
Annales Fennici Mathematici
Volumen 49, 2024, 663–683

Standard solutions of complex
linear differential equations

Janne Heittokangas
∗, Samu Pulkkinen,

Hui Yu and Mohamed Amine Zemirni

Abstract. A meromorphic solution of a complex linear differential equation (with meromorphic

coefficients) for which the value zero is the only possible finite deficient/deviated value is called a

standard solution. Conditions for the existence and the number of standard solutions are discussed

for various types of deficient and deviated values.

Kompleksisten lineaaristen differentiaaliyhtälöiden standardit ratkaisut

Tiivistelmä. Meromorfikertoimisen kompleksisen lineaarisen differentiaaliyhtälön meromorfis-

ta ratkaisua, jolle arvo nolla on ainoa äärellinen defekti- tai devioitu arvo, kutsutaan standardik-

si ratkaisuksi. Ehtoja standardien ratkaisujen olemassaololle ja lukumäärälle löydetään useille eri

tyyppiä oleville defekti- ja devioiduille arvoille.

1. Background

We focus on deficient and deviated values of solutions of linear differential equa-
tions

(1.1) f (n) + An−1(z)f
(n−1) + · · ·+ A1(z)f

′ + A0(z)f = 0

with entire or meromorphic coefficients A0, . . . , An−1. The solutions are known to be
entire in the case of entire coefficients, while the existence of meromorphic solutions
is not guaranteed if the coefficients are meromorphic. For example, the equation

f ′′ + 2z−1f ′ − z−4f = 0

with rational coefficients has a non-meromorphic solution f(z) = exp (z−1).

For a meromorphic function f in C, and for a ∈ Ĉ, we define the quantities

δN (a, f) := lim inf
r→∞

m(r, a, f)

T (r, f)
,

δP (a, f) := lim inf
r→∞

L (r, a, f)

T (r, f)
,
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where m(r, a, f) denotes the proximity function, T (r, f) is the Nevanlinna character-

istic of f , and

L (r, a, f) :=

{
max|z|=r log

+ 1
|f(z)−a|

, a ∈ C,

max|z|=r log
+ |f(z)|, a = ∞,

is the logarithmic maximum modulus for the a-points of f . It is clear that

(1.2) 0 ≤ δN(a, f) ≤ 1 and 0 ≤ δN(a, f) ≤ δP (a, f) ≤ ∞.

The equality δP (a, f) = ∞ is possible, for example, when f(z) = exp
(
ez
)

and a = ∞.
Indeed, in this case L (r,∞, f) = er, while (see [15, p. 7])

T (r, f) ∼ er√
2π3r

.

The quantity δN (a, f) is known as the Nevanlinna deficiency (N-deficiency), and
it can be written alternatively as

δN(a, f) = 1− lim sup
r→∞

N(r, a, f)

T (r, f)
,

where N(r, a, f) is the integrated counting function of the a-points of f . If δN (a, f) >
0, then a is called a deficient value for f because f attains the value a less often than
the growth of T (r, f) would allow. Meanwhile, if δP (a, f) > 0, then a is called a
Petrenko deviated value for f , and, following [4, 24], the quantity δP (a, f) is called
the magnitude of the deviation (P-deviation) of f from a.

It is known that the set of deficient values is at most countable [15], while the
set of P-deviated values is of zero capacity but could be uncountable for functions
of infinite lower order µ [4]. Given a meromorphic function f , the sum of all N-
deficiencies for f is ≤ 2 [15], while the sum of all P-deviations for f is ≤ K(µ + 1)
for some constant K > 0 [4].

A solution f of (1.1) satisfying δP (a, f) = 0 (resp. δN(a, f) = 0) for every a ∈
C \ {0} is called a P-standard solution (resp. N-standard solution). The notion
“standard” is from Petrenko [4], but the prefixes are added in order to identify the
right quantity we are dealing with. In particular, a P-standard solution is also an
N-standard solution by (1.2), but not necessarily conversely.

As for results on the equation (1.1), we begin with a well-known result that is
originally due to Wittich [28]. This result is often considered to be one of the corner
stones of the oscillation theory of complex differential equations.

Theorem 1.1. [20, Theorem 4.3] Suppose that the coefficients A0, . . . , An−1 in
(1.1) are meromorphic, and that f is an admissible meromorphic solution of (1.1) in
the sense that

(1.3) T (r, Aj) = o(T (r, f)), r 6∈ E, j = 0, . . . , n− 1,

where E ⊂ [0,∞) is a set of finite linear measure. Then 0 is the only possible finite
deficient value for f .

In our terminology, the solution f in Theorem 1.1 is an N-standard solution.
Note that if the coefficients A0, . . . , An−1 are rational and if f is a transcendental
meromorphic solution of (1.1), then (1.3) is clearly valid.

Exceptional sets of finite linear/logarithmic measure are very typical in Nevan-
linna theory and its applications. It is apparent from the proof of Theorem 1.1 in
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[20] that the set E in (1.3) could be much larger. For example, we could equally well
assume that dens(E) < 1, where

dens(E) := lim sup
r→∞

´

E∩[0,r]
dt

r

is the upper linear density of E. It is clear that 0 ≤ dens(F ) ≤ 1 for every measurable
set F ⊂ [0,∞), and that dens(F ) = 0 whenever F has finite linear measure.

Theorem 1.1 brings us to the question of how typical it is for (1.1) to possess an
N-standard solution? A partial answer lies in the following result.

Theorem 1.2. [18, Theorem 2.3] Let the coefficients A0, . . . , An−1 in (1.1) be
entire functions such that at least one of them is transcendental. Suppose that
p ∈ {0, . . . , n− 1} is the smallest index such that

(1.4) lim sup
r→∞

n−1∑

j=p+1

L (r,∞, Aj)

L (r,∞, Ap)
< 1.

(If p = n − 1, then the sum in (1.4) is considered to be equal to 0.) Then Ap is
transcendental, and every solution base of (1.1) has k ≥ n− p solutions f for which

(1.5) log T (r, f) ≍ L (r,∞, Ap) , r 6∈ E,

where E ⊂ [0,∞) has finite linear measure. For each such solution f , the value 0 is
the only possible finite deficient value.

In our terminology, the condition (1.4) induces k ≥ n − p N-standard solutions
in every solution base of (1.1). It follows that every solution base of (1.1) with
entire coefficients has at least one N-standard solution, with no conditions on the
coefficients other than that they must be entire.

We proceed to discuss known results on P-standard solutions of (1.1).

Theorem 1.3. [4, Theorem 2] Suppose that the coefficients A0, . . . , An−1 in (1.1)
are entire. Then every solution base of (1.1) has at least one P-standard solution.

Theorem 3 in [4] shows that there are equations (1.1) with entire coefficients and
n ≥ 2, which have n−1 linearly independent solutions that are not P-standard. This
proves the sharpness of Theorem 1.3.

