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Functional equations in formal power series

FEDOR PAKOVICH

Abstract. Let k be an algebraically closed field of characteristic zero, and k[[z]] the ring of
formal power series over k. In this paper, we study equations in the semigroup 22k[[z]] with the
semigroup operation being composition. We prove a number of general results about such equations
and provide some applications. In particular, we answer a question of Horwitz and Rubel about
decompositions of “even” formal power series. We also show that every right amenable subsemigroup
of 22k[[2]] is conjugate to a subsemigroup of the semigroup of monomials.

Muodollisten potenssisarjojen funktionaaliyhtilGista

Tiivistelm&. Olkoon k algebrallisesti suljettu kunta, jonka karakteristika on nolla, ja k[[z]] sen
muodollisten potenssisarjojen rengas. Tissd tutkimuksessa tarkastellaan puoliryhméssi 22k[[2]] ase-
tettuja yhtéloita, kun puoliryhmélaskutoimituksena on kuvausten yhdistely. TyGssé todistetaan néi-
ta yhtaloita koskevia yleisia tuloksia ja esitellaén joitakin sovelluksia. Erityisesti vastataan Horwitzin
ja Rubelin esittdmaén "parillisten” potenssisarjojen hajotelmia koskevaan kysymykseen. Liséksi osoi-
tetaan, etté jokainen oikealta keskiarvoistuva puoliryhmén z2k[[z]] alipuoliryhmé on jonkin mono-
mien alipuoliryhman liittoluokka.

1. Introduction

Let k be an algebraically closed field of characteristic zero, and k[[z]] the ring of
formal power series over k. For an element A(z) =) ., c,2" of k[[2]], we define its
order by the formula ord A = min{n > 0 | ¢, # 0}. We denote by k,[[]], n > 0, the
subset of k[[z]] consisting of formal power series of order n, and by I' the subset of
k[[z]] consisting of formal power series of order at least two. If A and B are elements
of k[[z]] with ord B > 1, then the operation A o B of composition of A and B is well
defined. In particular, with respect to this operation, the set ki[[z]] is a group, and
the set I' is a semigroup.

The group k;[[z]] has been intensively studied (see e.g. |2, 3, 4, 9, 20, 21, 22, 25,
35, 40, 41]). In this paper, we focus on the less studied semigroup I" with an emphasis
on equations in I'. In other words, we study functional equations in formal powers
series of order at least two. An example of such an equation is simply the equation

(1) A:A10A20~-~0Ar, 7"22,

where A € I' is a given and Aq, Ay, ..., A, € I" are unknown, describing the ways in
which an element A of I' can be represented as a composition of other elements of
I'. Although the problem of characterizing solutions of (1) is fundamental, we were
unable to find relevant references in the literature, and provide an answer in this
paper. Specifically, we describe equivalence classes of decompositions (1), where two
decompositions

~

(2) A=AoAyo---0A, and A=A 0Ayo---0A,,

https://doi.org/10.54330/afm.149373

2020 Mathematics Subject Classification: Primary 30D05, 39B12.

Key words: Functional equations, formal power series, Bottcher’s equation, semigroup
amenability.

This research was supported by ISF Grant No. 1092/22.

(© 2024 The Finnish Mathematical Society



602 Fedor Pakovich

are considered as equivalent if £ = m and there exist elements p;, 1 <i <k —1, of

k1[[z]] such that
(3) A= 121\1 o,ufl, A = i ojzl\l- o,u;l, l<i<k, and Ap=pp_10 A\k

Let us recall that for every A € I of order n there exists an element 4 of ki[[z]],
called the Bdttcher function, such that

BatoAofa=2"
The Boéttcher function is not defined in a unique way; however, if 34 is some Bottcher

function, then any other Béttcher function has the form 34 o ez, where e” ! = 1. In
this notation, our main result concerning equation (1) is the following.

Theorem 1.1. Let A € I" be a formal power series of order n, and (34 some
Botcher function. Then every decomposition

A=AjoAyo-oA,

of A into a composition of elements Ay, As, ..., A, of I is equivalent to the decom-
position

A= (ﬁA o zOrdA1) o zordAz 0.--0 (zordAr OﬁA_l).

Thus, equivalence classes of decompositions of A are in a one-to-one correspondence
with ordered factorizations of n.

The main motivation for writing this paper was to construct in the formal power
series setting an analogue of the decomposition theory of rational functions. Corre-
spondingly, the definition of the equivalency of decompositions of elements of I" given
above mimics the corresponding definition from the decomposition theory of rational
functions, in which two decompositions (2) of a rational function of degree at least
two A into compositions of rational functions of degree at least two Aj, Ay, ..., A
and fAll, fAlg, ey Em are considered as equivalent if (3) holds for some Mobius trans-
formations u;, 1 <7 < k — 1. As expected, the results obtained in this paper differ
significantly from the corresponding results for rational functions, generally being
simpler. For instance, even for polynomial decompositions, the analogue of Theo-
rem 1.1, obtained by Ritt [38], is substantially more complex. On the other hand,
for arbitrary rational functions, such an analogue is not known, and typical results
in the area primarily concern either decompositions of specific types of functions or
functional equations of a particular form (see e.g. [1, 7, 15, 16, 26, 27, 28, 29, 30, 39]).

The main method in the study of decompositions of rational functions is the
monodromy method, which involves examining the monodromy group associated
with a given rational function. On the other hand, the primary technical tool in the
study of equations in formal power series is the Bottcher functions. Our approach
consists in the systematic use along with the Bottcher functions what we call the
transition functions. By definition, the transitions functions for A € I' are elements
wa of kp[[z]] satisfying

Aoy =A.
For A € T of order n there exist exactly n transition functions forming a cyclic
group with respect to the operation of composition. We will call this group the
transition group and denote it by G4. Although the transition groups are quite
simple from a group-theoretic perspective, they turn out to be very convenient for
studying equations in T' since the relative position of these groups within k;[[z]]
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reflects the mutual compositional properties of the corresponding elements of I". We
illustrate this statement with the following two results, which we consider among the
main results of the paper.

