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On semi-orthogonal matrices
with row vectors of equal lengths

Kalle Leppälä

Abstract. When does a rectangular matrix with an orthonormal set of column vectors have row

vectors of equal lengths? The column spaces of such matrices are multidimensional generalizations

of the projection plane used in isometric perspective. We show that in the absence of unexpected

linear relations, any rectangular matrix can be row-scaled so that if we were to orthonormalize the

column vectors, the row vectors would attain equal lengths in the process. We use Grassmann

coordinates to reduce the question into an instance of the famous matrix scaling problem, and with

the help of existing theory introduce simple numerical solutions.

Semi-ortogonaalisista matriiseista joiden rivivektorit ovat saman pituisia

Tiivistelmä. Milloin suorakulmaisella matriisilla on ortonormaalit sarakevektorit ja keske-

nään yhtä pitkät rivivektorit? Tällaisen matriisin sarakeavaruus yleistää isometrisessä perspektii-

vissä käytetyn projektiokuvauksen korkeampiin ulottuvuuksiin. Osoitamme että ilman yllättäviä

lineaarisia riippuvuuksia minkä hyvänsä suorakulmaisen matriisin rivit voidaan skaalata siten, että

mikäli ortonormeeraisimme sarakevektorit niin rivivektorit päätyisivät keskenään saman pituisiksi.

Palautamme ongelman Grassmann-koordinaattien avulla erikoistapaukseksi tunnetusta matriisien

skaalausongelmasta (“matrix scaling problem”), ja esittelemme alan teoriaan nojaten yksinkertaisia

numeerisia ratkaisuja.

1. Introduction

An orthogonal (square) matrix has column vectors of unit length perpendicular
to each other, forming what we call an orthonormal set. Because in a group a left
inverse is also a right inverse, the row vectors form an orthonormal set as well. We will
next observe that this property can’t carry on to rectangular (non-square) matrices.
Following the textbook definition of Abadir and Magnus [1], we set:

Definition. When G ∈ R
m×n, m > n (resp. m < n), and G⊤G = I (resp.

GG⊤ = I), we call the rectangular matrix G semi-orthogonal. That is, the column
(resp. row) vectors form an orthonormal set.

Note that the term semi-orthogonality is sometimes used for other generalizations
of orthogonality; when the scalar product of complex vectors has zero real part [6],
or G-matrices whose transpose is their inverse up to a positive scaling of the row
and column vectors [5]. Assuming m > n, there’s not enough dimensions for the
m row vectors to be perpendicular. As all the column vectors have unit length, the
sum of all squared elements of G (the squared Frobenius norm) is n. Thereby the
row vectors can’t all have unit length or this value would have to be m instead—
but they can all have an equal length of

√

n/m. The object of this study is the
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semi-orthogonal matrix with row vectors of equal lengths, and our main result is the
following theorem.

Theorem 1. Let G ∈ R
m×n, m > n, and assume any set of n row vectors of

G is linearly independent. There exists a diagonal matrix D ∈ R
m×m
+ , unique up

to a positive scalar factor, and an invertible matrix X ∈ R
n×n such that DGX is

semi-orthogonal and the Euclidean length of each row vector of DGX is
√

n/m.

It’s not clear that solutions must always exist. But it’s a simple calculation to
see that if (D,X) is a solution, then so is (D,XQ), where Q ∈ R

