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Exceptional set estimates for radial projections in R
n

Paige Bright and Shengwen Gan

Abstract. We prove two conjectures in this paper. The first conjecture is by Lund, Pham
and Thu: Given a Borel set A ⊂ R

n such that dimA ∈ (k, k + 1] for some k ∈ {1, . . . , n− 1}. For
0 < s < k, we have

dim({y ∈ R
n \A | dim(πy(A)) < s}) ≤ max{k + s− dimA, 0}.

The second conjecture is by Liu: Given a Borel set A ⊂ R
n, then

dim({x ∈ R
n \A | dim(πx(A)) < dimA}) ≤ ⌈dimA⌉.

Avaruuden R
n säteittäisten projektioiden poikkeusjoukkoarvioita

Tiivistelmä. Tässä työssä vahvistetaan kaksi Borelin joukkoja A ⊂ R
n koskevaa konjektuuria.

Ensimmäisen esittivät Lund, Pham ja Thu: Jos dimA ∈ (k, k + 1] jollakin k ∈ {1, . . . , n − 1} ja
0 < s < k, niin

dim({y ∈ R
n \A | dim(πy(A)) < s}) ≤ max{k + s− dimA, 0}.

Toisen konjektuurin esitti Liu:

dim({x ∈ R
n \A | dim(πx(A)) < dimA}) ≤ ⌈dimA⌉.

1. Introduction

In this paper, we study the radial projections in R
n. Let G(m,n) be the set

of m-dimensional subspaces in R
n, which is also known as the Grassmannian. For

V ∈ G(m,n), define πV : Rn → V to be the orthogonal projection onto V . Given
x ∈ R

n, define πx : R
n \ {x} → S

n−1 to be the radial projection centered at x:

πx(y) =
y − x

|y − x|
.

We first discuss some background of the projection theory. We use dimX to
denote the Hausdorff dimension of the set X. There is a classical result proved by
Marstrand [9], who showed that if A is a Borel set in R

2, then the projection of A
onto almost every line through the origin has Hausdorff dimension min{1, dimA}.
This was generalized to higher dimensions by Mattila [10], who showed that if A is
a Borel set in R

n, then the projection of A onto almost every k-plane through the
origin has Hausdorff dimension min{k, dimA}. It turns out that one can obtain some
finer results which are known as the exceptional set estimates. The exceptional set
estimates give a bound on the set of directions where the projection is small. There
are two types of exceptional set estimates known as the Falconer-type estimate and
Kaufman-type estimate.

Suppose A ⊂ R
n is a Borel set of Hausdorff dimension α. For 0 ≤ s < min{m,α},

define the exceptional set

Es(A) = {V ∈ G(m,n) | dim(πV (A)) < s}.
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Then we have

(i) (Falconer-type) dim(Es(A)) ≤ max{m(n−m) + s− α, 0},
(ii) (Kaufman-type) dim(Es(A)) ≤ m(n−m− 1) + s.

The original papers of Falconer and Kaufman are [2, 6]. The more general version
was proved by Peres and Schlag [14]. We also recommend Theorem 5.10 in [11] for
the proofs of these two types of the exceptional set estimates.

In this paper, we study the exceptional set estimates for the radial projections.
We first state our theorems.

Theorem 1. Let A ⊂ R
n be a Borel set such that α = dimA ∈ (k, k + 1] for

some k ∈ {1, . . . , n− 1}. Fix 0 < s < k and let

Es(A) := {y ∈ R
n \ A | dim(πy(A)) < s}.

Then,

dim(Es(A)) ≤ max{k + s− α, 0}.

Theorem 2. Let A ⊂ R
n be a Borel set such that α = dimA ∈ (k − 1, k] for

some k ∈ {1, . . . , n− 1}. Define the exceptional set

E(A) := {x ∈ R
n \ A | dim(πx(A)) < α}.

Then we have

dim(E(A)) ≤ k.

Theorem 2 is sharp: if we let A be an α-dimensional subset of Rk, we see that
E(A) = R

k \ A which has dimension at most k.
We remark that Theorem 1 answers a conjecture by Lund, Pham and Thu (see

[8, Conjecture 1.2]); Theorem 2 answers a conjecture by Liu (see [7, Conjecture 1.2]).
Recently, Orponen and Shmerkin [12] proved the n = 2 case for both Theorem 1

and Theorem 2. Their proof of Theorem 1 (when n = 2) is based on a Furstenberg-
type estimate due to Fu and Ren [4]. Then by a swapping trick, they are able to prove
Theorem 2 (when n = 2). In this paper, we prove the Theorems for all dimensions.
We remark that the upper bound in Theorem 1 is a Falconer-type bound.

We talk about the structure of the paper. In Section 2, we prove Theorem 1 as a
result of Proposition 17 and Proposition 19. In Section 3, we prove Theorem 2 based
on Proposition 23 and a trick of Orponen and Shmerkin [12].

We note that Orponen, Shmerkin and Wang also proved Theorem 1 and Theo-
rem 2. See [13].

1.1. Some notations. We use “A . B” to denote A ≤ CB for some universal
constant C.

Definition 3. For a number δ > 0 and any set X (in a metric space), we use
|X|δ to denote the maximal number of δ-separated points in X.

Definition 4. Let δ, s > 0. We say A ⊂ R
n is a (δ, s, C)-set if it is δ-separated

and satisfies the following estimate:

(1) #(A ∩ Br(x)) ≤ C(r/δ)s

for any x ∈ R
n and 1 ≥ r ≥ δ. When the constant C is universal or clear from the

context, the condition (1) will be shortened to

#(A ∩ Br(x)) . (r/δ)s.

Also, (δ, s, C)-set will be shortened to (δ, s)-set.
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Remark 5. Since the condition (1) is for scales ≥ δ, we can abuse the notation
to define: for A′ = ⊔Bδ being a union of disjoint δ-balls, we say A is a (δ, s)-set if

#{Bδ : Bδ ⊂ A ∩Br(x)} . (r/δ)s.

This definition is consistent with the previous definition: If A is a (δ, s)-set, then the
δ-neighborhood of A is also a (δ, s)-set in the new sense; conversely, if A′ is a disjoint
union of δ-balls and is a (δ, s)-set in the new sense, then the set of centers of the
δ-balls in A′ is a (δ, s)-set in the old sense. Therefore, it makes sense to say a set A
is a (δ, s)-set if A is δ-separated or A is a disjoint union of δ-balls.

Remark 6. Throughout the rest of this paper, We will use #E to denote the
cardinality of a set E and |·| to denote the measure of a region.

1.2. δ-tube and δ-slab. One of the main geometric objects we will study is the
so-called δ-tube. In R

n, we call T a δ-tube, if T is a cylinder of radius δ and length
1. For C > 0, we use CT to denote the C-dilation of T with respect to the center
of T . For two δ-tubes T and T ′, we say they are comparable, if 10−1T ⊂ T ′ ⊂ 10T .
We say they are essentially distinct, if they are not comparable. If T ′ is a convex set
that is comparable to a δ-tube T , then we also call T ′ a δ-tube. Therefore, if T is a
rectangle of dimensions ∼ δ × · · · × δ × 1, then T is also a δ-tube.

In this paper, we will frequently encounter the following situation. There are
two finite sets E, F ⊂ Bn(0, 1) (here Bn(0, 1) is the unit ball in R

n centered at the
origin). Each of E and F is contained in a ball of radius 1/8, and dist(E, F ) > 1/2.
We use letter y to denote the points in E, x to denote the points in F , and assume F
is a (δ, α)-set, and E is a (δ, t)-set. We can view F (or E) as a δ-discretized version
of A (or Es(A)) in Theorem 1. If y ∈ E is in the exceptional set, then the maximal
δ-separated subset of πy(F ) is roughly a (δ, s)-set in S

n−1. We would like to use
another geometric object to characterize πy(F ). For every ω ∈ S

n−1, we can define a
tube Tω which is the δ-neighborhood of the line segment {y+tω : t ∈ [0, 1]}. Roughly
speaking, Tω is a tube of dimensions ∼ δ × · · · × δ × 1 pointing to the direction ω
and passing through y. In this correspondence, a maximal δ-separated subset of
πy(F ) gives rise a set of δ-tubes T

y that pass through y, and
⋃

T∈Ty T ⊃ F . We call
T
y a bush centered at y. Additionally, the (δ, s) condition of πy(F ) transfers to T

y

which says that: If Tr is a r × · · · × r × 1-tube passing through y, then there are
. (r/δ)s many tubes in T

y that are contained in Tr (δ ≤ r ≤ 1). When we call a
bush T

y centered at y a (δ, s)-set, we mean that πy
(⋃

T∈Ty T \B(y, 1/2)
)
⊂ S

n−1 is
a (δ, s)-set. Here, B(y, 1/2) is a ball of radius 1/2 centered at y.

We have discussed the notion of a bush centered at y and the definition for a
bush to be a (δ, s)-set. We also need to consider another type of bush called the
truncated bush. If Ty is a bush centered at y, then for each T ∈ T

y we define the
truncated tube

T̃ = T \B1/2(y).

By truncation, Ty gives rise a truncated bush T̃
y centered at y. The reason we do this

truncation is that the tubes in T̃
y are now essentially disjoint. This will be helpful

in estimating the upper bound of integrals like
´

Rn

(∑
y

∑
T∈T̃y 1T

)2
.

We will also study the geometric object called the k-dimensional δ-slab. They
are of dimensions δ × · · · × δ︸ ︷︷ ︸

n−k times

× 1× · · · × 1︸ ︷︷ ︸
k times

. In particular, a δ-tube is a 1-dimensional

δ-slab.
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2. Falconer-type estimates for radial projections

In this section of the paper, we prove Theorem 1. We introduce some notations.
Fix 0 ≤ σ, δ > 0. For a bounded set E ⊂ R

n, define

(2) Hs
δ,∞(E) := inf

{∑

j

r(Dj)
s : E ⊂ ∪jDj

}
,

where the infimum runs over the coverings of E by dyadic cubes {Dj} with side
length ≥ δ, and r(D) denotes the side length of the cube. One may compare with
the definition of

(3) Hs
∞(E) := inf

{∑

j

r(Dj)
s : E ⊂ ∪jDj

}
,

where the infimum runs over the coverings of E by dyadic cubes {Dj} (without
assuming side length ≥ δ).

We state some useful lemmas.

Lemma 7. Let δ, s > 0 and let B ⊂ R
n be any set with Hs

∞(B) =: κ > 0 (see
the definition in (3)). Then, there exists a (δ, s)-set P ⊂ B with #P & κδ−s.

Proof. See [3, Lemma 3.13]. �

Lemma 8. Fix a > 0. Let ν be a probability measure satisfying ν(Br) . ra for
any Br being a ball of radius r. If A is a set satisfying ν(A) ≥ κ (κ > 0), then for
any δ > 0 there exists a subset F ⊂ A such that F is a (δ, a)-set and #F & κδ−a.

Proof. By the previous lemma, we just need to show Ha
∞(A) & κ. We just check

it by definition. For any covering {B} of A, we have

κ ≤
∑

B

ν(B) .
∑

B

r(B)a.