The first result concerns the functional equation F' = X o A, where F, A are given
and X is unknown.

Theorem 1.2. Let A € k,[[z]], n > 2, and F € k,,[[2]], m > 1. Then the
equation

F=XoA

has a solution in X € ky,[[z]] if and only if G4 C Gp. In particular, for A,B € T
of the same order the equality G4 = Gpg holds if and only if B = po A for some

p € ka[[]]

The second result concerns the functional equation X o A =Y o B, where A, B
are given and X, Y are unknown.

Theorem 1.3. Let A, B € I'. Then the equation
XoA=YoB
has a solution in X,Y € zk[[z]] if and only if

PAOCYB =YBOPYA
for all p4 € G4 and pp € Gp.

Along with decompositions of general elements of I', we study decompositions
of elements of a special form. Specifically, we address the following problem posed
by Horwitz and Rubel in [19]: if h is the composition of two formal power series f
and g, and if h is even, what can be said about f and g? Some partial results on
this problem and its modifications, concerning decompositions of entire functions or
polynomials, were obtained in the papers [6, 5, 19, 18§].

In this paper, we provide a complete solution to the problem of Horwitz and
Rubel in the case where h and f, g are elements of I'. In fact, along with even formal
power series, that is, series having the form R(2?) for some R € k[[z]], we also consider
odd series having the form zR(z?) and, more generally, symmetric series having the
form z"R(2™), where m > 2, r > 0 are integers. Specifically, we prove the following
result.

Theorem 1.4. Let A € I be a formal power series of the form A = z"R(z™),
where R € k[[z]] and m > 2, r > 0 are integers. Then for any decomposition

A= Ay o0 Ay, where Ay, Ay € T, there exist p € ki[[z]] and Ry, Ry € k[[z]] such that
A = z”Rl(zgcd&zvm)) ou t, Ay =poz"?Ry(z")
for some integers ri, 19 > 0 satisfying the condition rirs = r (mod m).

Notice that Theorem 1.4 implies that if A = A; o A, is even, then either A, is
even, or there exists u € ki[[z]] such that p=' o Ay is odd and A; o p is even. On
the other hand, if A = A; o As is odd, then Theorem 1.4 implies that there exists
€ kq[[2]] such that A; oy and p~' o Ay are both odd (see Corollary 6.5).

As an application of our results about functional equations in I', we provide a
handy necessary condition for a subsemigroup of I' to be right amenable, meaning
that it admits a finitely additive probability measure p defined on all subsets of S
such that for all @ € S and T C S the equality

u(Ta™) = u(T)
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holds, where the set Ta™! is defined by the formula
Ta'={s€S|sacT}.

Let us denote by Z the subsemigroup of I' consisting of monomials az", where
a € k* and n > 2, and by ZV the subsemigroup consisting of all monomials of the
form wz™, n > 2, where w is a root of unity. We say that two subsemigroups S; and
Sy of I" are conjugate if there exists a formal power series a € ky[[z]] such that

aoS oat =09,

It was shown in [33| that a finitely generated subsemigroup of I is right amenable if
and only if it is conjugate to a subsemigroup of ZY. However, it was observed that
an infinitely generated right amenable subsemigroup of I' is not necessarily conjugate
to a subsemigroup of ZY. In this paper, we prove the following result.

Theorem 1.5. Every right amenable subsemigroup S of I' is conjugate to a
subsemigroup of Z.

Moreover, we show that the conclusion of Theorem 1.5 holds already under the
assumption that S is right reversible, which is a weaker condition than the assumption
that S is right amenable (see Theorem 7.2). We deduce these results from the
following statement of independent interest.

Theorem 1.6. Let A, B € I' be formal power series, and 34, g some Bétcher
functions. Then the equation

(4) XoA'=YoB*

has a solution in X,Y € zk[[z]] for all s,l > 1 if and only if B4 = fBp o cz for some
ce k.

Notice that Theorem 1.6 includes the characterization of commuting elements
of T in terms of their Bottcher functions, as obtained by Dorfer and Woracek [13].
Specifically, it implies that A, B € I' commute if and only if 4 = g o ez for some ¢
satisfying
8(ordA71)(ordBfl) -1

(see Corollary 7.1).

This paper is organized as follows. In the second section, after recalling several
elementary facts about the semigroup k[[z]] we discuss Botcher functions and some
of their immediate applications to functional equations. In the third section, we
introduce transition functions and establish their basic properties. In the fourth
section, we solve the functional equations

F=A0X and F=XoA,

where ) A € T" are given and X € zk[[z]] is unknown, in terms of the corresponding
Bottcher functions. We also prove Theorem 1.2 and several of its corollaries.

In the fifth section, we apply the obtained results to decompositions of elements
of I'; and prove Theorem 1.1. In the sixths section, we characterize symmetric series
in terms of their Botcher and transition functions, and prove Theorem 1.4. We also
reprove the result of Reznick [36] stating that if an iterate of A € T' is symmetric,
then A is also symmetric. In the seventh section, we consider the functional equation

XoA=YoB,
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where A, B € T are given and X,Y € zk[[z]] are unknown, and prove Theorem 1.3
and Theorem 1.6. Finally, we establish the aforementioned necessary condition for
the right amenability and the right reversibility of subsemigroups of I'.

