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Ergodicity in the dynamics of
holomorphic correspondences

Mayuresh Londhe

Abstract. This paper studies ergodic properties of certain measures arising in the dynamics of

holomorphic correspondences. These measures, in general, are not invariant in the classical sense of

ergodic theory. We define a notion of ergodicity, and prove a version of Birkhoff’s ergodic theorem in

this setting. We also show the existence of ergodic measures when a holomorphic correspondence is

defined on a compact complex manifold. Lastly, we give an explicit class of dynamically interesting

measures that are ergodic as in our definition.

Keskiarvosuppeneminen holomorfisten vastaavuuksien dynamiikassa

Tiivistelmä. Tässä työssä tarkastellaan eräiden holomorfisten vastaavuuksien dynamiikkaan

liittyvien mittojen keskiarvosuppenemista. Nämä mitat eivät välttämättä säily muuttumattomi-

na klassisen keskiarvosuppenemisteorian mielessä. Työssä määritellään eräs keskiarvosuppenemisen

käsite ja todistetaan Birkhoffin keskiarvosuppenemislauseen vastine tarkasteltavassa tilanteessa. Li-

säksi osoitetaan keskiarvosuppenemismittojen olemassaolo, kun holomorfinen vastaavuus on määri-

telty kompaktilla kompleksimonistolla. Lopuksi annetaan esimerkki dynaamisesti mielenkiintoisista

mitoista, jotka ovat keskiarvosuppenevia työssä esitellyn määritelmän mielessä.

1. Introduction and statement of main results

In this paper, we study ergodic properties of certain measures arising naturally
in iterative holomorphic dynamics beyond the classical framework of maps. Loosely
speaking, ergodicity expresses the idea that a typical point of a dynamical system
will eventually visit all parts of the space that the system moves in, in a uniform and
random way. The measures under consideration, in general, are not invariant in the
classical sense of ergodic theory. Thus the classical ergodic theorems do not hold as
it is in this setting. The purpose of this article is to define a notion of ergodicity and
to prove an ergodic theorem for such measures.

In [5], Brolin constructed a probability measure supported on the Julia set of
a polynomial of degree at least 2. This measure describes the distribution of the
preimages of a generic point under iteration of the polynomial. Freire, Lopes and
Mañé [14], and Lyubich [15], independently generalised this to all rational maps of
degree at least 2 on the Riemann sphere. These measures are invariant and ergodic
in the sense of ergodic theory—see, for instance, [21] for the basics of ergodic theory.
We refer the reader to [13] and the references therein for various generalisations of the
above results, and for dynamically interesting properties possessed by such measures.
Also, see [1, Chapter 13] and the references therein for analogous measures in non-
Archimedean setting. Some of these constructions have been further extended to
certain classes of multi-valued maps. But, the resulting measures are no longer
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invariant. Thus the classical ergodic theorems do not apply in this setting. However,
it turns out that these measures are invariant in a certain sense. We now proceed to
formally define the sense in which these measures are invariant and the dynamical
systems in which they arise.

Let X be a (not necessarily compact) complex manifold of dimension k. We shall
always assume that manifolds are connected. A holomorphic k-chain is a formal linear
combination of the form

(1.1) Γ =
∑

1≤i≤N

miΓi,

where the mi’s are positive integers and Γi’s are distinct irreducible complex subva-
rieties of X ×X of dimension k. Let π1 and π2 denote the projection onto the first
and second coordinates respectively and let |Γ| := ⋃N

i=1 Γi. We call Γ a holomorphic

correspondence on X if π1|Γi
and π2|Γi

are proper, surjective and finite-to-one maps
for each 1 ≤ i ≤ N . If A is a subset of X, then we define the following set-valued
maps

FΓ(A) := π2(π
−1
1 (A) ∩ |Γ|) and F †

Γ(A) := π1(π
−1
2 (A) ∩ |Γ|).

For convenience, we denote FΓ({x}) and F †
Γ({x}) by FΓ(x) and F †

Γ(x) respectively.
When there is no scope for confusion, we shall, for simplicity of notation, denote FΓ

by F . Also, we shall refer to the correspondence Γ underlying F also as F .
In Section 2, the pullback of a Borel measure µ by F , denoted by F ∗µ, is intro-

duced in detail. This operation plays a key role in defining a notion of invariance for
measures. We say that a Borel probability measure µ is F ∗-invariant if F ∗µ = d · µ,
where d is the topological degree of F—see Section 2 for a definition. Given an
F ∗-invariant measure µ, a Borel subset B of X is said to be almost invariant with
respect to F and µ if there exists a Borel set B′ ⊆ B such that F †(B′) ⊆ B and
µ(B′) = µ(B). We now define a notion of ergodicity for F ∗-invariant measures.

Definition 1.1. Let F be a holomorphic correspondence on a complex manifold
X. We say that an F ∗-invariant Borel probability measure µ on X is ergodic if for
any Borel set B that is almost invariant with respect to F and µ, either µ(B) = 0 or
µ(B) = 1.

Two holomorphic correspondences on X can be composed with each other—see
Section 2 for the definition. Keeping in mind the above notational comments, we
shall write F n to denote the n-fold composition of a holomorphic correspondence F
on X. Thus F gives rise to a dynamical system on X. We now state the first main
result of this paper, which is an analogue of the classical Birkhoff’s Ergodic Theorem
in the setting of the above dynamical system.

Theorem 1.2. Let F be a holomorphic correspondence of topological degree d
on a complex manifold X. Suppose there exists a Borel probability measure µ on X
such that µ is F ∗-invariant, i.e., it satisfies F ∗µ = d · µ. Then, for φ ∈ L1(µ),

1

n

n−1∑

j=0

∑′

y∈F j†(x)

φ(y)

dj

converges µ-almost everywhere to a function Φ ∈ L1(µ) such that
´

X
Φ dµ =

´

X
φ dµ.

Moreover, if µ is ergodic as in Definition 1.1 then, we have

Φ(x) =

ˆ

X

φ dµ for µ-almost every x ∈ X.
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In Theorem 1.2, the notation
∑′ denotes the sum over y’s, repeated with multi-

plicity.