Ranging over all the covering of A and taking infimum, we get

κ . Ha
∞(A). �

For any dyadic number δ ≤ 1, let Dδ be the set of δ-cubes of form [i1δ, (i1 +
1)δ]× · · · × [imδ, (im + 1)δ] where 0 ≤ i1, . . . , im ≤ δ−1 − 1. The cubes in Dδ form a
covering of [0, 1]m with the overlap only on their boundaries.

Lemma 9. Suppose X ⊂ [0, 1]m with dimX < s. Then for any ε > 0, there
exist dyadic cubes C2−k ⊂ D2−k (k > 0) so that

(1) X ⊂
⋃

k>0

⋃
D∈C

2−k
D,

(2)
∑

k>0

∑
D∈C

2−k
r(D)s ≤ ε,

(3) C2−k satisfies the s-dimensional condition: For l < k and any D ∈ D2−l , we
have #{D′ ∈ C2−k : D′ ⊂ D} ≤ 2(k−l)s.
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Proof. See [5, Lemma 2]. �

Remark 10. Besides [0, 1]m, this Lemma also works for other compact metric
spaces, for example S

n and G(m,n). Each of them is locally diffeomorphic to [0, 1]l,
so we can pull back the structure of dyadic cubes on [0, l]l to S

n and G(m,n).

Lemma 11. Suppose X ⊂ [0, 1]m. Then there exist dyadic cubes

C =

log2 δ
−1⊔

k=0

C2−k

(with C2−k ⊂ D2−k) that cover X and

(1)
∑

D∈C r(D)s = Hs
δ,∞(X),

(2) C2−k satisfies the s-dimensional condition: For l < k and any D ∈ D2−l , we
have #{D′ ∈ C2−k : D′ ⊂ D} ≤ 2(k−l)s. In particular, Hs

2−k,∞

(⋃
D∈C

2−k
D
)
=

#C2−k2−ks.

Proof. This lemma looks like Lemma 9, but it is much easier since we only care
about the scales ≥ δ. We just choose C to be the covering that attain the “inf” in the
definition of Hs

δ,∞(X). It is not hard to check the two properties are satisfied. �

The next lemma is [3, Proposition A.1]. Though it is stated for Hs
∞ there, the

proof also works for Hs
δ,∞.

Lemma 12. Suppose X ⊂ [0, 1]m, with Hs
δ,∞(X) = κ > 0. Then there exists a

(δ, s)-subset of X with cardinality & κδ−s.

We also have the following lemma saying that the lemma above can be reversed.

Lemma 13. Suppose X ⊂ [0, 1]m is a (δ, s)-set with #X ≥ κδ−s. Then,
Hs

δ,∞(X) & κ. In particular, by Lemma 12, this implies that for any δ ≤ ∆ ≤ 1,
X contains a subset X ′ which is a (∆, s)-set and satisfies #X ′ & κ∆−s; and also
implies that for any u ≤ s, X contains a subset X ′ which is a (∆, u)-set and satisfies
#X ′ & κ∆−u.

Proof. Assuming our (δ, s)-set X satisfies #X ≥ κδ−s, we are going to show
Hs

δ,∞(X) & κ. Let C be the covering of X that attains “inf” in the definition of
Hs

δ,∞(X). Also let C∆ ⊂ C be the set of ∆-cubes. We write X =
⊔

∆X∆, where X∆

is the points in X covered C∆. By the definition of (δ, s)-set, each ∆-cube contains
. (∆

δ
)s many points from X∆. We have #C∆ & ( δ

∆
)s#X∆. We see that

Hs
δ,∞(X) =

∑

∆≥δ

∆s#C∆ & δs#X = κ. �

Remark 14. We see that when X is a (δ, s)-set, then #X & δ−s+ε and Hs
δ,∞(X)

& δε are equivalent.

We recall Theorem 1 here.

Theorem 15. Let A ⊂ R
n be a Borel set such that α = dimA ∈ (k, k + 1] for

some k ∈ {1, . . . , n− 1}. Fix 0 < s < k and let

Es(A) := {y ∈ R
n \ A | dim(πy(A)) < s}.

Then,

dim(Es(A)) ≤ max{k + s− α, 0}.
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We will actually prove the following δ-discretized version which is a generalization
of [12, Proposition 4.2].

Theorem 16. Let 0 < σ < k, a ∈ (k, k + 1] for some k ∈ {1, . . . , n − 1} and
t > max{k + σ − a, 0}. Let η ∈ (0, 1/10). Then for ε and δ small enough depending
on η, σ, a, and t, we have the following result.

Let E, F ⊂ Bn(0, 1) be a (δ, t)-set and a (δ, a)-set respectively, with #E & δ−t+ε,
#F & δ−a+ε. We also assume that each of E and F lies in a ball of radius 1/1000
and dist(E, F ) ≥ 3/4. Then, there exists y ∈ E such that for all F ′ ⊂ F with
#F ′ ≥ δε#F , we have

Hσ
δ,∞(πy(F

′)) > δη.

We first show that Theorem 16 implies Theorem 15.

Proof that Theorem 16 implies Theorem 15. Let A ⊂ R
n be a Borel set such that

α = dimA ∈ (k, k+1] for some k ∈ {1, . . . , n−1}. We first do a reduction to localize
A. For α1 < α, we say x ∈ A is an α1-dense point of A if dim(A∩Br(x)) ≥ α1 for any
r > 0. We notice a fact: for α1 < α, A has infinitly many α1-dense points; otherwise,
A can be covered by a finite set and countable union of sets with dimension less than
α1, which contradicts dimA = α.

Fix α1 < α that is sufficiently close to α (we will later let α1 → α). We can find
α1-dense points x1, x2 of A. Since our problem is scaling-invariant, we can assume
|x1 − x2| = 99/100. We let A1 = A ∩ B1/1000(x1), A2 = A ∩ B1/1000(x2), and then
dim(A1), dim(A2) ≥ α1. We only need to show for any ball B1/1000 of radius 1/1000,
Es(A) ∩ B1/1000 has dimension ≤ max{k + s − α, 0}. Since dist(A1, A2) > 98/100,
we have either dist(B1/1000, A1) > 3/4 or dist(B1/1000, A2) > 3/4. We may assume
dist(B1/1000, A1) > 3/4. It suffices to show that the set

E ′ := Es(A1) ∩ B1/1000 = {y ∈ B1/1000 : dim(πy(A1)) < s}

has dimension ≤ max{k + s − dim(A1), 0}. From the reduction, these sets satisfy
certain separation properties:

each of A1 and E ′ lies in some ball of radius 1/1000,(4)

A1, E
′ ⊂ Bn(0, 1), dist(A1, E

′) ≥ 3/4.(5)

(We remark that the numerology about the radii of balls or the distance between
sets are not important. For example, we only need A1, E

′ to be contained in a ball of
bounded radius and the distance between A1 and E ′ are bigger than some nonzero
constant.)

We choose t < dim(E ′), a < dim(A1). Then Ht
∞(E ′) > 0, and by Frostman’s

lemma there exists a probability measure νA1 supported on A1 satisfying νA1(Br) . ra

for any Br being a ball of radius r. We only need to prove t ≤ max{k+s−a, 0}, since
then we can send a → dim(A1), t → dim(E ′). For the sake of contradiction, assume
that t > max{k + s− a, 0}. Thus, we can find σ > s so that t > max{k + σ − a, 0}.
Set η = σ − s > 0.

We remark that here we did a two-step reduction: we first localize A to be A1

so the index α becomes α1; next we use Frostman’s lemma to find a a-dimensional
measure so that the index α1 becomes a. Though a is less than α, we can make a
arbitrarily close to α.

Now we fix a, t, so we may assume Ht
∞(E ′) ∼ 1 is a constant. In the following

estimates, the “.” notation is allowed to depend on Ht
∞(E ′).
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Fix a y ∈ E ′. applying Lemma 9 to πy(A1), we obtain a set of dyadic caps
Cy =

⊔
j Cy,j in S

n−1 that cover πy(A1). Here each Cy,j is a set of 2−j-caps that satisfy

the s-dimensional condition (see Lemma 9 (3)) as dim(πy(A1)) < s. Also, the radius
of these caps is less than ε◦ which is any given small number.

By the s-dimensional condition of Cy,j , we have

Hs
2−j ,∞


 ⋃

C∈Cy,j

C


 = #Cy,j2

−js ≤ 1.

Therefore, we have

(6) Hσ
2−j ,∞


 ⋃

C∈Cy,j

C


 ≤ #Cy,j2

−jσ ≤ 2−jη.

•

• •

• •
•

E ′

A1

y

Figure 1. Ty,j in the radial projection.

For each cap C ∈ Cy, consider π−1
y (C) ∩ {x ∈ R

n : 1 − 1
100

≤ |x− y| ≤ 1} which
is a tube. We obtain a collection of finitely overlapping tubes

Ty =
⊔

j

Ty,j

that cover A1 (see Figure 1). This is a truncated bush centered at y. Here, each tube
has its coreline passing through y and at distance ∼ 1 from y. The tubes in Ty,j have
dimensions ∼ 2−j × · · · × 2−j × 1.

For this fixed y ∈ E ′, there exists a j(y) ≥ | log2 ε◦| such that

(7) νA1


A1 ∩

⋃

T∈Ty,j(y)

T


 ≥

1

10j(y)2
νA1(A1) =

1

10j(y)2
.

We have a partition E ′ =
⊔

j E
′
j where E ′

j = {y ∈ E ′ : j(y) = j}. We choose j such

that Ht
∞(E ′

j) &
1
j2

. We let δ = 2−j . Note that δ ≤ ε◦ by assumption. By Lemma 7,

there exists a subset E ′′ ⊂ E ′
j which is a (δ, t)-set and #E ′′ & | log δ|−2δ−t. We use µ

to denote the counting measure on E ′′.
Next, we consider the set S = {(y, x) ∈ E ′′×A1 : x ∈

⋃
T∈Ty,j

T}. We also denote

the y-section and x-section of S by Sy and Sx. (In Figure 1, E ′ is drawn above A1,



638 Paige Bright and Shengwen Gan

so we let y be the superscript in Sy). By (7), we have νA1(S
y) ≥ 1

10j(y)2
, so we have

(8) (µ× νA1)(S) ≥
1

10j2
µ(E ′′).

This implies

(9) (µ× νA1)

({
(y, x) ∈ S : µ(Sx) ≥

1

20j2
µ(E ′′)

})
≥

1

20j2
µ(E ′′).

Therefore, we have

(10) νA1

({
x ∈ A1 : µ(Sx) ≥

1

20j2
µ(E ′′)

})
≥

1

20j2
∼ | log δ|−2.

By Lemma 8, we can find a subset F of
{
x ∈ A1 : µ(Sx) ≥

1
20j2

µ(E ′′)
}
, so that F is

a (δ, a)-set and #F & | log δ|−2δ−a.
Hence,

| log δ|−2#F#E ′′ .
∑

x∈F

#



y ∈ E ′′ : x ∈

⋃

T∈Ty,j

T





=
∑

y∈E′′

#



x ∈ F : x ∈

⋃

T∈Ty,j

T



 .

