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Essential norms of composition operators and
multipliers acting between different Hardy spaces

Frédéric Bayart

Abstract. We compute the essential norms of inclusion operators, composition operators and

multipliers acting from a closed subspace of some Lp-space into a subspace of some Lq-space, with

p > q.

Eri Hardyn avaruuksien välillä kuvaavien yhdistely- ja

tulo-operaattoreiden oleelliset normit

Tiivistelmä. Tässä työssä lasketaan avaruuden Lp suljetun aliavaruuden toisen avaruuden Lq

aliavaruuteen kuvaavien sisältymis-, yhdistely- ja tulo-operaattoreiden oleellinen normi, kun p > q.

1. Introduction

1.1. General context. Let (Ω1, E , µ) and (Ω2,F , ν) be two measure spaces, let
p, q ∈ [1,+∞], let Xp, Yq be two closed subspaces of Lp(Ω1) (resp. Lq(Ω2)) and let
Tϕ : Xp → Yq be a linear map depending on some “symbol” ϕ. Our aim in this paper
is to obtain estimates of the essential norm of Tϕ by quantities depending only on
the symbol ϕ. To emphasize that we work with different values of p and q, we will
denote ‖T‖p→q (resp. ‖T‖e,p→q) the norm (resp. the essential norm) of any operator
T : Xp → Yq. In particular, we will be concerned with composition operators and
multiplication operators.

1.2. Composition operators. Let ϕ be a holomorphic self-map of the unit
disc D and let Cϕ(f) = f ◦ ϕ be the associated composition operator. Let also
p, q ∈ [1,+∞]. The characterization of compact composition operators Cϕ : H

p(D) →
Hq(D) and the computation of the essential norm ‖Cϕ‖e,p→q have been investigated by
many mathematicians (see for instance [20], [5], [12] or [7] and the references therein).
In particular, the case p ≤ q is fairly well understood and ‖Cϕ‖e,p→q is estimated by
quantities depending only on ϕ and involving either Nevanlinna counting functions
or Carleson measures or integrals.

The case p > q ≥ 1 remains more mysterious. Jarchow and Gobeler have shown
([14, 11]) that Cϕ is compact if and only if E = Eϕ = {ξ ∈ T : |ϕ∗(ξ)| = 1} has
(Lebesgue) measure 0, where ϕ∗ denotes the radial limit function of ϕ. Upper and
lower estimates for ‖Cϕ‖e,p→q have been obtained in [12] when q > 1 and generalized
to q = 1 in [9] but they do not coincide.

Our first main result in this paper is to get an estimation for ‖Cϕ‖e,p→q in the
spirit of what has been done in the case p ≤ q. Thus assume that σ(E) > 0 where
σ is the normalized Lebesgue measure on the circle. The map ϕ∗

|E : E → ϕ∗(E) is

a nonsingular transformation from (E, σ) into (ϕ∗(E), σ) meaning that it does not
collapse a set of positive measure into a set of measure 0. We shall denote by Fϕ the
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Radon–Nikodym derivative of σ|E ◦ (ϕ∗)−1
|ϕ∗(E) with respect to σ|ϕ∗(E). It turns out

that ‖Cϕ‖e,p→q is comparable to ‖Fϕ‖
1/q
s with s = p/(p− q).

Theorem 1.1. Let 1 ≤ q < p, let ϕ : D → D be holomorphic with σ(Eϕ) > 0.
Set s = p/(p− q). Then

‖Fϕ‖
1/q
Ls ≤ ‖Cϕ‖e,p→q ≤ 2‖Fϕ‖

1/q
Ls .

Moreover, when q = 2, ‖Cϕ‖e,p→2 = ‖Fϕ‖
1/2
s .

The proof of this theorem will be given in Section 3 in the wider context of
composition operators on the Hardy spaces of the complex unit ball Bd. It will use
general results on inclusion operators inspired by [2, 18] which will be developed in
Section 2.

1.3. Multipliers on Hardy spaces of Dirichlet series. We turn to our
second example, multipliers on Hardy spaces of Dirichlet series. The Hardy spaces
of Dirichlet series Hp were introduced by Hedenmalm, Lindqvist and Seip [13] for
p = 2 and by the author [1] for the remaining cases in the range p ∈ [1,+∞]. A way
to define these spaces is to consider first the following norm in the space of Dirichlet
polynomials (i.e. all finite sums

∑N
n=1 ann

−s, an ∈ C, N ∈ N):
∥∥∥∥∥

N∑

n=1

ann
−s

∥∥∥∥∥

p

p

= lim
T→+∞

1

2T

ˆ T

−T

∣∣∣∣∣

N∑

n=1

ann
it

∣∣∣∣∣

p

dt.

The space Hp, 1 ≤ p < +∞, is then defined as the completion of the Dirichlet
polynomials under this norm. Functions in Hp are Dirichlet series which converge
in the half-plane C1/2 and are holomorphic there, where for a > 0, Ca = {s ∈
C : ℜe(s) > a}. We also need to introduce H∞, the space of Dirichlet series that
define a bounded holomorphic function on the half-plane C0. It is endowed with the
norm ‖D‖∞ = supℜe(s)>0 |D(s)|.

The multipliers of Hp have been characterized in [13, 1]. A holomorphic self-map
D : C1/2 → C1/2 induces a bounded map MD : Hp → Hp, f 7→ Df if and only if
D ∈ H∞. In that case, ‖MD‖p→p = ‖D‖∞. Very recently, the multipliers between
different Hardy spaces have been studied in [10]. In that paper, it is shown that

• there is no bounded multiplier from Hp into Hq if 1 ≤ p < q < +∞;
• for 1 ≤ q < p < +∞, D induces a bounded map from Hp into Hq if and only

if D ∈ Hr, with r = pq/(p− q). In that case, ‖MD‖p→q = ‖D‖r and

‖D‖q ≤ ‖MD‖e,p→q ≤ ‖D‖r;

• for p > 1, ‖MD‖e,p→p = ‖D‖∞; for p = 1,

1

2
‖D‖∞ ≤ ‖MD‖e,1→1 ≤ ‖D‖∞.