Remark 1.3. Since an F∗-invariant measure is also an (F †)
∗
-invariant measure,

Theorem 1.2 also holds for F∗-invariant measures, with F j† replaced by F j in the
ergodic sums. Note that whenever F is a holomorphic map (i.e., the correspondence
defined by the graph of a holomorphic map), the F∗-invariance of µ in the above
sense coincides with the invariance of µ in the sense of ergodic theory for measurable
maps. Additionally, in general, F ∗-invariance does not imply F∗-invariance unlike in
the case of holomorphic maps.

A few comments are in order for the above notion of ergodicity. If B is a subset of
X such that F †(B) ⊆ B, the complement Bc of B may not satisfy F †(Bc) ⊆ Bc as in
the case of maps. In Section 3, we shall see that if a Borel subset B is almost invariant
with respect to F and µ, then Bc is also almost invariant with respect to F and µ.
However, for such Borel sets B, the symmetric difference B△F †(B) may not satisfy
µ(B△F †(B)) = 0 as in the case of maps—see Example 4.1. Theorem 1.2 immediately
raises a question: do there exist F ∗-invariant measures for correspondences that
are not maps? In Section 3, we show that an F ∗-invariant measure always exists
for a holomorphic correspondence F defined on a compact complex manifold. In
fact, we show that an F ∗-invariant ergodic measure exists for such correspondences.
The following result of Dinh–Sibony gives a class of holomorphic correspondences
admitting dynamically interesting measures that are F ∗-invariant:

Result 1.4. (Dinh–Sibony, [12]) Let (X,ω) be a compact Kähler manifold of
dimension k. Let F be a meromorphic correspondence of topological degree d on
(X,ω). Suppose that the dynamical degree of order k − 1, denoted dk−1, satisfies
dk−1 < d. Then, the measures d−n(F n)∗ωk (ω normalised so that

´

X
ωk = 1) con-

verges to a Borel probability measure µF as n→ ∞. Moreover, µF does not put any
mass on pluripolar sets and µF is F ∗-invariant.

When F is a rational map on the Riemann sphere, the measure µF in Result 1.4
is the measure constructed in [5, 14, 15]. We shall call the measure µF given by
Result 1.4 the Dinh–Sibony measure of F—see Section 2 for more details. Here,
we would like to mention few more classes of correspondences for which dynami-
cally interesting invariant (F ∗-invariant or F∗-invariant) measures exist. In [9], Dinh
constructed an F ∗-invariant measure when F is a polynomial correspondence whose
Lojasiewicz exponent is strictly greater than 1. Clozel and Otal [7] and Clozel and
Ullmo [8] constructed invariant measures for certain classes of modular correspon-
dences. On the other hand, Dinh, Kaufmann and Wu [10] constructed invariant
measures for holomorphic correspondences on Riemann surfaces that are not weakly-
modular. Recently, Matus de la Parra [18] constructed invariant measures for the
family of correspondences considered by Bullett and Lomonaco in [6]. Lastly, Bhar-
ali and Sridharan [2] constructed invariant measures for correspondences having a
repeller.

Having mentioned some examples of invariant measures, we now move to ergod-
icity. Our next result asserts that the measures given by Result 1.4 are ergodic.

Theorem 1.5. Let (X,ω) be a compact Kähler manifold of dimension k. Let
F be a holomorphic correspondence of topological degree d on X. Suppose that
dk−1 < d. Then the Dinh–Sibony measure µF is ergodic as in Definition 1.1.
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Even though, we have stated Theorem 1.5 for holomorphic correspondences, The-
orem 1.5 (and Theorem 1.2) holds for meromorphic correspondences as in Result 1.4.
The property of µF that µF puts zero mass on pluripolar sets plays an important
role here (see Remark 4.2 for further details). We would also like to mention that the
proof of Theorem 1.2 is purely measure theoretic, and thus holds for certain multi-
valued maps on more general spaces. As mentioned earlier, if f is a rational map of
degree at least 2, then the Dinh–Sibony measure µf is the measure constructed in
[14, 15]. This, combined with Theorem 1.2 and Theorem 1.5, immediately gives the
following ergodic theorem that is new in the classical case of rational maps:

Corollary 1.6. Let f be a rational map on the Riemann sphere Ĉ of degree
d ≥ 2. Let µf be the measure constructed in [14, 15]. Then, for φ ∈ L1(µf), we have

lim
n→∞

1

n

n−1∑

j=0

∑′

y∈f−j(x)

φ(y)

dj
=

ˆ

Ĉ

φ dµf

for µf -almost every x ∈ Ĉ.

We end this section by mentioning a concrete class of correspondences, where
Theorem 1.2 can be useful. Let G = {f1, . . . , fN} be a finite collection of surjective
endomorphisms of X. To the collection G, we associate a correspondence as follows:

(1.2) ΓG :=
∑

1≤i≤N

graph(fi),

where graph(fi) is the graph of fi. If X is the Riemann sphere and fi’s are rational
maps of degree at least 2, then the measure µG (the Dinh–Sibony measure associated
with the correspondence ΓG) coincides with the measure constructed by Boyd [4].
Since, in this case, the support of µG is equal to the Julia set of the semigroup
generated by G, the Theorem 1.2 can be useful to understand the dynamics on the
Julia set. The idea of studying the dynamics of a finitely generated rational semigroup
through the correspondence ΓG was introduced by Bharali–Sridharan in [3]. The
other special case is when fi’s are the Möbius transformations. Studying dynamics
of ΓG in this case can be used to study finitely generated Kleinian groups. The
results in [10] can be used to construct invariant measures for non-elementary finitely
generated Kleinian groups. Also, see [11] for an application of correspondences to
random matrices.

Outline of the paper. Section 2 gives background on holomorphic correspon-
dences and the Dinh–Sibony measure. In section 3, we give existence of F ∗-invariant
and ergodic measures for a holomorphic correspondence defined on a compact com-
plex manifold. The proof of Theorems 1.5 appears in Section 4. Section 5 is devoted
to proving preliminary results needed for the proof of Theorem 1.2. In the last
section, Section 6, we give the proof of Theorem 1.2.