2. Bottcher functions

2.1. Lemmata about formal power series. In this paper, k always denotes
an algebraically closed field of characteristic zero. Notice that the number of nth
roots of unity in such k equals n for every n > 1. We will denote by U,, the group of
nth roots of unity in k, and by U the subset of U,, consisting of primitive nth roots
of unity.

For elementary properties of the ring of formal power series k[[z]] and the semi-
group zk[[z]] under the composition operation o, we refer the reader to the first
paragraph of [12]. In particular, we will use the fact that k[[z]] is an integer domain
and that an element A of zk[[z]] is invertible with respect to o if and only if A belongs
to k1[[z]]. Below we collect some further simple facts about k[[z]].

Lemma 2.1. Formal power series 1, pio € k[[2]] satisfy the equality
2oy =2"opuy, n>2,
if and only if py = eps for some € € U,.

Proof. Since
up =y = [ G —epa),

e€Un
the lemma follows from the fact that k[[z]] is an integer domain. O

Lemma 2.2. Let p € k[[z]] \ k and a,b € k* satisty the equality
(5) poaz =bzopu.

Then b = a" for some r € N. Furthermore, either yu = cz", r > 1, for some ¢ € k*, or
a is a root of unity. Finally, u satisfies the equality

(6) poez=c"zop
for some ¢ € Uf and r, 0 < r <n —1, if and only if there exists a formal power
series R € k[[z]] such that u = z"R(z").

Proof. The proof is obtained by a comparison of coefficients in the left and the
right parts of (5) and (6). O

Lemma 2.3. A formal power series i € k|[z]] satisfies the equality
(7) Mopu=poz", n>2,

if and only if p = €z™ for some € € U,y and m > 0.

o0

Proof. Setting m = ord p and substituting p = Y oo ¢;2* into (7) we see that
¢y = ¢p. Furthermore, if 1 # ¢, 2™ we obtain a contradiction as follows. Let [ > m

be the minimum number such that ¢; # 0. Then
=cpz" + az + higher terms,
implying that
o 2" = 2™ + 2™ + higher terms.
On the other hand,

2o =" 2™ 4 et Lo pm DA

+ higher terms.
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Since
m(n—1)+1<l(n—1)+1=ln,

this is impossible, and hence p = ¢,,2™. 0J

Lemma 2.4. Formal power series i1, pio € k[[2]] \ k satisfy the equality
(8) Z"op =pg02", n>2,
if and only if there exist R € k[[z]] and r, 0 <r <n — 1, such that

pr = 2"R(z"), p2 = 2"R"(z).

Proof. The identity
9) 2o 2" R(2") = 2" R"(2) o 2"
is checked by a direct calculation. To prove the “only if” part, we observe that for
any &, € U’ equality (8) implies the equality

2o = 2" o (u 0enz).
Therefore, by Lemma 2.1, there exists r, 0 < r < n — 1, such that
[y O EpZ = €,20 [,

implying by Lemma 2.2 that p; = 2" R(z") for some R € k[[z]]. It follows now from
(8) that
Lo O Pro—— oy = Zran(Zn) — ZTRn(Z) o Zn’
implying that ps = 2" R"(2). OJ
Notice that the representation ps = 2"R"(z) appearing in Lemma 2.4 defines
the series R only up to a multiplication by an nth root of unity. Accordingly, to p.
correspond n different 14 such that (8) holds.

2.2. Bottcher functions and the equation Ao X =Y oB. Let A" bea
formal power series of order n. Then the corresponding Bottcher function is defined
as a formal power series §4 € ki[[2]] such that the equality

(10) Aofa=facs"

holds. It is well known that such a function exists and is defined in a unique way up
to the change S4 — (4 0 ez, where € € U,_;. In the context of complex dynamics,
this fact is widely used and goes back to Bottcher (see [8], [37], [24]). For the proof
in the algebraic setting, see |23, Hilffsatz 4]. Notice that the map

(11) A—)ﬁ)}lvoﬁX,

where X is a fixed element of T, is a semigroup automorphism of I.
Among other things, the existence of Bottcher functions yields the following
statement.

Theorem 2.5. Let Ay, Ay € k[[z]] and X € zk][[z]] be formal power series. Then
the equality

(12) Ajo X =A0X
holds if and only A, = A,.
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Proof. In case X is invertible in the semigroup zk[[z]], the statement is clear.
Otherwise setting n = ord X and conjugating (12) by Sx, we obtain the equality

(/8;(1 o] A1 (@) /Bx> (@) Zn = (ﬁ;(l (e] A2 (@) /Bx) @) Zn,
which obviously implies that
Bx' o Ajofx = fx o Ayo Bx.
Since (11) is an isomorphism, this implies in turn that A; = As. O
Using Bottcher functions, one can provide a solution in XY € zk[[z]] of the

functional equation

Ao X =Y oB,

where A and B are given elements of I" of the same order, generalizing equation (10).
We start by considering the following particular case.

Theorem 2.6. Let A € I' be a formal power series of order n, and [, some
Bottcher function. Then solutions of the equation

(13) AoX =Y o2"
in X,Y € zk[[z]] are given by the formulas
(14) X =pa0z"R(z"), Y =pa0z R"(2),

where R € kl[z]] and 0 < r < n — 1. Furthermore, if X =Y, then solutions of (13)
are given by the formula

X =fuo0ed, ee€U,,
where | = ord X.

