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Liouville type theorems for subelliptic systems
on the Heisenberg group with general nonlinearity

Vishvesh Kumar, Michael Ruzhansky and Rong Zhang

Abstract. In this paper, we establish Liouville type results for semilinear subelliptic systems

associated with the sub-Laplacian on the Heisenberg group H
n involving two different kinds of

general nonlinearities. The main technique of the proof is the method of moving planes combined

with some integral inequalities replacing the role of maximum principles. As a special case, we

obtain the Liouville theorem for the Lane–Emden system on the Heisenberg group H
n, which also

appears to be a new result in the literature.

Liouvillen-tyyppisiä lauseita Heisenbergin ryhmän esielliptisille,

yleisiä epälineaarisuuksia sisältäville yhtälöpareille

Tiivistelmä. Tässä työssä johdetaan Liouvillen-tyyppisiä tuloksia Heisenbergin ryhmän H
n

esi-Laplacen operaattoriin liittyville semilineaarisille esielliptisille yhtälöpareille, jotka sisältävät kak-

si erityyppistä yleistä epälineaarisuutta. Maksimiperiaatteen korvaavana päätodistustekniikkana on

siirtyvien tasojen menetelmä yhdistettynä eräisiin integraaliepäyhtälöihin. Erikoistapauksena saa-

daan Liouvillen lause Heisenbergin ryhmän H
n Lanen–Emdenin järjestelmälle; tämä lienee uusi

tulos kirjallisuudessa.

1. Introduction

The result related to the nonexistence of solutions, commonly known as Liouville
type theorem, serves as a powerful tool to obtain a priori estimates for a system of
equations on bounded domains in the Euclidean space R

n or in the Heisenberg group
H

n. Indeed, in the Euclidean setting, one uses the “blow up” method, also called
the rescaling method, developed by Gidas and Spruck [32]. After the blowing up, an
equation in a bounded domain becomes an equation in the whole Euclidean space.
Now, a Liouville type theorem on R

n followed by a contradiction argument imme-
diately provides a priori bounds. Following this technique, Birindelli et al. [6] have
developed the blow up method for the Heisenberg group and proved a priori bounds
for the supremum of the solution to the nonlinear Dirichlet subelliptic problem on a
bounded domain in H

n satisfying an intrinsic cone condition. The idea was to reduce
the problem of establishing the desired a priori estimates on bounded domains to a
problem of Liouville type on the full Heisenberg group. The Liouville theorem for
sub-Laplacian on the Heisenberg group is well known, see Folland [23, 24, 25], and
Geller [30] and also [22, Section 3.2.8].
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The main aim of this paper is to study the nonexistence of positive solutions to
the following semilinear subelliptic system on the Heisenberg group H

n:

(1.1)

{

−∆Hnu(ξ) = f(v(ξ)), ξ ∈ H
n,

−∆Hnv(ξ) = g(u(ξ)), ξ ∈ H
n,

and

(1.2)

{

−∆Hnu(ξ) = f(u(ξ), v(ξ)), ξ ∈ H
n,

−∆Hnv(ξ) = g(u(ξ), v(ξ)), ξ ∈ H
n,

where ∆Hn is the sub-Laplacian on H
n, n ≥ 2 and f, g are two continuous functions.

It is worth noting that a particular instance of (1.1) is the famous Lane–Emden
system. In the Euclidean framework, the Lane–Emden system was investigated by
several prominent mathematicians. We will briefly discuss this development as fol-
lows. Recall that the semi-linear Lane–Emden system in R

n takes the form

(1.3)

{

−∆u(x) = vp(x),

−∆v(x) = uq(x).

It is known that if (p, q) are in critical or supercritical case (i.e. 1
p+1

+ 1
q+1

≤ n−2
n

), then

system (1.3) admits some positive classical solutions on R
n (see [55]). The well-known

Lane–Emden conjecture states that in the subcritical case (i.e. 1
p+1

+ 1
q+1

> n−2
n

),

system (1.3) does not have a positive classical solution. The conjecture is known to
be true for radial solutions in all dimensions (see [45, 47]). For non-radial solutions,
and n ≤ 2, the conjecture is a consequence of known results (see [46, 47, 57]). For
n ≥ 3, when p and q are both subcritical case (i.e. p, q ≤ n+2

n−2
, but are not both

equal to n+2
n−2

), the conjecture was also proved (see [28, 51]). For n = 3, it was also

proved by Serrin and Zou [54] in the subcritical case (i.e. 1
p+1

+ 1
q+1

> n−2
n

), but

under the additional assumption that (u, v) have at most polynomial growth at ∞.
This assumption was removed by Polacik, Quittner, and Souplet (see [49, 56]), and
therefore, the conjecture was solved for n = 3. For a more detailed exposure to this
topic, we refer to [50].

In the last two decades, Liouville type results for nonlinear subelliptic equations
on the Heisenberg group H

n attracted a lot of attention. In particular, the subelliptic
Lane–Emden inequality

(1.4) ∆Hnu+ up ≤ 0,

on H
n was investigated by Birindelli et al. [5] and they proved that, for 1 < p ≤ Q

Q−2
,

the above inequality (1.4) does not possess any positive classical solution. Here
Q = 2n+2 is the homogeneous dimension of the Heisenberg group H

n. Indeed, they
went on to show that the exponent Q

Q−2
is optimal in the sense that, for p > Q

Q−2
,

the subelliptic inequality (1.4) have a nontrivial positive solution. Their results
were applied to obtain a priori bounds for subelliptic Dirichlet problems on bounded
domains in H

n (see [6]). The results of [5] were extended to the general stratified Lie
groups in [13]. After these seminal works, there are plenty of works devoted to the
study of Liouville type results for the subelliptic problem on H

n :

(1.5) −∆Hnu = up.

The Euclidean and elliptic counterpart of (1.5) was studied by Gidas and Spruck
[31]. They showed the nonexistence of a positive solution for the range 0 < p <
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n+2
n−2

. Later, Chen and Li [14] simplified the proof of these results using the so-called
“the method of moving planes” and “the Kelvin transform”. The method of moving
planes has become a powerful tool in studying qualitative properties for solutions of
elliptic equations and systems. The method of moving planes, which goes back to
Alexandrov [1, 2, 3] and Serrin [53], has been developed by many researchers later,
(see [29, 66, 41, 20, 17, 16, 21, 4, 15, 43]).

Inspired by the work of Chen and Li [14], the method of moving planes was
introduced by Birindelli and Prajapat [8] in the setting of the Heisenberg group
H

n, to study Liouville theorems for positive cylindrical solutions to the semilinear
subelliptic equation (1.5) on H

n by suitably modifying the method of moving planes
developed by Chen and Li [14].

We recall here that function u defined on H
n is called cylindrical if, for any

(x, y, t) ∈ H
n, where (x, y) ∈ R

n×R
n and t ∈ R is the anisotropic direction, we have

u(x, y, t) = u(r, t) with r =
√

|x|2 + |y|2.
Birindelli and Prajapat [8] established Gidas and Spruck [31] type results for (1.5)

and proved that (1.5) does not have any positive cylindrical solution for 0 < p < Q+2
Q−2

.

The sub-Laplacian H
n satisfies Bony’s maximal principle [11] but it is not invariant

under the usual hyperplane reflection as in the Euclidean case. This made authors
[8] to define a new kind of reflection called the “H-reflection” on the Heisenberg
group with respect to the plane Tλ := {(x, y, t) ∈ H

n : t = λ}. The main reason
for working only with cylindrical functions in [8] is due to the fact that the H-
reflection with respect to the plane Tλ leaves the plane invariant but not fixed. Now,
in order to settle the Gidas and Spruck conjecture, it is enough to show that any
positive solution to (1.4) is cylindrical. Therefore, several attempts have been made
in this direction; we refer to [7, 9, 35] and references therein for more details. In
the aforementioned papers dealing with nonexistence results, the maximum principle
is exploited along with the method of moving planes and the Kelvin transform or
CR transform. We would like to also mention that many of the above results are
obtained for general nonlinearity f(u) with some suitable conditions on f such as
the Lipschitz continuity although we have discussed here some particular instances.
Finally, we mention a recent advance made by Ma and Ou [44], in which the authors
established the Liouville theorem for the classical solution of (1.5) for the subcritical
case 1 < p < Q+2

Q−2
. They used a suitable generalization of the Jerison–Lee’s divergence

identity and then an a priori integral estimate.
Another very useful method to obtain Liouville type results is the combination

of integral inequalities along with the method of moving planes and the Kelvin trans-
form (see [18]). These integral inequalities substitute the role of maximal principles
in a differential form. The attribution of these integral inequalities goes back to the
work of Terracini [58, 59]. The main advantage of this method is that one can handle
the subcritical, critical, and supercritical cases of the Lane–Emden equation simulta-
neously [58]. After these works, the method of moving planes combined with integral
inequalities was widely used to obtain Liouville type results for elliptic equations
with general nonlinearities [18, 62]. These methods were also adapted to study the
nonexistence of solutions to elliptic systems, we cite [12, 19, 37, 64, 36] and references
therein for more details.