2. Fundamental definitions

In this section, we shall collect some definitions and concepts about holomorphic
correspondences that we had mentioned in passing in Section 1. We refer the reader
to [12] for a more detailed discussion in the setting of meromorphic correspondences
defined on compact manifolds. Most of the material in this section is well known;
the reader familiar with these concepts can safely move on to the next section.
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Let X be a complex manifold, let Γ be a holomorphic correspondence on X, and
let F and Γ be related as described in Section 1. With the presentation of Γ as in
(1.1), the coefficient mi ∈ Z+ will be called the multiplicity of Γi. We shall call Γ the

graph of F . We define the support of the correspondence F by |Γ| := ⋃N
i=1 Γi. For Γi

as above, we define Γ†
i := {(y, x) : (x, y) ∈ Γi}. Now we use this to define the adjoint

Γ† :=
∑

1≤i≤N

miΓ
†
i .

Observe that Γ† is also a holomorphic correspondence on X. The holomorphic cor-
respondence Γ† is called the adjoint of Γ. Also, note that the set valued map F †

Γ,
defined in Section 1, is same as the set-valued map FΓ† induced by Γ†. We shall
adopt the notational convenience noted in Section 1 and refer to the correspondence
Γ† as F †.

The topological degree of F is the number of points in a generic fiber counted
with multiplicities. It is well known that there exists a non-empty Zariski-open set
Ω ⊆ X such that, writing Y i := π−1

2 (Ω)∩ Γi, the map π2|Y i : Y i → Ω is a δi-sheeted
holomorphic covering for some δi ∈ Z+, i = 1, . . . , N . Thus δi = ♯{y : (y, x) ∈ Γi} for
any x ∈ Ω, where ♯ denotes the cardinality. Then the topological degree d(F ) of F is

(2.1) d(F ) :=
N∑

i=1

miδi =
N∑

i=1

mi ♯{y : (y, x) ∈ Γi}, x ∈ Ω.

We shall use d instead of d(F ) whenever there is no confusion. It is classical that,

for every x ∈ X, F †
Γ(x) contains d points counted with multiplicity.

Two holomorphic correspondences on X can be composed to get a new holomor-
phic correspondence on X. Let F1 and F2 be two holomorphic correspondences on
X induced by holomorphic k-chains

Γ1 =
∑′

1≤i≤M

Γ1
i and Γ2 =

∑′

1≤j≤M ′

Γ2
j

respectively. In the above presentation of Γ1 (resp., Γ2), we do not assume that the
Γ1
i ’s (resp., Γ2

j ’s) are distinct varieties—varieties repeat according to multiplicities.
The “decorated” summation above will denote the latter presentation. Then, by
definition, F1 ◦ F2 is the holomorphic correspondence induced by

Γ1 ◦ Γ2 =
∑′

1≤i≤M

∑′

1≤j≤M ′

Γ1
i ◦ Γ2

j ,

where Γ1
i ◦ Γ2

j is defined as follows: Consider the subset of X ×X given by

(2.2) C := {(x1, x3) ∈ X ×X : ∃x2 ∈ X such that (x1, x2) ∈ Γ2
j and (x2, x3) ∈ Γ1

i }.
The composition Γ1

i ◦ Γ2
j is the holomorphic k-chain whose support is C. Note that

the set C need not be an irreducible subvariety. The multiplicities of irreducible
components of C are as follows. Let Cs denote an arbitrary irreducible component
of C. Then, its multiplicity in Γ1

i ◦ Γ2
j is the distinct number of x2’s satisfying the

condition stated in (2.2) for a generic (x1, x3) ∈ Cij, s. We would like to emphasise
that Γ1

i ◦ Γ2
j need not be irreducible. This is the reason why the data defining a

holomorphic correspondence must include multiplicities. With the above definition
of composition, if A is a subset of X then we have F1 ◦ F2(A) = F1(F2(A)).

If F is a holomorphic correspondence on X and B is a Borel subset of X. We
show that F (B) and F †(B) are Borel subsets of X. To show this we need a result
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about bimeasurable functions. Let X and Y be topological spaces. Recall that a
function f : X → Y is Borel measurable if the preimage (under f) of every Borel
subset of Y is a Borel subset of X. We say that a Borel measurable function f is
bimeasurable if the image (under f) of every Borel subset of X is a Borel subset of
Y .

Result 2.1. (Purves, [19]) Let X and Y be complete separable metric spaces
and E a Borel subset of X. Consider a Borel measurable function f : E → Y .
In order that f is bimeasurable it is necessary and sufficient that the set {ζ ∈
Y : f−1{ζ} is uncountable} is countable.

For an alternative proof of the above result, also see [17]. Observe that Result 2.1
holds for connected complex manifolds. By definition F (B) := π2(π

−1
1 (B) ∩ |Γ|).

Since |Γ| is a closed set, π−1
1 (B)∩|Γ| is a Borel subset of X×X. By the definition of

a holomorphic correspondence, π2|Γj
is a finite map for each j. Thus, by Result 2.1,

it follows that F (B) is a Borel subset of X. Similarly, it follows that F †(B) is also a
Borel subset of X.

Let D be a current on X of bidegree (p, p), 0 ≤ p ≤ k. We can pull back and
push forward D using the following prescription:

(2.3) F ∗(D) := (π1)∗(π
∗
2D ∧ [Γ]) and F∗(D) := (π2)∗(π

∗
1D ∧ [Γ])

whenever the intersection current π∗
2D ∧ [Γ] and π∗

1D ∧ [Γ] makes sense. Here, [Γ]
denotes the sum (weighted by multiplicities) of the currents of integration on the
varieties that constitute Γ. In this paper, we are mainly interested in the pull-back
of a finite Borel measure—which can be viewed as a current of bidegree (k, k). Let
ν be a finite Borel measure on X. We will work out F ∗ν in detail here. Let φ be a
compactly supported continuous function on X.

〈F ∗ν, φ〉 = 〈π∗
2(ν) ∧ [Γ], π∗

1φ〉 :=
∑

1≤i≤N

mi〈ν, (π2|Γi
)∗(φ ◦ π1)〉.

Let Ω ⊆ X be a Zariski-open set and let (Y i,Ω, π2|Y i) be the holomorphic coverings
introduced prior to (2.1) for each i = 1, . . . , N . Then for each x ∈ Ω, (π2|Γi

)∗(φ ◦
π1)(x) is the sum of the values of φ ◦ π1 on the fiber π−1

2 {x} ∩ Γi. Thus we get

(π2|Γi
)∗(φ ◦ π1)(x) =

∑

y:(y,x)∈Γi

φ(y).