To discuss further results on P-standard solutions, we suppose that the coeffi-
cients of (1.1) are entire, and recall that a characteristic function of (1.1) is defined
by

(1.6) T (r) :=
1

2π

ˆ 2π

0

log

√√√√1 +

n∑

k=1

|fk(reiθ)|2 dθ,

where {f1, . . . , fn} is a solution base for (1.1). The function T (r) is essentially inde-
pendent of the solution base used in defining it in the following sense.

Lemma 1.4. If T1(r) and T2(r) are any two characteristic functions of (1.1),
where the coefficients are entire, then T1(r) = T2(r) +O(1).
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Proof. Let {f1, . . . , fn} and {g1, . . . , gn} be the solution bases for (1.1) defining
T1(r) and T2(r), respectively. Then there are constants Ci,j ∈ C such that

f1 = C1,1g1 + C1,2g2 + · · ·+ C1,ngn,

...

fn = Cn,1g1 + Cn,2g2 + · · ·+ Cn,ngn.

Denoting C = max{|Ck,j|}, we obtain by the Cauchy-Schwarz inequality that

|fk|2 ≤
(

n∑

j=1

|Ck,j||gj|
)2

≤
(

n∑

j=1

|Ck,j|2
)(

n∑

j=1

|gj|2
)

≤ nC2
(
|g1|2 + · · ·+ |gn|2

)
, k = 1, . . . , n.

Hence, for C0 ≥ 0 and x ≥ 0, we may use

log
√

1 + C0x ≤ 1

2
log+(1 + C0x) ≤

1

2
log+ x+O(1)

≤ 1

2
log(1 + x) +O(1) = log

√
1 + x+O(1)

to obtain T1(r) ≤ T2(r)+O(1). By changing the roles of the two fundamental bases,
we obtain T2(r) ≤ T1(r) +O(1) similarly as above. �

Theorem 1.5. [4, Theorem 1] Suppose that the coefficients A0, . . . , An−1 in (1.1)
are entire, and that T (r) is a characteristic function of (1.1). If f is a solution of
(1.1) for which

(1.7) lim sup
r→∞

(
log T (r)

)m

T (r, f)
<∞

is valid for some real constant m > 1, then f is a P-standard solution of (1.1).

Remark. It is noted in [4, p. 1932] (or p. 1372 in the translation) that if the
assumption (1.7) is relaxed to

(1.8) lim sup
r→∞

log T (r)
(
log T (r, f)

)2+ε

T (r, f)
<∞,

where ε > 0 is arbitrary, then the conclusion of Theorem 1.5 remains valid. No
further details about (1.8) are given in [4], though.

Example 1.6. As discussed in [4] and originally observed by Frei, the functions
f1(z) = 1 + ez and f2(z) = exp

(
z + e−z

)
are linearly independent solutions of

f ′′ + e−zf ′ − f = 0.

Since δP (1, f1) = π and δN(1, f1) = 1, the solution f1 is neither P-standard nor
N-standard. Moreover, since

T (r) ≍ T
(
r, exp

(
ez
))

∼ er√
2π3r

and T (r, f1) ≍ r,

it follows that the exponent m > 1 in (1.7) cannot be replaced with m = 1. Simi-

larly, we see that the logarithmic term
(
log T (r, f)

)2+ε
in (1.8) cannot be dropped,

although we will later prove that the exponent 2 + ε is not sharp. Note also that
(1.3) is not valid for f = f1.



Standard solutions of complex linear differential equations 667

New results on standard solutions of (1.1) are stated and discussed in Sections 2
and 3 below. Lemmas for the proofs are given in Section 4, while the actual proofs
can be found in Section 5. Section 6 contains concluding remarks about Valiron
deficient values.

2. New results involving T (r, f)

Theorem 2.1 below shows that the k solutions in Theorem 1.2 are in fact P-
standard. Thus the condition (1.4) allows us to construct examples of equations
(1.1) for which every nontrivial solution is a P-standard solution.

Theorem 2.1. Under the assumptions of Theorem 1.2, every solution base of
(1.1) has k ≥ n− p P-standard solutions f for which (1.5) holds.

Remark. The paper [18] contains more results in the spirit of Theorem 1.2.
Using these results, more results in the spirit of Theorem 2.1 can be created. To
avoid unnecessary repetition and to control the length of this paper, these discussions
have been omitted.

The proof of Theorem 1.5 in [4] is based on profound results in value distribution
theory proved by Petrenko himself in his earlier papers. Using much simpler methods,
we are able to obtain an improvement of Theorem 1.5, which also improves (1.8).
The main contribution of the following theorem, however, is to offer a proof that is
simpler than that of Theorem 1.5 in [4].

Theorem 2.2. Suppose that the coefficients A0, . . . , An−1 in (1.1) are entire, and
that T (r) is a characteristic function of (1.1). If f is a solution of (1.1) for which

(2.1) log T (r) ·
(
log
(
log T (r)

))m
= o(T (r, f)), r → ∞, r 6∈ E,

is valid for some real constant m > 1, where E ⊂ [0,∞) satisfies dens(E) < 1, then
f is a P-standard solution of (1.1).

Remark. If the exponent 2 + ε in (1.8) is replaced with 1 + ε, we have

log T (r) = O

(
T (r, f)

(
log T (r, f)

)1+ε

)
,

which in turn implies, for m = 1 + ε/2,

log T (r) ·
(
log
(
log T (r)

))m
= O

(
T (r, f)

(
log T (r, f)

)ε/2

)
= o(T (r, f)).

The sharpness of (2.1) is not known. However, (2.1) is a milder assumption than
(1.7), which in turn is relatively sharp by Example 1.6.

We turn our attention to finding admissibility conditions in the spirit of (1.3) for
the solutions of (1.1) to be P-standard.

Theorem 2.3. Suppose that the coefficients A0, . . . , An−1 in (1.1) are meromor-
phic, and that a meromorphic solution f of (1.1) satisfies

L (r,∞, Aj) = o(T (r, f)), r 6∈ E, j = 0, . . . , n− 1,(2.2)

L (r, 0, A0) = o(T (r, f)), r 6∈ E,(2.3)

where E ⊂ [0,∞) satisfies dens(E) < 1. Then 0 is the only possible finite Petrenko
deviated value for f , i.e., f is a P-standard solution.
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Theorem 2.3 has the following consequence.

Corollary 2.4. Suppose that the coefficients A0, . . . , An−1 in (1.1) are polyno-
mials, and that f is a non-trivial solution of (1.1). Then f is a P-standard solution
(and consequently an N-standard solution).