Recently, several works have been devoted to the study of the classification of
cylindrical solutions to nonlinear subelliptic equations with general nonlinearity on
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the Heisenberg group H
n:

(1.6) −∆Hnu = f(u).

Indeed, Yu [63] extended the method of integral inequalities [18, 58, 59] in the setting
of the Heisenberg group and combined it with the method of moving planes on the
Heisenberg group, to establish the Liouville type theorem for (1.6). In [65], a similar
type of problem was studied for a subelliptic equation arising from the study of
nonlocal equations on the Heisenberg group. For Liouville type theorems obtained
using different methods such as a vector field method and test function method, we
refer to [61, 42] and references therein.

Inspired by the above works, it is natural to study subelliptic systems (1.1) and
(1.2) on the Heisenberg group. Let us first define the notion of a weak solution in
this context.

We say that (u, v) ∈ (H1
loc(H

n) ∩ C0(Hn))× (H1
loc(H

n) ∩ C0(Hn)) is a weak solu-
tion of system (1.2) if it satisfies

ˆ

Hn

∇Hnu∇Hnϕ =

ˆ

Hn

f(u, v)ϕ, ϕ ∈ C1
c (H

n),(1.7)

ˆ

Hn

∇Hnv∇Hnϕ =

ˆ

Hn

g(u, v)ϕ, ϕ ∈ C1
c (H

n).(1.8)

In this paper, we are concerned with the nonexistence result of the cylindrical
weak solution to the semilinear subelliptic systems systems (1.1) and (1.2) with gen-
eral nonlinearity. The coupled nonlinearities in such systems make it difficult to find
a starting point to apply the method of moving planes. To overcome this difficulty,
based on CR transform [39] together with the method of moving planes in H

n, we
use integral inequalities of Terracini [58, 59], which earlier proved to be helpful in
[63] for the subellipic equation (1.6). Moreover, since the nonlinearities f and g are
only assumed to be continuous rather than Lipschitz continuous, the classical Bony’s
maximal principle [11] can not be applied. This is one of the major reasons why we
work with integral inequalities combined with the method of moving planes.

In fact, by using the aforementioned tools, we establish the following results in
this direction.

Theorem 1.1. Let n ≥ 2 and let (u, v) ∈ (H1
loc(H

n) ∩ C0(Hn)) × (H1
loc(H

n)
∩ C0(Hn)) be a positive cylindrical solution to system (1.1). Assume that f, g :
[0,+∞) → R are two continuous functions satisfying the following conditions:

(i) f(t) and g(t) are nondecreasing in (0,+∞);

(ii) h(t) := f(t)

t
Q+2

Q−2

and k(t) := g(t)

t
Q+2

Q−2

are nonincreasing in (0,+∞);

(iii) either h or k is not a constant function on (0, supξ∈Hn v(ξ)) and (0, supξ∈Hn

u(ξ)), respectively.

Then (u, v) ≡ (C1, C2) for some constants C1 and C2 with f(C2) = 0 and g(C1) = 0.

Remark 1.2. We note that one can further simplify the conclusion of Theo-
rem 1.1 under the given monotonicity assumptions along with f(C2) = 0 for some
C2 > 0. In fact, we can further deduce that f(C2) = 0 for some C2 > 0 can only
happen if f = 0 on [0,∞). The same applies for g as well. For the proof of this fact,

suppose that f(t0) = 0 for t0 > 0. Writing f(t) = h(t)t
Q+2

Q−2 , with f nondecreasing
and h nonincreasing, we also have h(t0) = 0. By monotonicity, h ≥ 0 on (0, t0], thus
f ≥ 0 on [0, t0]. But since f is nondecreasing, this gives f ≡ 0 and h ≡ 0 on (0, t0].
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On the other hand, if h(t1) < 0 for some t1 > t0, then f(t1) < 0, contradicting the
monotonicity of f . Thus, we deduce that f ≡ h ≡ 0 on (0,∞).

Based on Theorem 1.1, we state the following interesting consequence about
the nonexistence of positive cylindrical solutions to the Lane–Emden system on the
Heisenberg group H

n in the subcritical case for any n ≥ 1 (cf. Remark 1.5).

Corollary 1.3. Let n ≥ 1. Consider the following Lane–Emden system

(1.9)

{

−∆Hnu(ξ) = vp(ξ), ξ ∈ H
n,

−∆Hnv(ξ) = uq(ξ), ξ ∈ H
n.

Then, there is no positive cylindrical solution

(u, v) ∈
(

H1
loc(H

n) ∩ C0(Hn)
)

×
(

H1
loc(H

n) ∩ C0(Hn)
)

to (1.9) for 0 < p, q < Q+2
Q−2

.

We note that Pohozaev and Véron [48] obtained a similar result for a general
solution as of Corollary 1.3 in the case of inequality for the range 1 < p, q ≤ Q

Q−2
.

They used the test function method to establish these Liouville type theorems. These
results were recently extended to Kirchhoff type systems on H

n by the third author
and his collaborators [42] using the test function method.

The above Theorem 1.1 can be extended to a more general case given by the
system (1.2), that is both f and g depend on (u, v). More precisely, we have the
following Liouville type theorem for the system (1.2).

Theorem 1.4. Let n ≥ 2 and let (u, v) ∈ (H1
loc(H

n) ∩ C0(Hn)) × (H1
loc(H

n)
∩ C0(Hn)) be a positive cylindrical solution to system (1.2). Assume that f, g :
[0,+∞)× [0,+∞) → R are two continuous positive functions satisfying the following

conditions:

(i) f(s, t) and g(s, t) are nondecreasing in t for fixed s and, f(s, t) and g(s, t) are

nondecreasing in s for fixed t;

(ii) there exist p1 ≥ 0, q1 > 0 with p1 + q1 =
Q+2
Q−2

such that
f(s,t)
sp1tq1

is nonincreasing

in t for fixed s and
f(s,t)
sp1 tq1

is nonincreasing in s for fixed t;

(iii) there exist p2 > 0, q2 ≥ 0 with p2 + q2 =
Q+2
Q−2

such that
g(s,t)
sp2tq2

is nonincreasing

in t for fixed s and
g(s,t)
sp2 tq2

is nonincreasing in s for fixed t;

(iv) either f or g is not a constant multiple of sp1tq1 or sp2tq2 , respectively.

Then, we have (u, v) ≡ (C1, C2) for some constants C1 and C2 such that f(C1, C2) = 0
and g(C1, C2) = 0.

Remark 1.5. We would like to discuss the condition n ≥ 2 in our main results
(Theorem 1.1 and Theorem 1.4). We need to impose this technical condition due
to the unavailability of corresponding results in the Euclidean space R

N for N = 2
(see [37]). We emphasise here that condition n ≥ 2 is only used in the proof of main
results because of the aforementioned reason, although all the supporting Lemmata
hold for all n ≥ 1.

The paper is organized as follows: In Section 2 we collect some well-known pre-
liminaries related to the analysis of the Heisenberg group H

n. Section 3 is devoted
to the proof of Theorem 1.1 by using the method of moving planes along with newly
developed integral inequalities. In Section 4, we will present the proof of Theorem 1.4.
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2. Preliminaries: the Heisenberg group

In this section, we introduce some definitions, set up notation, and recall some
basic results concerning the Heisenberg group H

n. We refer to [27, 10, 60, 22, 52, 34,
33] for a complete overview of the material presented here.