Proof. The fact that X and Y defined by (14) satisfy (13) follows from equalities
(9) and (10). On the other hand, if (13) holds, then taking an arbitrary Bottcher
function 34 and substituting 34 0 2" o 83" for A in (13), we obtain

Broz"ofto X =Y 02",
implying that
o (8310 X) = (B3 oY) o "

Thus, equalities (14) hold by Lemma 2.4.
Furthermore, if X =Y, then (14) implies that

Z"R(2") = 2" R"(z).
In turn, this yields that R commutes with 2", implying by Lemma 2.3 that R = 2™,
where € € U,,_1 and m > 0. Therefore,
X =2"R(2") = &2,
where
[ =ord2z"R(2") = ord X. O
Theorem 2.6 implies the following more general statement.

Theorem 2.7. Let A, B € I be formal power series of the same order n, and
Ba, Bp some Bottcher functions. Then solutions of the equation

(15) AoX =YoB
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in X,Y € zk[[z]] are given by the formulas

X =Ba0z"R(z") 0B, Y =pao02"R"(2)0 85",

where R € k[[z]] and 0 < r < n — 1. Furthermore, if X =Y, then solutions of (15)
are given by the formula

X:/BAOE:ZZO/B§1’ 5el—]nflu
where | = ord X.
Proof. For an arbitrary Bottcher function g, equality (15) is equivalent to the
equality
Ao (X opp)=(Yopfp)oz"
Thus, the theorem follows from Theorem 2.6. 0

3. Transition functions

Let A € T" be a formal power series of order n. We recall that we defined transition
functions for A as formal series ¢4 satisfying

(16) AOQOA:A.

It is clear that such series necessarily belong to k1[[z]] and form a group, which we
denote by G 4.

The following two lemmas are modifications of the results of Section 2 in [17]
characterizing solutions of (16) in the analytical setting.

Lemma 3.1. Let A € T be a formal power series, and 3, some Béttcher function.
Then

(17) Ga={Bacezofy' | €Uy},
Proof. 1t follows from equality (10) that for every € € U,, we have
Aofyg=Aofyoez,
implying that
A=Ao(Bsoczopyh).

On the other hand, if equality (16) holds, then conjugating its parts by 4, we
obtain

2" o (Bl opaofa) = 2",
implying by Lemma 2.1 that 8, 0 ¢4 0 B4 = €2 for some ¢ € U,. O
For a formal power series ¢ € ki[[z]], we denote by |¢| the order of ¢ in the group

k1[[2]]. Thus, || equals the minimum number d such that ¢°¢ = z, if such a number
exists, and |¢| equals oo, if ©°¢ is distinct from z for every d > 1.

Lemma 3.2. Let ¢ € ky[[z]] be a formal power series with || = d. Then ¢ = @4
for some formal power series A € T" if and only if 1 < d < oo. Moreover, in the last
case p = p4 for some A of order d.

Proof. Since the functions defined by (17) satisfy ¢%" = z, the “only if” part
follows from Lemma 3.1. On the other hand, if 1 < d < oo, then setting

A:Z‘QO‘QOOQ‘ ‘wo(d—l)’

we see that A € ky[[2]] and the equality Aoy = A holds. O
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The following lemma follows immediately from Lemma 3.1.

Lemma 3.3. Let A € I'. Then G4 is a cyclic group of order n, whose generators
are 34 0¢e,2 0 3", where g, € UL, O

The following lemma relates the transition group for A € I' with the transition
groups for A%, [ > 1, and

Ap=p"toAop, peklf?]

Lemma 3.4. Let A € T' be a formal power series of order n, and 4 some
Bottcher function. Then

(18) Gpoo ={Bacezo Byt |ec Uy}, 1>1,
and
(19) GAH:,u_loGAou, p € ki[[z]].

Proof. Equality (18) follows from Lemma 3.1 and the fact that 54 remains a
Béttcher function for A°, [ > 1. On the other hand, since ord A = ord A, = n,
equality (19) follows from the equality

Auo(lzf1 0 pA 0L =A,, pacGy,
which is obtained by a direct calculation. O

The following statement is a counterpart of Theorem 2.5 for the functional equa-
tion AOXl = AOXQ.

Theorem 3.5. Let A € T and X1, X5 € zk[[z]]. Then the equality
(20) AoX;=A0X,
holds if and only if
Xo=pa0X;
for some w4 € G 4.
Proof. The “if” part is obvious. On the other hand if equality (20) holds, then
conjugating its parts by £4 we obtain
2" o (B3 o X 0Ba) =2"0 (B o Xy0B4),
implying that
BiloXsofBa=cz08; 0oXi0p
for some ¢ € U,, by Lemma 2.1. Therefore,
Xo :5,4052’05210)(1 =pa0Xy
by Lemma 3.1. U

4. Functional equations F = Ao X and F = X o0 A

The next two results provide solutions of the functional equations F' = A o X
and FF = X o A, where F, A € T are given and X € zk[[z]] is unknown, in terms of
the corresponding Bottcher functions Sr and (4.

Theorem 4.1. Let A € k,[[2]], n > 2, and F' € k,,,[[z]], m > 1, be formal power
series, and (4, fr some Bottcher functions. Then the equation

(21) F=XoA
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has a solution in X € k,,[[z]] if and only if there exist R € k[[z]] andr, 0 <r <n-—1,
such that

(22) 2™ o Bato B =2"R(2").
Furthermore, if (22) holds, then (21) has a unique solution X given by the formula
(23) X = Broz"R"(2)0 By

Proof. Substituting Bz o 2"™ o B! for F' and B4 o 2" o 3, for A to (21), we
obtain the equality

ﬁFoznmoﬁglzXoﬂAoz"oﬁzl,
which in turn implies the equality
2o (Mo Bl o Ba) = (Bp' 0 X 0 Ba)o 2",

Hence, the “only if” part follows from Lemma 2.4.
In the other direction, (22) implies that