We fully complete the picture by computing the essential norm in the remaining
cases:

Theorem 1.2. (a) Let 1 ≤ q < p and D ∈ Hr with r = pq/(p − q). Then
‖MD‖e,p→q = ‖D‖r.

(b) Let D ∈ H∞. Then ‖MD‖e,1→1 = ‖D‖∞.

Our method of proof will use the Bohr lift and harmonic analysis on the polytorus.
As a consequence, we will get results corresponding to Theorem 1.2 for multipliers
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on Hardy spaces of the polytorus which seem new even for the circle (see [21, 10] for
details in this case).

1.4. Multipliers on Lebesgue spaces. Our final example deals with multi-
pliers on Lebesgue spaces without any extra structure. Let (Ω,A, µ) be a σ-finite
measure space and let u : Ω → Ω be measurable. It is only recently that the essen-
tial norm of the multiplier Mu : f 7→ uf , as an operator on Lp(µ), p ≥ 1, has been
computed (see [3, 23]). We shall do the same when Mu is viewed as an operator
from Lp(µ) to Lq(µ) with 1 ≤ q < p (continuity has been characterized in [22] and
is equivalent to u ∈ Lr(µ), r = pq/(p − q) and compactness has been characterized
in [15] in the more general context of weighted composition operators). In order to
describe that result, we recall that the measure space can be decomposed as a dis-
joint union Ω = Ωd ∪ Ωa, where Ωd,Ωa ∈ A, the restriction µd of µ to Ωd is a diffuse
measure and the restriction µa of µ to Ωa is purely atomic. Namely,

• for any measurable subset A of Ωd with µd(A) > 0, for every α ∈ (0, µd(A)),
there exists A′ ∈ A with A′ ⊂ A and µd(A

′) = α.
• Ωa is the disjoint union of a sequence (An) of atoms (any measurable subset

of An has measure equal to 0 or µa(An)).

We shall also recall that (Ω,A, µ) is a separable measure space provided there exists
a sequence (Bn) ⊂ A such that, for any B ∈ A, for any ε > 0, one may find n ≥ 1
such that µ(B∆Bn) < ε. Under this assumption, for any p ∈ [1,+∞), Lp(µ) is
separable: the set of steps functions 1Bn

spans a dense subspace of Lp(µ).

Theorem 1.3. Let 1 ≤ q < p and set r = pq/(p− q). Let (Ω,A, µ) be a σ-finite
separable measure space and let u ∈ Lr(µ). Then ‖Mu‖e,p→q = ‖u|Ωd

‖r.

If we allow p = +∞, we lose a factor 1/2 in the estimate of the essential norm.

Theorem 1.4. Let q ≥ 1, let (Ω,A, µ) be a σ-finite separable measure space
and let u ∈ Lq(µ). Then 1

2
‖u|Ωd

‖q ≤ ‖Mu‖e,∞→q ≤ ‖u|Ωd
‖q.

1.5. A general argument. We shall use several times the following lemma,
inspired by [4, Proposition 2.3].

Lemma 1.5. Let X, Y be Banach spaces, let T ∈ L(X, Y ) and let λ > 0.

a) Let (Rn) ⊂ L(Y ) be a sequence of bounded operators such that ‖Rn‖ ≤ λ
for all n. Assume that (Rn) converges pointwise to 0. Then

‖T‖e,X→Y ≥
1

λ
lim sup

n
‖RnT‖X→Y .

b) Let (Qn) ⊂ L(X) be a sequence of compact operators and let Rn = IdX−Qn.
Then ‖T‖e,X→Y ≤ lim infn ‖TRn‖X→Y .

Proof. a) Let K : X → Y be compact. Then

‖T −K‖X→Y ≥
1

λ
‖RnT −RnK‖X→Y ≥

1

λ
‖RnT‖X→Y −

1

λ
‖RnK‖X→Y .

Now, since K is compact, (‖Rn‖) is bounded and (Rn) converges pointwise to 0; it
follows from a standard compactness argument that ‖RnK‖X→Y tends to 0. Hence

‖T −K‖X→Y ≥
1

λ
lim sup

n
‖RnT‖X→Y

and we conclude by taking the infimum over the compact operators K : X → Y .
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b) This is an easy consequence of

‖T‖e,X→Y = ‖TRn + TQn‖e,X→Y ≤ ‖TRn‖X→Y . �

Notation. Throughout this paper, we shall use the following notations. For
p ≥ 1, p∗ will stand for the conjugate exponent of p. We shall denote by σ the
rotation invariant probability measure on Sd. For two points z, w ∈ Cd, we write

〈z, w〉 =
d∑

j=1

zjwj

and |z| =
√

〈z, z〉. If we consider two functions f : E → R, we write f . g is there
is some c > 0 such that f ≤ cg and f ≍ g if f . g and g . f .

2. Inclusion operators

2.1. Some results on functions on the ball. Let ϕ : Bd → Bd be holomorphic.
For almost every ξ ∈ Sd, ϕ

∗(ξ) = limr→1 ϕ(rξ) exists. Thus we may regard ϕ as a
map of Bd into Bd and we will usually keep on writing ϕ for this map, and reserve
the notation ϕ∗ for the map from Sd into Bd as defined above.

The existence of inner functions on Bd will play an essential role. In particular,
we shall use the following corollary (see [16]): for every G : Sd → (0,+∞) continuous,
one may find f ∈ H∞(Bd) such that |f | = G a.e. on Sd. In particular this yields the
following lemma.

Lemma 2.1. Let 1 ≤ q < p and set s = p/(p−q). Then for all F : Sd → [0,+∞)
measurable,

‖F‖Ls(σ) = sup

(
ˆ

Sd

F |g|q dσ : g ∈ BHp(Bd)

)
.