The Heisenberg group H
n is (R2n+1, ◦), n ≥ 1, endowed with the group law ◦

defined by

(2.1) ξ ◦ ξ̄ :=

(

x+ x̄, y + ȳ, t+ t̄+ 2

n
∑

i=1

(xiȳi − yix̄i)

)

,

where ξ := (x, y, t) = (x1, · · ·, xn, y1, · · ·, yn, t) ∈ R
n × R

n × R and ξ̄ = (x̄, ȳ, t̄).
Denote by δτ the dilations on H

n defined as

(2.2) δτ (ξ) = (τx, τy, τ 2t), τ > 0,

so that δτ (ξ̄ ◦ ξ) = δτ (ξ̄) ◦ δτ (ξ).
The left invariant vector fields {X1, · · ·, Xn, Y1, · · ·, Yn, T} corresponding to H

n

are defined by

Xi =
∂

∂xi

+ 2yi
∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, i, j = 1, 2, . . . , n, and T =

∂

∂t
,

forming a basis for the Lie algebra of Hn. It is easy to check that

[Xi, Yj] = −4Tδij , [Xi, Xj ] = [Yi, Yj] = 0, i, j = 1, · · ·, n.

The horizontal gradient on H
n of a suitable function φ is defined as

(2.3) ∇Hnφ = (X1φ, . . . , Xnφ, Y1φ, . . . , Ynφ).

The sub-Laplacian ∆Hn on the Heisenberg group H
n is defined as

(2.4)

∆Hn :=
n
∑

i=1

(X2
i + Y 2

i )

=
n
∑

i=1

(

∂2

∂x2
i

+
∂2

∂y2i
+ 4yi

∂2

∂xi∂t
− 4xi

∂2

∂yi∂t
+ 4(x2

i + y2i )
∂2

∂t2

)

.

The family X1, · · ·, Xn, Y1, · · ·, Yn, satisfies the Hörmander’s rank condition (see
[38]), which implies that ∆Hn is hypoelliptic.

The even integer Q = 2n+2 is called the homogeneous dimension of Hn. Denote
by |ξ|Hn the (Kaplan) distance from ξ to the zero (see [26]):

(2.5) |ξ|Hn :=

(

n
∑

i=1

(x2
i + y2i )

2 + t2

)
1

4

.

The distance between two points ξ and η in H
n is defined by

dHn(ξ, η) = |η−1 ◦ ξ|Hn,

where η−1 denotes the inverse of η with respect to ◦, namely η−1 = −η.
We say that a function u on H

n is cylindrical if for any (x, y, t) ∈ H
n, we have

u(x, y, t) = u(r, t) with r :=
√

|x|2 + |y|2. It is easy to see that if u is cylindrical,
then

∆Hnu(r, t) =
∂2u

∂r2
+

2n− 1

r

∂u

∂r
+ 4r2

∂2u

∂t2
.
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The open ball of radius R > 0 centered at ξ is the set

BHn(ξ, R) := {η ∈ H
n | dHn(ξ, η) < R}.

The map ξ 7→ |ξ|Hn is homogeneous of degree one with respect to the dilations δτ
and consequently, we have

|BHn(ξ, R)| = |BHn(0, R)| = RQ|BHn(0, 1)|,

where | · | denotes the Haar measure on H
n.

3. The Proof of Theorem 1.1

In this section, we outline the proof of Theorem 1.1 concerning the Liouville type
theorem for system (1.1). We begin with some statements required for the proof.

Let (u, v) be a pair of nonnegative continuous functions defined on H
n. We

introduce the CR inversion of u and v centered at the origin, denoted by ū and v̄,
respectively as follows:

ū(ξ) =
1

|ξ|Q−2
Hn

u(ξ̃), v̄(ξ) =
1

|ξ|Q−2
Hn

v(ξ̃), ξ ∈ H
n\{0},

where ξ = (x, y, t) ∈ H
n\{0}, ξ̃ = (x̃, ỹ, t̃) ∈ H

n, and

x̃i =
xit + yir

2

|ξ|4
H

, ỹi =
yit− xir

2

|ξ|4
H

, t̃ = −
t

|ξ|4
H

,

where r2 := (|x|2+|y|2). The CR inversion on H
n was first defined by Jerison and Lee

[39] and serves as a suitable replacement of the Kelvin transform on R
n. Obviously,

ū and v̄ are continuous and nonnegative on H
n\{0}. We also note that ū and v̄ are

also cylindrical if u and v are. A direct computation yields (see [8, 63] for the proof)
that:

Lemma 3.1. Let (u, v) ∈ (H1
loc(H

n) ∩ C0(Hn))× (H1
loc(H

n) ∩ C0(Hn)) be a pos-

itive weak cylindrical solution of system (1.1). Then (ū, v̄) satisfy the following

system:

(3.1)







−∆Hn ū(ξ) = 1

|ξ|Q+2

Hn

f(|ξ|Q−2
Hn v̄(ξ)), ξ ∈ H

n\{0},

−∆Hn v̄(ξ) = 1

|ξ|Q+2

Hn

g(|ξ|Q−2
Hn ū(ξ)), ξ ∈ H

n\{0}.

Moreover, (ū, v̄) satisfy

(3.2) lim
|ξ|Hn→∞

|ξ|Q−2
Hn ū(ξ) = u(0), lim

|ξ|Hn→∞
|ξ|Q−2

Hn v̄(ξ) = v(0),

and therefore, ū, v̄ ∈ Lτ+1(Hn\Br(0))∩L∞(Hn\Br(0)) for any r > 0, where τ = Q+2
Q−2

.

Define

(3.3) h(t) :=
f(t)

t
Q+2

Q−2

, k(t) :=
g(t)

t
Q+2

Q−2

,

and substitute it in (3.1) to obtain the following system:

(3.4)

{

−∆Hn ū(ξ) = h(|ξ|Q−2
Hn v̄(ξ))v̄

Q+2

Q−2 (ξ), ξ ∈ H
n\{0},

−∆Hn v̄(ξ) = k(|ξ|Q−2
Hn ū(ξ))ū

Q+2

Q−2 (ξ), ξ ∈ H
n\{0}.

Now, we are in a position to apply the moving planes method. Before that let us
recall the necessary notation.
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We define the set

Σλ := {ξ := (x, y, t) ∈ H
n | t > λ},

and the plane

Tλ := {ξ = (x, y, t) ∈ H
n | t = λ}.

For ξ = (x, y, t) ∈ H
n, the H-reflection of ξ with respect to the plane Tλ is defined

by

ξλ := (y, x, 2λ− t).

It is well-known that −∆Hn is invariant under the action of H-reflection. This
means that, if −∆Hnu(ξ) = f(ξ) then −∆Hnuλ(ξ) = f(ξλ), where the H-reflection
uλ of a cylindrical function u with respect to Tλ by

uλ(x, y, t) = uλ(r, t) := u(r, 2λ− t) = u(y, x, 2λ− t).

Similarly, we have

ūλ(x, y, t) = ūλ(r, t) := ū(r, 2λ− t) = ū(y, x, 2λ− t),

and

v̄λ(x, y, t) = v̄λ(r, t) := v̄(r, 2λ− t) = v̄(y, x, 2λ− t).

Let 0λ = (0, 0, 2λ), then it follows from (3.4) and the invariance with respect to the
H-reflection that (ūλ, v̄λ) satisfies

(3.5)







−∆Hn ūλ(ξ) = h(|ξλ|
Q−2
Hn v̄λ(ξ))v̄

Q+2

Q−2

λ (ξ), ξ ∈ H
n\{0λ},

−∆Hn v̄λ(ξ) = k(|ξλ|
Q−2
Hn ūλ(ξ))ū

Q+2

Q−2

λ (ξ), ξ ∈ H
n\{0λ}.

In order to compare the value of ūλ and v̄λ with ū and v̄, respectively, we define

Uλ(ξ) := ū(ξ)− ūλ(ξ), Vλ(ξ) := v̄(ξ)− v̄λ(ξ).

It is evident from the definition of Uλ and Vλ and (3.2) that

(3.6) lim
|ξ|Hn→∞

Uλ(ξ) = 0, lim
|ξ|Hn→∞

Vλ(ξ) = 0.

In order to use the method of moving planes, the first step is to show that we
can start the process. Namely, we first prove the following result.