FzﬁFoznmo/Bgl:/BFOZnOZmOB;l:6FOZnOZrR(2n)OBZI
= Broz'R"(2) 02" 0 B! = Bro2"R"(2) o By o A.
Thus, (21) holds for X given by (23). Finally, the function X is defined by formula
(23) in a unique way by Theorem 2.5. OJ
Theorem 4.2. Let A € k,[[z]], n > 2, and F' € k,,,[[z]], m > 1, be formal power
series, and (4, fr some Bottcher functions. Then the equation
(24) F=A0X

has a solution in X € k,,[[z]] if and only if there exist L € k[[z]] andr, 0 <r <n-—1,
such that

(25) Byl oBroz™=2"L"(2).
Furthermore, if (25) holds, then (24) has n solutions given by the formula

X =Baocezoz L(z") o B!, €€ U,.
Proof. Equality (24) implies the equality
Broz" o Bt = Ba0z" 0Bl 0 X,
which in turn implies the equality
(ByloBroz™) o2 =2"0 (B, o X ofBk).

Therefore, the “only if” part follows from Lemma 2.4.
In the other direction, (25) implies that

F=proz"ofat=proz"o0z"ofat =02 L"(2) 02" 0B
=Ba0z" 02" L(z") o Brt = Ao Bao2"L(z") o Bz
Thus, (24) holds for
X = Bao2"L(z") o Bx".
Finally, by Theorem 3.5 and Lemma 3.1, any other solution of (23) has the form
X =pa0fao L(z") o fp' = Paoezofy ofao2"L(z")o By
= Baocezo " L(z") o Bpt, e€U,. O
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Proof of Theorem 1.2. If F = X o A, then for any ¢, € G4 we have
Fopp=XoAopy=XoA=F,

implying that G4 C Gp.
In the other direction, the equality F' o p4 = F for some generator @ of G4
implies that

(26) BFOanO/BgloﬁAOEnZO/Bgl:/BFOan06;1
for some Béttcher functions 84, B and g, € UF. Tt is clear that equality (26) implies
the equalities
2" o Bt o Broenz =2""0 Byt o B
and
"o (2™ o BploBaoenz) =2"0 (2™ 0 Bpl o Ba).

In turn, the last equality implies by Lemma 2.1 that

(2o BrtoBa)oenz=clzo (2™ o Brt 0 Ba)

for some 7, 0 < r <n—1. It follows now from Lemma 2.2 that there exists R € k[[z]]
such that (22) holds. Therefore, the equality FF = X o A holds for some X € k,,[[z]]
by Theorem 4.1. 0

For brevity, we will say that A € T" is a compositional right factor of F € T" if
there exists X € zk[[z]] such that FF = X o A. Compositional left factors are defined
similarly.

Corollary 4.3. Let F € T" be a formal power series, and A, B € I' some compo-
sitional right factors of F'. Then any o4 € G4 and g € G commute.

Proof. By Theorem 1.2, any ¢4 € G4 and ¢ € G are elements of the commu-
tative group Gp. O

The following corollary provides a criterion for two elements of I' to have a
“common” compositional right factor in I'.

Corollary 4.4. Let A € k,[[z]], B € kn|[2]], n,m > 2, be formal power series,
and d > 2 a common divisor of n and m. Then the system

(27) A=AoW, B=DBoW,

has a solution in A € knyall2]], B e kmyall2]], and W € kg4[[2]] if and only if the
intersection of the groups G4 and G contains a group of order d.

Proof. Assume that (27) holds and let @y be a generator of Gy,. Then by the
“only if” part of Theorem 1.2
o~ ~on/d ~om/d
Yw = ‘PA/ = ¥B /
for some generator 4 of G4 and some generator pp of Gg. Thus, G4 NGp contains
a cyclic group of order d generated by py .
In the other direction, if G4 N G contains a group of order d, and ¢ is its

generator, then
~on/d _ ~om/d

Y =% ¥B
for some generator 4 of G4 and some generator P of G. On the other hand, since

lp] = d, it follows from Lemma 3.2 that ¢ = @y for some W € kgy[[z]]. Using now
the “if” part of Theorem 1.2, we conclude that (27) holds. O
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We finish this section by the following result, providing a criterion for a formal
power series D € I' to be a compositional right factor of a composition of formal
power series A,C' €T,

Theorem 4.5. Let A,C, D € T' be formal power series. Then the equation
(28) AoC=XoD

has a solution in X € kl[[z]] if and only if for any ¢p € Gp there exists 4 € Gy
such that

(29) Copp=pyuoC.

Proof. If for any ¢p € Gp equality (29) holds for some @4 € G4, then for any
vp € Gp we have
AoCopp=AoppoC =AoC.

Therefore, Gp C G aoc and hence (28) has a solution by Theorem 1.2.
In the other direction, equality (28) implies that

AoC =AoCopp.
Thus, (29) holds by Theorem 3.5. O

5. Equivalency classes of decompositions of formal power series

In this section, we prove Theorem 1.1 and deduce from it a corollary, which
can be considered as an analogue of the result of Engstrom [14] about polynomial
solutions of the equation Ao C'= Bo D.

Proof of Theorem 1.1. Let
(30) A=A 0Ay0---0A,
be a decomposition of A € I' with
ord A, =ng, 1<k<nr
Since
BiloAoBs=2"=(B'0A)oAy0---0(A, 0B4),

to prove the theorem it is enough to show that for A = 2" every decomposition (30)
is equivalent to the decomposition

(31) Z'=2"0z2"0-- 02",

We prove the last statement by induction on r.