(11)

By pigeonholing, there exists a subset E ⊂ E ′′ with #E & | log δ|−2#E ′′ & δε/2δ−t,
so that for any y ∈ E:

#{x ∈ F : x ∈
⋃

T∈Ty,j

T} & δε/2#F ≥ δε#F,

when δ is small enough.
We set Fy :=

{
x ∈ F : x ∈

⋃
T∈Ty,j

T
}
. Now we use Theorem 16 to derive a

contradiction. Since E is a (δ, t)-set with #E & δεδ−t and F is a (δ, a)-set with
#F & δ−a+ε, Theorem 16 yields the existence of an y ∈ E such that Hσ

δ,∞(πy(Fy)) >
δη. This contradicts (6). �

Before proving Theorem 16, we prove two propositions. Then we show The-
orem 16 is a result of them. The first proposition is a quantitative version of
Marstrand’s projection theorem. The second proposition is a special case of The-
orem 16 when k = n− 1.

Proposition 17. Set dm,n = m(n −m) = dim(G(m,n)). Let 0 < a < m. Let
η ∈ (0, 1/10). Then for ε and δ small enough depending on η, a, we have the following
result.

Let F ⊂ Bn(0, 1) be a (δ, a)-set with #F & δεδ−a. Let G ⊂ G(m,n) be a
(δ, dm,n)-set, with #G & δεδ−dm,n . Then, there exists G1 ⊂ G with #G1 ≥ 1/2#G
such that for any F ′ ⊂ F with #F ′ ≥ δε#F and any V ∈ G1, we have

Ha
δ,∞(πV (F

′)) > δη.

Here, πV is the orthogonal projection onto V .

Proof. Actually, we just need to show the existence of a single V ∈ G that
satisfies the property above. Then we can construct G1 = {V1, . . . , VN} inductively
and replace G by G \G1, and check whether #(G \G1) & δεδ−dm,n , and then repeat
again.
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Suppose there does not exist such V . By contradiction, for any V ∈ G, there
exists FV ⊂ F with #FV ≥ δε#F and

(12) Ha
δ,∞(πV (FV )) ≤ δη.

By the definition of Ha
δ,∞, we can find a covering of πV (FV ) by dyadic cubes {D}

so that Ha
δ,∞(πV (FV )) =

∑
D r(D)a. Consider {π−1

V (D) ∩ Bn(0, 1)} which are the
preimages of these {D} under πV truncated in the unit ball. They actually form a
covering of FV :

FV ⊂
⊔

δ≤∆≤1

⋃

T∈TV,∆

T.

Here, each TV,∆ consists of planks of dimensions ∆×∆× · · · ×∆︸ ︷︷ ︸
m times

× 1× 1× · · · × 1︸ ︷︷ ︸
n−m times

that are orthogonal to V . By Lemma 11, TV,∆ satisfies the a-dimensional spacing
condition (inherited from {D}): For ∆ ≤ r ≤ 1, if Tr is a plank of dimensions
r × r × · · · × r︸ ︷︷ ︸

m times

× 1× 1× · · · × 1︸ ︷︷ ︸
n−m times

that is orthogonal to V , then Tr contains . (r/∆)a

many planks from TV,∆. Also by (12),

(13) #TV,∆ . δη∆−a.

We see that TV,∆ is non-empty only for ∆ ≤ δη/a.
Next, we will apply a standard pigeonholing argument to find a scale ∆. Note

that

FV ⊂
⊔

δ≤∆≤δη/a

⋃

T∈TV,∆

T.

For each V ∈ G, we can find a dyadic ∆(V ) ∈ [δ, δη/a] so that

(14) #


FV ∩

⋃

T∈TV,∆(V )

T


 & | log δ|−1#FV & δε#F.

Define G∆ = {V ∈ G : ∆(V ) = ∆}. We see that

G =
⊔

δ≤∆≤δη/a

G∆.

By pigeonholing again, we can find a scale ∆, such that

(15) #G∆ & δε#G.

We fix this ∆. Noting that G is a (δ, dm,n)-set with #G & δεδ−dm,n , we have that G∆

is also a (δ, dm,n)-set with #G∆ & δ2εδ−dm,n . By Lemma 13, we can find a subset G′

of G∆ so that G′ is a (∆, dm,n)-set with #G′ & δ2ε∆−dm,n . From (14), we have for
any V ∈ G′

(16) #


F ∩

⋃

T∈TV,∆

T


 & δε#F & δ2ε−a.

Next, we consider the set

S :=



(x, V ) ∈ F ×G′ : x ∈

⋃

T∈TV,∆

T



 .
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Define the sections of S:

Sx := {V ∈ G′ : (x, V ) ∈ S}, SV := {x ∈ F : (x, V ) ∈ S}.

By (16), we have #SV & δε#F for V ∈ G′. Then we have

(17) #S =
∑

V ∈G′

#SV ≥ C−1δε#G′#F.

Since

#{(x, V ) ∈ S : #Sx ≤ (2C)−1δ2ε#G′} ≤ (2C)−1δ2ε#G′#F ≤
1

2
#S,

we have

#{(x, V ) ∈ S : #Sx ≥ (2C)−1δ2ε#G′} & δε#G′#F.

The inequality above implies

#{x ∈ F : #Sx ≥ (2C)−1δ2ε#G′} & δε#F.

We define

(18) F∆ := {x ∈ F : #Sx ≥ (2C)−1δ2ε#G′}.

Noting that F∆ is a (δ, a)-set with #F∆ & δ2ε−a, by Lemma 13, we can find a subset
F ′ ⊂ F∆ such that F ′ is a (∆, a)-set with

(19) #F ′ & δ2ε∆−a.

Let us summarize what we obtained. We find a scale ∆ ∈ [δ, δη/a], a (∆, dm,n)-set
G′ ⊂ G with #G′ & δ2ε∆−dm,n , and a (∆, a)-set F ′ ⊂ F with #F ′ & δ2ε∆−a, so that

(i) for each V ∈ G′, we have a set of tubes TV,∆ that satisfy the a-dimensional
spacing condition and #TV,∆ . δη∆−a (see paragraph before (13)),

(ii) each x ∈ F ′ is contained in & δ2ε#G′ & δ4ε∆−dm,n planks from
⋃

V ∈G′ TV,∆

(see (18)).

In the rest of the proof, we fix ∆ and simply write TV,∆ as TV .
For each V ∈ G′, let DV be a

∆−1 ×∆−1 × · · · ×∆−1

︸ ︷︷ ︸
m times

× 1× 1× · · · × 1︸ ︷︷ ︸
n−m times

slab centered at the origin such that the 1×1×· · ·×1-side is orthogonal to V . Then,
DV is the dual rectangle of the slabs in TV .

For all T ∈ TV , choose a smooth bump function ψT adapted to T such that

ψT ≥ 1 on T , ψT decays rapidly outside of T , and supp ψ̂T ⊂ DV . Define

fV =
∑

T∈TV

ψT and f =
∑

V ∈G′

fV .

Then by the condition (ii) above, for x ∈ N∆(F
′), we have

f(x) & δ4ε∆−dm,n .

So,

(20)

ˆ

N∆(F ′)

|f |2 & δO(ε)∆n∆−a−2dm,n .

We are going to find an upper bound of
´

N∆(F ′)
|f |2 using the high-low method.

Let K be a large number to be determined later (we will actually choose K ∼ δ−O(ε)).
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Let ηlow(ξ) be a smooth bump function on Bn(0, (K∆)−1) and ηhigh(ξ) = 1− ηlow(ξ).
We have the following high-low decomposition for f :

f = flow + fhigh,

where f̂low = ηlowf̂ and f̂high = ηhighf̂ . See Figure 2 for a diagram of the high part
and low part and the dual slabs.

•

Figure 2. Dual slabs.

For x ∈ N∆(F
′), we have

(21) δ4ε∆−dm,n . f(x) ≤ |fhigh(x)|+ |flow(x)|.

We will show that the high part dominates for x ∈ N∆(F
′), i.e., |fhigh(x)| & δ4ε∆−dm,n .

It suffices to show

(22) |flow(x)| ≤ C−1δ4ε∆−dm,n ,

for a large constant C.
Recall that flow =

∑
V ∈G′ fV ∗η

∨
low. Since ηlow is a bump function onBn(0, (K∆)−1),

we see that η∨low is an L1-normalized bump function essentially supported inBn(0, K∆).
Let χ(x) be a positive function = 1 on Bn(0, K∆) and decays rapidly outside
Bn(0, K∆). We have

|η∨low| .
1

|Bn(0, K∆)|
χ.

Therefore,

(23) |flow(x)| .
∑

V ∈G′

∑

T∈TV

ψT ∗
1

|Bn(0, K∆)|
χ(x) .

∑

V ∈G′

∑

T∈TV

K−mχTK
(x).

Here, each TK is a plank of dimensions

K∆×K∆× · · · ×K∆︸ ︷︷ ︸
m times

× 1× 1× · · · × 1︸ ︷︷ ︸
n−m times

which is the K-thickening of the ∆× · · · ×∆-side of T , and χTK
is a bump function

= 1 on TK and decays rapidly outside TK . The rapidly decaying tail is negligible, so
we can think of each χTK

as the indicator function of TK . For a fixed V ∈ G′, we
note that {T : T ∈ TV } are orthogonal to V . Therefore, if we let PK∆ be a plank of
dimensions

K∆×K∆× · · · ×K∆︸ ︷︷ ︸
m times

× 1× 1× · · · × 1︸ ︷︷ ︸
n−m times

that is orthogonal to V and contains x, then by condition (i),
∑

T∈TV

χTK
(x) . #{T ∈ TV : T ⊂ PK∆} . Ka,
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where the last inequality is by the a-dimensional condition of TV . Plugging this back
into (23), we obtain

|flow(x)| . Ka−m#G′ . Ka−m∆−dm,n .

(G′ is a (∆, dm,n)-set, so #G′ . ∆−dm,n .)
Noting that a < m, we may choose K ∼a,m δ−Oa,m(ε) so that (22) holds. Plugging

back to (20), we have

∆n−a−2dm,n /

ˆ

|fhigh|
2 =

ˆ

∣∣∣∣∣
∑

V ∈G′

f̂V ηhigh

∣∣∣∣∣

2

.

Here, A / B means A . δ−O(ε)B. It is good to mention that since ∆ ≤ δη/a, by
choosing ε small enough depending on η, a, we have that K is much smaller than
∆−1.

We use the following lemma to estimate the overlap of {supp(f̂V ηhigh)}V ∈G′ , or
more precisely {DV \B

n(0, (K∆)−1)}V ∈G′. After rescaling x 7→ ∆x, eachDV becomes
a 1 × · · · × 1 × ∆ × · · · × ∆-plank with m many 1’s and (n − m) many ∆’s in the
expression. We denote this rescaled plank by PV . We can see that PV is morally
N∆(V ) ∩ B

n(0, 1). It is harmless to just assume

PV = N∆(V ) ∩ B
n(0, 1).

We also see that after rescaling, DV \Bn(0, (K∆)−1) becomes PV \Bn(0, K−1). We
will bound the overlaps of {PV \Bn(0, K−1)} where {PV } are essentially distinct.

Lemma 18. {PV \Bn(0, K−1)}V ∈G′ is . KO(1)∆− dim(G(m−1,n−1))-overlapping.

