m)x1+5m−4






.

3.4. Definition of um. The mapping um is the same as in [8, Section 6] with
ε = 1

8m
. They define it piecewise in several regions. For convenience, we include their

picture here as Fig. 6. The mapping is axially symmetric with respect to x1-axis so
Fig. 6 is rotated around it and the regions a, a’, b, c, d, e, e’on the left are mapped
by the mapping to the corresponding regions a, a’, b, c, d, e, e’ on the right. In
the limit the regions a’, c, e’ disappear and the region a which was outside of e is
mapped inside the image of the boundary of e.
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a ec

d

b f

a’

e’

um
b a a’ e’ e

d

f

c

Figure 6. The areas as in [8, Figure 2].

For us it is important how it works in the region that contains our bonbons Bm,
that is in the region c,

c :=
{

(x1, r, ϕ) ∈ R
3 : 0 ≤ x1 ≤ 1, 0 ≤ r ≤ 1

8m

}

.

The mapping um in the region c is defined from the cylindrical to the spherical
coordinates as

(3.4)

um(x1, r, ϕ) :=
(

urm(x1, r, ϕ), u
θ
m(x1, r, ϕ), ϕ

)

,

urm(x1, r, ϕ) :=

(

1 +
1

8m

)

cos (2 arctan(8m · r)) +
2

8m
+

x1
64m2

,

uθm(x1, r, ϕ) := 2 arctan(8m · r).

Obviously lm(Bm) is a subset of c. Since urm does not depend on ϕ and uθm does
not depend on x1 or ϕ, the matrix of derivatives of um at the point (x1, r, ϕ) ∈ c

with respect to the cylindrical coordinates is (see (2.4))

(3.5) Dum(x1, r, ϕ) =







∂ur
m

∂x1

∂ur
m

∂r
0

0 urm·
∂uθ

m

∂r
0

0 0 ur
m sin(uθ

m)
r






.

It is easy to check that

∂urm
∂x1

=
1

64m2
,

∂urm
∂r

= −

(

1 +
1

8m

)

sin (2 arctan(8m · r))
16m

1 + 64m2r2
,

urm
∂uθm
∂r

=

((

1 +
1

8m

)

cos(2 arctan(8m · r)) +
1

4m
+

x1
64m2

)

16m

1 + 64m2r2
,

urm sin(uθm)

r
=

((

1+
1

8m

)

cos(2 arctan(8m · r))+
1

4m
+

x1
64m2

)

sin(2 arctan(8m · r))

r
.

For x = (x1, r, θ) ∈ c there is a positive constant C independent on m such that

(3.6)

0 ≤

∣

∣

∣

∣

∂urm(x)

∂x1

∣

∣

∣

∣

≤ C
m2 , 0 ≤

∣

∣

∣

∣

∂urm(x)

∂r

∣

∣

∣

∣

≤ C ·m,

0 ≤

∣

∣

∣

∣

urm(x)
∂uθm(x)

∂r

∣

∣

∣

∣

≤ C ·m, 0 ≤

∣

∣

∣

∣

urm(x) sin(u
θ
m(x))

r

∣

∣

∣

∣

≤ C ·m.
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In their paper [8], they do not need the mappings um to be identity on the
boundary. But it is not difficult to observe that their mappings are bi-Lipschitz
and “well-behaved” on ∂B(0, 3), so we can extend them by hand to be uniformly
bi-Lipschitz on B(0, 10) \B(0, 3) and identity on ∂B(0, 10). So we get a sequence of
homeomorphisms with

(3.7) sup
m∈N

ˆ

B(0,10)

|Dum(y)|
2 dy <∞.

As we have already mentioned we need a small additional requirement about the
behavior of our first map b on the set A := B(0, 7

16
) \ B(0, 5

16
). We need A to be

mapped to the regions b, d and f from the Figure 6 on the left (i.e. they do not enter
a, a′, e and e′), except for the intersection of A with b(K) and b(C1), which can be
mapped into the set c from the same figure. This could be easily achieved as seen in
Fig. 7.

x1
1
8

2
8

4
8

C1C1

KK

2
8

x2

−3
8

b
x2

x1
2
8

4
8

5
8

7
8

1
8

−1
8−3

8

a e

Figure 7. The mapping b near the sphere ∂B(0, 3

8
) in the plane {x1, x2}.

We shall also need that lm(D0 \ Bm) is a subset of d (see Fig. 7 and that the
derivative of um is bounded by a constant (independent on m) as um are uniformly
Lipchitz there (see [8, construction of d, pages 544–545]).

3.5. Computation of the W 1,2 norm. Now, we set

hm(x) := um ◦ lm ◦ b(x).

Since all three mappings are homeomorphisms it is easy to see that hm is homeo-
morphism as well. Analogously it is easy to see that hm(x) = x for x ∈ ∂B(0, 10).

Since b is bi-Lipschitz, in order to show

sup
m∈N

ˆ

B(0,10)

|Dhm(x)|
2 dx <∞,

it suffices to show

sup
m∈N

ˆ

B(0,10)

|D(um ◦ lm)(x)|
2 dx <∞.
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Since lm is identity on B(0, 10) \D0, from (3.7), we obtain

(3.8) sup
m∈N

ˆ

B(0,10)\D0

|D(um ◦ lm)(x)|
2 dx <∞.