Clearly, G,n = {ez | € € U,}. Since |G 4,| = n, and G4, is a subgroup of G, by
Theorem 1.2, this implies that G4, = {ez | ¢ € U,, }. Thus, G4, = G,n., implying
by Theorem 1.2 that

(32) A= plp_102"
for some p,—; € kq[[2]]. Hence, if r = 2, we have

nina2 __

n2
z Ajopgoz™,

implying by Theorem 2.5 that A; = 2™ o ;. On the other hand, if 7 > 2, then in
a similar way we obtain the equalities (32) and

(33) Nz =1 — Al o A2 e (Ar—l o ,ur_l).
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By the induction assumption, the decomposition in the right part of (33) is equivalent
to the decomposition 2™ o 2" o---o0 2" 1 and in virtue of (32) this implies that for
A = 2" every decomposition (30) is equivalent to decomposition (31). O

Corollary 5.1. Assume that A, B,C, D € I' satisfy

AoC=BoD.
Then there exist U,V, A,C, B, D € zk[[z]], where
ordU = GCD(ord A4,ord B), ordV = GCD(ord C,ord D),
such that

A=UoA, B=UoB, C=CoV, D=DoV,

and

Proof. Let us set
F=AoC=BoD,
n=ordF, a=ordA, b=ordB, c=ordC, d=ordD,
u = ged(a,b), v=ged(c,d).

Taking a Botcher function Sz and applying Theorem 1.1, we see that there exist
v, i € kq[[z]] such that

A=Broztorvt C=vozops,
and
B=fpozlopu, D:,uozdoﬁgl.
Therefore, the statement of the corollary is true for
U=Bros", V=2:"op

and

a — < b _ d
A=z2vov™, C=voz’s, B=2vou ', D=poz. O
6. Formal power series with symmetries

6.1. Characterizations of formal powers series with symmetries. The
following result characterizes elements of T of the form A = 2" R(2™), where R € k[[z]]
and m > 2, r > 0 are integers, in terms of the corresponding Botcher functions.

Theorem 6.1. Let A € I'. Then A has the form A = 2" R(z"™) for some R € k[[z]]
and integers m > 2, r > 0 if and only if any Botcher function (4 has the form
fa = zL(z™) for some L € kol[[z]].

Proof. Assume that for some Botcher function f4 the equality S4 = zL(2™)
holds. Then 34 commutes with &,,z for any &, € UL, whence

(Aoepz)ofa=Aofso0enz=LPa0z"0g,z=L0Fs0erz02z"

=¢epzofa02" = (enzoA)o fa.

Therefore,
Aoepz =¢epz0A,
implying by Lemma 2.2 that A = 2"R(2™).
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In the other direction, let us assume that A = 2" R(2™) and set A= 2"R™(z).
Since R
Aozm =2"0A,
for any Botcher function $4 we have
Ao (20 B4)=2"0A0Bs=(2"0p4)02",
where n = ord A, implying by Theorem 2.6 that
ZMofy=Pz0ez" = (Byo0ez) 02"

for some Botcher function BA and ¢ € U,_;. By Lemma 2.4, this implies that
B4 = 2'L(z™), where L € k[[z]] and 0 < < m — 1. Finally, since B4 € ki[[2]], we
conclude that [ =1 and L € ko[[z]]. O

Notice that if some Botcher function has the form 4 = zL(2™), then all Bétcher
functions have such a form.

The following result is a counterpart of Theorem 6.1 in the context of transition
functions.

Theorem 6.2. Let A € I'. Then A has the form A = p 0 z"R(z™) for some
p € ki[[z]], R € k[[z]], and integers m > 2, r > 0 if and only if any transition
function @4 has the form @, = zM (2™) for some M € kq|[z]].

Proof. Let us fix €,, € UL. If some ¢4 € G4 has the form ¢4 = zM(2™), then
w4 commutes with €,,2z, implying that
Aoepz=Aoppoe,z=(Aoenz)opa.
Thus, ¢4 belongs to Gaoe,,.. Therefore, if any ¢4 € G4 has the above form, then
G A = G goe,,, implying by Theorem 1.2 that
(34) Aoegpz=voA
for some v € ky[[z]].
Since (34) implies that
Ao(en2)t=1v"0A, 1>1,
the number d = |v| is finite and divides m. If d = 1, that is, if ¥ = 2, then applying
Lemma 2.2 to equality (34) we conclude that A = R(z™) for some R € k[[z]]. On
the other hand, if d > 1, then v = ¢p for some F' € k4[[z]] by Lemma 3.2, and hence
v = Broczofy!
for some Botcher function S and € € Uy by Lemma 3.1. Moreover, since d divides
m, the equalities € = €], and
v=fprocl 2ol
hold for some r, 0 < r < m — 1. Substituting the right part of the last equality for
v in (34), we see that

(B0 A) 0 ez = ehyz 0 (B o A).
Hence, by Lemma 2.2,
Bplo A= 2"R(z™),
for some R € kl[[z]]. Thus, the equality A = o z"R(z™) holds for u = fp.
In the other direction, if A = po z"R(z™), then applying Corollary 4.3 to the

function R
F=A02"=2"ou "' oA,
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where A = 2"R™(z), we conclude that any ¢4 € G4 commutes with p,m = &,,2.
Therefore, any ¢4 has the form 4 = 2M(2™) by Lemma 2.2. O

Corollary 6.3. Let A € I'. Then A has a compositional right factor C € T" of
the form C' = z"R(z™) for some R € kl[z]] and integers m > 2, r > 0 if and only if
some transition function w4 # z has the form 4 = zM(2™) for some M € ky|[2]].

Proof. If A has such a factor, then by Theorem 1.2 the group G4 contains the
non-trivial group G¢ as a subgroup. Moreover, all elements of the last group have
the form zM (2™) by Theorem 6.2.