Proof. We will estimate the number of overlaps at the point ξ0 = (0, . . . , 0, λ)
with λ ∈ [K−1, 1]. We just need to show that the number of planks PV that pass
through 0 and ξ0 is . KO(1)∆− dim(G(m−1,n−1)).

We first talk about some properties for the smooth manifoldG(m,n). For V1, V2 ∈
G(m,n), define d(V1, V2) = ‖πV1 − πV2‖. Then d(·, ·) gives a metric on G(m,n). We
need another characterization for this distance. Define ρ(V1, V2) to be the smallest
number ρ such that Bn(0, 1) ∩ V1 ⊂ Nρ(B

n(0, 1) ∩ V2). We claim that ρ(V1, V2) ∼
d(V1, V2). Suppose Bn(0, 1) ∩ V1 ⊂ Nρ(B

n(0, 1) ∩ V2), then for any v ∈ R
n we have

|πV1(v)− πV2(v)| . ρ|v|,

which implies d(V1, V2) . ρ. On the other hand, if for any |v| ≤ 1 we have

|πV1(v)− πV2(v)| ≤ d|v|,

then we obtain that πV1(v) ⊂ NCd(B
n(0, 1) ∩ V2). Letting v range over the unit ball

in V1, we get Bn(0, 1) ∩ V1 ⊂ NCd(B
n(0, 1) ∩ V2).

Consider the G̃ = {W ∈ G(m,n) : 0, ξ0 ∈ W} which is a submanifold of G(m,n).

G̃ is the set of m-subspaces that contain the n-th axis. One can see that G̃ is
isomorphic to G(m − 1, n − 1). We return back to PV = N∆(V ) ∩ Bn(0, 1). We

make the following geometric observation: if ξ0 ⊂ PV , then there exists W ∈ G̃ so
that W ∩Bn(0, 1) ⊂ NCK∆(V ) ∩Bn(0, 1). Recall the length of ξ0 is λ ∈ [K−1, 1], so
the angle between ξ0 and V is . ∆K. Therefore the unit vector λ−1ξ0 is contained
in NCK∆(V ) ∩ Bn(0, 1). It suffices to find an m-dimensional space W such that
λ−1ξ0 ∈ W and W ∩ Bn(0, 1) ⊂ N10CK∆(V ) ∩ Bn(0, 1). Let v be the projection of
λ−1ξ0 onto V , then the angle between v and λ−1ξ0 is . ∆K. Imagine we choose
a family of vectors v(θ), θ ∈ [0,∆K] so that v(0) = v, v(∆K) = λ−1ξ0 and also
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|v(θ1) − v(θ2)| . |θ1 − θ2|. Actually, we can choose them so that v(θ) lies on the
line segment connecting v(0) and v(∆K). Starting with θ = 0, we choose the m-
dimensional space V (0) = V so that v(0) ∈ V (0). When θ changes we get a family
of m-dimensional subspaces V (θ) by rotating V (0) = V so that v(θ) ∈ V (θ). When
θ changes from 0 to ∆K, we see we rotate V to another space W = V (∆K) within
angle . ∆K. Therefore we find the desired subspace W .

We proved that there exists W ∈ G̃ so that W ∩Bn(0, 1) ⊂ NCK∆(V )∩Bn(0, 1).
By the comparability of the metric discussed in the previous two paragraphs, we

see that d(V, G̃) . ∆K. In other word, those V ∈ G(m,n) satisfying ξ0 ∈ PV is

contained in the C∆K-neighborhood of G̃ in G(m,n). We denote this neighborhood

by NC∆K(G̃). Noting that G̃ is submanifold of dimension dim(G(m − 1, n − 1)) =
(m − 1)(n − m) and G′ is a ∆-separated subset of G(m,n), we get the number of
overlaps of G′ at ξ0 is

. measure
(
NC∆K(G̃)

)
/∆dim(G(m,n)) ∼ KO(1)∆−dim(G(m−1,n−1)).

Note that we use a simple fact: If M̃ is an m-dimensional smooth submanifold of the
n-dimensional manifold M , then

measure
(
Nr(M̃)

)
.M,M̃ rn−m,

for 0 ≤ r ≤ 1. �

We are now able to find an upper bound to the high part of the integral. We
have

∆n−a−2dm,n /

ˆ

|fhigh|
2 =

ˆ

|f̂high|
2 / ∆− dim(G(m−1,n−1))

∑

V ∈G′

ˆ

|ηhighf̂V |
2

by Lemma 18. Since |ηhigh| . 1 and the planks in TV (for a fixed V ) are essentially
disjoint, we have
ˆ

|ηhighf̂V |
2 .

∑

V ∈G′

ˆ

|fV |
2 .

∑

V ∈G′

∑

T∈TV

ˆ

|ψT |
2 ≤ (#G′)(#TV )∆

m . δη∆−dm,n−a+m.

Here we have a factor δη because of the upper bound (13), and we remark that δη is
quite important to get a contradiction.

Combining everything and noting that dim(G(m− 1, n− 1)) = (m− 1)(n−m),
we have that

1 / δη.

Unwrapping the notation, we get

1 . δ−O(ε)+η.

This is impossible if we choose δ, ε small enough depending on η. We get a contra-
diction. �

Proposition 19. Let 0 < σ < n−1, a ∈ (n−1, n] and t > max{n−1+σ−a, 0}.
Let 0 < η < 1. Then for ε and δ small enough depending on σ, t, and η, we have the
following result.

Let E, F ⊂ Bn(0, 1) so that E is a (δ, t)-set with #E & δεδ−t and F satisfies
Ha

δ,∞(F ) & δε, #F . δ−a. (We remark that we did not assume F is δ-separated.) We
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also assume that each of E and F lies in a ball of radius 1/1000 and dist(E, F ) ≥ 1/2.
Then, there exists y ∈ E such that for all F ′ ⊂ F with Ha

δ,∞(F ′) ≥ δε, we have

Hσ
δ,∞(πy(F

′)) > δη.

Proof. Since n − 1 + σ − a < σ, it suffices to prove the proposition for t < σ.
Assume for the sake of contradiction that for all y ∈ E there exists Fy ⊂ F with
Ha

δ,∞(Fy) ≥ δε such that

Hσ
δ,∞(πy(Fy)) ≤ δη.

We first reduce F to a (δ, a)-set. The algorithm goes as follows. By the condition
that Ha

δ,∞(F ) & δε and Lemma 12, we can find a (δ, a)-set F1 ⊂ F with #F1 & δ−a+2ε.

We look at F \ F1. If Ha
δ,∞(F \ F1) ≤ δ2ε, we stop; If Ha

δ,∞(F \ F1) ≥ δ2ε, we find a

(δ, a)-set F2 ⊂ F \F1 with #F2 & δ−a+2ε. Repeating the algorithm until we stop, we
obtain a decomposition

F =

(
N⊔

i=1

Fi

)
⊔ F0,

where each Fi (1 ≤ i ≤ N) is a (δ, s)-set with cardinality & δ−a+2ε, and F0 satisfies
Ha

δ,∞(F0) ≤ δ2ε. We also see that N . #F/δ−a+2ε . δ−2ε.

For any y ∈ E, we have δε ≤
∑N

i=0H
a
δ,∞(Fy ∩ Fi) ≤ δ2ε +

∑N
i=1H

a
δ,∞(Fy ∩ Fi).

By pigeonholing, there exists i = i(y) such that Ha
δ,∞(Fy ∩ Fi) & δ3ε. By another

pigeonholing, there exists i ∈ [1, N ], such that

#{y ∈ E : i(y) = i} & δ2ε#E.

For simplicity, we will still use the old notation. We replace E by {y ∈ E : i(y) = i},
F by Fi, Fy by Fy ∩ Fi, and ε by ε/10. Then, E is still a (δ, t)-set with #E & δεδ−t;
F is a (δ, a)-set with #F & δεδ−a; Fy ⊂ F and #Fy & δε#F for each y ∈ E (since
Ha

δ,∞(Fy) & δ3ε/10 implies #Fy & δ−a+ε & δε#F ); moreover,

Hσ
δ,∞(πy(Fy)) ≤ δη.

We will derive a contradiction.
By the definition of Hσ

δ,∞, we can find a covering of πy(Fy) by dyadic caps {D}

in S
n−1, so that Hσ

δ,∞(πy(Fy)) =
∑

D r(D)σ. For each such D, consider π−1
y (D) ∩(

Bn(y, 2) \Bn(y, 1/4)
)
. It is roughly a tube of length ∼ 1 and radius comparable to

the radius of D. We put those tubes with radius comparable to ∆ together, which is
the following set

Ty,∆ :=

{
π−1
y (D) ∩

(
Bn(y, 2) \Bn(y, 1/4)

)
: ∆/2 ≤ diam(D) ≤ ∆

}
.

(See Figure 3 for the configuration of these tubes.)
By the separation of E, F and noting E, F are contained in Bn(0, 1), we see that

the tubes obtained in this way form a covering of Fy:

Fy ⊂
⊔

δ≤∆≤1

⋃

T∈Ty,∆

T.

Ty,∆ satisfies the σ-dimensional spacing condition (inherited from {D}): For
∆ ≤ r ≤ 1, if Tr is a tube of radius r length 1 that passes through y, then Tr
contains . (r/∆)σ many tubes from Ty,∆. Since Hσ

δ,∞(πy(Fy)) ≤ δη, we have

(24) #Ty,∆ . δη∆−σ.
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We see that Ty,∆ is non-empty only for ∆ ≤ δη/σ.

•

• •

• •
•

E

F

y

Figure 3. Ty,∆ in the radial projection.

Next, we will apply a standard pigeonholing argument to find a scale ∆. Note
that

Fy ⊂
⊔

δ≤∆≤δη/a

⋃

T∈Ty,∆

T.

For each y ∈ E, we can find a dyadic ∆(y) ∈ [δ, δη/a] so that

(25) #


Fy ∩

⋃

T∈Ty,∆(y)

T


 & | log δ|−1#Fy & δε#F.

Define E∆ = {y ∈ E : ∆(y) = ∆}. We see that

E =
⋃

δ≤∆≤δη/a

E∆.

By pigeonholing again, we can find a scale ∆, such that

(26) #E∆ & δε#E.

We fix this ∆. Noting that E is a (δ, t)-set with #E & δεδ−t, we have that E∆ is
also a (δ, t)-set with #E∆ & δ2εδ−t. By Lemma 13, we can find a subset E ′ of E∆ so
that E ′ is a (∆, t)-set with #E ′ & δ2ε∆−t. From (25), we have for any y ∈ E ′ that

(27) #


F ∩

⋃

T∈Ty,∆

T


 & δε#F & δ2ε−a.

Next, we consider the set

S :=



(x, y) ∈ F × E ′ : x ∈

⋃

T∈Ty,∆

T



 .

Define the sections of S:

Sx := {y ∈ E ′ : (x, y) ∈ S}, Sy := {x ∈ F : (x, y) ∈ S}.