Proof. This follows from

‖F‖s = sup

(
ˆ

Sd

FGdσ : G : Sd → (0,+∞) continuous, ‖G‖s∗ = 1

)

and from ‖g‖p = 1 provided g ∈ H∞(Bd) is such that |g| = G1/q a.e. on Sd with
‖G‖s∗ = 1 (here, s∗ = p/q). �

For ξ ∈ Sd, the admissible approach region Γ(ξ) is defined as

Γ(ξ) =
{
z ∈ Bd : |1− 〈z, ξ〉| < 1− |z|2

}
.

As a consequence of Fubini’s theorem, one can prove (see e.g. [18, equation (2.1)])
that for all nonnegative mesurable functions f and for all positive Borel measures µ,

(2.1)

ˆ

Bd

f(z) dµ(z) ≍

ˆ

Sd

ˆ

Γ(ξ)

f(z)
dµ(z)

(1− |z|2)d
dσ(ξ).

If f is a function on Bd, its maximal function Mf is defined on Sd by Mf(ξ) =
supz∈Γ(ξ) |f(z)|. The maximal function has the following Lp-boundedness property
([19, Theorem 5.4.10]): for all p > 1, there exists A(p) > 0 such that, for all f ∈
Hp(Bd), ‖Mf‖Lp(σ) ≤ A(p)‖f‖Hp.

2.2. Essential norms of inclusion operators on Hp(Bd). Let µ be a positive
Borel measure on Bd. We are intested in the inclusion operator Jµ : H

p(Bd) → Lq(µ)
when p > q ≥ 1. This operator has already been investigated by Pau in [18] when µ is
supported in Bd. With this assumption, it is shown that Jµ is continuous if and only
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if µ̂ : ξ ∈ Sd 7→
´

Γ(ξ)
dµ(z)

(1−|z|2)d
∈ Ls(σ) where s = p/(p − q). For the general case, we

denoty by µB the restriction of µ to Bd and by µS its restriction to Sd. Since functions
in Hp(Bd) are only defined almost everywhere on Sd, we restrict ourselves to the case
where µS = Fdσ for some nonnegative F ∈ L1(σ). Under these assumptions, we can
characterize the continuity of Jµ and compute its essential norm.

Theorem 2.2. Let p > q ≥ 1, let s = p/(p − q) and let µ = µB + Fdσ be a
positive Borel measure on Bd. Then Jµ : H

p(Bd) → Lq(µ) is bounded if and only if

a) µ̂ : ξ ∈ Sd 7→

ˆ

Γ(ξ)

dµ(z)

(1− |z|2)d
belongs to Ls(σ),

b) F belongs to Ls(σ).

Moreover, provided the above assumptions are satisfied, ‖Jµ‖e,p→q = ‖F‖
1/q
s .

Proof. That a) and b) imply the continuity of Jµ follows partly from Pau’s result
and partly from Hölder’s inequality. Indeed, for f ∈ Hp(Bd),

ˆ

Sd

|f |qF dσ ≤

(
ˆ

Sd

|f |p dσ

)q/p(ˆ

Sd

F s dσ

)1/s

where we have used Hölder’s inequality with the exponents p/q and s. Conversely
assume that Jµ is bounded. Again, a) follows from Pau’s result. To prove b) we
observe that for all g ∈ Hp(Bd) with norm 1,

ˆ

Sd

F |g|q dσ ≤ ‖Jµ‖
q
p→q

and we conclude by Lemma 2.1.
Let us now compute the essential norm. Our first task is to show that if µ is

supported in Bd, then Jµ is compact. Since Hp(Bd) is reflexive (recall that p > 1)
we only have to show that Jµ is completely continuous. Let (fn) be a weakly-null
sequence in Hp(Bd). Using (2.1), we have to prove that

(2.2)

ˆ

Sd

ˆ

Γ(ξ)

|fn(z)|
q dµ(z)

(1− |z|2)d
dσ(ξ) → 0.

Let ε > 0, let r ∈ (0, 1) and let us set Γr(ξ) = {z ∈ Γ(ξ) : |z| ≤ r}. On the one hand,
ˆ

Sd

ˆ

Γ(ξ)\Γr(ξ)

|fn(z)|
q dµ(z)

(1− |z|2)d
dσ(ξ) ≤

ˆ

Sd

|Mfn(ξ)|
q

ˆ

Γ(ξ)\Γr(ξ)

dµ(z)

(1− |z|2)d
dσ(ξ)

. ‖fn‖
q
p

(
ˆ

Sd

|µ̂r(ξ)|
s dσ(ξ)

)1/s

(2.3)

where we have used Hölder’s inequality with exponents s and s∗ = p/q and we have
set µr the restriction of µ to Γ(ξ)\Γr(ξ). Observe that, for all r ∈ (0, 1) and all
ξ ∈ Sd, µ̂r(ξ) ≤ µ̂(ξ) and µ̂ ∈ Ls(σ). We prove that µ̂r(ξ) tends to 0 as r tends to 1
for almost all ξ ∈ Sd. Write

µ̂r(ξ) =

ˆ

Γ(ξ)

Fr(z) dµ(z)

with Fr(z) = 1
Bd\rBd

(z) 1
(1−|z|2)d

, z ∈ Γ(ξ). Let ξ be such that µ̂(ξ) < +∞ (this holds

for a.e. ξ since µ̂ ∈ Ls(σ)). Then 1/(1 − |z|2)d ∈ L1(Γ(ξ), µ) and Fr(z) → 0 as
r → 1. Lebesgue’s theorem implies that µ̂r(ξ) tends to zero. Therefore, by a second
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application of Lebesgue’s theorem, ‖µ̂r‖s tends to zero and it follows, since (‖fn‖p)
is bounded, that for r sufficiently close to 1 and for all n ≥ 1,

ˆ

Sd

ˆ

Γ(ξ)\Γr(ξ)

|fn(z)|
q dµ(z)

(1− |z|2)d
dσ(ξ) ≤ ε.