Proof. If f is a polynomial, then clearly δP (a, f) = 0 for every a ∈ C. Hence we
may suppose that f is transcendental. But now the estimates in (2.2) and (2.3) are
valid without an exceptional set. Thus f is a P-standard solution by Theorem 2.3. �

Example 2.5. The function f(z) = e2z + 1 solves

f ′′ + A1(z)f
′ + A0(z)f = 0,

where A0(z) = −2P (z)ez , A1(z) = P (z)ez + P (z)e−z − 2 and P (z) is an arbitrary
polynomial. Clearly

δP (1, f) ≥ δN(1, f) = 1 > 0,

so that f is neither a P-standard nor an N-standard solution. Since

T (r, A0) ≍ T (r, A1) ≍ T (r, f) ≍ r,

L (r, 0, A0) ≍ L (r,∞, A0) ≍ L (r,∞, A1) ≍ r,

we see that o(T (r, f)) cannot be replaced with O(T (r, f)) in (1.3), (2.2), (2.3).

An assumption analogous to (2.3) for the characteristic function is not needed
in Theorem 1.1 because of the First Main Theorem. However, the assumption (2.3)
about L (r, 0, A0) can be replaced with an assumption about L (r,∞, A0) when A0

is entire.

Theorem 2.6. The conclusion of Theorem 2.3 remains valid if A0 is entire and,
for some real constant m > 1, the assumption (2.3) is replaced with

(2.4) L (r,∞, A0) ·
(
logL (r,∞, A0)

)m
= o(T (r, f)), r 6∈ E,

where the exceptional set E ⊂ [0,∞) satisfies dens(E) = 0.

3. New results involving A(r, f)

The results in the previous section are stated in terms of the characteristic func-
tion T (r, f), where f is either an entire function or meromorphic in C. In this section
we will discuss analogous results stated in terms of the function

A(r, f) =
1

π

ˆ

D(0,r)

f#(z)2 dm(z),

which is the normalized area of the image of the disc D(0, r) on the Riemann sphere
under f . Here f#(z) = |f ′(z)|/(1 + |f(z)|2) is the spherical derivative of f , and
dm(z) = s ds dθ for z = seiθ is the standard Euclidean area measure.

It is known that the functions T (r, f) and A(r, f) are connected. To see this,
first recall that the Ahlfors–Shimizu characteristic given by

T0(r, f) =

ˆ r

0

A(t, f)

t
dt

satisfies

(3.1) T0(r, f) = T (r, f) +O(1),
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see [15, p. 13] or [30, p. 67]. It is easy to see that, for C > 1,

T0(r, f) =

ˆ r

1

A(t, f)

t
dt+

ˆ 1

0

A(t, f)

t
dt ≤ A(r, f) log r +O(1),(3.2)

A(r, f) =
A(r, f)

logC

ˆ Cr

r

dt

t
≤ 1

logC

ˆ Cr

r

A(t, f)

t
dt ≤ T0(Cr, f)

logC
,(3.3)

where we have used the fact that A(r, f) is a non-decreasing function of r. For better
estimates involving exceptional sets, see [30, Lemma 2.4.2].

In 1997, Eremenko [8] introduced a quantity (E-deviation)

δE(a, f) := lim inf
r→∞

L (r, a, f)

A(r, f)
, a ∈ Ĉ.

It is clear that δE(a, f) ≥ 0, and it follows from an earlier theorem of Bergweiler and
Bock [2] that if the order of f satisfies ρ(f) ≥ 1/2, then δE(a, f) ≤ π. If δE(a, f) > 0,
then a is called a Eremenko deviated value for f . Given a meromorphic function f ,
it is known [8] that the set of E-deviated values for f is at most countable and either
consist of one point a for which δE(a, f) > 2π or

(3.4)
∑

a∈Ĉ

δE(a, f) ≤ 2π.

We say that a solution f of (1.1) satisfying δE(a, f) = 0 for every a ∈ C\{0} is an
E-standard solution. Note that the relationship between δE(a, f) and the quantities
δN(a, f) and δP (a, f) is nontrivial [19].

Remark. The proofs of the results in Section 2 use the fact that

(3.5) lim
r→∞

T (r, f)

log r
= ∞

for any transcendental entire function f [29, p. 11]. In results involving E-standard
solutions, (3.5) should hold with A(r, f) in place of T (r, f). However, this is not
always true. Indeed, it is known [7] that there are entire functions f satisfying

T0(r, f) ∼ T (r, f) ∼ (log r)2,

in which case A(r, f) ≍ log r by (3.2) and the following modification of (3.3):

A(r, f) =
A(r, f)

log r

ˆ r2

r

dt

t
≤ T0(r

2, f)

log r
∼ 4 log r.

With the previous remark in mind, Lemma 3.1 below may be of independent
interest. It partially relies on the concept of logarithmic order [5] of f defined by

ρlog(f) := lim sup
r→∞

log T (r, f)

log log r
.

If f is a rational function, then ρlog(f) = 1, while transcendental entire functions g
satisfying ρlog(g) = 1 are known to exist [5]. If a meromorphic function h satisfies
ρlog(h) < 1, then h is a constant function and ρlog(h) = 0.

Lemma 3.1. If f is a transcendental meromorphic function, then A(r, f) is an
unbounded function of r such that the following assertions hold.

(a) If ρ(f) > α > 0, then the set

H1 =
{
r ≥ 0: A(r, f) ≥ rα

}

satisfies dens(H1) = 1.
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(b) If ρlog(f) > α > 2, then the set

H2 =
{
r ≥ 1: A(r, f) ≥ (log r)α−1

}

satisfies logdens(H2) = 1.

Recall that the upper logarithmic density of a measurable set E ⊂ [1,∞) is
defined by

logdens(E) := lim sup
r→∞

´

E∩[0,r]
dt
t

log r
.

It is clear that 0 ≤ logdens(E) ≤ 1, and that logdens(E) = 0 whenever E has finite
logarithmic measure. The corresponding lower linear density dens(E) and lower

logarithmic density logdens(E) of a set E are defined by means of limit inferior in
place of limit superior. The four quantities are related to one another by means of
the inequalities

0 ≤ dens(E) ≤ logdens(E) ≤ logdens(E) ≤ dens(E) ≤ 1,

which can be found in [26, p. 121].

Proof of Lemma 3.1. If A(r, f) is bounded, then T0(r, f) = O(log r), in which
case f is rational, and we have a contradiction. To prove (a), we define

H∗
1 =

{
r ≥ 1: T (r, f) ≥ 2rα log r

}
,

which is essentially a subset of H1 (modulo a bounded set) by (3.1) and (3.2). Using
[17, Corollary 3.3] with ψ(r) = log r, we find that dens(H∗

1 ) = 1, and consequently
dens(H1) = 1. To prove (b), we define

H∗
2 =

{
r ≥ 1: T (r, f) ≥ 2(log r)α

}
,

which is essentially a subset of H2. Similarly as above, using [17, Corollary 3.3] with
ψ(r) = log log r, the assertion follows. �

Due to Lemma 3.1 and the remark preceding it, we have to pay attention to the
validity of log r = o(A(r, f)) when proving analogues of the results in Sections 1 and 2.
We begin with an analogue of Theorem 1.1.