By (27), we have #Sy & δε#F for y ∈ E ′. Then we have

(28) #S =
∑

y∈E′

#Sy ≥ C−1δε#E ′#F.
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Since

#{(x, y) ∈ S : #Sx ≤ (2C)−1δ2ε#E ′} ≤ (2C)−1δ2ε#E ′#F ≤
1

2
#S,

we have

#{(x, y) ∈ S : #Sx ≥ (2C)−1δ2ε#E ′} & δε#E ′#F.

The inequality above implies

#{x ∈ F : #Sx ≥ (2C)−1δ2ε#E ′} & δε#F.

We define

(29) F∆ := {x ∈ F : #Sx ≥ (2C)−1δ2ε#E ′}.

Noting that F∆ is a (δ, a)-set with #F∆ & δ2ε−a, by Lemma (13), we can find a subset
F ′ ⊂ F∆ such that F ′ is a (∆, a)-set with

(30) #F ′ & δ2ε∆−a.

Let us summarize what we obtained. We find a scale ∆ ∈ [δ, δη/σ], a (∆, t)-set
E ′ ⊂ E with #E ′ & δ2ε∆−t, and a (∆, a)-set F ′ ⊂ F with #F ′ & δ2ε∆−a, so that

(i) for each y ∈ E ′, we have a set of tubes Ty,∆ that satisfy the σ-dimensional
spacing condition with #Ty,∆ . δη∆−σ (see paragraph before (24)),

(ii) each x ∈ F ′ is contained in & δ2ε#E ′ & δ4ε∆−t tubes from
⋃

y∈E′ Ty,∆ (see

(29)).

We see that we have reduced the problem to the following lemma, from which we
will obtain a contradiction. �

Lemma 20. Let 0 < t < σ < n − 1, a ∈ (n − 1, n]. Let 0 < η < 1/100. Let
0 < δ ≤ ∆ ≤ δη/σ, ε > 0, where δ, ε are small enough depending on η, t, σ, a. Let
E, F ⊂ Bn(0, 1) be non-empty ∆-separated sets where

(1) E is a (∆, t)-set with cardinality #E & ∆−tδε,
(2) F is a (∆, a)-set with cardinality #F & ∆−aδε,
(3) each of E and F lies in a ball of radius 1/1000 and dist(E, F ) ≥ 1/2.

For all y ∈ E, we assume there exists a collection of ∆-tubes Ty, such that

(1) each T ∈ Ty is of form π−1
y (C) ∩ {x ∈ R

n : 1 − 1
100

≤ |x − y| ≤ 1} for some
dyadic ∆-cap C ⊂ S

n−1,
(2) Ty is a (∆, σ)-set of tubes with cardinality #Ty . δη∆−σ,
(3) and for all x ∈ F , #{y ∈ E : ∃T ∈ Ty such that x ∈ T} & ∆−tδε.

Then,

δO(ε)∆−t . δ
σ−t
σ

η∆−(n−1)−σ+a,

which implies that t ≤ n − 1 + σ − a (if δ is small enough and ε is very small
depending on η, t, σ). This contradicts the assumption t > max{n− 1 + σ − a, 0} in
Proposition 19.

Proof. We will modify Ty a little bit. Since we will consider the interplay among
{Ty}y∈E , we want to make the comparable tubes to be exactly the same. Note that
F is contained in a ball B1/1000 of radius 1/1000. We choose a set of δ/100-separated
directions in S

n−1, denoted by Θ = {θ}. For each direction θ ∈ Θ, we choose Tθ to
be a set of 100δ-tubes that point to the direction θ and form a finitely overlapping
covering of B1/1000. Denote T = ∪θTθ. If {Tθ}θ∈Θ are chosen properly, then for any
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δ-tubes T , there exists T ′ in some Tθ such that T ∩ B1/1000 ⊂ T ′. We modify every
Ty in this way. Let us call the original Ty to be T

old
y . We redefine

Ty := {T ′ ∈ T : T ∩B1/1000 ⊂ T ′ for some T ∈ T
old
y }.

Now Ty ⊂ T. Also, the new Ty inherits the properties of the old Ty: Ty is a
(∆, σ)-set with #Ty . δη∆−σ; for any x ∈ F , #{y ∈ E : ∃T ∈ Ty such that x ∈
T} & ∆−tδε. After the modification, Ty is still a truncated bush centered at y.

Fix a y ∈ E. For any T ∈ Ty, choose a bump function ψT such that ψT ≥ 1 on

T , ψT decays rapidly outside of T , and supp ψ̂T is contained in the dual rectangle of
T which is a ∆−1 × · · · ×∆−1 × 1-slab. Define

fy =
∑

T∈Ty

ψT and f =
∑

y∈E

fy.

Then, for x ∈ N∆(F ), f(x) & #{y ∈ E : ∃T ∈ Ty such that x ∈ T} & ∆−tδε by
assumption. Therefore,

(31) δO(ε)∆−2t−a+n . δ2ε∆−2t(#F )∆n .

ˆ

N∆(F )

|f |2.

We will use the high-low method. Let ηlow(ξ) be a smooth bump function on
Bn(0, (K∆)−1) and ηhigh = 1−ηlow. We will choose K ∼ δ−O(ε). Define flow = η∨low∗f
and fhigh = η∨high ∗ f .

For x ∈ N∆(F ), we have

∆−tδε . f(x) ≤ |flow(x)|+ |fhigh(x)|.

We claim that

|flow(x)| . Kσ−(n−1)#E ≤ C−1∆−tδε,

if K ∼ δ−O(ε) is properly chosen. To show the claim, we write

|flow(x)| ≤
∑

y∈E

|η∨low| ∗ fy(x) ≤
∑

y∈E

∑

T∈Ty

|η∨low| ∗ ψT (x).

Note that |η∨low|(x) . (K∆)−nχ(x), where χ(x) is a positive function = 1 on Bn(0,
K∆) and decays rapidly outside Bn(0, K∆). Therefore,

|η∨low| ∗ ψT (x) . K−(n−1)χKT (x),

where χKT (x) = 1 on KT and decays rapidly outside KT . Since Ty is a (∆, σ)-set,
we have for x ∈ F ,

#{T ∈ Ty : x ∈ 100KT} . Kσ.

Therefore,
∑

T∈Ty
|η∨low| ∗ ψT (x) . Kσ−(n−1). Summing over y ∈ E, we prove the

claim.
Therefore, we have |f(x)| . |fhigh(x)| on N∆(F ). We have

ˆ

N∆(F )

|f |2 .

ˆ

|fhigh|
2.

Here is where things become a little more different than the high-low argument
in the proof of Proposition 17. A tube may belong to many different Ty. For each
T ∈ T, define

nT := #{y ∈ E | T ∈ Ty}.
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nT can be 0, which means T /∈ Ty for any y ∈ E. We have

ˆ

|fhigh|
2 =

ˆ

∣∣∣∣∣
∑

T∈T

nT · ψT,high

∣∣∣∣∣

2

.

Here, ψT,high = η∨high ∗ ψT . If T ∈ Tθ, let Sθ be the slab centered at the origin, of

dimensions ∆−1 × · · · ×∆−1 × 1, which is the dual of T . We also see that Sθ is the
dual of any T ∈ Tθ. Now we have

supp(ψ̂T,high) ⊂ Sθ \B
n(0, (K∆)−1).

Applying Lemma 18 at the special case that m = n − 1 we see that {Sθ \
Bn(0, (K∆)−1)}θ∈Θ are . KO(1)∆− dim(G(n−2,n−1))-overlapping. We thus have

ˆ

|fhigh|
2 =

ˆ

∣∣∣∣∣
∑

T∈T

nT · ψT,high

∣∣∣∣∣

2

=

ˆ

∣∣∣∣∣
∑

θ∈Θ

∑

T∈Tθ

nT · ψT,high

∣∣∣∣∣

2

. δ−O(ε)∆−(n−2)
∑

θ∈Θ

ˆ

∣∣∣∣∣
∑

T∈Tθ

nTψT,high

∣∣∣∣∣

2

. δ−O(ε)∆−(n−2)
∑

T∈T

n2
T

ˆ

|ψT,high|
2

. δ−O(ε)∆−(n−2)
∑

T∈T

n2
T

ˆ

|ψT |
2 . δ−O(ε)∆

∑

T∈T

n2
T .

In the second to last equation above, we use the fact that tubes in Tθ are parallel and
finitely overlapping, and hence the essential supports of {ψT,high}T∈Tθ

, {KT}T∈Tθ
, are

at most KO(1)-overlapping. In the last row above, we use Plancherel:
´

|η∨high∗ψT |
2 =

´

|ηhighψ̂T |
2 ≤
´

|ψ̂T |
2 ≤
´

|ψT |
2.

We are going to find an upper bound to
∑

T∈T n
2
T . The intuition is that nT = 1

for T ∈ ∪y∈ETy, and = 0 for other T ∈ T. Therefore
∑

T∈T n
2
T =

∑
T∈T nT =∑

y∈E #Ty . #E#Ty . ∆−tδη∆−σ. We verify this intuition.

∑

T∈T

n2
T =

∑

T∈T

#{y, y′ ∈ E | T ∈ Ty ∩ Ty′} =
∑

y∈E

∑

y′∈E

#{T ∈ T | T ∈ Ty ∩ Ty′}.

Given that each Ty is a (∆, σ)-set, the above expression is bounded by

.
∑

y∈E

∑

y′∈E\{y}

min
{
|y − y′|−σ,#Ty

}
+
∑

y∈E

#Ty.

The second term is bounded by

∑

y∈E

#Ty . δη∆−t−σ.
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For the first term, we have

.
∑

y∈E

log2 ∆
−1∑

k=0

∑

|y−y′|≤2−k

min{|y − y′|−σ, δη∆−σ}

.
∑

y∈E

log2 ∆
−1∑

k=0

#{y′ ∈ E ∩ Bn(y, 2−k)}min{2kσ, δη∆−σ}

. ∆−t

log2 ∆
−1∑

k=0

(∆−12−k)tmin{2kσ, δη∆−σ}

= ∆−t

log2 ∆
−1∑

k=0

∆−t min{2k(σ−t), δη∆−σ2−kt}.

When 2k(σ−t) = δη∆−σ2−kt or equivalently 2kσ = δη∆−σ, the value of “min” domi-
nates. (Actually, we used the condition ∆ ≤ δη/σ here in order to find k ≥ 0 so that

2kσ ∼ δη∆−σ.) The expression above is therefore bounded by δ
σ−t
σ

η∆−t−σ.
Combining all the estimates, we have

∑

T∈T

n2
T . (δ

σ−t
σ

η + δη)∆−t−σ.

Plugging into (31), we have

δO(ε)∆−t . δ
σ−t
σ

η∆−(n−1)−σ+a.

By choosing ε small enough such that δO(ε) ≥ δ
σ−t
σ

η, then we get

∆−t . ∆−(n−1)−σ+a.

Since ∆ ≤ δη/σ, if δ is small enough we obtain t ≤ n− 1 + σ − a. �

We now prove Theorem 16.

Proof of Theorem 16. We will show that the result holds for ε ≤ ε0(η, σ, a, t),
δ ≤ δ0(η, σ, a, t), where ε0(η, σ, a, t), δ0(η, σ, a, t) depend on Propositions 17 and 19.
The key idea is to project the sets to a lower dimensional subspace. Similar ideas
has appeared in [1].