n×n is orthogonal.
This means that the requirement on the row vector lengths of the matrix DG is in
fact a property of the column space col(DG). The Grassmann coordinate system is
a way to characterize linear subspaces. In Section 2 we cover results on Grassmann
coordinates necessary for the subsequent sections, including the connection to matrix
row lengths (Lemma 3) and the effect of row scaling (Lemma 4). In Section 3 we
examine the desired property of the linear subspace; that the row vectors have equal
lengths in any matrix whose column vectors form an orthonormal basis. We make
an analogue to isometric projection used in technical drawing, and are motivated
to label the property isometric axonometry. Subspaces with isometric axonometry
are multidimensional generalizations of the projection plane of the usual isometric
perspective. Row scaling a matrix so that its column space has isometric axonom-
etry can now be seen as an instance of generalized matrix scaling problem, on a
multidimensional array of Grassmann coordinates. In Section 4 we point out this
connection, and draw from the rich literature on matrix scaling problems to conclude
that Theorem 1 is in fact an unconstrained convex optimization problem. Finally,
in Section 5, we demonstrate how this convex optimization problem can be solved
numerically by operating directly on matrix G, without ever explicitly working out
the Grassmann coordinates—which for large m and n would be an unfeasible task.

2. Grassmann coordinates

An n-dimensional subspace W of Rm is uniquely described by its Grassmann (or
Plücker) coordinates in a subset of the

(

m

n

)

-dimensional real projective space, see [7]
for a deeper treatment than presented here.

Let W be an n-dimensional subspace of Rm, and G = [ r⊤1 · · · r⊤m ]⊤ ∈ R
m×n any

matrix whose column space col(G) is W . By the notation GS we mean the submatrix
[ r⊤i1 · · · r⊤in ]

⊤ ∈ R
n×n, where S = {i1, . . . , in} ⊆ {1, . . . , m}, i1 < · · · < in. The

Grassmann coordinate of W associated to a set S ⊆ {1, . . . , n}, |S| = n is defined as

(1) pS = det(GS).

Of course the matrix G is not uniquely determined by the subspace W , as any matrix
GX, where X ∈ R

n×n is invertible, has the same column space. Using GX instead
of G in (1) scales each coordinate pS by det(X). This is why two

(

m

n

)

-tuples of
coordinates are considered equivalent if they only differ by a nonzero constant ratio;
equivalence classes of nonzero

(

m

n

)

-tuples form the homogeneous coordinate system in

the
(

m

n

)

-dimensional real projective space. The key fact about Grassmann coordinates
is that no two distinct subspaces have the same homogeneous coordinates.

Typically homogeneous coordinates are standardized with a projection onto an
affine plane (and points at infinity), for example by fixing one coordinate to one.
Instead, we choose representatives of the equivalence classes using the (Euclidean)
l2-norm.
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Definition. The Grassmann coordinates pS of an n-dimensional subspace W of
R

m are l2-standardized, if
∑

S⊆{1,...,m}
|S|=n

p2S = 1.

The following two lemmas concern the Grassmann coordinates of the column
space of a semi-orthogonal matrix with m rows and n orthonormal columns.

Lemma 2. Let m ≥ n and G ∈ R
m×n be an orthogonal (m = n) or a semi-

orthogonal (m > n) matrix. Then the Grassmann coordinates of col(G) are l2-
standardized.

Proof. First, the case n = 1 is trivial as then the sole column of G has unit
length. Thus, let n > 1. Without loss of generality, we may also assume that

G =

[

c 0
C H

]

,

where c ∈ R, 0⊤ ∈ R
n−1, C ∈ R

m−1 and H ∈ R
(m−1)×(n−1), because multiplying G by

any n× n orthogonal matrix from the right preserves orthonormality of the column
vectors and the Grassmann coordinates given by (1).

We use induction on m. When m = n the claim is immediate because the
determinant of an orthogonal matrix is either 1 or −1. For m > n, Laplace expansions
along the first row when 1 ∈ S give

∑

S⊆{1,...,m}
|S|=n

p2S =
∑

S⊆{1,...,m}
|S|=n

det(GS)
2 =

∑

S⊆{2,...,m}
|S|=n

det(GS)
2 +

∑

S⊆{1,...,m}
|S|=n
1∈S

det(GS)
2

=
∑

S⊆{1,...,m−1}
|S|=n

det([C H ]S)
2 + c2

∑

S⊆{1,...,m−1}
|S|=n−1

det(HS)
2

=
∑

S⊆{1,...,m−1}
|S|=n

det([C H ]S)
2 + c2.