Lemma 3.2. For any fixed λ > 0, we have ū, v̄ ∈ Lτ+1(Σλ) ∩ L∞(Σλ), U
+
λ (ξ),

V +
λ (ξ) ∈ Lτ+1(Σλ) ∩ L∞(Σλ) ∩ H1(Σλ) with τ = Q+2

Q−2
, where U+

λ = max(Uλ, 0),

V +
λ = max(Vλ, 0). Moreover, there exist Cλ > 0 nonincreasing in λ, such that

(
ˆ

Σλ

(U+
λ )

2Q

Q−2 dξ

)
Q−2

2Q

≤ Cλ

(
ˆ

Σv
λ

1

|ξ|2Q
Hn

dξ

)
2

Q
(
ˆ

Σλ

(V +
λ )

2Q

Q−2 dξ

)
Q−2

2Q

,(3.7)

(
ˆ

Σλ

(V +
λ )

2Q

Q−2 dξ

)
Q−2

2Q

≤ Cλ

(
ˆ

Σu
λ

1

|ξ|2Q
Hn

dξ

)
2

Q
(
ˆ

Σλ

(U+
λ )

2Q

Q−2 dξ

)
Q−2

2Q

,(3.8)

where Σu
λ = {ξ ∈ Σλ\{0λ} | h(|ξ|Q−2

Hn ū) > 0, Uλ(ξ) > 0} and Σv
λ = {ξ ∈ Σλ\{0λ} |

h(|ξ|Q−2
Hn v̄) > 0, Vλ(ξ) > 0}.

Proof. We only prove (3.7), the proof of (3.8) is similar. For any fixed λ > 0,
there exists r > 0 such that Σλ ⊂ H

n\Br(0), then ū and U+
λ ≤ ū ∈ Lτ+1(Σλ)∩L

∞(Σλ)
(see Lemma 3.1), and 1

|ξ|2Q
Hn

is integrable in Σλ.
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We choose a cylindrically symmetric cut-off function 0 ≤ ηǫ ≤ 1 on H
n such that

ηǫ(ξ) =

{

1, 2ǫ ≤ |0−1
λ ◦ ξ|Hn ≤ 1

ǫ
,

0, |0−1
λ ◦ ξ|Hn ≤ ǫ or |0−1

λ ◦ ξ|Hn ≥ 2
ǫ
,

and

|∇Hnηǫ| ≤

{

2
ǫ
, ǫ ≤ |0−1

λ ◦ ξ|Hn ≤ 2ǫ,

2ǫ, 1
ǫ
≤ |0−1

λ ◦ ξ|Hn ≤ 2
ǫ
.

Now, we choose φǫ = η2ǫU
+
λ as a test function, then it follows from (3.4) and (3.5)

using the simple calculation ∇Hnφǫ = 2(∇Hnηǫ)ηǫU
+
λ + η2ξ∇HnU+

λ that

(3.9)

ˆ

Σλ∩[2ǫ≤|0−1

λ
◦ξ|Hn≤ 1

ǫ ]
|∇Hn(U+

λ )|
2 dξ ≤

ˆ

Σλ

|∇Hn(U+
λ ηǫ)|

2 dξ

=

ˆ

Σλ

2ηǫU
+
λ ∇HnU+

λ ∇Hnηǫ dξ +

ˆ

Σλ

η2ξ |∇HnU+
λ |

2 dξ +

ˆ

Σλ

(U+
λ )

2|∇Hnηǫ|
2 dξ

=

ˆ

Σλ

(∇HnUλ)2ηǫU
+
ξ ∇Hnηǫ dξ +

ˆ

Σλ

η2ξ |∇HnU+
ξ |

2 dξ +

ˆ

Σλ

(U+
λ )

2|∇Hnηǫ|
2 dξ

=

ˆ

Σλ

∇HnUλ∇Hnφǫ dξ +

ˆ

Σλ

(U+
λ )

2|∇Hnηǫ|
2 dξ

=

ˆ

Σλ

−∆HnUλφǫ dξ +

ˆ

Σλ

(U+
λ )

2|∇Hnηǫ|
2 dξ

=

ˆ

Σλ

(

h(|ξ|Q−2
Hn v̄)v̄

Q+2

Q−2 − h(|ξλ|
Q−2
Hn v̄λ)v̄

Q+2

Q−2

λ

)

φǫ dξ + Iǫ,

where Iǫ =
´

Σλ
(U+

λ )
2|∇Hnηǫ|

2 dξ.

Since h is a nonincreasing function, |ξ|Hn ≥ |ξλ|Hn for ξ ∈ Σλ with λ > 0 we
conclude that, for v̄(ξ) ≥ v̄λ(ξ) ≥ 0, we have

(3.10) h(|ξ|Q−2
Hn v̄) ≤ h(|ξλ|

Q−2
Hn v̄λ).

If 0 ≤ v̄(ξ) ≤ v̄λ(ξ), and since f is nondecreasing and h is nonincreasing, we get

(3.11)
h(|ξ|Q−2

Hn v̄)v̄
Q+2

Q−2 =
f(|ξ|Q−2

Hn v̄(ξ))

|ξ|Q+2
Hn

≤
f(|ξ|Q−2

Hn v̄λ(ξ))

|ξ|Q+2
Hn

= h(|ξ|Q−2
Hn v̄λ)v̄

Q+2

Q−2

λ ≤ h(|ξλ|
Q−2
Hn v̄λ)v̄

Q+2

Q−2

λ .

Therefore, using (3.10) and (3.11) in (3.9) we obtain

(3.12)

ˆ

Σλ∩[2ǫ≤|0−1

λ
◦ξ|Hn≤ 1

ǫ ]
|∇Hn(U+

λ )|
2 dξ ≤

ˆ

Σλ

h(|ξ|Q−2
Hn v̄)(v̄

Q+2

Q−2 − v̄
Q+2

Q−2

λ )φǫ dξ + Iǫ

=

ˆ

Σv
λ

h+(|ξ|Q−2
Hn v̄)(v̄

Q+2

Q−2 − v̄
Q+2

Q−2

λ )φǫ dξ + Iǫ.

Since v is positive and locally bounded, there are constants 0 < C
′

λ ≤ C
′′

λ such
that

(3.13) 0 < C
′

λ := inf
ξ∈Σλ

|ξ|Q−2
Hn v̄(ξ) ≤ |ξ|Q−2

Hn v̄(ξ) ≤ C
′′

λ , ∀ ξ ∈ Σλ,

and consequently, we have

(3.14) 0 ≤ h+(|ξ|Q−2
Hn v̄) ≤ h+(C

′

λ) := Cλ, ∀ ξ ∈ Σλ.
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This shows that Cλ is nonincreasing in λ since h is a nonincreasing function and
for λ1 ≤ λ2, we can easily deduce from (3.13) that C ′

λ1
≤ C ′

λ2
. Indeed, it follows

from (3.13) that C
′

λ1
≤ infξ∈Σλ1

|ξ|Q−2
Hn v̄(ξ) and the condition λ1 ≤ λ2 then yields that

C
′

λ1
≤ infξ∈Σλ1

|ξ|Q−2
Hn v̄(ξ) ≤ infξ∈Σλ2

|ξ|Q−2
Hn v̄(ξ) = C ′

2 as Σλ1
⊆ Σλ2

. Moreover, for

0 ≤ v̄λ ≤ v̄ as v̄ ∈ L∞(Σλ) for λ > 0, we have using mean value theorem that

(3.15) (v̄
Q+2

Q−2 − v̄
Q+2

Q−2

λ ) ≤ η
Q+2

Q−2
−1Q+ 2

Q− 2
V +
λ ≤ v̄

4

Q−2
Q + 2

Q− 2
V +
λ ≤

Cλ

|ξ|4
Hn

V +
λ ,

where η lies between (v̄λ, v̄) and the last inequality follows from the fact that v̄ decays
at infinity as 1

|ξ|Q−2

Hn

. Here and in the following of the paper, we always use the same

Cλ to stand for different constants.
Combining the Hölder inequality with (3.14) and (3.15), we obtain, by setting

τ = Q+2
Q−2

,

(3.16)

ˆ

Σλ∩[2ǫ≤|0−1

λ
◦ξ|Hn≤ 1

ǫ ]
|∇HnU+

λ |
2 dξ ≤

ˆ

Σv
λ

h+(|ξ|Q−2
Hn v̄)(v̄

Q+2

Q−2 − v̄
Q+2

Q−2

λ )φǫ dξ + Iǫ

≤ Cλ

ˆ

Σv
λ

1

|ξ|4
Hn

η2ǫU
+
λ V

+
λ dξ + Iǫ

≤ Cλ

(

ˆ

Σv
λ

1

|ξ|2Q
Hn

dξ

)
2

Q (ˆ

Σλ

(V +
λ ηǫ)

1+τ

)
1

1+τ
(
ˆ

Σλ

(U+
λ ηǫ)

1+τ

)
1

1+τ

+ Iǫ.