Since k+σ−a < k, we may assume t < k+1 so that we can apply Proposition 17
with (a,m) = (t, k + 1). We will apply Proposition 19 with n = k + 1. For our
purpose, we determine the parameters of Proposition 19 in advance. For fixed η, we
first choose small number ε′ so that Proposition 19 holds for ε = ε′. Then let the
parameter η in Proposition 17 be ε′. We choose ε so that Proposition 17 holds for
this ε.

Recall the condition in Theorem 16 that each of E and F lies in a ball of radius
1/1000 and dist(E, F ) ≥ 3/4. By the separation of E and F , we can find G̃ ⊂

G(n, k + 1) which has measure ≥ 10−10, such that any V ∈ G̃ satisfies

dist(πV (E), πV (F )) ≥
1

2
.

We choose G to be a maximal δ-separated subset of G̃. Then G is a (δ, dk+1,n)-set
with #G & δ−dk+1,n .
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By Proposition 17, there exists a subset G1 ⊂ G with #G1 & δ−dk+1,n , so that
for any V ∈ G1 we have

(32) Ha
δ,∞(πV (F

′)) > δε
′

, for any F ′ ⊂ F with #F ′ ≥ δε#F.

Similarly, there exists V ∈ G1, so that

(33) Ht
δ,∞(πV (E)) > δε

′

.

We just fix this V for which (32) and (33) hold.
We are about to apply Proposition 19 (with ε = ε′). By (33), there exists a

(δ, t)-set EV ⊂ πV (E) with #E & δε
′−t. We also check that πV (F ) satisfies the

requirement in Proposition 19: Ha
δ,∞(πV (F )) & δε

′

, #πV (F ) ≤ #F . δ−a.

We find a point ỹ ∈ EV such that: for all F̃ ⊂ πV (F ) with Ha
δ,∞(F̃ ) ≥ δε

′

, we
have

(34) Hσ
δ,∞

(
πỹ(F̃ )

)
> δη.

We use this property to finish the proof. We choose y ∈ E so that πV (y) = ỹ.
We show that this y satisfies the requirement in Theorem 16. For any F ′ ⊂ F with

#F ′ ≥ δε#F , by (32) we have Ha
δ,∞(πV (F

′)) ≥ δε
′

. Plug in F̃ = πV (F
′) into (34):

Hσ
δ,∞ (πỹ (πV (F

′))) > δη.

Note that

Hσ
δ,∞ (πy(F

′)) ≥ Hσ
δ,∞ (πỹ (πV (F

′))) ,

as any covering of πy(F
′) naturally gives rise to a covering of πỹ

(
πV (F

′)
)

by the
separation of E, F . Therefore, we have

Hσ
δ,∞ (πy(F

′)) > δη. �

3. Liu’s conjecture on radial projections

In this section, we prove Liu’s conjecture (Theorem 2). The idea is the same
as in [12], but we still provide full details to clarify the numerology since we are in
higher dimensions.

We repeat Theorem 2 here.

Theorem 21. Given a Borel set E ⊂ R
n, with dimE ∈ (k − 1, k] for some

k ∈ {1, . . . , n− 1}, then

dim{x ∈ R
n \ E | dim(πx(E)) < dimE} ≤ k.

It suffices to prove

Proposition 22. Given a Borel set E0 ⊂ R
n, with dimE0 ∈ (k − 1, k] for some

k ∈ {1, . . . , n− 1}, and τ0 > 0, then we have

dim{x ∈ R
n \ E0 | dim(πx(E0)) < dimE0 − 10τ0} ≤ k.

Since the proof of this proposition is technical, we start with a heuristic proof.
One of the key tools utilized is Theorem 15.

A heuristic proof of Proposition 22. We just need to prove this for dimE0 < k.
We set s = dimE0. Let

F0 = {x ∈ R
n \ E0 | dim(πx(E0)) < dimE0 − 10τ0}.
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By contradiction, we assume t = dimF0 > k. Also, by passing to a subset of F0, we
may assume t ∈ (k, k + 1). Now we let this F0 be the set A in Theorem 15. Since
s < k, we have that the s-exceptional set

Es(F ) = {y ∈ R
n \ F0 : dim(πy(F0)) < s}

has dimension ≤ k+s−t < s = dimE0. Subtracting this small exceptional part from
E0, we may pass to a subset of E0 (still denoted by E0) with the same dimension s
and satisfying

dim(πy(F0)) ≥ s,

for any y ∈ E0.
By δ-discretization, we may assume F0 is a t-dimensional set of points and E

is an s-dimensional set of points. (Here, when we say F0 is a t-dimensional set, it
means that F0 is a (δ, t)-set and #F0 & δ−t.) For each x ∈ F0 and y ∈ E0, we connect
them by a δ-tube. Let T be the set of δ-tubes produced in this way. We also identify
comparable tubes. Roughly speaking, we define

T := {T : T connects some x ∈ F, y ∈ E}.

We also define Tx := {T ∈ T : x ∈ T} for x ∈ F0, and T
y := {T ∈ T : y ∈ T} for

y ∈ E0. By definition, we have dim(πx(E0)) ≤ s − τ0 for x ∈ F0. This condition
morally says that Tx is an (s− τ0)-dimensional set. Since the tubes in Tx are finitely
overlapping at the portion away from x, we have

δ−s ≤ #E0 .
∑

T∈Tx

#(T ∩ E0).

Since #Tx ≤ δ−s+τ0, we may morally assume #(Tx ∩ E0) & δ−τ0/2 for any Tx ∈ Tx.
Morally, we may further assume for any T ∈ T, we have #(T ∩ E0) & δ−τ0/2. The
condition dim(πy(F0)) ≥ s morally says that T

y is at least an s-dimensional set.
We consider the incidences between E0 and T. We will derive a contradiction

by comparing the upper and lower bounds of I(E0,T) := {(y, T ) ∈ E0 × T : y ∈ T}.
First, we have

I(E0,T) =
∑

T∈T

#(T ∩ E0) & #Tδ−τ0/2.

For the upper bound of the incidence, we have

I(E0,T) =
∑

T∈T

#(T ∩ E0) ≤ (#T)1/2

(∑

T∈T

#(T ∩ E0)
2

)1/2

= (#T)1/2

( ∑

y,y′∈E0

#{T ∈ T : y, y′ ∈ T}

)1/2

= (#T)1/2

(∑

y∈E0

∑

y′∈E0

#{T ∈ T
y : y′ ∈ T}

)1/2

.

By the s-dimensional condition for Ty, for y 6= y′ we have

#{T ∈ T
y : y′ ∈ T} .

(
δ

|y − y′|

)s

#T
y.
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Therefore, we have

I(E0,T) = (#T)1/2


∑

y∈E0

∑

y′∈E0\{y}

#{T ∈ T
y : y′ ∈ T}+

∑

y∈E0

#T
y




1/2

. (#T)1/2


∑

y∈E0

∑

y′∈E0\{y}

(
δ

|y − y′|

)s

#T
y + I(E0,T)




1/2

.

Using that E0 is an s-dimensional set, we have
∑

y′∈E0\{y}

(
δ

|y − y′|

)s

/ 1,

so we have

I(E0,T) / (#T)1/2
(
#E0 ·max

y
(#T

y) + I(E0,T)
)1/2

.

Let us first ignore #E0 ·maxy(#T
y) (we will carefully analyze this term later), and

pretend

I(E0,T) / (#T)1/2
(
I(E0,T)

)1/2
.

This means I(E0,T) / #T, which contradicts the lower bound of I(E0,T). �

We start the rigorous proof. The proof is by contradiction to assume the set

(35) F0 = {x ∈ R
n \ E0 | dim(πx(E0)) < dimE0 − 10τ0}

satisfies t = dimF0 > k. We will derive a contradiction through the following propo-
sition and a standard reduction. It has the same idea in the proof that Theorem 16
implies Theorem 15.

Proposition 23. Let k ∈ {1, · · · , n− 1}. Let 0 < s < k, t > k and τ0 > 0. For
ε, δ small enough depending on s, t, τ0, the following holds. Let E, F ⊂ Bn(0, 1) be
(δ, s)-set and (δ, t)-set, with #E & δ−s+ε, #F & δ−t+ε. We also assume that each
one of E, F is contained in a ball of radius 1/1000, and dist(E, F ) ≥ 1/2. Then there
exists x ∈ F such that

(36) |πx(E
′)|δ ≥ δ−s+τ0, for all E ′ ⊂ E with #E ′ ≥ δε#E.

Proof that Proposition 23 implies Proposition 22. We will do a same reduc-
tion as in the proof that Theorem 16 implies Theorem 15. Suppose E0 is given in
Proposition 22, and F0 is given by (35). Fix dimE0 − τ0 < s1 < dimE0. We can
find s1-dense points y1, y2 of E0. Since our problem is scaling-invariant, we can as-
sume |y1 − y2| = 99/100. We let E1 = E0 ∩ B1/1000(y1), E2 = E0 ∩ B1/1000(y2),
and then dim(E1), dim(E2) ≥ s1. We only need to show for any ball B1/1000 of ra-
dius 1/1000, F0 ∩ B1/1000 has dimension ≤ k. Since dist(E1, E2) > 98/100, either
dist(B1/1000, E1) > 3/4 or dist(B1/1000, E2) > 3/4. We may assume dist(B1/1000, E1) >
3/4. We will show that the set

F ′ := {x ∈ B1/1000 : dim(πx(E1)) < dimE1 − 9τ0}(⊃ F0 ∩ B1/1000)

has dimension ≤ k. From the reduction, these sets satisfy certain separation proper-
ties:

each one of E1 and F ′ lies in some ball of radius 1/1000,(37)

E1, F
′ ⊂ Bn(0, 1), dist(E1, F

′) ≥ 1/2.(38)
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We choose t < dim(F ′), s = dim(E1)− τ0 < dim(E1). Then Ht
∞(F ′) > 0, and by

Frostman’s lemma there exists a probability measure νE1 supported on E1 satisfying
νE1(Br) . rs for any Br being a ball of radius r. We can rewrite F ′ as

(39) F ′ = {x ∈ B1/1000 : dim(πx(E1)) < s− 8τ0}

We only need to prove t ≤ k, since then we can send t → dim(F ′). For the sake
of contradiction, assume that t > k. Now we fix t, so we may assume Ht

∞(F ′) ∼ 1 is
a constant.

Fix an x ∈ F ′. Using Lemma 9 to πx(E1), we obtain a set of dyadic caps Cx =⊔
j Cx,j in S

n−1 that cover πx(E1). Here each Cx,j is a set of 2−j-caps that satisfy the

(s−8τ0)-dimensional condition (see Lemma 9 (3)) because of dim(πx(E1)) < s−8τ0.
Also, the radius of these caps is less than ε◦, which is any given small number.

By the (s− 8τ0)-dimensional condition of Cx,j , we have

(40) #Cx,j ≤ 2j(s−8τ0).

•

• •

• •
•

F ′

E1

x

Figure 4. Tx,j in the radial projection.