In the last step we used induction hypothesis on the semi-orthogonal matrix H . Now
if C is the zero vector then det([C H ]S) = 0 for all the sets S. The claim follows
from c = 1, implied by the semi-orthogonality of G. If the vector C has positive
length, we denote D = diag(1/|C|, 1, . . . , 1) and calculate

1

|C|2
∑

S⊆{1,...,m−1}
|S|=n

det([C H ]S)
2 = det(D)2

∑

S⊆{1,...,m−1}
|S|=n

det([C H ]S)
2

=
∑

S⊆{1,...,m−1}
|S|=n

det(([C H ]D)S)
2 = 1.

In the last step we used induction hypothesis on the semi-orthogonal matrix [C H ]D.
By the semi-orthogonality of G we have |C|2 + c2 = 1. �

The converse is not true: multiplying any matrix G ∈ R
m×n with a scalar c

scales each determinant det(GS) by cn, and so the l2-standardization can be achieved
without changing the angles between the column vectors of G.
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Lemma 3. Let m ≥ n, G = [ r⊤1 · · · r⊤m ]⊤ ∈ R
m×n be a semi-orthogonal matrix

and pS be the Grassmann coordinates of col(G). Then
∑

S⊆{1,...,m}
|S|=n
i∈S

p2S = |ri|2

for each i ∈ {1, . . . , m}.
Proof. It suffices to show the claim for i = 1 only, as changing the order of rows

only switches the signs of some of the Grassmann coordinates, which are all squared
in the formula. Furthermore, we may assume that r1 = [ |r1| 0 · · · 0 ], as multiplying
G by any n × n orthogonal matrix from the right preserves the lengths of the row
vectors, orthonormality of the column vectors, and the column space.

When n = 1, the claim is self evident. When n > 1, we denote by H the
(m− 1)× (n− 1) submatrix obtained by removing the first row and the first column
of G. Laplace expansions along r1 give simply

∑

S⊆{1,...,m}
|S|=n
1∈S

p2S =
∑

S⊆{1,...,m}
|S|=n
1∈S

det(GS)
2 = |r1|2

∑

S⊆{1,...,m−1}
|S|=n−1

det(HS)
2 = |r1|2.

The last step used Lemma 2 and inductively the semi-orthogonality of H . �

The effect of multiplying a matrix G ∈ R
m×n from the left by a diagonal matrix

D = diag(d1, . . . , dm) on the Grassmann coordinates pS of col(G) is easily described.
The ith row of G gets multiplied by di, and so does any determinant that contains
the ith row, in other words, any pS with i ∈ S. We have derived:

Lemma 4. Let G ∈ R
m×n and D = diag(d1, . . . , dm). If we denote the Grass-

mann coordinates of col(G) by pS , then the Grassmann coordinates of col(DG) are

πS = pS
∏

j∈S

dj.

3. Isometric axonometry

To emphasize the fact that the property we desire for a matrix is in fact a property
of its column space, we make a new definition:

Definition. We say that an n-dimensional subspace W of R
m has isometric

axonometry (with respect to the natural basis), if

|Pe1| = · · · = |Pem| =
√

n

m
,

where P is the orthogonal projection from R
m onto W and e1, . . . , em the natural

basis vectors.