It is classical that (π2|Γi
)∗(φ◦π1)(x) extends continuously to X \Ω. Thus, for x ∈ X,

we get

(π2|Γi
)∗(φ ◦ π1)(x) =

∑′

y∈F †(x)

φ(y),

where
∑′ denotes the sum with y’s, repeated with multiplicity. Therefore, we have

〈F ∗ν, φ〉 :=
ˆ

X

∑′

y∈F †(x)

φ(y) dν(x).

If ν is a Borel probability measure then F ∗ν is a positive measure of total mass equal
to the topological degree of F . Let F be a holomorphic correspondence of topological
degree d onX and µ an F ∗-invariant measure onX, i.e., it satisfies F ∗µ = d·µ. Using
the definitions above, this is equivalent to: for any compactly supported continuous
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function (more generally, by density, for any µ-integrable function) φ on X, we have

(2.4)
1

d

ˆ

X

∑′

y∈F †(x)

φ(y) dµ(x) =

ˆ

X

φ dµ.

Let F1 and F2 be two meromorphic correspondences onX and ν be a probability mea-
sure on X. It easily follows from the above discussion that (F1 ◦ F2)

∗ν = F2
∗(F1

∗ν).
Thus, if µ is F ∗-invariant then µ is (F n)∗-invariant for every n ∈ N .

We end this section by discussing the Dinh–Sibony measure associated with cer-
tain holomorphic correspondences, which we had mentioned in Section 1. To discuss
the existence of the Dinh–Sibony measure for a holomorphic correspondence, we need
to define the pull-back of a smooth (p, p)-form. Let F be a holomorphic correspon-
dence on a compact complex manifold of dimension k. Consider a smooth (p, p)-form
α, 0 ≤ p ≤ k. Since α is also a current of bidegree (p, p), the prescription (2.3)
defines F ∗(α), since π∗

2α ∧ [Γ] makes sense as a (p, p)-current on |Γ|.
Consider a compact Kähler manifold (X,ω) of dimension k, and let

´

ωk = 1.
Consider a holomorphic correspondence F on X of topological degree d. We define
the dynamical degree of order p, 0 ≤ p ≤ k,

dp(F ) := lim
n→∞

(
ˆ

X

(F n)∗ωp ∧ ωk−p

)1/n

.

Note that dk(F ) is just the topological degree of F . We shall use dp instead of
dp(F ) whenever there is no confusion. We now define a sequence µn := d−n(F n)∗ωk.
Since ωk is a volume form on X, it follows that µn is a sequence of probability
measures. Under the hypothesis that dk−1 < d, Dinh–Sibony proved [12, Section 5]
that µn converges in the weak* topology to a F ∗-invariant probability measure µF .
In fact, they showed that if u is a quasi-p.s.h. function (a function that is locally the
sum of a smooth function and a plurisubharmonic function) then u is µF -integrable
and 〈µn, u〉 → 〈µF , u〉 as n → ∞. In particular, µF puts zero mass on pluripolar
sets. Dinh–Sibony also showed that preimages of a generic point are equidistributed
according to the measure µF , i.e., there exists a pluripolar subset E of X such that
for every a ∈ X \ E, we have

d−n(F n)∗δa → µF

as n → ∞. See [12, Sections 1 and 5] for a detailed discussion. We shall use the
above properties in Section 4 to prove the ergodicity of µF .

We end this section by mentioning that the Result 1.4 and the above equidis-
tribution property hold for a meromorphic correspondence (satisfying the degree
condition in Result 1.4) on a compact Kähler manifold. See [12] for more details.
Also, see a recent article by Vu [20] for an extension of these results to meromorphic
correspondences on compact non-Kähler manifolds.

3. Existence of F
∗-invariant and ergodic measures

Let F be a holomorphic correspondence on a complex manifold X. This section
is devoted to proving the existence of an F ∗-invariant and an F ∗-invariant ergodic
measure on X when X is compact. Before proving these results, we prove a lemma
about the complement of an almost invariant set. Recall that a Borel subset B of X
is almost invariant with respect to F and µ if there exists a Borel set B′ ⊆ B such
that F †(B′) ⊆ B and µ(B′) = µ(B). When F and µ are clear from the context, for
simplicity, we shall just say that B is almost invariant.
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Lemma 3.1. Let F be a holomorphic correspondence of topological degree d on
a complex manifold X and µ an F ∗-invariant Borel probability measure on X. Let
B be a Borel subset of X such that B is almost invariant with respect to F and
µ. Then Bc is almost invariant with respect to F and µ. Moreover, B and Bc are
almost invariant with respect to F n and µ for every n ∈ N .

Proof. Since B is almost invariant, there exists a Borel subset B′ of B such that
F †(B′) ⊆ B and µ(B′) = µ(B). Consider, C := {x ∈ Bc : F †(x) ∩ B 6= ∅}. Observe
that F †(Bc \ C) ⊆ Bc. Since C = F (B) ∩ Bc, C is a Borel set. Thus if we prove
µ(C) = 0, we are done. If we take φ := χB, the characteristic function of B, in (2.4),
we get

ˆ

X

χB dµ =

ˆ

B′

1 dµ+

ˆ

B\B′

∑′

y∈F †(x)

χB(y)

d
dµ(x) +

ˆ

C

∑′

y∈F †(x)

χB(y)

d
dµ(x).

By the definition of C and since µ(B′) = µ(B), we get

µ(B) ≥ µ(B) +

ˆ

C

1

d
dµ.

Thus µ(C) = 0. This proves that Bc is almost invariant with respect to F and µ.
We now prove that B is almost invariant with respect to F n and µ. We use

induction on n to prove this. First note that the measure µ is (F n)∗-invariant for
every n ∈ N. Assume that B is almost invariant with respect to F j and µ. We claim
that B is almost invariant with respect to F j+1 and µ. There exists a Borel subset B′

j

of B such that (F j)
†
(B′

j) ⊆ B and µ(B′
j) = µ(B). Consider B′

j+1 := B′
j \F j(B \B′),

where B′ is a Borel subset of B such that F †(B′) ⊆ B and µ(B′) = µ(B). It

follows that (F j)
†
(B′

j+1) ⊆ B′. Thus (F j+1)
†
(B′

j+1) ⊆ B. It remains to prove that

µ(B′
j+1) = µ(B). Since the measure µ is (F j)∗-invariant, it follows that, for any Borel

subset A of X, we have
1

dj
µ(F j(A)) ≤ µ(A).