Theorem 3.2. Suppose that the coefficients A0, . . . , An−1 in (1.1) are meromor-
phic, and that f is a meromorphic solution of (1.1) such that

(3.6) T (r, Aj) = o(A(r, f)), r 6∈ E, j = 0, . . . , n− 1,

where E ⊂ [0,∞) satisfies dens(E) < 1. Then 0 is the only possible finite E-deviated
value for f , i.e., f is an E-standard solution.

Theorem 2.3 has the following analogue, where o(T (r, f)) is being replaced with
o(A(r, f)).

Theorem 3.3. Suppose that the coefficients A0, . . . , An−1 in (1.1) are meromor-
phic, and that a meromorphic solution f of (1.1) satisfies ρlog(f) > 2 and

L (r,∞, Aj) = o(A(r, f)), r 6∈ E, j = 0, . . . , n− 1,(3.7)

L (r, 0, A0) = o(A(r, f)), r 6∈ E,(3.8)

where E ⊂ [0,∞) satisfies dens(E) < 1. Then 0 is the only possible finite E-deviated
value for f , i.e., f is an E-standard solution.
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Remark. (1) The solution f in Example 2.5 is not an E-standard solution.
Hence Example 2.5 can be used to illustrate that o(A(r, f)) cannot be replaced with
O(A(r, f)) in (3.6), (3.7), (3.8).

(2) If the coefficients A0, . . . , An−1 are entire, then the technical assumption
ρlog(f) > 2 in Theorem 3.3 can be omitted. Indeed, the proof could then be handled
in two cases: (i) At least one of the coefficients is non-constant, or (ii) all coeffi-
cients are constant functions. See the proof of Theorem 3.2 in Section 5 below for an
analogous reasoning.

The next result is an analogue of Corollary 2.4 for E-standard solutions.

Corollary 3.4. Suppose that the coefficients A0, . . . , An−1 in (1.1) are polyno-
mials, and that f is a non-trivial solution of (1.1). Then f is an E-standard solution.

Proof. Suppose first that f is a polynomial. Then, since T0(r, f) ≍ log r, we see
from (3.2) that A(r, f) is bounded away from zero. Clearly, for every a ∈ C, we have
L (r, a, f) → 0 as r → ∞, so that δE(a, f) = 0.

We now suppose that f is transcendental. Then it is known that ρ(f) ≥ 1/(n−1)
[13]. Let α ∈ (0, 1/(n − 1)), and let H1 be the set in Lemma 3.1(a). Since the
coefficients are polynomials, it follows that the estimates in (3.7) and (3.8) are valid
for all r ∈ H1 (as opposed to for all r 6∈ E). The assertion follows by a careful
inspection of the proof of Theorem 2.3. �

Further analogues of the results in Sections 1 and 2 for E-standard solutions can
be obtained by replacing o(T (r, f)) in the assumptions with o(A(r, f)), modulo minor
technical adjustments. The details are omitted.

4. Lemmas

In this section we discuss lemmas which are either new or non-trivial modifica-
tions of existing results, or which need to be clarified to the reader in some way. The
proofs of the main results also rely on lemmas that can be found directly from the
literature. Such lemmas will not be stated here.

The following generalization of Borel’s lemma is the key to most of the crucial
estimates in this paper.

Lemma 4.1. [6, Lemma 3.3.1] Let F (r) and φ(r) be positive, nondecreasing and
continuous functions defined for r0 ≤ r < ∞, and assume that F (r) ≥ e for r ≥ r0.
Let ξ(r) be a positive, nondecreasing and continuous function defined for e ≤ r <∞.
Finally, let C > 1 be a constant, and let E ⊂ [r0,∞) be defined by

E =

{
r ≥ r0 : F

(
r +

φ(r)

ξ(F (r))

)
≥ CF (r)

}
.

Then, for all s ∈ (r0,∞),

(4.1)

ˆ

E∩[r0,s]

dr

φ(r)
≤ 1

ξ(e)
+

1

logC

ˆ F (s)

e

dx

xξ(x)
.

Remark. (a) The proof of Lemma 4.1 in [6] is analogous to the proof of the
standard Borel lemma used in Nevanlinna theory. It can be assumed that E is an
unbounded set, for otherwise Lemma 4.1 is trivial. It turns out that the set E is
contained in a union of closed intervals

(4.2) E ⊂
∞⋃

ν=1

[rν , sν ] =: E∗,
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where rν < sν for every ν. If ξ(x) is chosen such that

(4.3)

ˆ ∞

e

dx

xξ(x)
<∞,

then we may let s→ ∞ in (4.1), and find, by the proof of Lemma 4.1 in [6], that

(4.4)

ˆ

E

dr

φ(r)
≤
ˆ

E∗

dr

φ(r)
≤

∞∑

ν=1

ˆ sν

rν

dr

φ(r)
<∞.

(b) Below we will make use of Lemma 4.1 for φ(r) = r, ξ(x) = (log x)m and
F (r) = L (r,∞, g), where m > 1 is a real constant and g is a transcendental entire
function. Then (4.3) is clearly valid, and (4.4) implies

(4.5)

ˆ

E

dr

r
≤

∞∑

ν=1

log
sν
rν
<∞.

This gives, in particular, that E has finite logarithmic measure and

(4.6)
sν
rν

∼ 1, ν → ∞.

We need an estimate for the number of zeros of an entire function. The difference
to the standard estimate in [21, p. 15] is that the function in the upper bound has r
as a variable instead of αr, where α > 1 is a real constant.

Lemma 4.2. Let g be a nonconstant entire function with g(0) = 1, let n(r)
denote the number of zeros of g in |z| ≤ r, and let m > 1 be a real constant. Then

n(r) . L (r,∞, g) ·
(
logL (r,∞, g)

)m
, r 6∈ [0, 1] ∪ E,

where E ⊂ (1,∞) has finite logarithmic measure.

Proof. If g is a polynomial, then n(r) is a bounded function, and the assertion is
clear even without an exceptional set. Thus we may suppose that g is transcendental,
or, in fact, that n(r) is an unbounded function.

Let 1 < r < ∞, and let R ∈ (r,∞) be arbitrary. Analogously as in [21, p. 15],
we use Jensen’s formula and the monotonicity of n(r) for

n(r) =
n(r)

log(R/r)

ˆ R

r

dt

t
≤ 1

log(R/r)

ˆ R

0

n(t)

t
dt

≤ 1

2π log(R/r)

ˆ 2π

0

log+ |g(Reiθ)| dθ ≤ L (R,∞, g)

log(R/r)
.

Since log x > (x− 1)/2 for 1 < x < 2, we obtain

(4.7) n(r) ≤ 2r

R− r
· L (R,∞, g), r < R < 2r.