In the other direction, let us assume that some transition function @4 # 2 has
the form @4 = 2M(2™) and set d = |p4|. By Lemma 3.2, ¢4 = ¢ for some C € T’
of order d, and it is clear that Go = (pa). Thus, A = B o C for some B € zk[[Z]]
by Theorem 1.2. Moreover, since any iterate of a series of the form zM(2™) also
has such form, it follows from G¢ = (pa) by Theorem 6.2 that C' has the form
po z"R(z™) for some u € ki[[z]]. Finally, changing B to B o u, we may assume that
C =2"R(z™). O

6.2. Decompositions of formal powers series with symmetries. Below,
we provide some applications of Theorem 6.1 and Theorem 6.2. We start by proving
Theorem 1.4.

Proof of Theorem 1.4. Let us fix €, € UL, Let
(35) A= Ajo A,
be a decomposition of A with Ay, A; € I'. Considering the equality
Aoz™=(2"0Ay)o As,
where A = 2"R™(z), and using Corollary 4.3, we see that any @4, € G4, commutes

with the transition function ¢,m = €,,z. Thus, any ¢4, € G 4, has the form zM (2™)
for some M € ko[[z]] by Lemma 2.2, and hence

(36) Ay = oz Ry(2™)

for some p € k1[[z]], Re € k[[2]], and ro > 0, by Theorem 6.2.
Furthermore, it follows from the equality

2"R(2™) = Ajopoz?Ry(2™)
that
(A1 opozRy(2™)) 0oz =l z0 (Aj o pozRy(2™)),
implying that
Ajopoe?zo2™Ry(2™) =e),z20 A1 0p0z"Ry(2™)

and
ro. T
Ajopoc?z=c¢, z0A op.

m

Since €;?2 is a primitive —"—th root of unity, it follows now from Lemma 2.2 that
ged(ra,m)

Ajop= 2Ry (5o )
for some Ry € k[[z]] and r; > 0. Thus,
(37) Ay = 2Ry (zFizm ) o 1,
Finally, it follows from (35) and (36), (37) that rire = r (mod m). O
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Notice that in general the series A; in a decomposition A = A;0A, of a symmetric
series A is “less symmetric” than A. Moreover, if ro = 0, then A; may be not
symmetric at all. Nevertheless, the following statement is true.

Corollary 6.4. Let A € I" be a formal power series of the form A = z"R(z™),
where R € k[[z]] and m > 2, r > 1 are integers such that ged(r,m) = 1. Then for
any decomposition A = A; o Ay, where Ay, Ay € T, there exist Ry, Ry € k|[z]] and
p € ki[[z]] such that

Ay =2"Ry(z™)oput, Ay = po 2 Ry(2™)

for some integers 11,19 > 1 such that ged(r1, m) =1 and ged(rq, m) = 1.

Proof. Since the numbers ry,ry appearing in formulas (36), (37) satisfy the
condition rry = 7 (mod m), it follows from ged(r,m) = 1 that ged(ry,m) = 1 and
ged(rg, m) = 1. Moreover, since ged(ry, m) = 1 implies that

m

- sedlrzm) "

the series A; has the required form. O

Corollary 6.5. Let A € I' be an even formal power series. Then for any decom-
position A = Ay o Ay, where Ay, Ay € T, either Ay is even, or there exists ju € ki[[z]]
such that ;' o Ay is odd and A; o u is even. On the other hand, if A is odd, then
there exists ju € ki[[z]] such that A; oy and pu=t o Ay are odd.

Proof. If A is even, then m = 2 and r = 0 (mod 2). Therefore, the condition
rire = r (mod m) implies that either ro = 0 (mod 2), in which case Ay is even, or
ry = 1 (mod 2) but ;1 = 0 (mod 2), in which case u~! o Ay is odd and A; o p is even
by (38). On the other hand, if A is odd, then m =2 and r = 1 (mod 2). Thus, the
corollary follows from Corollary 6.4. O

It was shown by Reznick in [36] that if A € zk][[z]] is a formal power series such
that some iterate of A has the form A°® = 2" R(z™) for some R € zk|[[z]] and integers
m > 2, 7 > 0, then either A itself has a similar form, or ord A = 1 and |A| is finite.
We finish this section by showing that the part of the Reznick result concerning
formal power series of order at least two is an immediate corollary of Theorem 6.1.

Theorem 6.6. Let A € I'. Then some iterate A°°, s > 1, has the form
A% = Z'R(z™) for some R € k[[z]] and integers m > 2, r > 0 if and only if
A = 2" Ry(2™) for some Ry € kl[z]] and integer o > 0.

Proof. The “if” part is obvious. To prove the “only if” part we observe that if 54
is some Bottcher function for A, then 34 remains a Bottcher function for A°%, s > 1.
Thus, if A°® = 2"R(2™) for some s > 1, the “only if” part of Theorem 6.1 implies
that 4 = zL(2™) for some L € ko[[z]]. Using now the “if” part, we conclude that A
has the required form. O

Let us mention that for every m > 2 there exist series A € I' that do not have
the form p o 2"R(2™) for some p € ky[[2]] but have compositional right factors of
this form. Indeed, arguing as in the proof of Theorem 1.4, one can easily see that a
composition of series A = Aj02™ Ry(2™) with ged(rg, m) = 1 has the form poz" R(z™)
for some p € ki[[2]] if and only if A; has the form po 2" Ry(2™). Thus, if A; does
not have such a form, the same is true for A.
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Notice that for series A as above some transition functions have the form z M (2™)
and some do not. Indeed, all functions p4 cannot have the form zM(z™) by The-
orem 6.2, but some of them have this form by Corollary 6.3. Since G4 is a cyclic
group, this gives us examples of series of order one for which Theorem 6.6 is not true.