Such a value of r being fixed, we now observe that (fn) converges uniformly to 0 in
rBd. This implies easily that, for n large enough,

ˆ

Sd

ˆ

Γr(ξ)

|fn(z)|
q dµ(z)

(1− |z|2)d
dσ(ξ) ≤ ε.

Hence (2.2) is proved and Jµ is completely continuous.
Let us return now to the general case. Let T : Hp(Bd) → Lq(µ), f 7→ f1Bd

. Then
T = i ◦ JµB

where i is the inclusion operator Lq(µB) → Lq(µ). Since JµB
is compact,

T is also compact. Moreover, for f ∈ Hp(Bd),

‖(Jµ − T )f‖Lq(µ) =

(
ˆ

Sd

|f |q dµS

)1/q

=

(
ˆ

Sd

|f |qF dσ

)1/q

≤ ‖f‖p · ‖F‖1/qs

by Hölder’s inequality applied to the conjugate exponents p/q and s.
Conversely, let ε > 0 and let g ∈ BHp be such that

ˆ

Sd

F |g|q dσ ≥ ‖F‖s − ε.

Let also I be an inner function on Bd with I(0) = 0 and let us consider gk = Ikg.
Then (gk)k converges weakly to 0 (see [12, p. 37]). Therefore,

‖Jµ‖e,p→q ≥ lim sup
k→+∞

‖Jµ(gk)‖q
‖gk‖p

.

Now, ‖gk‖p = ‖g‖p = 1 whereas

‖Jµ(gk)‖q ≥

(
ˆ

Sd

|g|qF dσ

)1/q

≥ (‖F‖s − ε)1/q .

Since ε > 0 is arbitrary, we get the lower inequality ‖Jµ‖e,p→q ≥ ‖F‖
1/q
s . �

Remark 2.3. By the above theorem, we observe that if µ has support in Bd,
then Jµ is continuous if and only if Jµ is compact.

3. Composition operators

3.1. Composition operators on Hardy spaces of the ball. We turn to
composition operators on the Hardy spaces of the ball Bd. We fix ϕ a holomor-
phic self-map of Bd such that Cϕ induces a bounded composition operator on some
(therefore, on all) Hardy spaces Hp(Bd). In particular, this implies the following facts
which we shall use repeatedly:

(H1) no set of positive measure in Sd is mapped by ϕ onto a set of measure 0 in Sd

(see Corollary 3.38 of [6]);
(H2) for any f ∈ Hp(Bd), (f ◦ ϕ)∗(ξ) = f(ϕ∗(ξ)) for a.e. ξ ∈ Sd (see Lemma 1.6 of

[17]).
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We point out that, in what follows, we could replace the assumption Cϕ is continuous

on Hp by these two assumptions. They are satisfied for any holomorphic self-map of
Bd when d = 1.

Suppose now that σ(E) > 0, where E = Eϕ = {ξ ∈ Sd : |ϕ(ξ)| = 1}. Then
ϕ∗
|E induces a nonsingular transformation from (E, σ) into (ϕ∗(E), σ). Let Fϕ be the

Radon–Nikodym derivative of σ|E ◦ (ϕ∗)−1
|ϕ∗(E) with respect to σ|ϕ∗(E). We extend Fϕ

on Sd outside ϕ∗(E) by setting it equal to 0. If σ(E) = 0, we just set Fϕ = 0 on Sd.
We intend to prove the following general version of Theorem 1.1.

Theorem 3.1. Let 1 ≤ q < p and set s = p/(p − q). For all analytic maps
ϕ : Bd → Bd inducing a bounded operator Cϕ : H

p(Bd) → Hp(Bd),

‖Fϕ‖
1/q
s ≤ ‖Cϕ‖e,p→q ≤ min(2, ‖Pq‖)‖Fϕ‖

1/q
s

where Pq : L
q(σ) → Hq(Bd) is the Szegö projection.

In particular, for q = 2, we get ‖Cϕ‖e,p→q = ‖Fϕ‖
1/2
s .

Proof. If σ(E) = 0, then Cϕ is compact by [12, Corollary 2] and there is nothing
to prove. Therefore we will assume σ(E) > 0. Let µϕ = σ ◦ (ϕ∗)−1 be the pullback
measure of σ by ϕ∗, which is a measure on Bd. Its restriction to Sd is Fϕdσ. The
change of variables formula shows that, for any f ∈ Hp(Bd)

‖Cϕ(f)‖q = ‖Jµϕ
(f)‖Lq(µϕ).

However, without any extra work, this does not rely directly ‖Cϕ‖e,p→q to ‖Jµϕ
‖e,p→q.

We first give a proof working for q > 1 (recall that the Szegö projection is bounded
if and only if q > 1).

Let us introduce

Wq : L
q(µϕ) → Lq(σ), Rq : H

q(Bd) → Lq(σ),
g 7→ g ◦ ϕ∗, f 7→ f ∗.

The maps Wq and Rq are both isometries and from (f ◦ϕ)∗ = f ◦ϕ∗, we deduce that

Rq ◦ Cϕ = Wq ◦ Jµϕ
: Hp(Bd) → Lq(σ).

Observe also that PqRq = IdHq . Let finally K : Hp(Bd) → Lq(µϕ) be a compact
operator. Then

‖Jµϕ
−K‖p→q ≥ ‖WqJµϕ

−WqK‖p→q ≥ ‖RqCϕ −WqK‖p→q

≥ ‖Pq‖
−1‖Cϕ − PWqK‖p→q ≥ ‖Pq‖

−1‖Cϕ‖e,p→q

which shows that ‖Cϕ‖e,p→q ≤ ‖Pq‖·‖Jµϕ
‖e,p→q. Conversely, let us define Vq : L

q(σ) →
Lq(µϕ) by duality: for f ∈ Lq(σ) and g ∈ Lq∗(µϕ),

ˆ

Bd

Vqf ḡ dµϕ =

ˆ

Sd

fWq∗g dσ.