We now make the specific choice

(4.8) R = R(r) = r +
r(

logL (r,∞, g)
)m ,

which satisfies r < R < 2r whenever r > 1 is large enough, say r ≥ r0. Since the
maximum modulus M(r, g) is a continuous function of r [21, p. 2], it follows that
L (r,∞, g) is continuous. The assertion now follows from (4.7) by applying (4.8) and
Lemma 4.1 with the choices φ(r) = r, ξ(r) = (log r)m and F (r) = L (r,∞, g). �
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Lemma 4.3. Let g be a transcendental entire function. There exists a set G ⊂
[e,∞) of finite logarithmic measure, consisting of a union of closed intervals, such
that the function R(r), defined in (4.8), is differentiable and R′(r) ≥ 1

2
whenever

r /∈ G ∪ [0, r0] for sufficiently large r0 > 0.

Proof. From formula (2.4) in [27], we find that

L (r,∞, g) = L (r0,∞, g) +

ˆ r

r0

W (x)

x
dx, r > r0 ≥ 0,

where W (x) is an increasing and unbounded function, and is continuous in adjacent
intervals. This means that the derivative of L (r,∞, g) exists and is continuous on
these adjacent intervals. By Nevanlinna’s lemma, see [6, Lemma 2.2.2], there exists
a set G ⊂ [e,∞) consisting of a union of closed intervals such that G has finite
logarithmic measure and

(
L (r,∞, g)

)′

L (r,∞, g)
≤
(
logL (r,∞, g)

)m

r
, r 6∈ G ∪ [0, r0].

Here the set G includes the points of intersection of any two adjacent intervals, which
constitute a set that is at most countable. Using the estimate above,

R′(r) ≥ 1 +
1(

logL (r,∞, g)
)m − m

logL (r,∞, g)
≥ 1

2
, r 6∈ G ∪ [0, r0],

by choosing a slightly larger r0, if needed. This proves the assertion. �

A classical lemma of Cartan reads as follows.

Lemma 4.4. [21, p. 19] Let a1, . . . , an ∈ C be fixed, and let H > 0 be a constant.
Then there exists a sequence of closed Euclidean discs D1, . . . , Dq, q ≤ n, with
corresponding radii r1, . . . , rq satisfying r1 + · · ·+ rq = 2H such that if z 6∈

⋃q
k=1Dk,

then

|z − a1| · · · |z − an| >
(
H

e

)n

.

The following new version of Cartan’s lemma will be needed. The proof is influ-
enced by that of [11, Lemma 2].

Lemma 4.5. Let {ak} be an infinite sequence of complex points with no finite
limit points, and let n(r) denote the number of points ak (counting multiplicities) in
|ζ | ≤ r. Suppose that R > 0 is large. Then, for every δ ∈ (0, 1), the set of values
r ∈ [0, R] for which

∏

|ak|≤R

|z − ak| >
(
δr

32e

)n(R)

, |z| = r,

has linear measure at least δR/16.

Proof. Let δ ∈ (0, 1), let ν0 ∈ N be such that n(2ν0(1− δ/4)) ≥ 1, and let K ∈ N

be such that 2K < R ≤ 2K+1. By the assumption that R > 0 is large, we may
suppose that K ≥ ν0 + 1.

For a fixed integer ν such that ν0 ≤ ν ≤ K, suppose that

(4.9) 2ν(1− δ/4) ≤ |z| = r ≤ 2ν .
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Apply Lemma 4.4 to the n(R) terms of {ak} that satisfy |ak| ≤ R, with

H = Hν =
δ2ν

32
.

It follows that there exists a sequence of closed Euclidean discs Dν,1, . . . , Dν,pν , pν ≤
n(R), with corresponding radii rν,1, . . . , rν,pν satisfying

rν,1 + · · ·+ rν,pν = 2Hν =
δ2ν

16

such that if z 6∈
⋃pν

k=1Dν,k and (4.9) holds, then

(4.10)
∏

|ak|≤R

|z − ak| >
(
Hν

e

)n(R)

≥
(
δr

32e

)n(R)

.

Up to this point, ν has been a fixed integer satisfying ν0 ≤ ν ≤ K. Now, for
any integer ν such that ν0 ≤ ν ≤ K, let Aν,1, . . . , Aν,lν , lν ≤ pν , denote those discs
in the collection Dν,1, . . . , Dν,pν that intersect with the annulus (4.9). For some ν,
there might not be discs of this type. We have proved that (4.10) holds whenever

z is in the annulus (4.9) and z 6∈
⋃lν

k=1Aν,k. The sum of the diameters of the discs
Aν,1, . . . , Aν,lν is at most 4Hν. Moreover, since

2ν(1− δ/4)− 4Hν > 2ν(1− δ/2) > 2ν−1,

2ν + 4Hν < 2ν(1 + δ/4) < 2ν+1(1− δ/4)

for every ν such that ν0 ≤ ν ≤ K, we find that none of the discs Aν,1, . . . , Aν,lν

intersects with the sets |ζ | ≤ 2ν−1 or |ζ | ≥ 2ν+1(1 − δ/4). In particular, the origin
lies outside of the discs Aν,1, . . . , Aν,lν for every such ν.

On each interval [2ν(1 − δ/4), 2ν ], where ν0 ≤ ν ≤ K, the estimate (4.10) holds
for values of r in a set of linear measure at least

2ν − 2ν(1− δ/4)− 4Hν = 2νδ/4− 2νδ/8 = 2νδ/8.

By considering all intervals [2ν(1 − δ/4), 2ν ] for ν0 ≤ ν ≤ K, we find that the set of
values of

r ∈
K⋃

ν=ν0

[2ν(1− δ/4), 2ν ] ⊂ [0, R]

for which the estimate (4.10) holds has linear measure at least δ2K/8 obtained for
ν = K. Keeping in mind that R ≤ 2K+1, it follows that the set of values of r ∈ [0, R]
for which the estimate (4.10) holds has linear measure at least

δ2K

8
=
δ2K+1

16
≥ δR

16
.

This implies the assertion. �

We need an estimate for the minimum modulus of an entire function f that has
no restrictions for the growth of f . The most famous classical estimates rely on
growth restrictions ρ(f) ≤ 1/2 and ρ(f) < 1 [3, Chapter 3]. The estimates proved
by Hayman in [14] are essentially the best possible of their kind, but they rule out
the possibility that the lower order µ(f) of f is zero. Here we want to remind the
reader of Barry’s estimate [1, Theorem 4] for the minimum modulus of f in the case
when 0 ≤ µ(f) < 1/2, and of Essén’s monograph [9] on the famous cosπρ theorem.

Lemma 4.6 below is a modification of the minimum modulus estimate in [21,
p. 21]. The estimate in Lemma 4.6 is weaker than Hayman’s estimates, but it has
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no restrictions for the growth, and its proof is relatively simple as opposed to the
reasoning in [14].