7. Functional equation X o A =Y o B and reversibility

7.1. Functional equation X o A =Y o B. We start this section by proving
Theorem 1.3 and Theorem 1.6.

Proof of Theorem 1.3. If
(39) XoA=YoB,
has a solution, then setting
F=XoA=YoB
and applying Corollary 4.3, we see that

(40) PAO PR = PBOPYA

for all p4 € G4 and pp € Gp.
To prove the “if” part, let us observe that Lemma 3.4 implies that condition (40)
is equivalent to the condition that

(IOA/,L © SOB;L = SOB;L © (IOA/,L

for all pu, € Ga, and pp, € Gp, for some p € ki[[z]]. Similarly, equation (39)
has a solution for A and B if and only if it has a solution for A, and B, for some
p € ki[[z]]. Thus, conjugating A and B by p = 4, without loss of generality we can
assume that A = 2", n > 2.

Applying Lemma 2.2 to equality (40) for o4 = p.» = £,2, where ¢, € U’ we
see that any ¢p € Gp has the form pp = zM (2") for some M € ko[[z]]. By Theorem
6.2, this yields that B has the form B = po 2" R(2™) for some p € ki[[z]], R € k[[2]],

and r > 0. Therefore, equality (39) holds for
X=2R"2), Y=z"oul O

Proof of Theorem 1.6. Let us set n = ord A, m = ord B. If (4) has a solution in
X,Y € zk[[z]] for all s, > 1, then by Theorem 1.3 the transition functions

(41) paot = Baoenzo By, g =Ppoemzofy, 8121,

where ¢,,; € Ufl and g,,s € UP

ms, commute, implying that
(6;1 o BA OE&p2o 621 o BB) O Emsk = Emsk © (ﬁgl o 614 O Ep2o 621 o BB)

Fixing now [ and ¢,; and applying Lemma 2.2, we see that for every s > 1 there
exists R, € k[[z]] such that

Byl o Bacenzo Byl o fp = 2R(2™).
Clearly, this is possible only if
Bp'oBacenzofylofp=cz,

for some ¢ € k*, and comparing coefficients in the parts of this equality we conclude
that

BgtoBaoemzo By o B =enz.
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The last equality implies that 6]_;1 o 84 commutes with ,;z. Since this is true for
every [ > 1 and ¢,; € U}, using again Lemma 2.2, we conclude that for every [ > 1
there exists M; € ko[[2]] such that

Bg'oBa=zM/(z"),
implying that 84 = g o cz for some ¢ € k*.
In the other direction, it is easy to see that if 54 = g o cz for some ¢ € k*, then
for all s,1 > 1 transition functions (41) commute, implying by Theorem 1.3 that (4)
has a solution. O

Theorem 1.6 implies the following result, obtained by Dorfer and Woracek (see
[13, Proposition 3.11]).

Corollary 7.1. Let A, B € I' be formal power series, and B4, fg some Bdtcher
functions. Then A and B commute if and only if f4 = g o ez for some ¢ satisfying
g(ordA—l)(ord B-1) _ 1.

Proof. Let us set n = ord A, m = ord B. If A and B commute, then for all
s,1 > 1 the iterates A°! and B°® also commute, implying that (4) has the solution
X = B°,Y = A°. Thus, B4 = Spocz for some ¢ € k* by Theorem 1.6. Furthermore,
since

(42) A=pBgoczoz"oczopgz!, B=pgoz"ops,
it follows from the commutativity of A and B that
Cf(nfl) — Cf(nfl)m.

On the other hand, if 34 = fp o cz for some c satisfying c®~D(m=1) = 1  then (42)
implies that A and B commute. O

7.2. Right reversibility of subsemigroups of I'. Let us recall that a semi-
group S is called right amenable if it admits a finitely additive probability measure
it defined on all the subsets of S such that for all a € S and T' C S the equality

u(Ta™) = u(T)
holds, where the set T'a™! is defined by the formula
Ta'={s€S|sacT}.

A semigroup S is called right reversible if for all a,b € S the left ideals Sa and
Sb have a non-empty intersection, that is, if for all a,b € S there exist x,y € S
such that xa = yb. It is well known and follows easily from the definition (see [34],
Proposition 1.23) that every right amenable semigroup is right reversible.

The problems of describing right reversible and right amenable semigroups of
polynomials and rational functions have been studied in the recent papers [10, 11, 32].
Some analogues of the results of these papers for finitely generated subsemigroups of
I were obtained in the paper [33], mentioned in the introduction. The approach of
[33] relies on the results of [31], for which the assumption that S is finitely generated
is essential. Theorem 1.6 provides another approach to the problem, which works
equally well for infinitely generated subsemigroups of I'. Specifically, Theorem 1.6
implies the following result, which contains Theorem 1.5 from the introduction.

Theorem 7.2. Every right reversible subsemigroup S of I' is conjugate to a
subsemigroup of Z. In particular, every right amenable subsemigroup S of T' is
conjugate to a subsemigroup of Z.
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Proof. Let us fix an arbitrary element A of S. Then for every B € S and all
5,1 > 1, we can apply the right reversibility condition to the elements A° and B°*
of S concluding that there exist X,Y € S such that equality (4) holds. Therefore,
by Theorem 1.6, for every B € S the equality S4 = g o cz holds for some ¢ € k¥,
implying that
BitoBofs=(Bpocz) ' oBo(fpocz)=c 208z 0(Bofp)ocz

=c 'zofg o (Bgo2™) oz = """,

where m = ord B. Thus, the semigroup 3,' o S o 4 is a subsemigroup of Z. U
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