In particular, ‖Vq‖ ≤ 1 since Wq∗ is an isometry. Observe also that VqWq = IdLq(µϕ)

since for (f, g) ∈ Lq(µϕ)× Lq∗(µϕ),
ˆ

Bd

VqWq(f)ḡ dµϕ =

ˆ

Sd

Wq(f)Wq∗(g)dσ =

ˆ

Bd

f ḡ dµϕ
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by the change of variables formula. Now, let K : Hp(Bd) → Hq(Bd) be a compact
operator. Then

‖Cϕ −K‖p→q ≥ ‖RqCϕ −RqK‖p→q ≥ ‖WqJµϕ
−RqK‖p→q

≥ ‖Jµϕ
− VqRqK‖p→q ≥ ‖Jµϕ

‖e,p→q

which shows the reverse inequality, ‖Jµϕ
‖e,p→q ≤ ‖Cϕ‖e,p→q. Now we conclude be-

cause Fµϕ
= Fϕ by definition.

We now prove the upper inequality for all values of q ≥ 1 and for the constant 2.
Let n ≥ 1 and let Qn : H

p → Hp, f 7→ f
((
1− 1

n

)
·
)
. Then Qn is a compact operator

with norm less than 1. Let Rn = I −Qn, ‖Rn‖ ≤ 2. Then for all n ≥ 1,

‖Cϕ‖e,p→q ≤ lim inf
n

‖CϕRn‖p→q.

Let f ∈ Hp(Bd) with ‖f‖ ≤ 1 and let r ∈ (0, 1).

‖CϕRn(f)‖
q =

ˆ

Sd

|Rn(f) ◦ ϕ|
q dσ =

ˆ

rBd

|Rn(f)|
q dµϕ +

ˆ

Bd\rBd

|Rn(f)|
q dµϕ

=: I1,n(r) + I2,n(r).

By Cauchy integral formula and by [24, Theorem 4.17], for any z ∈ rBd,

|Rn(f)(z)| ≤
1

n
sup
w∈rBd

|f ′(w)| ≤
C(r, d)

n
‖f‖p

so that I1,n(r) ≤ C(ϕ, r, d)/nq where C(ϕ, r, d) only depends on ϕ, r and d.

Let us turn to I2,n(r) and let us denote by µr the restriction of µϕ to Bd\Bd. Then
by combining Pau’s argument (see inequality (2.3)) and the proof of Theorem 2.2,
we get that

I2,n(r) =

ˆ

Bd

|Rn(f)|
q dµr ≤ (‖Fϕ‖s + A(p)‖µ̂r‖s) ‖Rn(f)‖

q
p

≤ 2q‖Fϕ‖s + 2qA(p)‖µ̂r‖s

where A(p) only depends on p. But as in the proof of Theorem 2.2, we get that
‖µ̂r‖s → 0 as r → 1. Putting everything together, we finally get

lim inf
n→+∞

‖CϕRn‖p→q ≤ 2‖Fϕ‖
1/q
s ,

which achieves the proof of the upper estimate.
We conclude by providing a proof for the lower estimate. Let ME be the operator

of multiplication by 1E from Hq(Bd) to Lq(σ). It is shown in [12] that

‖Cϕ‖e,p→q ≥ ‖MECϕ‖p→q.

Now,

‖MECϕ‖
q
p→q = sup

g∈BHp

ˆ

E

|g ◦ ϕ|q dσ = sup
g∈BHp

ˆ

Sd

|g|q dµϕ

= sup
g∈BHp

ˆ

Sd

|g|qFϕ dσ = ‖Fϕ‖s

by Lemma 2.1. �

3.2. Weighted composition operators. Without extra-work, we can also give
an estimate of the essential norm of weighted composition operators. Let u : Bd → C

and ϕ : Bd → Bd be holomorphic. Then the weighted composition operator uCϕ is



Essential norms of composition operators and multipliers acting between different Hardy spaces 721

defined by (uCϕ)(f) = u · (f ◦ ϕ). Again, we assume that Cϕ induces a bounded
operator on Hp(Bd). If σ(E) > 0, then ϕ∗

|E induces a nonsingular transformation

from (E, σ) into (ϕ∗(E), σ). Let Fu,ϕ be the Radon–Nikodym derivative of |u|qσ|E ◦
(ϕ∗)−1

|ϕ∗(E) with respect to σ|ϕ∗(E).

Corollary 3.2. Let 1 ≤ q < p and set s = p/(p − q). For all analytic maps
ϕ : Bd → Bd and u : Bd → Cd such that Cϕ : H

p(Bd) → Hp(Bd) and uCϕ : H
p(Bd) →

Hq(Bd) are bounded,

‖Fu,ϕ‖
1/q
s ≤ ‖uCϕ‖e,p→q ≤ min(2, ‖Pq‖)‖Fu,ϕ‖

1/q
s

where Pq : L
q(σ) → Hq(Bd) is the Szegö projection.

Proof. Let µϕ = (|u|qσ) ◦ (ϕ∗)−1 be the pullback measure of |u|q dσ by ϕ, which

is a measure on Bd. The change of variables formula now writes for any f ∈ Hp(Bd),

‖Cϕ(f)‖q = ‖Jµϕ
(f)‖Lq(µϕ).

The proof of the upper estimate follows exactly that of Theorem 3.1. For the lower
estimate, we can do exactly the same proof provided we show that

‖uCϕ‖e,p→q ≥ ‖(1Eu)Cϕ‖p→q.

Let K be a compact operator and let I be an inner function on Bd such that I(0) = 0.
Then for any f in the unit ball of Hp(Bd),

‖uCϕ −K‖p→q ≥ ‖uCϕ(I
nf)‖q − ‖K(Inf)‖q.