The word isometric means distance preserving and axonometry refers to mea-
suring along the axes—each of which undergo a uniform rate of foreshortening when
projected onto W . We have adapted the term from the discipline of technical drawing,
where the isometric projection is one of the many commonly used parallel projections
from R

3 onto R
2 [12]. Precisely, the isometric projection is the orthogonal projection

from the three-dimensional space onto the plane {[x, y, z]⊤ ∈ R
3 : x+y+z = 0}. This

is one of the four two-dimensional subspaces of R3 with isometric axonometry, oth-
ers being {[x, y, z]⊤ ∈ R

3 : − x + y + z = 0}, {[x, y, z]⊤ ∈ R
3 : x − y + z = 0}
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and {[x, y, z]⊤ ∈ R
3 : x + y − z = 0}. Obviously a subspace has isometric ax-

onometry if and only if its orthogonal complement has isometric axonometry, in
this case the four lines {[ax, bx, cx]⊤ ∈ R

3}, a, b, c ∈ {±1}. For m = 4 the spaces
{[w, x, y, z]⊤ ∈ R

4 : aw + bx + cy + dz = 0}, a, b, c, d ∈ {±1} (where the projec-
tion of the hypercube is the rhombic dodecahedron) and {[ax, bx, cx, dx]⊤ ∈ R

4},
a, b, c, d ∈ {±1} are the eight subspaces with isometric axonometry of dimensions 3
and 1, respectively, while for n = 2 there exists an infinite 2-dimensional manifold of
such spaces. As a special case of a constructive theorem of Nisnevich and Bryzgalov
[10] (English translation in [11]) subspaces with isometric axonometry exist whenever
n ≤ m; typically there are infinitely many of them.

Theorem 5. Let W be an n-dimensional subspace of Rm. The following prop-
erties of W are equivalent:

• The subspace W has isometric axonometry.
• Each row of the matrix G = [ c1 · · · cn ] has Euclidean length

√

n/m when-
ever {c1, . . . , cn} is an orthonormal basis of W .

• The l2-standardized Grassmann coordinates pS of W satisfy
∑

S⊆{1,...,m}
|S|=n
i∈S

p2S =
n

m

for each i ∈ {1, . . . , m}.
Proof. Let {c1, . . . , cn} be any orthonormal basis of W and let [ gi,1 · · · gi,n ] be

the ith row of the matrix G = [ c1 · · · cn ]. Because the columns {c1, . . . , cn} are
orthonormal, the projection matrix from R

m onto col(G) = W is P = GG⊤. Now

Pei = GG⊤ei = [ c1 · · · cn ][ gi,1 · · · gi,n ]
T = gi,1c1 + · · ·+ gi,ncn,

and by the orthonormality of the vectors {c1, . . . , cn} we have

|Pe1| =
√

g2i,1 + · · ·+ g2i,n = |[ gi,1 · · · gi,n ]|.

Suppose this length is l for each i ∈ {1, . . . , m}. Then l has to be
√

n/m because

n =

n
∑

j=1

1 =

n
∑

j=1

m
∑

i=1

g2i,j =

m
∑

i=1

n
∑

j=1

g2i,j =

m
∑

i=1

l2 = ml2.

The rest of the claim follows from Lemma 3. �

4. Generalized matrix scaling problem

From now on, keep in mind that no n row vectors of G are linearly depen-
dent, in other words, all Grassmann coordinates are nonzero. Theorem 1 can be
written as a problem of scaling the Grassmann coordinates pS of col(G). Find
D = diag(d1, . . . , dm) ∈ R

m×m
+ such that

(2)
∑

S⊆{1,...,m}
|S|=n
i∈S

p2S
∏

j∈S

d2j =
n

m

for each i ∈ {1, . . . , m}. According to Lemma 4, the terms p2S
∏

j∈S d
2
j are squared

Grassmann coordinates of col(DG). Orthonormalizing the columns of DG by multi-
plying with X ∈ R

n×n from the right scales each sum (2) by det(X)2. It follows from
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Theorem 5 that det(X) ∈ {±1} i.e. that the Grassmann coordinates of col(DG) were
already l2-normalized, and that the Euclidean length of each row vector of DGX is
√

n/m.
When n = 2, this is an instance of D1AD1 scaling problem ([9] contains a survey

of research), which again is a special case of the extensively studied matrix scaling

problem (thorough review in [8]). To be precise, let A ∈ R
(m

2
)×(m

2
) be the hollow (zero

diagonal) symmetric matrix with strictly positive off-diagonal elements aij = p2{i,j}.