As mentioned at the end of the previous subsection um are uniformly Lipschitz on
lm(D0 \Bm). Hence, for every x ∈ D0 \Bm, we have

|D(um ◦ lm)(x)| ≤ |Dum(lm(x))| · |Dlm(x)| ≤ C.

Therefore

(3.9) sup
m∈N

ˆ

D0\Bm

|D(um ◦ lm)(x)|
2 dx <∞.

It remains to consider the derivative on Bm. For almost every x ∈ Bm the chain
rule (with respect to the correct system of coordinates) gives

(3.10) D(um ◦ lm)(x) = Dum(lm(x)) ·Dlm(x).

Since lm is always identity on Cm, by (3.7), we have

(3.11) sup
m

ˆ

Cm

|D(um ◦ lm)(x)|
2 dx <∞.

By (3.2), (3.5) and (3.10) we know that for every x ∈ b(K)

D(um ◦ lm)(x) =







∂ur
m

∂x1

1
m
·∂u

r
m

∂r
0

0 ur
m

m
·∂u

θ
m

∂r
0

0 0 ur
m sin(uθ

m)
mr







and (3.6) now imply |D(um ◦ lm)(x)| ≤ C. Hence we have

(3.12) sup
m∈N

ˆ

b(K)

|D(um ◦ lm)(x)|
2 dx <∞.

Let

♦ := (8m− 8)x1 + 2−m.

By (3.1), (3.5) and (3.10), for every x ∈ int(TL
m) it holds that

(3.13) D(um ◦ lm)(x) =









∂ur
m

∂x1

+ (8−8m)r
♦2 ·∂u

r
m

∂r
1
♦
·∂u

r
m

∂r
0

(8−8m)r·ur
m

♦2 ·∂u
θ
m

∂r

ur
m

♦
·∂u

θ
m

∂r
0

0 0 ur
m sin(uθ

m)
r·♦









.

By definition of TL
m we know that for x ∈ int(TL

m) we have

(3.14) 0 ≤ r <

(

1−
1

m

)

x1 +
2−m

8m
=

♦

8m
,

so
∣

∣

∣

∣

(8− 8m)r

♦

∣

∣

∣

∣

≤ C

for a constant C independent on x1, r and m. By (3.13) and (3.6), for every x ∈
int(TL

m), we have

|D(um ◦ lm)(x)| ≤
C ·m

♦
.
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Hence the Fubini theorem implies (see also (3.14))

(3.15) sup
m∈N

ˆ

int(TL
m)

|D(um ◦ lm)(x)|
2 dx ≤ C

ˆ
2

8

1

8

(

♦

8m

)2
m2

♦2
dx1 <∞.

Since TR
m is essentially the same as TL

m, similar computation gives

(3.16) sup
m∈N

ˆ

int(TR
m)

|D(um ◦ lm)(x)|
2 dx <∞.

The boundaries of D0, Cm, b(K), TL
m and TR

m have zero measure, so after summing
the inequalities (3.8), (3.9), (3.11), (3.12), (3.15) and (3.16) we obtain the desired
inequality

sup
m∈N

ˆ

B(0,10)

|D(um ◦ lm)(x)|
2 dx <∞.

It implies that {hm} is a bounded and (possibly after taking a subsequence) weakly
convergent sequence in the space W 1,2(B(0, 10), B(0, 10)), hm ⇀ h, where h is the
pointwise limit of hm.

3.6. Degree satisfies Deg(h,B(0, r), y) = 2. We claim that for every point
y ∈ B

(

(1
2
, 0, 0), 1

2

)

and for every radius r ∈ ( 5
16
, 7
16
) we have

Deg (h,B(0, r), y) = 2.

Indeed, for every r ∈ ( 5
16
, 7
16
) it holds that h ∈ W 1,2(∂B(0, r)) ∩ L∞(∂B(0, r)). Fix

such an r. The mappings hm map the sphere ∂B(0, r) onto three bubbles, see Fig. 3.
In the limit, the filled and the dashed bubbles become topological spheres with the
same orientation as the original sphere B(0, r), and the dotted bubble disappears,
see Fig. 2. Therefore it is not difficult to see that the degree of h is 2 inside the
smaller topological sphere.

4. For other degrees

In this section, we explain an idea of how to construct a sequence of bounded
and weakly convergent homeomorphisms {hm} ⊆W 1,2(B(0, 10), B(0, 10)) which are
identity on the boundary ∂B(0, 10), such that the weak limit has degree k ∈ Z on a
subset of positive measure. For k = 0,−1, 1, the original construction by Conti and
De Lellis in [8] already gives the desired result. For k = 2 please see our construction
above.

For degrees |k| ≥ 2 the construction is similar to the case k = 2. We need to
modify our mapping b and lm from Fig. 7. Instead of three, we need to create the
appropriate number of bubbles to achieve the desired degree k. To do that we use
a bi-Lipschitz mapping b that maps the sphere onto a sufficiently wiggly shape as
in Fig. 8. And by choosing which arrows to shrink using lm we can decide which
bubbles will disappear in the limit. The arrows that are shrunk before applying the
“bubble making function um” will not disappear and can change the final degree, the
arrows that do not change size by lm will disappear in the limit and so will not affect
the final degree.
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b

lm

“um”

b

lm

“um”

Figure 8. The construction of arbitrary degree. On the left-hand side for degree 3, on the
right-hand side for degree −2. The dotted lines will disappear in the limit, the dashed will remain.
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