See [16, Lemma 5.6] for a detailed proof. Since µ(B \B′) = 0, we get µ(F j(B \B′)) =
0. Thus B is almost invariant with respect to F n and µ for every n ∈ N. As in the
first paragraph of the proof, we show Bc is almost invariant with respect to F n and
µ for every n ∈ N. �

Given a set A such that F †(A) ⊆ A, we may not have F †(Ac) ⊆ Ac as in the case
of maps. However, in the presence of an F ∗-invariant measure µ, the above lemma
asserts in particular that Ac is almost invariant with respect to F and µ.

We first show the existence of an F ∗-invariant measure when the manifold X is
compact. If X is non-compact, then we cannot guarantee the existence of an F ∗-
invariant measure, for example, consider X = C and the holomorphic correspondence
induced by the graph of the map f(z) = z + 1.

Proposition 3.2. Let F be a holomorphic correspondence of topological de-
gree d on a compact complex manifold X. Then there exists an F ∗-invariant Borel
probability measure.

Proof. Let {νn} be a sequence of Borel probability measures. Consider

µn :=
1

n

n−1∑

j=0

(F j)∗νn
dj

.
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Since X is compact, the sequence {µn} is tight. Thus there exists a convergent
subsequence. Let {µnj

} be such subsequence with the limit µ. We next show that µ
is F ∗-invariant. For continuous ψ, we have

∣∣∣∣∣∣

ˆ

X

∑′

y∈F †(x)

ψ(y)

d
dµnj

(x)−
ˆ

X

ψ(x) dµnj
(x)

∣∣∣∣∣∣

=
1

nj

∣∣∣∣∣∣

ˆ

X

nj−1∑

i=0


 ∑′

y∈(F i+1)†(x)

ψ(y)

di+1
−

∑′

y∈F i†(x)

ψ(y)

di


 dνnj

(x)

∣∣∣∣∣∣

=
1

nj

∣∣∣∣∣∣

ˆ

X


 ∑′

y∈(Fnj )†(x)

ψ(y)

dnj


− ψ(x) dνnj

(x)

∣∣∣∣∣∣
≤ 2

nj

‖ψ‖∞.

As j → ∞, the last expression tends to 0. Thus, we get
ˆ

X

∑′

y∈F †(x)

ψ(y)

d
dµ(x) =

ˆ

X

ψ(x) dµ(x).

As ψ is arbitrary, it follows that µ is F ∗-invariant. �

The next proposition characterises ergodic measures among F ∗-invariant Borel
probability measures. As an application of this characterisation, we get the existence
of an F ∗-invariant ergodic measure when X is compact.

Proposition 3.3. Let F and X be as in Proposition 3.2. Then an F ∗-invariant
measure µ is ergodic if and only if µ cannot be written as a strict convex combination
of two distinct F ∗-invariant probability measures, i.e., there do not exist F ∗-invariant
Borel probability measures µ1 6= µ2 and 0 < λ < 1 such that µ = λµ1 + (1− λ)µ2.

Proof. Assume that µ is not ergodic. Therefore, there exist a Borel set B such
that B is almost invariant and 0 < µ(B) < 1. By Lemma 3.1, Bc is almost invariant.
Given a Borel subset A of X, let µ|A denotes the restriction measure, defined by
µ|A(C) := µ(A ∩ C) for any Borel subset C of X. It is easy to see that

1

µ(B)
µ|B and

1

µ(Bc)
µ|Bc

are F ∗-invariant Borel probability measures. Moreover,

µ = µ(B)

(
1

µ(B)
µ|B

)
+ µ(Bc)

(
1

µ(Bc)
µ|Bc

)
.

Thus µ can be written as a strict convex combination of two distinct F ∗-invariant
Borel probability measures.

Conversely, let µ be ergodic and assume that µ = λµ1 + (1 − λ)µ2 for some
0 < λ < 1. Since λ > 0, µ1 is absolutely continuous with respect to µ. Thus there is
a positive function ϕ such that, for all Borel subsets A,

(3.1) µ1(A) =

ˆ

A

ϕdµ.

Let B := {x ∈ X : ϕ(x) < 1}. We now prove that B is almost invariant with respect
to F and µ. Consider the sets

C1 := {x ∈ B : F †(x) ∩ Bc 6= ∅} and C2 := {x ∈ Bc : F †(x) ∩ B 6= ∅}.
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Observe that C1 = F (Bc) ∩B and C2 = F (B) ∩Bc. Thus C1 and C2 are Borel sets.
We claim that µ(C1) = 0. Since µ is F ∗-invariant, by (2.4), we get
ˆ

X

χB dµ =

ˆ

X

χB\C1
dµ+

ˆ

C1

∑′

y∈F †(x)

χB(y)

d
dµ(x) +

ˆ

C2

∑′

y∈F †(x)

χB(y)

d
dµ(x)

Therefore,

(3.2)

ˆ

C1

1 dµ =

ˆ

C1

∑′

y∈F †(x)

χB(y)

d
dµ(x) +

ˆ

C2

∑′

y∈F †(x)

χB(y)

d
dµ(x).

Similarly, since µ1 is F ∗-invariant, we also have
ˆ

C1

1 dµ1 =

ˆ

C1

∑′

y∈F †(x)

χB(y)

d
dµ1(x) +

ˆ

C2

∑′

y∈F †(x)

χB(y)

d
dµ1(x).

By using (3.1), we get
(3.3)
ˆ

C1

ϕdµ =

ˆ

C1


 ∑′

y∈F †(x)

χB(y)

d


ϕ(x) dµ(x) +

ˆ

C2


 ∑′

y∈F †(x)

χB(y)

d


ϕ(x) dµ(x).