Now (2) is equivalent to finding D1 = diag(d21, . . . , d
2
m) such that each row and column

sum of D1AD1 is equal. No solution is known for general matrices, but it follows from
independent works of Brualdi, Parter and Schneider [4] or Sinkhorn and Knopp [15]
that the matrix D1 exists when A is nonnegative and has total support (there’s a sum
S of permutation matrices that has zeros at exactly the same coordinates as A has)
and the solution is unique when A is fully indecomposable (can’t be transformed
with row and column permutations into a 2 × 2 block form where the diagonal
blocks are nonempty square matrices and at least one of the other blocks is zero)—
both conditions are true in our case. (In fact those works are about the general
matrix scaling problem D1AD2, but the existence of a solution for symmetric A with
D1 = D2 is implied by uniqueness [8, 14].)

When n > 2, equation (2) becomes an instance of a generalized scaling problem.
The following theorem is due to Rothblum [13] who interpreted a similar framework
of Bapat and Raghavan [2] as an unconstrained convex optimization problem.

Theorem 6. (Rothblum [13]) Let a ∈ R
N
+ , b ∈ R

M
+ and C ∈ R

M×N . If K =
{x ∈ R

N
+ : Cx = b} 6= ∅, then there exists a unique d ∈ R

M
+ such that Ca′ = b, where

a′ ∈ R
N
+ is defined by

a′j = aj

M
∏

i=1

d
Ci,j

i .

To prove Theorem 1, we just use equation (2) and Theorem 6. Take M = m,
N =

(

m

n

)

, a = (p2S1
· · · p2S

(mn)
)⊤, b = (2n/m · · · 2n/m)⊤ and C defined by

Ci,j =

{

2 when i ∈ Sj ,

0 otherwise.

Each row of the matrix C contains exactly
(

m−1
n−1

)

twos and zeros otherwise, so we

can pick x = (m(n− 1)!(m− n)!/(2n(m− 1)!) · · · m(n− 1)!(m− n)!/(2n(m− 1)!))⊤

to show that K 6= ∅.

5. Numerical optimization

As mentioned, Rothblum proves [13] Theorem 6 by interpreting the problem as
an unconstrained convex optimization problem with the objective function

f(log d1, . . . , log dm) =
N
∑

j=1

aj

M
∏

i=1

d
Ci,j

i −
M
∑

k=1

bk log dk

=
∑

S⊆{1,...,m}
|S|=n

p2S
∏

j∈S

d2j −
m
∑

i=1

2n

m
log di.(3)
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While the Grassmann coordinates can be theoretically illuminating, the sheer
quantity

(

m

n

)

of them renders them impractical for directly solving (approximate) D
in Theorem 1 by minimizing the objective (3). However, they are of use indirectly:
suitable manipulation of the matrix G itself correspond to familiar optimization tech-
niques on the objective (3), which we can then minimize without ever explicitly com-
puting the Grassmann coordinates. Let us examine the partial derivatives of the
objective function,

(4)
∂

∂ log di
f(log d1, . . . , log dm) =

∑

S⊆{1,...,m}
|S|=n
i∈S

2p2S
∏

j∈S

d2j −
2n

m
.

By Lemmas 3 and 4, this is simply twice the difference between the squared Euclidean
length |ri|2 of the ith row of semi-orthogonalized G, and its desired value n/m.

An immediately obvious idea (Algorithm 1) for a numerical approach to Theo-
rem 1 is to alternate between forcing the columns to be orthonormal by multiplying
by an n×n matrix from the right (the Gram–Schmidt process or the rectangular QR-

decomposition), and forcing the row lengths to
√

n/m by multiplying by a scaling
diagonal matrix from the left. Each of the two operations “ruins” the other.