Now, we claim that Iǫ → 0 as ǫ → 0. To show this we define the following set

Dǫ =

{

ξ ∈ Σλ : ǫ ≤ |0−1
λ ◦ ξ|Hn ≤ 2ǫ or

1

ǫ
≤ |0−1

λ ◦ ξ|Hn ≤
2

ǫ

}

.

Then, it is clear from the definition of ηǫ that
ˆ

Dǫ

|∇Hnηǫ|
Q dξ ≤ C.

Thus, a simple use of Hölder’s inequality yields

(3.17)

Iǫ =

ˆ

Σu
λ

(U+
λ )

2|∇Hnηǫ|
2 dξ ≤

(
ˆ

Dǫ

(U+
λ )

τ+1 dξ

)
2

τ+1
(
ˆ

Dǫ

|∇Hnηǫ|
Q dξ

)
2

Q

≤ C

(
ˆ

Dǫ

(U+
λ )

τ+1 dξ

)
2

τ+1

→ 0, as ǫ → 0,

provided that U+
λ ∈ Lτ+1(Σλ). This combined with (3.16) implies that U+ ∈ H1(Σλ)

as U+
λ ∈ Lτ+1(Σλ) ∩ L∞(Σλ) and 1

|ξ|2Q
Hn

is integrable in Σλ

On the other hand, by Sobolev inequality (see [26, 40]), we have

(3.18)

ˆ

Σλ

|∇HnU+
λ ηǫ|

2 dξ ≥ C

(
ˆ

Σλ

(U+
λ ηǫ)

2Q

Q−2 dξ

)
Q−2

Q

.

Applying monotone and dominated convergence theorem along with (3.18) by
letting ǫ → 0 in (3.16), we obtain
(
ˆ

Σλ

(U+
λ )

2Q

Q−2 dξ

)
Q−2

Q

≤ Cλ

(
ˆ

Σv
λ

1

|ξ|2Q
Hn

dξ

)
2

Q
(
ˆ

Σλ

(U+
λ )

2Q

Q−2 dξ

)
Q−2

2Q
(
ˆ

Σλ

(V +
λ )

2Q

Q−2 dξ

)
Q−2

2Q

.

This completes the proof of Lemma 3.2. �
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Lemma 3.3. There exists λo > 0 such that for all λ ≥ λo, Uλ(ξ) ≤ 0 and

Vλ(ξ) ≤ 0 for all ξ ∈ Σλ\{0λ}.

Proof. Since 1

|ξ|2Q
Hn

is integrable in H
n\Br(0) for any r > 0, we have

ˆ

Σv
λ

1

|ξ|2Q
Hn

dξ ≤

ˆ

Σλ

1

|ξ|2Q
Hn

dξ → 0, as λ → +∞.

It follows that there exists λo > 0 such that, for all λ ≥ λo, we get

Cλ

(
ˆ

Σu
λ

1

|ξ|2Q
Hn

dξ

)
1

Q
(
ˆ

Σv
λ

1

|ξ|2Q
Hn

dξ

)
1

Q

≤
1

2
.

By Lemma 3.2, we obtain that
ˆ

Σλ

|U+
λ |

2Q
Q−2 dξ = 0 and

ˆ

Σλ

|V +
λ |

2Q
Q−2 dξ = 0,

for all λ ≥ λo, this implies that Uλ(ξ) ≤ 0 and Vλ(ξ) ≤ 0 for all ξ ∈ Σλ\{0λ} and
λ ≥ λo.

This completes the proof of Lemma 3.3. �

Next, we can move the plane from the right to the left. More precisely, we define

λ1 := inf{λ > 0 | Uµ(ξ) ≤ 0, Vµ(ξ) ≤ 0, ∀ ξ ∈ Σµ\{0µ}, ∀µ ≥ λ}.

This is well-defined by Lemma 3.3. Now we have the following result.

Lemma 3.4. If λ1 > 0, then Uλ1
(ξ) ≡ 0, Vλ1

(ξ) ≡ 0 for all ξ ∈ Σλ1
\{0λ1

}.

Proof. We deduce from Lemma 3.3, by using continuity of Uλ and Vλ, that
Uλ1

(ξ) ≤ 0, Vλ1
(ξ) ≤ 0 for ξ ∈ Σλ1

\{0λ1
}.

By (3.11), for ξ ∈ Σλ1
\{0λ1

}, we have h(|ξ|Q−2
Hn v̄)v̄

Q+2

Q−2 ≤ h(|ξλ1
|Q−2
Hn v̄λ1

)v̄
Q+2

Q−2

λ1
,

provided that Vλ1
(ξ) ≤ 0. Therefore, by (3.4) and (3.5), we get

−∆Hn ū ≤ −∆Hn ūλ1
,

which implies that −∆HnUλ1
≤ 0. Since Uλ1

≤ 0, by the maximum principle, either
Uλ1

≡ 0 or Uλ1
< 0 in Σλ1

\{0λ1
}.

Now, let us suppose that Uλ1
< 0 in Σλ1

\{0λ1
}. We note that 1

|ξ|2Q
Hn

χΣv
λ
→ 0

pointwise as λ → λ1 in H
n\(Tλ1

∪ {0λ1
}), where χA is the characteristic function

of the set A. Also, for λ ∈ (λ1 − δ, λ1], we have 1

|ξ|2Q
Hn

χΣv
λ
≤ 1

|ξ|2Q
Hn

χΣλ−δ
∈ L1(Σλ).

Therefore, by dominated convergence theorem, we obtain
ˆ

Σv
λ

1

|ξ|2Q
Hn

dξ → 0, as λ → λ1,

and consequently, for λ ∈ (λ1 − δ, λ1),

Cλ

(
ˆ

Σu
λ

1

|ξ|2Q
Hn

dξ

)
1

Q
(
ˆ

Σv
λ

1

|ξ|2Q
Hn

dξ

)
1

Q

≤
1

2
.

Following the similar argument as in the proof of Lemma 3.3, we conclude that
Uλ(ξ) ≤ 0 and Vλ(ξ) ≤ 0 in Σλ\{0λ} for λ ∈ (λ1 − δ, λ1], which contradicts with the
definition of λ1. This completes the proof of Lemma 3.4. �

Next, we are ready to present the proof of Theorem 1.1.
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Proof. We will first prove that the functions ū and v̄ are symmetric with respect
to T0. We still use the method of moving planes and prove the symmetry. We can
carry out the procedure as above. If λ1 > 0, then it follows from Lemma 3.4 that
ū, v̄ are symmetric with respect to Tλ1

. This means that ū = ūλ1
and v̄ = v̄λ1

, which
implies that −∆Hn ū = −∆Hn ūλ1

. This combined with v̄ = v̄λ1
, (3.4) and (3.5) show

that

(3.19) h(|ξλ1
|Q−2
Hn v̄λ1

(ξ)) = h(|ξ|Q−2
Hn v̄(ξ)).

By the assumption that h is nonincreasing and the fact that |ξλ1
| < |ξ| for ξ ∈ Σλ1

, we

conclude from (3.19) that h(s) is constant in a left neighbourhood of s = |ξ|Q−2
Hn v̄(ξ) =

v
(

(x̃,ỹ,−t)
|ξ|4

Hn

)

, t > λ1. In a similar manner, we can show that h is constant in a

right neighbourhood of s = |ξ|Q−2
Hn v̄(ξ) = v

(

(x̃,ỹ,−t)
|ξ|4

Hn

)

, t < λ1. In particular, this

holds for s close to 0 because s = v
(

(x̃,ỹ,−t)

|ξ|4
Hn

)

converges to 0 at infinity by (3.2).

Therefore we conclude that if λ1 > 0, then h is constant on (0, supξ∈Hn v(ξ)), which
is a contradiction to our assumption (iii). We also derive the same contradiction if k
is assumed not be constant on (0, supξ∈Hn u(ξ)).

If λ1 = 0, then we conclude by continuity that ū(ξ) ≤ ū0(ξ) and v̄(ξ) ≤ v̄0(ξ) for
all ξ ∈ Σ0. In this case, we can also perform the moving plane procedure from the
left and find a corresponding λ′

1. If λ′
1 < 0, an analogue to Lemma 3.4 shows that

ū, v̄ are symmetric with respect to Tλ′

1
and we can obtain contradiction in this case

as for λ1 > 0 previously. If λ′
1 = 0, then we conclude by continuity that ū0(ξ) ≤ ū(ξ)

and v̄0(ξ) ≤ v̄(ξ) for all ξ ∈ Σ0. The fact and the above inequalities imply that
ū0(ξ) = ū(ξ) and v̄0(ξ) = v̄(ξ) and λ1 = λ′

1 = 0. This shows that ū and v̄ are
symmetric with respect to T0, that is, ū and v̄ are even in t-variable.