Subtracting (3.2) from (3.3) gives

ˆ

C1

(ϕ− 1) dµ =

ˆ

C1


 ∑′

y∈F †(x)

χB(y)

d


 (ϕ(x)− 1) dµ(x)

+

ˆ

C2


 ∑′

y∈F †(x)

χB(y)

d


 (ϕ(x)− 1) dµ(x).(3.4)

Observe that, for every x ∈ C1,
∑′

y∈F †(x) χB(y)/d < 1. Also, ϕ(x)− 1 < 0 for every

x ∈ C1, and ϕ(x) − 1 ≥ 0 for every x ∈ C2. Thus, if µ(C1) > 0, then (3.4) does
not hold. This proves that B is almost invariant with respect to F and µ. Since the
measure µ is ergodic, either µ(B) = 0 or µ(B) = 1. If µ(B) = 1 then, by (3.1), we
get

µ1(X) =

ˆ

X

ϕdµ < µ(B) = 1,

which gives a contradiction to the fact that µ1 is a probability measure. Thus µ(B) =
0. Similarly, it can be shown that µ({x ∈ X : ϕ(x) > 1}) = 0. Therefore, ϕ is µ-
almost everywhere equal to 1. By (3.1), µ = µ1, and consequently, µ = µ1 = µ2.
Therefore, µ cannot be written as a strict convex combination of two distinct F ∗-
invariant Borel probability measures. �

Let F be a holomorphic correspondence on a compact complex manifold X. We
now use Proposition 3.3 to show the existence of an F ∗-invariant ergodic measure.
Observe that the set MF of F ∗-invariant Borel probability measures is a non-empty
compact convex set. Thus, by the Krein–Milman theorem, it follows that the set
of extreme points of MF is nonempty. By Proposition 3.3, it follows that an F ∗-
invariant ergodic measure always exists when X is compact.
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4. Examples

Let F be a holomorphic correspondence on a complex manifold X. In Section 3,
we showed that an F ∗-invariant and an F ∗-invariant ergodic measure always exist
when the manifold X is compact. This section is devoted to explicit examples of F ∗-
invariant ergodic measures. In particular, we prove Theorem 1.5, which gives exam-
ples of holomorphic correspondences with dynamically interesting ergodic measures.
We begin by giving an example alluded to in Section 1. If F is a holomorphic map,
then the definition of the almost invariance of a Borel set B with respect to F and µ
is equivalent to µ(B△F †(B)) = 0. In general, for holomorphic correspondences, this
is not the case. We now give an example of such holomorphic correspondence.

Example 4.1. An example of a holomorphic correspondence demonstrating that
an almost invariant Borel set B need not satisfy µ(B△F †(B)) = 0.

Consider a finitely generated rational semigroup S generated by G = {z2, z2/2}.
Let J(S) denote the Julia set of S. Then (see [4, Example 1]),

J(S) = {z ∈ C : 1 ≤ |z| ≤ 2}.

Let µG be the measure constructed in [4]. See [4, Example 1]) for the explicit formula
of the measure µG. It turns out that µG is the Dinh–Sibony measure associated with
the holomorphic correspondence FG in (1.2) induced by G. Since supp(µG) = J(S), we
have supp(µG) = {z ∈ C : 1 ≤ |z| ≤ 2}. Now consider a Borel set B := {z ∈ C : |z| >
2}. Since µG(B) = 0, it follows that B is almost invariant with respect to FG and µG .

Observe that F †
G(B) = {z ∈ C : |z| >

√
2}. Since supp(µG) = {z ∈ C : 1 ≤ |z| ≤ 2},

it follows that µG(F
†
G(B)△B) 6= 0. ◭

We now prove that the Dinh–Sibony measure given by Result 1.4 is ergodic as
in Definition 1.1. This gives explicit examples of F ∗-invariant ergodic measures. In
particular, the measure µG in Example 4.1 is ergodic. Observe that, the measure µG

in Example 4.1 is not invariant in the classical sense of ergodic theory.

The proof of Theorem 1.5. As noted in Section 2, there exists a pluripolar
subset E of X such that for every a ∈ X \ E, we have

d−n(F n)∗δa → µF

as n→ ∞. Equivalently, if φ is a continuous function on X, then

(4.1)
1

dn

∑′

y∈Fn†(a)

φ(y) →
ˆ

X

φ dµF

as n → ∞ for every a ∈ X \ E. Let ψ be µF -integrable. Since µF (E) = 0, by (4.1)
and by the dominated convergence theorem, we get

(4.2)

ˆ

X


 1

dn

∑′

y∈Fn†(x)

φ(y)


ψ(x) dµF (x) →

ˆ

X

φ dµF

ˆ

X

ψ dµF

as n → ∞. If ψ is bounded, then by the density of the continuous functions, (4.2)
holds if φ is µF -integrable.

Consider a Borel subset B of X that is almost invariant with respect to F and
µ. Let φ = χB. By Lemma 3.1, B and Bc are almost invariant with respect to F n
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and µ for every n ∈ N. Thus it follows that, for all n ∈ N,

1

dn

∑′

y∈Fn†(x)

φ(y) = φ(x)

for µF -almost every x ∈ X. Let ψ = 1 − χB. By (4.2), we get µF (B) · µF (B
c) = 0.

Thus we have either µF (B) = 0 or µF (B
c) = 0. Therefore, the Dinh–Sibony measure

µF is ergodic as in Definition 1.1. �

Remark 4.2. Given a meromorphic correspondences F on a complex manifold
X and a Borel subset B of X, F †(B) need not be a Borel subset of X (see [16]
for examples). This difficulty can be handled using tools from descriptive set theory.
Using these tools further as in [16], Theorem 1.2 can be proved when F is defined on a
compact manifold and for an F ∗ invariant measure that puts zero mass on pluripolar
sets. The above proof of Theorem 1.5 also holds with appropriate changes for the
meromorphic case.

Remark 4.3. Using Theorem 2.10 in [9] and the technique as in the last para-
graph of the proof of Theorem 1.5, it follows that the measures constructed in [9] are
also ergodic, as in Definition 1.1.

5. Preliminary results

This section is devoted to proving certain lemmas that are essential for the proof
of Theorem 1.2. We begin by proving a lemma that is fundamental and will be used
multiple times in this paper.

Lemma 5.1. Let F be a holomorphic correspondence of topological degree d on
a complex manifold X and µ an F ∗-invariant Borel probability measure on X. If
φ : X → C in L1(µ) is real valued and satisfies

∑′

y∈F †(x)

φ(y)

d
= φ(x)

for µ-almost every x ∈ X, then the sets {x ∈ X : φ(x) > t} and {x ∈ X : φ(x) < t}
are almost invariant with respect to F and µ for any t ∈ R.