For each cap C ∈ Cx, consider π−1
x (C) ∩ {x ∈ R

n : 1 − 1
100

≤ |x − y| ≤ 1} which
is a tube. We obtain a collection of finitely overlapping tubes

Tx =
⊔

j

Tx,j

that cover E1 (see Figure 4). Here, each tube has its coreline passing through x and
at distance ∼ 1 from x. The tubes in Tx,j have dimensions 2−j × · · ·× 2−j × 1. Also,
Tx,j inherits the property (40) from Cx,j:

(41) #Tx,j ≤ 2j(s−8τ0).

For a fixed x ∈ F ′, there exists a j(x) ≥ | log2 ε◦| such that

(42) νE1


E1 ∩

⋃

T∈Tx,j(x)

T


 ≥

1

10j(x)2
νE1(E1) =

1

10j(x)2
.

We have a partition F ′ =
⊔

j F
′
j where F ′

j = {x ∈ F ′ : j(x) = j}. We choose j such

that Ht
∞(F ′

j) &
1
j2

. We let δ = 2−j. Note that δ ≤ ε◦ by assumption. By Lemma 7,

there exists a subset F ′′ ⊂ F ′
j which is a (δ, t)-set and #F ′′ & | log δ|−2δ−t. We use µ

to denote the counting measure on F ′′.
Next, we consider the set S =

{
(y, x) ∈ E1×F

′′ : y ∈
⋃

T∈Tx,j
T
}
. We also denote

the x-section and y-section of S by Sx and Sy. (In Figure 4, F ′ is drawn above E1,
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so we use the convention that x appears as the superscript in Sx.) By (42), we have
νE1(S

x) ≥ 1
10j(x)2

, so we have

(43) (νE1 × µ)(S) ≥
1

10j2
µ(F ′′).

This implies

(44) (νE1 × µ)

({
(y, x) ∈ S : µ(Sy) ≥

1

20j2
µ(F ′′)

})
≥

1

20j2
µ(F ′′).

Therefore, we have

(45) νE1

({
y ∈ E1 : µ(Sy) ≥

1

20j2
µ(F ′′)

})
≥

1

20j2
∼ | log δ|−2.

By Lemma 8, we can find a subset E of
{
y ∈ E1 : µ(Sy) ≥

1
20j2

µ(F ′)
}
, so that E is

a (δ, s)-set and #E & | log δ|−2δ−s.
Hence,

| log δ|−2#E#F ′′ . #



(y, x) ∈ E × F ′′ : y ∈

⋃

T∈Tx,j

T





=
∑

x∈F ′′

#



y ∈ E : y ∈

⋃

T∈Tx,j

T



 .

(46)

By pigeonholing, there exists a subset F ⊂ F ′′ with #F & | log δ|−2#F ′′ & δε/2δ−t,
so that for any x ∈ F :

#



y ∈ E : y ∈

⋃

T∈Tx,j

T



 & δε#E.

We set Ex :=
{
y ∈ E : y ∈

⋃
T∈Tx,j

T
}
.

Now we use Proposition 23 to derive a contradiction. We just plug in the E, F
and check they satisfy the conditions of Proposition 23. Then it yields the existence
of an x ∈ F such that |πx(E

′)|δ ≥ δ−s+τ0 , for any E ′ ⊂ E with #E ′ ≥ δε#E. We
just put E ′ = Ex, and see that δ−s+τ0 ≤ |πx(Ex)|δ . #Tx,j ≤ δ−s+8τ0 by (41). This
gives a contradiction if δ is small enough depending on τ0. �

Remark 24. (36) roughly says there exists x ∈ F such that dim(πx(E)) >
dimE − τ0, contradicts the definition of F0 in (35). Throughout the proof of Propo-
sition 23, we will use x to denote points in F and y to denote points in E.

It remains to prove Proposition 23.

3.1. Proof of Proposition 23. We provide the full details for the proof of
Proposition 23. We remark that the proof has the same idea as in [12]. We include
here just for completeness.

In [12], Orponen and Shmerkin derive their Corollary 4.5 from Proposition 4.2.
By the same argument, we can derive the following corollary from Theorem 16.

Corollary 25. Let 0 ≤ σ ≤ s < k, t ∈ (k, k + 1], 0 < η < 1/100, and s >
max{k+σ−t, 0}. Then, for sufficiently small ε, δ depending on s, σ, t, η, the following
holds.
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Let E, F ⊂ Bn(0, 1) be (δ, s)-set and (δ, t)-set, with #E & δ−s+ε and #F & δ−t+ε.
Each of E and F lies in a ball of radius 1/1000 and dist(E, F ) ≥ 1/2. Then, there
exists a subset E ′ ⊂ E with #E ′ ≥ (1 − δε)#E, and for every point y ∈ E ′, there
exist disjoint families of δ-tubes Ty = T

y
1 ⊔ · · · ⊔T

y
L (where L = 3 log(1/δ), and some

T
y
j may be empty), with the following properties:

(i) The tubes in T
y form a bush centered at y.

(ii) Each T
y
j , if non-empty, can be writen as T

y
j =

⊔
i T

y
j,i, where each T

y
j,i is a

(δ, σ)-set with cardinality & δ−σ+η.
(iii) #(T ∩ F ) ∼ 2j , for T ∈ T

y
j .

(iv) T
y
j is either empty, or #

(
F ∩

⋃
T∈Ty

j
T
)

≥ δ2ε#F in which case #T
y
j ≥

δ2ε2−j#F ; we also trivially have #T
y
j ≤ 2−j#F by (iii).

(v) #
(
F ∩

⋃
T∈Ty T

)
≥ (1− δε)#F .

Proof of Corollary 25. We will apply Theorem 16. Since there are many param-
eters, to make less confusion, we denote the parameters appeared in Theorem 16 by
σ(Thm), t(Thm), a(Thm), E(Thm), F (Thm). We write the parameters appearing in
Corollary 25 in the usual way as σ, s, t, E, F .

We first talk about the idea. To apply Theorem 16, we let σ(Thm) = σ, t(Thm) =
s, a(Thm) = t, and E(Thm) = E, F (Thm) = F . We can check that the conditions
in Theorem 16 are satisfied. As a result, there exists y ∈ E such that for all F ′ ⊂ F
with #F ′ ≥ δ2ε#F (it is harmless to use 2ε instead of ε), we have

(47) Hσ
δ,∞(πy(F

′)) > δη/2.

We will iteratively use Theorem 16 to obtain a lot of y that satisfies (47). We
will let E ′ to be the set of these y’s and our T

y will be constructed using (47).
We talk about the details. Suppose we have obtained {y1, . . . , yN} such that

(47) is true for each of these yi. If N < (1 − δε)#E, then we let E(Thm) = E \
{y1, . . . , yN}. We see that #E(Thm) > δ−s+2ε. If we let ε(Thm) = 2ε, then we
can apply Theorem 16 and obtain yN+1 that satisfies (47). By iteration, we obtain
E ′ ⊂ E with #E ′ ≥ (1 − δε)#E such that for each y ∈ E ′, we have: if F ′ ⊂ F with
#F ′ ≥ δ2ε#F , then

(48) Hσ
δ,∞(πy(F

′)) > δη/2.

Our next step is to construct T
y =

⊔
1≤j≤L T

y
j for each y ∈ E ′. We fix a y ∈ E ′

in the rest of proof. The idea is to iteratively use (48).
We first choose a set of δ-caps C = {C} ⊂ S

n−1 that forms a partition of Sn−1.
For each cap C, let T be a δ-tube that passes through y and points to direction C.
In this way, C naturally corresponds to T which is a full bush centered at y. The
reader can check #T ∼ δ−(n−1). Our T

y will be constructed as a subset of T.
We first let F ′ = F , and then of course #F ′ ≥ δ2ε#F , so we have (48). Let

T
′ ⊂ T be the tubes that intersect F ′, then (48) implies that T

′ satisfies that

Hσ
δ,∞

(
πy
(⋃

T∈T′ T \B1/10000(y)
))

& δη/2.

For 1 ≤ j ≤ L = 3 log(1/δ), define

T
′
j = {T ∈ T

′ : #(T ∩ F ′) ∼ 2j}.

We obtain a partition T
′ =
⊔

j T
′
j . By pigeonholing, there exists j such that

Hσ
δ,∞

(
πy

(⋃
T∈T′

j
T \B1/10000(y)

))
& δη.
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By Lemma 12, we obtain a subset Ty
j,1 ⊂ T

′
j , so that Ty

j,1 is a (δ, σ)-set with cardinality

& δ−σ+η. Next, we let F ′ = F \
⋃

T∈Ty
j,1
T and then check whether #F ′ ≥ δ2ε#F . If

not, we stop. If yes, we repeat the argument above and obtain T
y
j′,1 or Ty

j,2.

Suppose that we have obtained T
y
j (j = 1, . . . , L), where each T

y
j =

⊔
1≤i≤i(j) T

y
j,i.

Also, each T
y
j,i satisfies (i), and each T ∈ T

y
j satisfies (iii). We let

F ′ = F \
⋃

T∈∪jT
y
j

T.

If #F ′ ≥ δ2ε#F , then we repeat the argument and obtain some T
y
j,i(j)+1. We redefine

T
y
j to be the disjoint union T

y
j,i(j)+1 ⊔ T

y
j , and redefine i(j) to be i(j) + 1. If #F ′ <

δ2ε#F , then we stop.
Suppose we stop. For the purpose of (iv), define the significant set of j to be

J =



j : #(F ∩

⋃

T∈Ty
j

T ) ≥ δ2ε#F



 .

We throw away those T
y
j for j /∈ J , and let Ty =

⊔
j∈J T

y
j . Finally, we check (v). We

note that

#

(
F ∩

⋃

T∈Ty

T

)
= #F −#


F \

⋃

T∈∪jT
y
j

T


−

∑

j /∈J

#
(
F ∩

⋃
T∈Ty

j
T
)
.

This is bounded from below by #F − δ2ε#F − 3 log(1/δ)δ2ε#F ≥ (1− δε)#F , when
δ is small enough. �

Let us return to the proof of Proposition 23. Since

s > max{k + s− t, 0},

we can apply Corollary 25 with σ := s. We obtain a set E ′ ⊂ E with #E ′ ≥
(1 − δ4ε)#E, and for all y ∈ E ′ the tubes T

y = T
y
1 ⊔ · · · ⊔ T

y
L (L = 3 log(1/δ))

satisfying the properties in Corollary 25. T
y is a bush of tubes centered at y. Next,

we will estimate the number of pairs (y, x) ∈ E ′ × F that satisfy certain properties.
To make the expression easier, for any set of tubes T

′, we write
⋃

T
′ :=

⋃
T∈T′ T .

We can also do the same reduction as in the beginning of the proof of Lemma 20.
We first choose a maximal set of of δ/100-separated tubes T = ∪θTθ as in the proof
of Lemma 20. All the tubes appear in this proof can be thought of as an element in
T, since we can replace a tube by another comparable tube which does not affect the
proof.

By (v), we have

(49) #
{
(y, x) ∈ E ′ × F : x ∈

⋃
T
y
}
=
∑

y∈E′

#
(
F ∩

⋃
T
y
)
≥ (1− δ4ε)#E ′#F.