Since (Inf) goes weakly to zero, and since

‖uCϕ(I
nf)‖qq =

ˆ

Sd

|u(ξ)|q|In ◦ ϕ∗|q|f ◦ ϕ∗|q dσ →

ˆ

E

|u(ξ)|q|f ◦ ϕ∗|q dσ,

we get the result. Observe that the last part of the proof uses (H1) and (H2) to
ensure the a.e. convergence of |In ◦ ϕ∗| to 1E. �

The most important case in the previous theorem happens when ϕ(z) = z. Then
uCϕ is the multiplication operator Mu. In the setting, one can say more, since
‖Mu‖e,p→q ≤ ‖Mu‖p→q = ‖u‖r where r = pq/(p− q). Since moreover Fu,ϕ = |u|q, we
get ‖Mu‖e,p→q = ‖u‖r. The extension of this result to Hardy spaces of the polydisc
and to Dirichlet series will be the subject of the next section.

4. Multipliers on spaces of Dirichlet series

4.1. Some facts on Hardy spaces of Dirichlet series. We shall need the
following facts on Dirichlet series. We refer to [10] and the references therein for
details. Let N ≥ 1 and let D(s) =

∑
n≥1 ann

−s be a Dirichlet series. We denote by
DN the restriction of D to the first N prime numbers: DN(s) =

∑
gpd(n)≤pN

ann
−s

where gpd(n) denotes the biggest prime divisor of n and (pn)n≥1 is the increasing
family of prime numbers. Then the map PN : Hp → Hp, D 7→ DN is a contraction
for any p ∈ [1,+∞] and when p ∈ [1,+∞), PN(f) → f in Hp as N → +∞. If
p = +∞, the convergence holds in the weak-star topology and it is still true that
‖PNf‖∞ → ‖f‖∞ as N → +∞ (see [8, Chapter 5]). In the following, we will set
Hp

N = PN (H
p).

Hardy spaces of the infinite polytorus and of Dirichlet series are linked by the
Bohr point of view. Let f(s) =

∑N
n=1 ann

−s be a Dirichlet polynomial. Any integer
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n factorizes as n = pα1

1 · · · pαr
r . We define the Bohr lift of f by

L(f) =
N∑

n=1

anz
α(n)

where α(n) = (α1, . . . , αr, 0, . . . ) provided n = pα1

1 · · · pαr
r . Then L induces an iso-

metric isomorphism between Hp and Hp(T∞) for all p ∈ [1,+∞]. Its inverse will be
denoted by B and will be called the Bohr transform. Observe that L induces an
isometric isomorphism between Hp

N and Hp(TN).

4.2. Essential norm of multipliers. This subsection is devoted to the proof
of Theorem 1.2.

Proof of Theorem 1.2, part (a). By [10, Theorem 9] we only need to prove the
lower bound. Let K : Hp → Hq be a compact operator, let N ≥ 1 and let PN : Hp →
Hp

N be the canonical projection. We set DN = PN(D) and KN = PNKPN . Then
DN induces a multiplier MDN

: Hp
N → Hq

N , KN is a compact operator from Hp
N to

Hq
N and

‖MD −K‖p→q ≥ ‖PNMDPN − PNKPN‖p→q = ‖MDN
−KN‖p→q.

We move to the polydisc TN by considering FN = L(DN) and we still denote KN =
L ◦KN ◦ B. We intend to show that

‖MFN
−KN‖p→q ≥ ‖FN‖Hr(TN ) = ‖DN‖r.

Letting N to +∞ will yield the result, since ‖DN‖r → ‖D‖r.
We set t = q/(p−q) and G = |FN |

t. Then G ∈ Lp(TN) and ‖G‖pp = ‖FN‖
r
r. There

exists a sequence of trigonometric polynomials (Qn) such that ‖Qn − G‖p → 0 and

Qn → G a.e. on T
N . For a fixed n ≥ 1, let Pn =

∏N
j=1 z

d
j where d ≥ 0 is sufficiently

large so that PnQn ∈ Hp(TN) and let for k ≥ 1 Ek,n = zk1PnQn. Then Ek,n belongs
to Hp(TN ), |Ek,n| = |Qn| on TN and Ek,n(z) → 0 as k → +∞ for any z ∈ DN .
Therefore, by [10, Lemma 13], (Ek,n)k converges to 0 in the weak-star topology of
Hp(TN), therefore in its weak topology since Hp is reflexive. Now,

‖MFN
(Ek,n)‖q =

(
ˆ

TN

|Qn|
q|FN |

q

)1/q

≥

(
ˆ

TN

|G|q|FN |
q

)1/q

−

(
ˆ

TN

|Qn −G|q|FN |
q

)1/q

.

Therefore,

‖MFN
−KN‖p→q ≥ lim sup

k→+∞

‖MFN
(Ek,n)−KN(Ek,n)‖q

‖Ek,n‖p

≥
1

‖Qn‖p

((
ˆ

TN

|G|q|FN |
q

)1/q

−

(
ˆ

TN

|Qn −G|q|FN |
q

)1/q
)

≥
1

‖Qn‖p

(
‖FN‖

r/q
r − ‖Qn −G‖1/qp ‖FN‖

1/q
r

)

by Hölder’s inequality applied to the pair of conjugated exponents p/q and p/(p−q).
We let n to +∞ to get

‖MFN
−KN‖p→q ≥

‖FN‖
r/q
r

‖FN‖tr
= ‖FN‖r. �
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Remark 4.1. Observe that the above proof is based on two arguments similar
to those introduced in the previous sections: we use that we can compute the norm of
an element in Lr(TN ) using only functions in BHp and we use the existence of inner
functions on the polydisc to get a sequence going weakly to zero with prescribed
modulus at the distinguished boundary. Here Fourier analysis arguments simplify
the proofs.

Proof of Theorem 1.2, part (b). Arguing as above, it is sufficient to prove that,
for each N ≥ 1, for each F ∈ H∞(TN ), F 6= 0, ‖MF‖e,1→1 ≥ ‖F‖∞. The main
difficulty we are facing is that H1 is no longer reflexive and it is more difficult to
exhibit sequences converging weakly to 0. Our strategy (inspired by [23]) will be,
given ε > 0, to construct a bounded sequence (Rn) in H1(TN ) so that, for all m > n,
´

TN |F | · |Rn −Rm| ≥ (‖F‖∞ − ε)‖Rn −Rm‖1. This construction will be achieved by
regularizing functions peaking around {z ∈ TN : |F (z)| ≥ ‖F‖∞ − ε}.