Since the choice of origin is arbitrary in the t-axis, then we conclude that u and
v are independent of t. However, this shows that u and v satisfy the system

(3.20)

{

−∆u(ξ) = f(v(ξ)), ξ ∈ R
2n,

−∆v(ξ) = g(u(ξ)), ξ ∈ R
2n.

Since f, g are nondecreasing in (0,∞), and

f(t)

t
2n+2

2n−2

=
f(t)

t
Q+2

Q−2

t
Q+2

Q−2
− 2n+2

2n−2 ,
g(t)

t
2n+2

2n−2

=
g(t)

t
Q+2

Q−2

t
Q+2

Q−2
− 2n+2

2n−2 ,

are nonincreasing in t, it follows immediately from [37, Theorem 1.1] as 2n ≥ 3 along
with the assumption h or k is not constant function, that (u, v) ≡ (C1, C2) for some
constant C1 and C2 with f(C2) = 0 and g(C1) = 0.

This completes the proof of Theorem 1.1. �

Next we provide a proof of Corollary 1.3.

Proof of Corollary 1.3. For n ≥ 2, the proof is an immediate consequence of
Theorem 1.1. For n = 1, we repeat the proof of Theorem 1.1 including all supporting
lemmata (see Remark 1.5) for the special case when f(t) = tp and g(t) = tq and use
the corresponding Euclidean result from [46, 54, 57] (see also [56]) for the dimension
two instead of [37, Theorem 1.1] to complete the proof. �
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4. Proof of Theorem 1.4

In this section, by using the similar methods as used in Section 3, we study
the positive cylindrical (weak) solutions to the semilinear systems in the Heisenberg
group with more general nonlinearity

(4.1)

{

−∆Hnu(ξ) = f(u(ξ), v(ξ)), ξ ∈ H
n,

−∆Hnv(ξ) = g(u(ξ), v(ξ)), ξ ∈ H
n,

where ∆Hn is the sub-Laplacian on the Heisenberg group H
n.

We establish Liouville type result stated in Theorem 1.4 for the system (4.1). The
spirit of the proofs is still the moving plane method and will be completed similarly
to that of Theorem 1.1 with the help of some analogue of Lemmas 3.2-3.4 in this
more general context. Here, we carry over the notation used in the previous section.

Suppose that (u, v) ∈ (H1
loc(H

n) ∩ C0(Hn)) × (H1
loc(H

n) ∩ C0(Hn)) be a weak
cylindrical solution of system (4.1). If (u, v) solves (4.1), then a direct calculation
yields that

(4.2)







−∆Hn ū(ξ) = 1

|ξ|Q+2

Hn

f(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ)), ξ ∈ H
n\{0},

−∆Hn v̄(ξ) = 1

|ξ|Q+2

Hn

g(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ)), ξ ∈ H
n\{0},

and

(4.3)







−∆Hn ūλ(ξ) =
1

|ξλ|
Q+2

Hn

f(|ξλ|
Q−2
Hn ūλ(ξ), |ξλ|

Q−2
Hn v̄λ(ξ)), ξ ∈ H

n\{0λ},

−∆Hn v̄λ(ξ) =
1

|ξλ|
Q+2

Hn

g(|ξλ|
Q−2
Hn ūλ(ξ), |ξλ|

Q−2
Hn v̄λ(ξ)), ξ ∈ H

n\{0λ}.

Lemma 4.1. Under the assumptions of Theorem 1.4, for any fixed λ > 0, we

have ū, v̄ ∈ Lτ+1(Σλ) ∩ L∞(Σλ), U+
λ (ξ), V

+
λ (ξ) ∈ Lτ+1(Σλ) ∩ L∞(Σλ) ∩ H1(Σλ).

Moreover, there exists Cλ > 0, non-increasing in λ, such that the following estimates

holds:

(
ˆ

Σλ

(U+
λ )

2Q
Q−2 dξ

)
Q−2

Q

≤ Cλ

(
ˆ

Σu
λ

1

|ξ|2Q
Hn

dξ

)
2

Q
(
ˆ

Σλ

(U+
λ )

2Q
Q−2 dξ

)
Q−2

Q

+ Cλ

(
ˆ

Σu
λ

1

|ξ|2Q
Hn

dξ

)
2

Q
(
ˆ

Σλ

(V +
λ )

2Q
Q−2 dξ

)
Q−2

2Q
(
ˆ

Σλ

(U+
λ )

2Q
Q−2 dξ

)
Q−2

2Q

,(4.4)

and

(
ˆ

Σλ

(V +
λ )

2Q

Q−2 dξ

)
Q−2

Q

≤ Cλ

(
ˆ

Σv
λ

1

|ξ|2Q
Hn

dξ

)
2

Q
(
ˆ

Σλ

(V +
λ )

2Q

Q−2 dξ

)
Q−2

Q

+ Cλ

(
ˆ

Σv
λ

1

|ξ|2Q
Hn

dξ

)
2

Q
(
ˆ

Σλ

(U+
λ )

2Q

Q−2 dξ

)
Q−2

2Q
(
ˆ

Σλ

(V +
λ )

2Q

Q−2 dξ

)
Q−2

2Q

.(4.5)

Proof. We just prove (4.4), the proof of (4.5) is similar. For any fixed λ > 0, there
exists r > 0 such that Σλ ⊂ H

n\Br(0), then ū and U+
λ ≤ ū ∈ Lτ+1(Σλ) ∩ L∞(Σλ)

and 1
|ξ|Hn

is integrable in Σλ.

Since λ > 0, it follows that |ξ|Hn > |ξλ|Hn for all ξ ∈ Σλ, we still choose a
cylindrically symmetric cut-off function ηǫ as in Section 3.
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(i) If Uλ(ξ) ≥ 0 and Vλ(ξ) ≤ 0, then by the assumptions (i) in Theorem 1.4, we
have

(4.6) f(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ)) ≥ f
(

|ξλ|Q−2
Hn ūλ(ξ), |ξλ|

Q−2
Hn v̄(ξ)

ūλ(ξ)

ū(ξ)

)

.

By the assumptions (ii) in Theorem 1.4, we have

(4.7)
f(|ξλ|

Q−2
Hn ūλ(ξ), |ξλ|

Q−2
Hn v̄(ξ) ūλ(ξ)

ū(ξ)
)

[|ξλ|
Q−2
Hn ūλ(ξ)]p1[|ξλ|

Q−2
Hn v̄(ξ) ūλ(ξ)

ū(ξ)
]q1

≥
f(|ξ|Q−2

Hn ū(ξ), |ξ|Q−2
Hn v̄(ξ))

[|ξ|Q−2
Hn ū(ξ)]p1[|ξ|Q−2

Hn v̄(ξ)]q1
.

By using (4.6) in (4.7), we deduce that

f(|ξλ|
Q−2
Hn ūλ(ξ), |ξλ|

Q−2
Hn v̄λ(ξ)) ≥ f(|ξ|Q−2

Hn ū(ξ), |ξ|Q−2
Hn v̄(ξ))

(

|ξλ|Hn

|ξ|Hn

)Q+2
( ūλ(ξ)

ū(ξ)

)
Q+2

Q−2

,

which further implies that

1

|ξ|Q+2
Hn

f(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ))−
1

|ξλ|
Q+2
Hn

f(|ξλ|
Q−2
Hn ūλ(ξ), |ξλ|

Q−2
Hn v̄λ(ξ))

≤
1

|ξ|Q+2
Hn

f(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ))

(

1−
( ūλ(ξ)

ū(ξ)

)
Q+2

Q−2

)

≤
1

|ξ|Q+2
Hn

f(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ))
Q+ 2

Q− 2

(

1−
ūλ(ξ)

ū(ξ)

)

≤
C

|ξ|Q+2
Hn

f(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ))

ū(ξ)
(ū(ξ)− ūλ(ξ))

≤
C

|ξ|4
Hn

f(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ))

|ξ|Q−2
Hn ū(ξ)

(ū(ξ)− ūλ(ξ))

≤
C

|ξ|4
Hn

f(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ))

|ξ|Q−2
Hn ū(ξ)(|ξ|Q−2

Hn v̄(ξ))
4

Q−2

(|ξ|Q−2
Hn v̄(ξ))