Lemma 4.6. Let g be a transcendental entire function with g(0) = 1, and let
δ ∈ (0, 1) and m > 1 be real constants. Then there exists a set F ⊂ [0,∞) with
dens(F ) ≥ δ/16 such that

log |g(z)| & −
(
1 + log

(
1

δ

))
L (r,∞, g)

(
logL (r,∞, g)

)m

for every z satisfying |z| = r ∈ F .

Proof. Let 2 < r0 < R < ∞ be such that L (r0,∞, g) ≥ e. If g has no zeros,
then [21, p. 19] yields

log |g(z)| ≥ − 2r

R − r
L (R,∞, g), r0 < |z| = r < R.

Choosing R = R(r) as in (4.8), and using Lemma 4.1 with φ(r) = r and ξ(r) =
(log r)m, we obtain

(4.11) L (R,∞, g) < 2L (r,∞, g), r 6∈ [0, r0] ∪ E1,

where E1 ⊂ (1,∞) has finite logarithmic measure. Thus

log |g(z)| & −L (r,∞, g) ·
(
logL (r,∞, g)

)m
, r 6∈ [0, r0] ∪ E1.

We have dens(E1) = 0 by [30, p. 9], and hence, from now on, we may suppose that g
has zeros. We skip the proof of the case that g has finitely many zeros because that
case follows easily from the reasoning below.

For arbitrary 2 < r0 < R <∞ such that L (r0,∞, g) ≥ ee, we define

ϕR(z) =
(−R)n
a1 · · · an

n∏

k=1

R(z − ak)

R2 − ākz
,

where the points a1, . . . , an are the zeros of g in the open disc D(0, R). Note that
aj 6= 0 for all j = 1, . . . , n by the assumption g(0) = 1. We have

ϕR(0) = 1 and |ϕR(Re
iθ)| = Rn

|a1 · · · an|
≥ 1.

The function ψR(z) = g(z)/ϕR(z) is entire and has no zeros in D(0, R), and hence,
by [21, p. 19], we have

log |ψR(z)| ≥ − 2r

R − r
L (R,∞, ψR)

≥ − 2r

R − r
L (R,∞, g) +

2r

R− r
log

Rn

|a1 · · · an|

≥ − 2r

R − r
L (R,∞, g), r0 < |z| = r < R.

We proceed to estimate |ϕR(z)| from below, keeping in mind that n = n(R). Clearly,
n∏

k=1

∣∣R2 − ākz
∣∣ ≤ (2R2)n, |z| < R.

Let δ ∈ (0, 1) be a constant. By Lemma 4.5,∣∣∣∣∣

n∏

k=1

R(z − ak)

∣∣∣∣∣ ≥ Rn

(
δr

32e

)n

, |z| = r ∈ FR,
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where FR ⊂ [0, R] has linear measure at least δR/16. Consequently,

|ϕR(z)| ≥
(

δr

64eR

)n

, r ∈ FR,

and further,

log |ϕR(z)| ≥ −n log
(
64eR

δr

)
, r ∈ FR,

where n = n(R). Since g(z) = ψR(z)ϕR(z), we have now proved that

log |g(z)| ≥ − 2r

R− r
L (R,∞, g)− n log

(
64eR

δr

)
, r ∈ FR.

As R→ ∞, FR approaches to a set F ⊂ [0,∞) satisfying dens(F) ≥ δ/16.
By Lemma 4.2,

n = n(R) . L (R,∞, g) ·
(
logL (R,∞, g)

)m
, R 6∈ [0, 1] ∪ E2,

where E2 ⊂ (1,∞) has finite logarithmic measure. For the choice of R = R(r) in
(4.8), define a set

(4.12) E3 := {r > r0 : R ∈ E2}.
Postponing the proof that E3 has finite logarithmic measure, we have

log |g(z)| & −
(
1 + log

(
64eR

δr

))
L (R,∞, g)

(
logL (R,∞, g)

)m

& −
(
1 + log

(
1

δ

))
L (R,∞, g)

(
logL (R,∞, g)

)m
(4.13)

for every z satisfying |z| = r ∈ F \ ([0, r0] ∪ E3). Let E1 be the exceptional set in
(4.11). It is known that a set of finite logarithmic measure has zero upper linear
density [30, p. 9]. Hence the set F := F \ ([0, r0]∪E1 ∪E3) satisfies dens(F ) ≥ δ/16.
The assertion now follows from (4.13) and (4.11) for r ∈ F under the assumption
that E3 has finite logarithmic measure.

It remains to prove that the set E3 in (4.12) has finite logarithmic measure. This
is clearly the case if E2 is a bounded set, so we suppose that E2 is unbounded. The
set E2 comes from Lemma 4.2, and hence from Lemma 4.1. Thus it can be covered
by a union E∗ of closed intervals as in (4.2) giving us

E3 ⊂ {r > r0 : R ∈ E∗}.
Since R = R(r) is a continuous function in r, the pre-image of every closed interval
[rν , sν ] constituting the set E∗ is a closed interval, say [αν , βν ]. It follows that

E3 ⊂
∞⋃

ν=1

[αν , βν ].

We have
ˆ

E3

dr

r
≤

∞∑

ν=1

ˆ βν

αν

dr

r
=

∞∑

ν=1

log
βν
αν
,

so it remains to show that the series in the upper bound converges. By Lemma 4.3,
we may suppose, without loss of generality, that the function R(r) is differentiable
and R′(r) ≥ 1

2
on the intervals (αν , βν). Indeed, the portions of the intervals (αν , βν)

on which the function R(r) might not have these properties constitute a set of finite
logarithmic measure. Under the aforementioned assumption, we have R(αν) = rν
and R(βν) = sν by continuity and monotonicity.
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Recall from (4.6) that sν
rν

∼ 1 as ν → ∞. Since R(αν) ∼ αν and R(βν) ∼ βν , this
gives us

βν
αν

∼ 1, ν → ∞.

Now
log sν

rν

log βν

αν

=

´ sν
rν

dx
x

´ βν

αν

dx
x

≥
1
sν
(sν − rν)

1
αν
(βν − αν)

=
αν

sν
· sν − rν
βν − αν

, ν ∈ N.

Using the fact that R(r) ≤ 2r for all r large enough,

αν

sν
=

αν

R(βν)
≥ αν

2βν
≥ 1

4
, ν ≥ N,

where N is a large integer, not necessarily the same at each occurrence. By the mean
value theorem, there exists a constant γν ∈ (αν , βν) such that

sν − rν
βν − αν

=
R(βν)−R(αν)

βν − αν
= R′(γν) ≥

1

2
, ν ≥ N.

Hence, it follows that

log
βν
αν

≤ 8 log
sν
rν
, ν ≥ N.

Finally, using (4.5), we have
ˆ

E3

dr

r
≤

∞∑

ν=1

log
βν
αν

≤ O(1) + 8

∞∑

ν=N

log
sν
rν
<∞.

This completes the proof. �

The next lemma follows from [18, Lemma 5.1] and [18, Remark 5.2].