Thus let ε > 0, ε < min(1/4, ‖F‖∞) and let us denote by µ the Haar measure on
TN . There exists a decreasing sequence of measurable subsets (An) of TN such that

{
|F (x)| ≥ ‖F‖∞ − ε for all x ∈ An,

µ(An+1) ≤
1
4
µ(An).

If we take the convolution product of the nonnegative functions 1
µ(An)

1An
with the

Féjer kernel, we get for each n ≥ 1 a sequence of trigonometric polynomials (Gn,k)k
such that

Gn,k
k→+∞
−−−−→

1

µ(An)
1An

a.e.,

∀n, k ≥ 1, 0 ≤ Gn,k ≤
1

µ(An)
,

∀n, k ≥ 1, ‖Gn,k‖1 ≤ 1.

Using Egorov’s theorem, we obtain for each n ≥ 1 a trigonometric polynomial Qn

and a measurable set Bn ⊂ TN such that

µ(TN\Bn) ≤ εµ(An),

∣∣∣∣Qn −
1

µ(An)
1An

∣∣∣∣ ≤ ε on Bn,

0 ≤ Qn ≤
1

µ(An)
, ‖Qn‖1 ≤ 1.

We then multiply Qn by some unimodular polynomial Pn =
∏N

j=1 z
d
j to get a holo-

morphic polynomial Rn with the same modulus as Qn. We claim that the following
fact is true.

Fact. For any m > n ≥ 1,

ˆ

TN\An

|Rn − Rm| < 4ε and

ˆ

An

|Rn − Rm| ≥
1

8
.

Let us admit the fact for a while to achieve the proof of Theorem 1.2. The
sequence (Rn) is a bounded sequence of H1(TN ). Let K : H1(TN ) → H1(TN ) be
compact. Extracting if necessary, we may assume that (K(Rn)) converges. Let
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m > n be such that ‖KRm −KRn‖ ≤ ε. Then

‖(MF −K)(Rn − Rm)‖1 ≥ ‖MF (Rn −Rm)‖1 − ε ≥

ˆ

An

|F | · |Rn − Rm| − ε

≥ (‖F‖∞ − ε)

ˆ

An

|Rn − Rm| − ε.

By the fact,
ˆ

TN

|Rn −Rm| ≤

ˆ

An

|Rn − Rm|+

ˆ

TN\An

|Rn − Rn| ≤ (1 + 32ε)

ˆ

An

|Rn −Rm|

so that

‖(MF −K)(Rn − Rm)‖1 ≥
‖F‖∞ − ε

1 + 32ε
‖Rn − Rm‖1 − 8ε‖Rn − Rm‖1.

Since ε > 0 is arbitrary, we get ‖MF‖e,1→1 ≥ ‖F‖∞.
It remains to prove the fact. We first observe that

ˆ

An

|Rn − Rm| ≥

ˆ

An∩Bn∩Bm\Am

|PnQn − PmQm|.

Now, provided z ∈ An ∩Bn ∩ Bm\Am,

|PnQn(z)| ≥
1

µ(An)
− ε and |PmQm(z)| ≤ ε

so that
ˆ

An

|Rn −Rm| ≥ µ(An ∩ Bn ∩ Bm\Am)

(
1

µ(An)
− 2ε

)

≥
(
µ(An\Am)− µ(TN\Bn)− µ(TN\Bm)

)( 1

µ(An)
− 2ε

)

≥
1

4
µ(An) ·

(
1

µ(An)
− 2ε

)
≥

1

4
−

εµ(An)

2
≥

1

8

since ε < 1/4. Furthermore,
ˆ

TN\An

|Rn − Rm| ≤

ˆ

TN\An

|Rn|+

ˆ

TN\An

|Rm| ≤

ˆ

TN\An

|Rn|+

ˆ

TN\Am

|Rm|.

We just need to study
ˆ

TN\An

|Rn| ≤

ˆ

(TN∩Bn)\An

|Rn|+

ˆ

TN\Bn

|Rn| ≤ ε+ µ(TN\Bn)×
1

µ(An)
≤ 2ε. �

A corollary of our proof is the following result.

Corollary 4.2. Let N ∈ N ∪ {+∞}, let 1 ≤ q < p and let u ∈ Hr(TN ) with
r = pq/(p− q). Then ‖Mu‖e,p→q = ‖u‖r.

It remains one case studied in [10] where we are not able to give a formula for
the essential norm: for q ≥ 1 and D ∈ Hq, it is shown in [10] that

1

2
‖D‖q ≤ ‖MD‖e,∞→q ≤ ‖D‖q.

We can at least improve this for q = 2.

Proposition 4.3. Let D ∈ H2. Then ‖MD‖e,∞→2 = ‖D‖2.
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Proof. Let QN be the orthogonal projection of H2 onto span(1, 2−2, · · · , N−s)
and let RN = Id −QN which has norm 1. By Lemma 1.5,

‖MD‖e,∞→2 ≥ lim sup
N→+∞

‖RNMD‖.

Now, let us fix N ≥ 1 and n ≥ 1 such that 2n > N . Then

‖RNMD‖∞→2 ≥ ‖RNMD(2
−ns)‖2 ≥ ‖MD(2

−ns)‖2 − ‖QNMD(2
−ns)‖2 ≥ ‖D‖2

since QNMD(2
−ns) = 0. �

4.3. Spectrum of multipliers. We end up this section by improving a result
of [10] regarding the spectrum of multipliers.

Theorem 4.4. Let D ∈ H∞ be a non zero Dirichlet series with associated
multiplication operator MD ∈ L(Hp), p ∈ [1,+∞). Then σc(MD) ⊂ D(C0)\D(C0).

Here, σc(Md) denotes the continuous spectrum of MD, namely the set of complex
numbers λ such that MD −λ is injective and has dense but not closed range. In [10],

it was only shown that σc(MD) ⊂ D(C0)\D(C1/2).