Proof. We first prove that B := {x ∈ X : φ(x) > 0} is almost invariant with
respect to F and µ. Let

C1 := {x ∈ B : F †(x) ∩ Bc 6= ∅} and C2 := {x ∈ Bc : F †(x) ∩ B 6= ∅}.
Take φ := φ · χB in (2.4) to get

ˆ

X

φ · χB dµ =

ˆ

B\C1

∑′

y∈F †(x)

φ(y)

d
dµ(x) +

ˆ

C1

∑′

y∈F †(x)∩B

φ(y)

d
dµ(x)

+

ˆ

C2

∑′

y∈F †(x)∩B

φ(y)

d
dµ(x).

Since φ satisfies
∑′

y∈F †(x) φ(y)/d = φ(x) for µ-almost every x ∈ X, we have

ˆ

B

φ dµ =

ˆ

B\C1

φ dµ+

ˆ

C1


φ(x)−

∑′

y∈F †(x)∩Bc

φ(y)

d


 dµ(x) +

ˆ

C2

∑′

y∈F †(x)∩B

φ(y)

d
dµ(x).
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Therefore, we get
ˆ

C1

∑′

y∈F †(x)∩Bc

φ(y)

d
dµ(x) =

ˆ

C2

∑′

y∈F †(x)∩B

φ(y)

d
dµ(x).

If y ∈ F †(x) ∩ Bc, then φ(y) ≤ 0, and if y ∈ F †(x) ∩ B, then φ(y) > 0. Thus the
above equality holds only if µ(C2) = 0. This proves that Bc is almost invariant with
respect to F and µ. By invoking Lemma 3.1, B is almost invariant with respect to
F and µ.

Fix t ∈ R. Observe that the function φ− t satisfies

∑′

y∈F †(x)

(φ− t)(y)

d
=

( ∑′

y∈F †(x)

φ(y)

d

)
− t = (φ− t)(x)

for µ-almost every x ∈ X. Thus {x ∈ X : φ(x) − t > 0} = {x ∈ X : φ(x) > t} is
almost invariant. Since t is arbitrary, it follows that {x ∈ X : φ(x) > t} is almost
invariant for every t ∈ R. It only remains to show that {x ∈ X : φ(x) < t} is almost
invariant. Note that {x ∈ X : φ(x) < t} = {x ∈ X : − φ(x) > −t} and −φ satisfies

∑′

y∈F †(x)

−φ(y)
d

= −φ(x)

for µ-almost every x ∈ X. Thus {x ∈ X : φ(x) < t} is also almost invariant with
respect to F and µ for every t ∈ R. �

We now use the above lemma to characterise ergodic measures in terms of func-
tions satisfying certain invariance property.

Lemma 5.2. Let F be a holomorphic correspondence of topological degree d on
a complex manifold X and µ an F ∗-invariant Borel probability measure on X. The
measure µ is ergodic if and only if for φ : X → C in L1(µ),

∑′

y∈F †(x)

φ(y)

d
= φ(x)

for µ-almost every x ∈ X implies that φ is equal to a constant µ-almost everywhere.

Proof. Consider a Borel set B that is almost invariant with respect to F and µ.
Let φ := χB, the characteristic function of B. Since B is almost invariant, we have

∑′

y∈F †(x)

χB(y)

d
= 1 = χB(x)

for µ-almost every x ∈ B. By Lemma 3.1, Bc is also almost invariant with respect
to F and µ. Thus

∑′

y∈F †(x)

χB(y)

d
= 0 = χB(x)

for µ-almost every x ∈ Bc. Owing to the hypothesis, χB is equal to a constant
µ-almost everywhere. Therefore, either µ(B) = 0 or µ(B) = 1.

Now, we prove the sufficiency part. We consider real and imaginary parts sepa-
rately. Observe that the real part of φ, ℜ(φ), satisfies

∑′

y∈F †(x)

ℜ(φ)(y)
d

= ℜ(φ)(x)
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for µ-almost every x ∈ X. By Lemma 5.1, for any t ∈ R, At := {x ∈ X : ℜ(φ)(x) > t}
is almost invariant with respect to F and µ. Since µ is ergodic, for any t ∈ R, either
µ(At) = 0 or µ(At) = 1. Let t′ be the minimum value of t such that µ(At′) = 0. It
easily follows that ℜ(φ) is equal to the constant t′ µ-almost everywhere. Similarly, it
can be shown that the imaginary part of φ is equal to a constant µ-almost everywhere.
This proves that the function φ is equal to a constant µ-almost everywhere. �

We next state a result that will be useful in proving a version of the maximal
inequality in our setting. A proof can be found in [21, Theorem 1.16].

Result 5.3. Let U : L1(ν) → L1(ν) be a positive linear operator with ‖U‖ ≤ 1.
For ψ ∈ L1(ν) a real valued function, define ψ0 = 0, ψn = ψ + Uψ + U2ψ + · · ·
+Un−1ψ for n ≥ 1. Let N > 0 be an integer and ΨN = max0≤n≤N ψn. Then

ˆ

{x : ΨN (x)>0}

ψ dν ≥ 0.

We use the above result to prove a version of the maximal inequality in our
setting. Let F be a holomorphic correspondence and µ an F ∗-invariant measure. We
apply Result 5.3 to the operator UF : L

1(µ) → L1(µ) defined by

UF (ϕ)(x) :=
∑′

y∈F †(x)

ϕ(y)

d
.

Observe that UF is a positive linear operator with ‖UF‖ = 1.

Corollary 5.4. Let F be a holomorphic correspondence of topological degree d
on a complex manifold X and µ an F ∗-invariant Borel probability measure on X. If
φ ∈ L1(µ) is real valued and

Eα :=



x ∈ X : sup

n≥1

1

n

n−1∑

j=0

∑′

y∈F j†(x)

φ(y)

dj
> α



 ,

then
ˆ

Eα∩A

φ dµ ≥ αµ(Eα ∩ A),

if A is an almost invariant set with respect to F and µ.

Proof. Let ψ = φ− α. In the notations of Result 5.3,

Eα =

∞⋃

N=0

{x : ΨN(x) > 0}.