Algorithm 1 Fully parallel coordinate descent

Require: G = [ r⊤1 · · · r⊤m ]⊤ ∈ R
m×n, all sets of n rows linearly independent

Ensure: D ∈ R
m×m
+ diagonal, col(DG) has isometric axonometry

di 7→1 for all i ∈ {1, . . . , m}
repeat

G 7→Q, where G = QR is the rectangular QR-decomposition of G
for i ∈ {1, . . . , m} do

ri 7→√nri/(
√
m|ri|)

di 7→√ndi/(
√
m|ri|)

end for

until convergence
D 7→diag(d1, . . . , dm)
return D

In practical experiments (not presented) this method converged fine, but in light
of our new understanding of the partial derivatives (4) it’s theoretically naive. Forcing

the ith row length to its desired value
√

n/m is nothing but minimizing the objective
(3) along the ith coordinate, assuming the matrix G is semi-orthogonal. But for that
to hold for each coordinate, we’d have to perform the QR-step after every time scaling
a row.

With this alteration, the algorithm (Algorithm 2) is just the familiar coordinate
descent, which in our case (convex and differentiable objective in convex and closed
domain, minimizing along coordinates always unique) is guaranteed [3] to converge.
That guarantee comes with a high cost, as the computational complexity of each
iterate increases from roughly O(mn2) in Algorithm 1 to roughly O(m2n2) in Al-
gorithm 2. We can view Algorithm 1 as a fully parallel version of the coordinate
descent algorithm; our synchronization step, the QR-decomposition, is particularly
heavy so we’re highly incentivized for parallelization, but unfortunately no suitable
convergence criterion for parallel coordinate descent is known despite active research
[16].
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Algorithm 2 Coordinate descent

Require: G = [ r⊤1 · · · r⊤m ]⊤ ∈ R
m×n, all sets of n rows linearly independent

Ensure: D ∈ R
m×m
+ diagonal, col(DG) has isometric axonometry

di 7→1 for all i ∈ {1, . . . , m}
repeat

for i ∈ {1, . . . , m} do

G 7→Q, where G = QR is the rectangular QR-decomposition of G
ri 7→√nri/(

√
m|ri|)

di 7→√ndi/(
√
m|ri|)

end for

until convergence
D 7→diag(d1, . . . , dm)
return D

Because we know the partial derivatives (4), we can also consider the gradient
descent (Algorithm 3). The gradient is not globally Lipschitz-continuous, but inside
any lower contour set of the objective (3) it is, and so Algorithm 3 converges as
long as the step size is at most the inverse of the local Lipschitz-constant. Thus,
Algorithm 3 is has a theoretical guarantee of convergence when the step size γ is
small enough, while keeping the computational complexity of each iterate at roughly
O(mn2)—the best of both worlds compared to Algorithms 1 and 2.

Algorithm 3 Gradient descent

Require: G = [ r⊤1 · · · r⊤m ]⊤ ∈ R
m×n, all sets of n rows linearly independent

Ensure: D ∈ R
m×m
+ diagonal, col(DG) has isometric axonometry

di 7→1 for all i ∈ {1, . . . , m}
repeat

choose a suitable step size γ
G 7→Q, where G = QR is the QR-decomposition of G
for i ∈ {1, . . . , m} do

∇i 7→2(|ri|2 − n/m)
ri 7→ri/ exp(γ∇i)
di 7→di/ exp(γ∇i)

end for

until convergence
D 7→diag(d1, . . . , dm)
return D

Algorithms 1–3 only return the matrix D but not X of Theorem 1. This is
because instead of keeping track on what transformations R−1 from the right we
do to G during each Gram-Schmidt process, it’s easier to just solve for X after the
iteration is finished. We can take X = R−1 where DG = QR is the QR-decomposition
of DG. Note that while D is unique up to a scalar factor, X is not. Because col(DG)
has isometric axonometry, any map transforming the set of column vectors of DG
into an orthonormal set would do.
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