Now, we make a counter assumption: (36) fails for all x ∈ F . Thus for every x ∈ F ,
there exists a subset E ′

x ⊂ E such that #E ′
x ≥ δε#E, and

(50) |πx(E
′
x)|δ < δ−s+τ0.

Since #E ′ ≥ (1 − δ4ε)#E, we have #(E ′
x ∩ E

′) & δε#E. We may assume E ′
x ⊂ E ′

by replacing E ′
x with E ′

x ∩ E
′. For each x ∈ F , we choose a bush Tx centered at x,
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consisting of δ-tubes, so that Tx covers E ′
x and

(51) #Tx = |πx(E
′
x)|δ < δ−s+τ0 .

We immediately have

(52) #
{
(y, x) ∈ E ′ × F : y ∈

⋃
Tx

}
=
∑

x∈F

#
(
E ′ ∩

⋃
Tx

)
≥ δε#E ′#F.

The inequalities (49) and (52) together imply

(53) #
{
(y, x) ∈ E ′ × F : x ∈

⋃
T
y, y ∈

⋃
Tx

}
≥ (δε − δ4ε)#E ′#F.

By pigeonholing, there exists a j such that

(54) #
{
(y, x) ∈ E ′ × F : x ∈

⋃
T
y
j , y ∈

⋃
Tx

}
& δ2ε#E ′#F.

Next, we introduce the high-density tubes:

(55) T
y,h
j := {T ∈ T

y
j : #{y′ ∈ E ′ : T ∈ T

y′

j } ≥ δ−τ0/2}.

Also define the low-density tubes T
y,l
j := T

y
j \ T

y,h
j . We want to show that

(56) #
{
(y, x) ∈ E ′ × F : x ∈

⋃
T
y,h
j , y ∈

⋃
Tx

}
& δ2ε#E ′#F.

To show this, it suffices to show

#{(y, x) ∈ E ′ × F : x ∈
⋃

T
y,l
j , y ∈

⋃
Tx}

=
∑

x∈F

#
{
y ∈ E ′ : x ∈

⋃
T
y,l
j , y ∈

⋃
Tx

}
. δ3ε#E ′#F.

(57)

For fixed x ∈ F , we note that if y ∈
{
y ∈ E ′ : x ∈

⋃
T
y,l
j , y ∈

⋃
Tx

}
, then there

exists T ∈ T
y,l
j such that x ∈ T , and T1 ∈ Tx such that y ∈ T1. This means that T is

comparable to T1. Therefore, we can bound (57) by

≤
∑

x∈F

∑

T∈T̃x

#{y ∈ E ′ : T ∈ T
y,l
j }.

Here, T̃x is the set of tubes from T (recall T from the paragraph above (49)) that are

comparable to some tube in Tx. We have #Tx ∼ #T̃x.
By the definition of Ty,l

j , we see that if T ∈ T
y,l
j for some y, then #{y′ ∈ E ′ : T ∈

T
y′

j } < δ−τ0/2. Therefore, we bound the inequality above by

.
∑

x∈F

#Txδ
−τ0/2 . #Fδ−s+τ0/2 . δ3ε#E ′#F,

if ε is small enough depending on τ0. This proves (57) and hence (56).
Next, we show that there exists E ′′ ⊂ E ′ with #E ′′ & δ2ε#E ′, such that for

y ∈ E ′′:

#T
y,h
j ≥ δ2ε#T

y
j .

Note that

δ2ε#E ′#F . #
{
(y, x) ∈ E ′ × F : x ∈

⋃
T
y,h
j , y ∈

⋃
Tx

}

=
∑

y∈E′

#
{
x ∈ F : x ∈

⋃
T
y,h
j , y ∈

⋃
Tx

}
.
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By pigeonholing, we can choose E ′′ ⊂ E ′ with #E ′′ & δ2ε#E ′ so that for y ∈ E ′′,

#
{
x ∈ F : x ∈

⋃
T
y,h
j , y ∈

⋃
Tx

}
& δ2ε#F.

Since T
y,h
j ⊂ T

y
j and each T ∈ T

y
j satisfies #(F ∩ T ) ∼ 2j, we have

#
{
x ∈ F : x ∈

⋃
T
y,h
j , y ∈

⋃
Tx

}
≤ #

(
F ∩

⋃
T
y,h
j

)
∼ 2j#T

y,h
j ,

which implies for y ∈ E ′′,

(58) #T
y,h
j & δ2ε2−j#F & δ2ε#T

y
j .

Define T
h
j =

⋃
y∈E′′ T

y,h
j . Potentially, there could be a large intersection between

T
y,h
j for different y. However, we claim the following estimate:

(59) #T
h
j & δO(η+ε)

∑

y∈E′′

#T
y,h
j .

We prove the claim. Recall that T
y
j =

⊔i(y)
i=1 T

y
j,i where each T

y
j,i is a (δ, s)-set with

cardinality & δ−s+η (see (ii)). Here i(y) is the number that indicates the cardinality
of Ty

j :

(60) i(y)δ−s+η . T
y
j . i(y)δ−s.

Note that E ′′ is a (δ, s)-set with #E ′′ & δO(ε)−s, by Lemma 13, we can choose
a (δ1−C(ε+η), s)-set E∗ ⊂ E ′′ with #E∗ & δO(ε+η)−s where C is some large number
to be determined later. Actually, we will choose C = 100s−1. We also remark that
the notation O(ε+ η) is actually Os(ε+ η), but we just leave out s since s is a fixed
number at the beginning.

By (58), #T
y,h
j (y ∈ E ′′) are comparable up to δ2ε factor, so we have

(61)
∑

y∈E′′

#T
y,h
j . δ−O(ε+η)

∑

y∈E∗

#T
y,h
j .

We are ready to estimate the lower bound of #T
h
j . We have

#T
h
j ≥ #

( ⋃

y∈E∗

T
y,h
j

)
≥ #


 ⋃

y∈E∗


T

y,h
j \

⋃

y′∈E∗\{y}

T
y′,h
j




(62)

(by the disjointness) =
∑

y∈E∗

#


T

y,h
j \

⋃

y′∈E∗\{y}

T
y′,h
j


(63)

≥
∑

y∈E∗

#


T

y,h
j \

⋃

y′∈E∗\{y}

T
y′

j


(64)

≥
∑

y∈E∗

(
#T

y,h
j −

∑

y′∈E∗\{y}

#
(
T
y′

j ∩ T
y
j

))
.(65)

We show that

(66) #T
y,h
j −

∑

y′∈E∗\{y}

#
(
T
y′

j ∩ T
y
j

)
≥

1

2
#T

y,h
j .
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For fixed y, y′, we want to find an upper bound for

#
(
T
y
j ∩ T

y′

j

)
.

This is less than
#{T ∈ T

y
j : y

′ ∈ T}.

Since T
y
j =

⊔i(y)
i=1 T

y
j,i where each T

y
j,i is a (δ, s)-set, we have

#{T ∈ T
y
j : y

′ ∈ T} ≤

i(y)∑

i=1

#{T ∈ T
y
j,i : y

′ ∈ T} . i(y)|y − y′|−s.

So, we have
∑

y′∈E∗\{y}

#(Ty
j ∩ T

y′

j ) . i(y)
∑

y′∈E∗\{y}

|y − y′|−s

= i(y)
∑

δ1−C(ε+η)≤d≤1

∑

y′∈E∗,|y−y′|∼d

d−s.

Here the summation over d is over dyadic numbers. Since E∗ is a (δ1−C(ε+η), s)-set,
we have #(E∗ ∩Bd(y)) . ( d

δ1−C(ε+η) )
s, the expression above is bounded by

. i(y)
∑

δ1−O(ε+η)≤d≤1

δsC(ε+η)(
d

δ
)sd−s . i(y)δ−sδsC(ε+η)| log δ|.(67)

On the other hand, by (58) and (60), we get #T
y,h
j & δ2ε#T

y
j & i(y)δ2ε+η−s. There-

fore, if we choose C = 100s−1, then the right hand side of (67) is ≤ 1
2
#T

y,h
j when δ

is small. So, we finish the proof of (66). If we look back to (62), we obtain

#T
h
j ≥

1

2

∑

y∈E∗

#T
y,h
j .

Combining with (61), we proved the claim (59).
Estimating the right hand side of (59) using (58) and (iv), we obtain

(68) #T
h
j & δO(η+ε)δ−s2−j#F.

Finally, we estimate I(E ′,Th
j ) := {(y, T ) ∈ E ′ × T

h
j : T ∈ T

y
j}. Recalling T

h
j =⋃

y∈E′′ T
y,h
j and the definition of Ty,h

j in (55), we have the lower bound

(69) I(E ′,Th
j ) =

∑

T∈Th
j

#{y ∈ E ′ : T ∈ T
y
j} ≥ #T

h
j δ

−τ0/2.

We have the upper bound

I(E ′,Th
j ) ≤ (#T

h
j )

1/2


∑

T∈Th
j

#{y ∈ E ′ : T ∈ T
y
j}

2




1/2

= (#T
h
j )

1/2

( ∑

y,y′∈E′

#{T ∈ T
h
j : T ∈ T

y
j ∩ T

y′

j }

)1/2

= (#T
h
j )

1/2

( ∑

y 6=y′∈E′

#{T ∈ T
h
j : T ∈ T

y
j ∩ T

y′

j }+ I(E ′,Th
j )

)1/2
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Note that #{T ∈ T
h
j : T ∈ T

y
j ∩ T

y′

j } ≤ #{T ∈ T
y
j : y

′ ∈ T}. We claim that it

further has the bound . δ−O(η)(δ/|y − y′|)s#T
y
j . We use the fact that the tubes in

{T ∈ T
y
j : y

′ ∈ T} are contained in a (δ/|y − y′|)-tube, and the Frostman’s condition
(ii) (with σ = s). Therefore,

#{T ∈ T
y
j : y

′ ∈ T} =
∑

i

#{T ∈ T
y
j,i : y

′ ∈ T} .
∑

i

(1/|y − y′|)s

.
∑

i

(1/|y − y′|)sδ−η+s#T
y
j,i = δ−η(δ/|y − y′|)s#T

y
j .

We see that
∑

y 6=y′∈E′

#{T ∈ T
y
j : T ∈ T

y
j ∩ T

y′

j } . δ−O(η)
∑

y 6=y′∈E′

(
δ

|y − y′|

)s

#T
y
j .

Noting that from (iv) that #T
y
j ≤ 2−j#F and

∑

y 6=y′∈E′

(
δ

|y − y′|

)s

=
∑

y∈E′

∑

y′∈E′\{y}

(
δ

|y − y′|

)s

. log δ−1#E ′ . δ−εδ−s,

we obtain

I(E ′,Th
j ) . (#T

h
j )

1/2
(
δ−O(ε+η)δ−s2−j#F + I(E ′,Th

j )
)1/2

.

This implies

I(E ′,Th
j ) . δ−O(η+ε)

(
(#T

h
j )

1/2(δ−s2−j#F )1/2 +#T
h
j

)
.

Comparing with the lower bound (69), when we choose η, ε sufficiently small com-
pared with τ0, we obtain

#T
h
j . δ−O(η+ε)+τ0/2δ−s2−j#F,

which contradicts (68), since η, ε can be chosen much smaller than τ0.
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