By Result 5.3, it follows that
´

Eα
ψ dµ ≥ 0 and therefore

´

Eα
φ dµ ≥ αµ(Eα). Now,

if A is an almost invariant set with respect to F and µ, then we apply the same
argument to ψ = φ− α and the F ∗-invariant probability measure 1

µ(A)
µ|A, to get

ˆ

Eα∩A

φ dµ ≥ αµ(Eα ∩ A).

This finishes the proof. �
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6. The proof of Theorem 1.2

Before starting the proof of Theorem 1.2, we recall a notation. Recall that
∑′

denotes the sum with y’s, repeated with multiplicity. A careful reader will observe
that the proofs in Section 5 (and the proof of Theorem 1.2) are purely measure
theoretic and the complex structure does not play any role in the proofs. Thus these
results can be extended to more general multi-valued maps. We are now ready for

The proof of Theorem 1.2. Note that, by considering real and imaginary parts
separately, it is enough to consider only real valued φ. Define, for x ∈ X,

φ′(x) := lim inf
n→∞

1

n

n−1∑

j=0

∑′

y∈F j†(x)

φ(y)

dj
,

φ′′(x) := lim sup
n→∞

1

n

n−1∑

j=0

∑′

y∈F j†(x)

φ(y)

dj
.

We now prove that
∑′

y∈F †(x) φ
′(y)/d = φ′(x) and

∑′

y∈F †(x) φ
′′(y)/d = φ′′(x) hold for

µ-almost every x ∈ X. Observe that

(6.1)
n+ 1

n


 1

n+ 1

n∑

j=0

∑′

y∈F j†(x)

φ(y)

dj


 =

∑′

y∈F †(x)

1

d


 1

n

n−1∑

j=0

∑′

z∈F j†(y)

φ(z)

dj


+

1

n
φ(x).

By taking the limit along a subsequence for which the left-hand side of (6.1) converges

to the liminf, gives us φ′(x) ≥ ∑′

y∈F †(x) φ
′(y)/d holds for µ-almost every x ∈ X. The

limit along a subsequence for which the right-hand side of (6.1) converges to the

liminf, gives us φ′(x) ≤ ∑′

y∈F †(x) φ
′(y)/d holds for µ-almost every x ∈ X. A similar

argument for φ′′, gives us the desired equalities.
We next prove that φ′ = φ′′ µ-almost everywhere. For rationals α > β, define

Eα,β := {x ∈ X : φ′(x) < β and φ′′(x) > α}.
Since

∑′

y∈F †(x) φ
′(y)/d = φ′(x) and

∑′

y∈F †(x) φ
′′(y)/d = φ′′(x) hold for µ-almost every

x ∈ X, by Lemma 5.1, it follows that {x ∈ X : φ′(x) < β} and {x ∈ X : φ′′(x) > α}
are almost invariant. It is now easy to see that Eα,β is almost invariant. Now, we
apply Corollary 5.4 to the setting here. Observe that Eα,β ⊆ Eα, where Eα is the set
defined in Corollary 5.4. Since Eα,β is almost invariant, we have

ˆ

Eα,β

φ dµ ≥ αµ(Eα,β).

Similar argument, by replacing φ by −φ, shows that
ˆ

Eα,β

φ dµ ≤ βµ(Eα,β).

The above two inequalities show that µ(Eα,β) = 0 for α > β. Since {x ∈ X : φ′(x) <
φ′′(x)} = ∪{Eα,β : α > β with α, β ∈ Q}, it follows that φ′ = φ′′ µ-almost every-
where. Set Φ := φ′. Therefore,

lim
n→∞

1

n

n−1∑

j=0

∑′

y∈F j†(x)

φ(y)

dj
= Φ(x) for µ-almost every x ∈ X.
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Next, we show that Φ ∈ L1(µ), as a simple application of Fatou’s Lemma. It is
easy see that

|Φ(x)| ≤ lim inf
n→∞

1

n

n−1∑

j=0

∑′

y∈F j†(x)

|φ(y)|
dj

.

By Fatou’s Lemma and, since µ is F ∗-invariant, we get

ˆ

X

|Φ| dµ ≤ lim inf
n→∞

ˆ

X

1

n

n−1∑

j=0

∑′

y∈F j†(x)

|φ(y)|
dj

dµ =

ˆ

X

|φ| dµ.

Since φ ∈ L1(µ), it follows that Φ ∈ L1(µ).
It only remains to show that

´

X
Φ dµ =

´

X
φ dµ. Define, for k ∈ Z and n ≥ 1,

Dn
k :=

{
x ∈ X :

k

n
≤ φ′′(x) <

k + 1

n

}
.

Observe that, for ǫ > 0 small, we have Dn
k ⊆ E(k/n)−ǫ, where E(k/n)−ǫ is the set defined

in Corollary 5.4. Also, note that Dn
k = {x ∈ X : φ′′(x) ≥ k/n} ∩ {x ∈ X : φ′′(x) <

(k + 1)/n}. By Lemma 3.1 and Lemma 5.1, it follows that Dn
k is almost invariant.

By invoking Corollary 5.4, we see that

ˆ

Dn
k

φ dµ ≥
(
k

n
− ǫ

)
µ(Dn

k ).

Since ǫ > 0 is arbitrary, we have
ˆ

Dn
k

φ dµ ≥ k

n
µ(Dn

k ).

Now, by the definition of Dn
k and the last inequality,

ˆ

Dn
k

φ′′ dµ ≤ k + 1

n
µ(Dn

k ) ≤
1

n
µ(Dn

k ) +

ˆ

Dn
k

φ dµ.

Summing over k gives us

ˆ

X

φ′′ dµ ≤ µ(Dn
k )

n
+

ˆ

X

φ dµ.

Since this holds for all n ≥ 1, we have
´

X
φ′′ dµ ≤

´

X
φ dµ. Applying this to −φ

instead of φ, we get
´

X
φ′ dµ ≥

´

X
φ dµ. Since φ′ = φ′′ µ-almost everywhere, we have

ˆ

X

Φ dµ =

ˆ

X

φ′ dµ =

ˆ

X

φ dµ.

Lastly, if µ is ergodic as in Definition 1.1, then, by Lemma 5.2, Φ is a constant
µ-almost everywhere and the constant is precisely

´

X
φ dµ. �
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