4

Q−2 (ū(ξ)− ūλ(ξ))

≤ C
f(|ξ|Q−2

Hn ū(ξ), |ξ|Q−2
Hn v̄(ξ))

|ξ|Q−2
Hn ū(ξ)(|ξ|Q−2

Hn v̄(ξ))
4

Q−2

(v̄(ξ))
4

Q−2 (ū(ξ)− ūλ(ξ))

≤
Cλ

|ξ|4
Hn

(ū(ξ)− ūλ(ξ)),

where we have used the mean value theorem with the observation that ūλ(ξ)
ū(ξ)

≤ 1 in

the second inequality and the fact that f is a positive continuous function such that
f(s,t)

s t
4

Q−2

is nonincreasing in s (assumption (ii)) along with the v̄(ξ) decay as 1

|ξ|Q−2

Hn

to

deduce the last inequality.
(ii) If Uλ(ξ) ≥ 0 and Vλ(ξ) > 0, then by arguing similar to (i) we have

f(|ξλ|
Q−2
Hn ūλ(ξ), |ξλ|

Q−2
Hn v̄λ(ξ))

|ξλ|
Q+2
Hn ū

p1
λ (ξ)v̄q1λ (ξ)

≥
f(|ξ|Q−2

Hn ū(ξ), |ξ|Q−2
Hn v̄(ξ))

|ξ|Q+2
Hn ūp1(ξ)v̄q1(ξ)

,

that is

f(|ξλ|
Q−2
Hn ūλ(ξ), |ξ

λ|Q−2
Hn v̄λ(ξ))

|ξλ|
Q+2
Hn

≥
f(|ξ|Q−2

Hn ū(ξ), |ξ|Q−2
Hn v̄(ξ))

|ξ|Q+2
Hn

(

ūλ(ξ)

ū(ξ)

)p1
(

v̄λ(ξ)

v̄(ξ)

)q1

.
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So we have

f(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ))

|ξ|Q+2
Hn

−
f(|ξλ|

Q−2
Hn ūλ(ξ), |ξλ|

Q−2
Hn v̄λ(ξ))

|ξλ|
Q+2
Hn

≤
f(|ξ|Q−2

Hn ū(ξ), |ξ|Q−2
Hn v̄(ξ))

|ξ|Q+2
Hn

(

1−
( ūλ(ξ)

ū(ξ)

)p1
( v̄λ(ξ)

v̄(ξ)

)q1
)

≤
f(|ξ|Q−2

Hn ū(ξ), |ξ|Q−2
Hn v̄(ξ))

|ξ|Q+2
Hn

(

1−
( ūλ(ξ)

ū(ξ)

)
Q+2

Q−2
( v̄λ(ξ)

v̄(ξ)

)
Q+2

Q−2

)

≤
f(|ξ|Q−2

Hn ū(ξ), |ξ|Q−2
Hn v̄(ξ))

|ξ|Q+2
Hn

Q + 2

Q− 2

(

(

1−
ūλ(ξ)

ū(ξ)

)

+
(

1−
v̄λ(ξ)

v̄(ξ)

)

)

≤
C

|ξ|Q+2
Hn

(

f(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ))

ū(ξ)

(

ū(ξ)− ūλ(ξ)
)

+
f(|ξ|Q−2

Hn ū(ξ), |ξ|Q−2
Hn v̄(ξ))

v̄(ξ)

(

v̄(ξ)− v̄λ(ξ)
)

)

≤
Cλ

|ξ|4
Hn

(

(

ū(ξ)− ūλ(ξ)
)

+
(

v̄(ξ)− v̄λ(ξ)
)

)

.

(iii) If Uλ(ξ) < 0 and Vλ(ξ) ≥ 0, then we have change the role of ū, v̄ in case (i)
and obtain

1

|ξ|Q+2
Hn

f(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ))−
1

|ξλ|
Q+2
Hn

f(|ξλ|
Q−2
Hn ūλ(ξ), |ξ

λ|Q−2
Hn v̄λ(ξ))

≤
Cλ

|ξ|4
Hn

(v̄(ξ)− v̄λ(ξ)).

(iv) If Uλ(ξ) < 0 and Vλ(ξ) < 0, then we have

f(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ))

|ξ|Q+2
Hn

≤
f(|ξλ|

Q−2
Hn ūλ(ξ), |ξλ|

Q−2
Hn v̄λ(ξ))

|ξλ|Q+2
Hn

=
f(|ξ|Q−2

Hn ū(ξ), |ξ|Q−2
Hn v̄(ξ))

[|ξ|Q−2
Hn ūλ(ξ)]p1[|ξ|

Q−2
Hn v̄λ(ξ)]q1

ū
p1
λ (ξ)v̄q1λ (ξ)

≤
f(|ξλ|

Q−2
Hn ū(ξ), |ξλ|

Q−2
Hn v̄(ξ))

[|ξλ|
Q−2
Hn ūλ(ξ)]p1[|ξλ|

Q−2
Hn v̄λ(ξ)]q1

ū
p1
λ (ξ)v̄q1λ (ξ)

≤
f(|ξλ|

Q−2
Hn ūλ(ξ), |ξλ|

Q−2
Hn v̄λ(ξ))

|ξλ|
Q+2
Hn

.

The rest of calculation follows exactly similar to case (ii), therefore we skip it.
Therefore, we deduce from (4.2) and (4.3) by using cases (i)–(iv) that

(4.8) −∆HnUλ ≤
Cλ

|ξ|4
Hn

(

(

ū(ξ)− ūλ(ξ)
)+

+
(

v̄(ξ)− v̄λ(ξ)
)+
)

.

Similarly, we obtain

(4.9) −∆HnVλ ≤
Cλ

|ξ|4
Hn

(

(

ū(ξ)− ūλ(ξ)
)+

+
(

v̄(ξ)− v̄λ(ξ)
)+
)

.
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Hence, after a calculation similar to that of (3.9), we conclude that

(4.10)

ˆ

Σλ

|∇Hn(U+
λ ηǫ)|

2 dξ =

ˆ

Σλ

−∆Hn(U+
λ η

2
ǫU

+
λ ) dξ + Iǫ

≤

ˆ

Σλ

Cλ

|ξ|4
Hn

(U+
λ + V +

λ )η2ǫU
+
λ dξ + Iǫ,

where Iǫ =
´

Σu
λ

(U+
λ )

2|∇Hnηǫ|
2dξ. We can also prove that Iǫ → 0 as ǫ → 0 as in (3.17).

By the Hölder inequality, we obtain

(4.11)

ˆ

Σλ

1

|ξ|4
Hn

(U+
λ + V +

λ )η2ǫU
+
λ dξ ≤ Cλ

(
ˆ

Σu
λ

1

|ξ|2Q
Hn

dξ

)
2

Q
(
ˆ

Σλ

(U+
λ ηǫ)

2Q

Q−2 dξ

)
Q−2

Q

+ Cλ

(
ˆ

Σu
λ

1

|ξ|2Q
Hn

dξ

)
2

Q
(
ˆ

Σλ

(V +
λ ηǫ)

2Q

Q−2 dξ

)
Q−2

2Q
(
ˆ

Σλ

(U+
λ ηǫ)

2Q

Q−2 dξ

)
Q−2

2Q

.

Now, combining (4.10) with (4.11) and letting ǫ → 0 in (4.10), we get

(4.12)

ˆ

Σλ

|∇HnU+
λ |

2 dξ ≤ Cλ

(
ˆ

Σu
λ

1

|ξ|2Q
Hn

dξ

)
2

Q
(
ˆ

Σλ

(U+
λ )

2Q
Q−2 dξ

)
Q−2

Q

+ Cλ

(
ˆ

Σu
λ

1

|ξ|2Q
Hn

dξ

)
2

Q
(
ˆ

Σλ

(V +
λ )

2Q
Q−2 dξ

)
Q−2

2Q
(
ˆ

Σλ

(U+
λ )

2Q
Q−2 dξ

)
Q−2

2Q

.

Similarly, we have

(4.13)

ˆ

Σλ

|∇HnV +
λ |2 dξ ≤ Cλ

(
ˆ

Σv
λ

1

|ξ|2Q
Hn

dξ

)
2

Q
(
ˆ

Σλ

(V +
λ )

2Q

Q−2 dξ

)
Q−2

Q

+ Cλ

(
ˆ

Σv
λ

1

|ξ|2Q
Hn

dξ

)
2

Q
(
ˆ

Σλ

(U+
λ )

2Q

Q−2 dξ

)
Q−2

2Q
(
ˆ

Σλ

(V +
λ )

2Q

Q−2 dξ

)
Q−2

2Q

.