Lemma 4.7. [18] Let f be a meromorphic function in C, and suppose that k, j
are integers with k > j ≥ 0 and f (j) 6≡ 0. Then there exists a set E ⊂ [0,∞) of finite
linear measure such that

(4.14) log+
∣∣∣∣
f (k)(z)

f (j)(z)

∣∣∣∣ . log T (r, f) + log r, |z| = r 6∈ E.

Finally, we need a lemma which is in the spirit of Frank and Hennekemper [20,
Lemma 7.7] and Petrenko [4, Corollary].

Lemma 4.8. Let f1, . . . , fn be linearly independent meromorphic solutions of
(1.1) with meromorphic coefficients A0, . . . , An−1. Then there exists a set E ⊂ [0,∞)
of finite linear measure such that for every j = 0, . . . , n− 1,

(4.15) L (r,∞, Aj) = O

(
log r + max

1≤j≤n
log T (r, fj)

)
, r 6∈ E.

The assertion is easy to verify in the special case f (n) + A(z)f = 0, as one just
needs to write |A(z)| = |f (n)(z)/f(z)| and apply Lemma 4.7. The proof of the general
case is by induction and follows closely that of [20, Lemma 7.7]. Each time the growth
of a logarithmic derivative is to be estimated, one should use Lemma 4.7. The details
are omitted.

Remark. If the coefficients in (1.1) are entire functions, then the conclusion
(4.15) of Lemma 4.8 can be written alternatively as

(4.16) L (r,∞, Aj) = O (log r + log T (r)) , r 6∈ E, j = 0, . . . , n− 1.
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This is a simple consequence of the facts that T (r, fj) = m(r, fj) and

(4.17) log+ |fj| ≤ log

√√√√1 +
n∑

k=1

|fk|2 ≤
n∑

k=1

log+ |fk|+
1

2
log(n+ 1)

for every j = 1, . . . , n.

From (4.17) it is obvious that at least one of the functions in a solution base of
(1.1) is of infinite order if and only if the corresponding characteristic function T (r)
of (1.1) is of infinite order. This gives raise to the following version of a well-known
result of Frei.

Lemma 4.9. [10], [20, Theorem 4.2] Suppose that the coefficients A0, . . . , An−1

in (1.1) are entire, and that at least one of them is transcendental. Then any char-
acteristic function T (r) of (1.1) must be of infinite order of growth.

5. Proofs of theorems

Proof of Theorem 2.1. Let {f1, . . . , fn} be a solution base for (1.1), and let T (r)
be the associated characteristic function of (1.1) defined in (1.6). From (1.6), (4.17)
and [16, Corollary 5.3],

T (r) ≤
n∑

k=1

m(r, fk) +O(1) . r
n−1∑

j=0

M(r, Aj)
1/(n−j) + 1.

Thus

log+ T (r) ≤
n−1∑

j=0

log+M(r, Aj) +O(log r).

In the course of proof of [18, Theorem 2.3], it is observed that

(5.1) logM(r, Aj) . logM(r, Ap), j = 0, . . . , n− 1,

and that at least n− p solutions f in the solution base {f1, . . . , fn} satisfy

(5.2) logM(r, Ap) . log T (r, f), r 6∈ E,

where E ⊂ [0,∞) has finite linear measure. Let f be a solution of (1.1) that satisfies
(5.2). Using (5.1), (5.2) and the fact that Ap is transcendental, we obtain

log T (r) . logM(r, Ap) . log T (r, f), r 6∈ E.

Then f is a P-standard solution by (yet to be proved) Theorem 2.2. �

Proof of Theorem 2.3. The main idea for the proof is from Wittich [28, p. 54],
which is generalized by Laine in [20, p. 62]. To estimate the logarithmic derivatives,
we make use of Lemma 4.7 from the previous section.

If f is a polynomial, then clearly δP (a, f) = 0 for every a ∈ C. Hence we may
suppose that f is transcendental. It follows from (1.1) that

1

f − a
= − 1

aA0

(
A0 + A1

(f − a)′

f − a
+ · · ·+ An

(f − a)(n)

f − a

)
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for any a ∈ C \ {0}. Then

log+
1

|f(z)− a| ≤ log+
1

|A0(z)|
+

n∑

j=0

log+ |Aj(z)|+
n∑

j=1

log+
∣∣∣∣
(f(z)− a)(j)

f(z)− a

∣∣∣∣ +O(1)

≤ L (r, 0, A0) +
n∑

j=0

L (r,∞, Aj) +
n∑

j=1

log+
∣∣∣∣
(f(z)− a)(j)

f(z)− a

∣∣∣∣+O(1).

Thus it follows from Lemma 4.7 and the assumptions (2.2) and (2.3) that

(5.3) log+
1

|f(z)− a| = o(T (r, f)), |z| = r 6∈ E1,

where E1 ⊂ [0,∞) is the set that consists of the set E appearing in (2.2) and (2.3) as
well as of the set E appearing in Lemma 4.7. Since any set F ⊂ [0,∞) of finite linear
measure satisfies dens(F ) = 0, we have dens(E1) < 1. Observing that the right-hand
side of (5.3) does not depend on the argument of z, we deduce that

L (r, a, f) = o(T (r, f)), r 6∈ E1.

This implies

lim inf
r→∞

L (r, a, f)

T (r, f)
≤ lim inf

r→∞
r 6∈E1

L (r, a, f)

T (r, f)
≤ lim sup

r→∞

o(T (r, f))

T (r, f)
= 0,

that is, δP (a, f) = 0, and the assertion is now proved. �

Proof of Theorem 2.6. Let f be a nontrivial solution of (1.1) satisfying (2.2)
and (2.4), where dens(E) = 0. By the proof of Theorem 2.3, we may suppose that f
is transcendental. If A0 is a polynomial, then L (r, 0, A0) = O(1), and consequently
(2.3) is valid. The assertion then follows by Theorem 2.3. Therefore, we may suppose
that A0 is transcendental.

Suppose that A0(0) = 1, and choose δ > 0. Let E be the set in (2.2) and (2.4)
with dens(E) = 0. Then, applying Lemma 4.6 to A0, we have

L (r, 0, A0) . L (r,∞, A0)
(
logL (r,∞, A0)

)m
, r ∈ F,

where m > 1 is a real constant and F ⊂ [0,∞) satisfies dens(F ) ≥ δ/16. The
assumption (2.4) then gives

L (r, 0, A0) = o(T (r, f)), r ∈ G,

where G = F \ E satisfies

dens(G) ≥ lim inf
r→∞

´

F∩[0,r]
dt−

´

E∩[0,r]
dt

r

≥ lim inf
r→∞

´

F∩[0,r]
dt

r
+ lim inf

r→∞

(
−
´

E∩[0,r]
dt

r

)

= dens(F )− dens(E) = dens(F ) ≥ δ/16.