This completes the proof of Lemma 4.1. �

Lemma 4.2. Under the assumptions of Theorem 1.4, there exists λo > 0 such

that for all λ ≥ λo, Uλ ≤ 0 and Vλ ≤ 0 for all ξ ∈ Σλ\{0λ}.

Proof. This proof of Lemma 4.2 is similar to Lemma 3.3, therefore, we skip it. �

Now we can move the plane from the right to the left. More precisely, we define

λ1 = inf{λ > 0 | Uµ(ξ) ≤ 0, Vµ(ξ) ≤ 0, ξ ∈ Σµ\{0µ}, µ ≥ λ},

then we have the following lemma.

Lemma 4.3. If λ1 > 0, then Uλ1
(ξ) ≡ 0 and Vλ1

(ξ) ≡ 0 for all ξ ∈ Σλ1
\{0λ1

}.

Proof. By continuity, we deduce that Uλ1
(ξ) ≤ 0, Vλ1

(ξ) ≤ 0 for ξ ∈ Σλ1
\{0λ1

}.

Next, we will prove that if Uλ1
= 0 at some point ξ̂ ∈ Σλ1

\{0λ1
}, then in a neighbor-

hood of ξ̂, Uλ1
= 0, and hence by continuity, Uλ1

≡ 0 in Σλ1
\{0λ1

}.

Since Uλ1
(ξ̂) = 0, we have |ξ|Q+2

Hn ū(ξ̂) > |ξλ1
|Q+2
Hn ūλ1

(ξ̂) for ξ ∈ Ω a neighborhood

of ξ̂. By using the same arguments as we used in the proof of Lemma 4.1, we have

(4.14)

{

−∆HnUλ1
+ CUλ1

≤ 0, in Ω,

Uλ1
≤ 0, Uλ1

(ξ̂) = 0, in Ω,
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where C > 0 is a constant depending on ξ̂, Ω is a neighborhood of ξ̂. Hence, by the
maximal principle, Uλ1

≡ 0, in Ω.
Now we claim that Uλ1

≡ 0 implies Vλ1
≡ 0. In fact, by (4.2) and (4.3), we obtain

f(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ))

|ξ|Q+2
Hn

=
f(|ξλ1

|Q−2
Hn ūλ1

(ξ), |ξλ1
|Q−2
Hn v̄λ1

(ξ))

|ξλ1
|Q+2
Hn

≥
f(|ξ|Q−2

Hn ū(ξ), |ξλ1
|Q−2
Hn v̄λ1

(ξ))

|ξλ1
|Q+2
Hn

>
f(|ξ|Q−2

Hn ū(ξ), |ξλ1
|Q−2
Hn v̄λ1

(ξ))

|ξ|Q+2
Hn

.

Since f(s, t) is nondecreasing in t, we deduce from the above inequality that

(4.15) |ξ|Q−2
Hn v̄(ξ) > |ξλ1

|Q−2
Hn v̄λ1

(ξ).

On the other hand,

f(|ξ|Q−2
Hn ū(ξ), |ξ|Q−2

Hn v̄(ξ))

|ξ|Q+2
Hn

=
f(|ξλ1

|Q−2
Hn ūλ1

(ξ), |ξλ1
|Q−2
Hn v̄λ1

(ξ))

|ξλ1
|Q+2
Hn

≥
f(|ξλ1

|Q−2
Hn ū(ξ), |ξλ1

|Q−2
Hn v̄(ξ))

|ξλ1
|Q+2
Hn

≥
f(|ξ|Q−2

Hn ū(ξ), |ξ|Q−2
Hn v̄(ξ))

|ξ|Q+2
Hn

.

Hence

(4.16)
f(|ξ|Q−2

Hn ū(ξ), |ξ|Q−2
Hn v̄(ξ))

|ξ|Q+2
Hn

=
f(|ξλ1

|Q−2
Hn ū(ξ), |ξλ1

|Q−2
Hn v̄(ξ))

|ξλ1
|Q+2
Hn

,

therefore

(4.17)
f(|ξ|Q−2

Hn ū(ξ), |ξ|Q−2
Hn v̄(ξ))

(|ξ|Q−2
Hn ū(ξ))p1(|ξ|Q−2

Hn v̄(ξ))q1
=

f(|ξλ1
|Q−2
Hn ū(ξ), |ξλ1

|Q−2
Hn v̄(ξ))

(|ξλ1
|Q−2
Hn ū(ξ))p1(|ξλ1

|Q−2
Hn v̄(ξ))q1

.

By (4.15), (4.17) and assumption (i) of Theorem 1.4, we obtain

(4.18)
f(|ξ|Q−2

Hn ū(ξ), |ξ|Q−2
Hn v̄(ξ))

(|ξ|Q−2
Hn ū(ξ))p1(|ξ|Q−2

Hn v̄(ξ))q1
=

f(|ξλ1
|Q−2
Hn ū(ξ), |ξλ1

|Q−2
Hn v̄λ1

(ξ))

(|ξλ1
|Q−2
Hn ū(ξ))p1(|ξλ1

|Q−2
Hn v̄λ1

(ξ))q1
,

and consequently, it follows from (4.16) and (4.18) that v̄q1 = v̄
q1
λ1

and therefore,
Vλ1

≡ 0 as q1 > 0.
Suppose that Uλ1

6≡ 0 and Vλ1
6≡ 0 in Σλ1

\{0λ1
}, then Uλ1

< 0, Vλ1
< 0 in

Σλ1
\{0λ1

}. So 1

|ξ|2Q
Hn

χΣu
λ

converges pointwise to zero as λ → λ1 in H
n\(Tλ1

∪ {0λ1
}).

Then, for λ ∈ (λ1 − δ, λ1), we have 1

|ξ|2Q
Hn

χΣu
λ
≤ 1

|ξ|2Q
Hn

χΣλ1−δ
∈ L1(Σλ). Next, the

dominated convergence theorem allows us to conclude that
ˆ

Σu
λ

1

|ξ|2Q
Hn

→ 0, as λ → λ1.

This eventually implies that

Cλ

(
ˆ

Σu
λ

1

|ξ|2Q
Hn

dξ

)
4

Q

< 1.



578 Vishvesh Kumar, Michael Ruzhansky and Rong Zhang

Similarly, we have

Cλ

(
ˆ

Σv
λ

1

|ξ|2Q
Hn

dξ

)
4

Q

< 1.

By Lemma 4.1, this implies that Uλ ≤ 0, and Vλ ≤ 0 for λ ∈ (λ1 − δ, λ1), which
contradicts with the definition of λ1. This completes the proof of Lemma 4.3. �

Lemma 4.4. Let u, v, f, g be as in Theorem 1.4 and suppose that u, v are posi-

tive. Let ū, v̄ be the CR inversion of u and v respectively. Then ū, v̄ are symmetric

with respect to T0, that is, ū and v̄ are even functions in t-variable..

Proof. The proof of this lemma is verbatim to the proof of symmetry in Theo-
rem 1.1 by using Lemma 4.3 instead of Lemma 3.4, so we do not repeat it. �

Next, we give the proof of Theorem 1.4.

Proof. By Lemma 4.4, we conclude that functions ū and v̄ are symmetric with
respect to T0, that is, ū and v̄ are even in t-variable. Consequently, u and v are even
in t-variable. Since the choice of origin is arbitrary in t-axis, we conclude that u and
v are independent of t. Thus, u and v satisfy the system

(4.19)

{

−∆u(ξ) = f(u(ξ), v(ξ)), ξ ∈ R
2n,

−∆v(ξ) = g(u(ξ), v(ξ)), ξ ∈ R
2n.

Since f(s, t), g(s, t) are nondecreasing, and

f(s, t)

sa1tb1
=

f(s, t)

sp1tq1
sp1−a1tq1−b1 ,

g(s, t)

sa2tb2
=

g(s, t)

sp2tq2
sp2−a2tq2−b2 ,

where ai + bi =
2n+2
2n−2

≥ Q+2
Q−2

= pi + qi, ai ≥ pi and bi ≥ qi, i = 1, 2, then by using

[37, Theorem 3.1] as 2n ≥ 3 and h or k is not constant function, we deduce that
(u, v) = (C1, C2) for some constant C1, C2 such that f(C1, C2) = g(C1, C2) = 0.

This completes the proof of Theorem 1.4. �
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