The assertion follows by the proof of Theorem 2.3.
If A0(0) 6= 1, we may find constants C ∈ C and k ∈ Z such that the function

B0(z) = CzkA0(z) is entire and satisfies B0(0) = 1. Then Lemma 4.6 can be applied
to B0. Moreover, since A0 is transcendental, we have

L (r, 0, B0) = L (r, 0, A0) +O(log r) = (1 + o(1))L (r, 0, A0).

The assertion now follows similarly as in the case A0(0) = 1. �
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Proof of Theorem 2.2. Let {f1, . . . , fn} be a solution base for (1.1), and let
T (r) be the associated characteristic function of (1.1) defined in (1.6). We are given
that a certain solution f of (1.1) satisfies (2.1). As above, we may suppose that f is
transcendental.

Suppose first that all of the coefficients A0, . . . , An−1 in (1.1) are polynomials.
Then f is a P-standard solution by Corollary 2.4. Note that the assumption (2.1) is
not needed in this particular case.

Suppose then that at least one of the coefficients of (1.1) is transcendental, in
which case T (r) is of infinite order by Lemma 4.9. Thus, from (2.1), (4.16), and the
fact that f is transcendental,

L (r,∞, Aj) = O(log r + log T (r)) = O(log r) + o(T (r, f))

= o(T (r, f)), r 6∈ E2, j = 0, . . . , n− 1,
(5.4)

where E2 is the union of the exceptional sets appearing in (2.1) and (4.16), and hence
satisfies dens(E2) < 1. This implies (2.2) for the specific solution f . We proceed to
prove that (2.3) holds for the same solution f .

If A0 is a polynomial, then (2.3) holds without an exceptional set because f is
transcendental, and consequently the assertion follows by Theorem 2.3. Hence we
may suppose that A0 is transcendental. Let α > 0 be arbitrarily large but fixed. By
[22, Corollary 3.7], the set

G = {r ≥ 0: T (r) ≥ rα}

satisfies dens(G) = 1. Choose δ > 0 small enough such that dens(E2) + δ < 1, where
E2 is the exceptional set in (5.4), and hence contains the exceptional sets in (2.1)
and (4.16). Now, if A0(0) = 1, it follows from Lemma 4.6, (2.1) and (4.16) that

L (r, 0, A0) = O
(
L (r,∞, A0) ·

(
logL (r,∞, A0)

)m)

= O
(
log T (r) ·

(
log(log T (r))

)m)

= o(T (r, f)), r ∈ G \ (E2 ∪ F ),
(5.5)

where dens(F ) ≤ δ. The set H = G \ (E2 ∪ F ) satisfies

dens(H) ≥ lim sup
r→∞

´

G∩[0,r]
dt−

´

(E2∪F )∩[0,r]
dt

r

≥ lim sup
r→∞

´

G∩[0,r]
dt

r
+ lim inf

r→∞

(
−
´

(E2∪F )∩[0,r]
dt

r

)

= dens(G)− dens(E2 ∪ F ) ≥ 1− (dens(E2) + δ) > 0.

The estimate in (5.5) is the same as the estimate in (2.3), but is valid outside of a
different exceptional set. By carefully studying the proof of Theorem 2.3 and using
(5.4), it follows that f is a P-standard solution. The case A0(0) 6= 1 can be dealt
with similarly as in the proof of Theorem 2.6. �

Proof of Theorem 3.2. Suppose that at least one of the coefficients Aj is non-
constant. Then Aj is either a non-constant rational function or a transcendental
meromorphic function. In both cases, the assumption (3.6) implies that

log r = o(A(r, f)), r 6∈ E.
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Moreover, using (3.1) and (3.2), the conclusion of Lemma 4.7 can be re-written as

log+
∣∣∣∣
f (k)(z)

f (j)(z)

∣∣∣∣ . logA(r, f) + log r, |z| = r 6∈ E1,

where E1 ⊂ [0,∞) has finite linear measure. Denote F = [0,∞) \ (E ∪ E1). Then
dens(F ) > 0 and

(5.6) log+
∣∣∣∣
f (k)(z)

f (j)(z)

∣∣∣∣ = o(A(r, f)), |z| = r ∈ F.

Deducing similarly as in the proof of [20, Theorem 4.3] (alternatively, see the proof
of Theorem 2.3), operating in the set F and using (5.6) every time an estimate is
needed for logarithmic derivatives, it follows that δE(a, f) = 0 for every a ∈ C \ {0}.
This implies the assertion.

Suppose then that all coefficients Aj are constant functions. Then it is well
known that f is a linear combination of terms of the form zkeαz, where k ≥ 0 is an
integer and α ∈ C \ {0} is a root of the associated characteristic equation. Then
T (r, f) = (C + o(1))r for some constant C > 0 [25, Satz 1]. For a ∈ C \ {0}, we have

m(r, a, f) = o(r), r → ∞,

by [25, Satz 2], and hence the Valiron deficiency given by

(5.7) δV (a, f) := lim sup
r→∞

m(r, a, f)

T (r, f)

satisfies δV (a, f) = 0. Since f has lower order µ(f) = 1, it follows that

0 ≤ δE(a, f) ≤ π
√
δV (a, f)(2− δV (a, f)) = 0,

see [19, Theorem L] or [23, Theorem 2]. This implies the assertion. �

Proof of Theorem 3.3. By Lemma 3.1(b), we have

lim
r→∞
r∈H2

A(r, f)

log r
= ∞,

where the set H2 ⊂ [0,∞) satisfies dens(H2) = 1. Therefore, the identity in (5.6)
holds for F = H2 \ (E ∪ E1), which satisfies

dens(F ) ≥ lim sup
r→∞

´

H2∩[0,r]
dt−

´

(E∪E1)∩[0,r]
dt

r

≥ lim sup
r→∞

´

H2∩[0,r]
dt

r
+ lim inf

r→∞

(
−
´

(E∪E1)∩[0,r]
dt

r

)

= dens(H2)− dens(E ∪ E1) = 1− dens(E) > 0.

Deducing similarly as in the proof of [20, Theorem 4.3] or as in the proof of Theo-
rem 2.3, by operating in the set F and using (5.6), it follows that δE(a, f) = 0 for
every a ∈ C \ {0}. �
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6. Concluding remarks

Recall the Valiron deficiency δV (a, f) for a meromorphic function f from (5.7).

If δ(a, f) > 0 for a ∈ Ĉ, then a is called a Valiron deficient value for f .
An analogue of Theorem 1.1 for Valiron deficient values is obtained in [12], where

(1.3) is assumed to hold as r → ∞ without an exceptional set. An exceptional set is
not allowed here, because the quantity δV is defined in terms of limit superior. This
is in contrast to the situation with the quantities δN , δP , δE, which are all defined in
terms of limit inferior, for which the exceptional sets in the reasoning are irrelevant.
For these reasons, the study of V-standard solutions f of (1.1) defined by δV (a, f) = 0
for every a ∈ C \ {0} may not be of further interest.
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