Proof. Since MD−λ = MD−λ, it is sufficient to show that if MD has dense range,

then D does not vanish on C0 (it is easy to show that σ(MD) ⊂ D(C0), see [10]
for details). Let N ≥ 1. If MD has dense range, then MDN

: Hp
N → Hp

N has dense
range too. Assume that DN(s0) = 0 for some s0 ∈ C. Since pointwise evaluation at
s0 ∈ C0 is continuous on Hp

N , MDN
(Hp

N) ⊂ {E ∈ Hp
N : E(s0) = 0} cannot be dense,

a contradiction.
Therefore, for all N ≥ 1, DN do not vanish on C0. Now, ‖DN‖∞ ≤ ‖D‖∞ and

by Montel’s theorem in H∞, upon taking a subsequence, there exists D̃ ∈ H∞ such
that (DNj

) converges uniformly to D̃ on any half-plane Cσ, for all σ > 0. Now, since
the Dirichlet series D converges absolutely in C1/2, (DNj

(s)) converges to D(s) for

any s ∈ C1/2. Hence D = D̃ on C1/2, therefore on C0. We can now use Hurwitz
theorem to conclude that D does not vanish on C0. �

5. Multipliers on Lebesgue spaces

5.1. The case p 6= +∞. In this subsection we intend to prove Theorem 1.3.
The main new difficulty is the construction of sequences of functions tending weakly
to 0. Indeed, in this general context, we can neither use Fourier analysis tools like
in the proof of Theorem 1.2 nor the existence of inner functions which helped us to
construct sequences tending weakly to zero. This is this part of the proof which will
require that (Ω,A, µ) is separable.

Proof of Theorem 1.3. Let Ω = Ωd ∪Ωa where Ωd ∩Ωa = ∅, µd = µ|Ωd
is diffuse

and µa = µ|Ωa
is purely atomic. Let (An) be a disjoint sequence of atoms such that

Ωa =
⋃

n An.
We first show that ‖Mu‖e,p→q ≤ ‖u|Ωd

‖r. For N ∈ N, let us define

uN =
∑

n≤N

an1An
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where u = an a.e. on An and KN = MuN
f . Since f is a.s. constant on each An, KN

is a finite rank operator. Hence, it is compact. Now, for any f ∈ Lp(µ),

‖Muf −MuN
f‖qq =

ˆ

Ωd

|uf |q dµ+

ˆ

⋃
n>N An

|uf |q dµ

≤ ‖u|Ωd
‖qr‖f‖

q
p +

(
ˆ

⋃
n>N An

|u|r dµ

)q

‖f‖qp

where we have used Hölder’s inequality with 1
p
+ 1

r
= 1

q
. Hence, lim infN ‖Mu −

MuN
‖p→q ≤ ‖u|Ωd

‖r which yields the first inequality.
Conversely, since (Ω,A, µ) is separable, there exists a sequence (Bn) of subsets of

Ωd and belonging to A such that, for any B ∈ A, for any ε > 0, one may find n ≥ 1
such that µ(B∆Bn) < ε. We first construct a sequence (gn) in Lp(µ) going weakly
to 0. Let us fix for a while n ≥ 1. For I ⊂ {1, . . . , n}, I 6= ∅, let us set

CI =
⋂

k∈I

Bk\

(
⋃

k∈Ic

Bk

)
.

Then the sets CI are paiwise disjoint. Moreover, for any k ∈ {1, . . . , n}, Bk =⋃
k∈I CI . If

´

CI
|u|r dµ = 0, we set gn = |u|r on CI . Otherwise, since |u|rdµd is still a

diffuse measure, we may split CI into a partition C ′
I ∪ C ′′

I such that
ˆ

C′

I

|u|r dµd =

ˆ

C′′

I

|u|r dµd =
1

2

ˆ

CI

|u|r dµd.

In that case, we set

gn =

{
|u|r/p on C ′

I ,

−|u|r/p on C ′′
I ,

so that
´

CI
gn dµd = 0. We finally define gn on Ωd\

⋃n
k=1Bk by

gn =

{
|u|r/p on Ωd\

⋃n
k=1Bk,

0 on Ωa.

We can observe that for any k ≤ n,
´

Bk
gn dµd = 0. Hence, for all k ∈ N,

´

Bk
gn dµd

goes to zero as n tends to +∞. Since (1Bn
)n≥1 spans a dense subspace of Lp∗(µd),

and gn = 0 on Ωa, this ensures that (gn) goes weakly to 0 in Lp(µ). Hence,

‖Mu‖e,p→q ≥ lim sup
n

‖Mu(gn)‖q
‖gn‖p

.

Now, ‖gn‖p = ‖u|Ωd
‖
r/p
r and

‖Mugn‖q =

(
ˆ

Ωd

|u|rq|u|q dµd

)1/q

= ‖u|Ωd
‖r/qr

so that ‖Mu‖e,p→q ≥ ‖u|Ωd
‖r as guessed. �

The case p = +∞. The proof in this case will share some similarities with
that of Proposition 4.3. The key tool will be the use of the conditional expectation.
The main difference with the previous subsection is that we now work in the target
space.

Proof of Theorem 1.4. The proof of the upper bound is completely similar to
that of Theorem 1.3. Details are left to the reader. Regarding the lower bound,
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we may and shall assume that Ω = Ωd. Indeed, if P is the canonical projection
Lq(Ω, µ) → Lq(Ωd, µd) and K : L∞(Ω) → Lq(Ω) is compact, then ‖Mu −K‖∞→q ≥
‖Mu|Ωd

− PK‖∞→q. In the same vein we may and shall assume that (Ω,A, µ) is a
finite measure space. Indeed, writing Ω =

⋃
n Ωn where Ωn ⊂ Ωn+1 and µ(Ωn) < +∞

for any n, a similar argument shows that ‖Mu‖e,∞→q ≥ ‖Mu|Ωn
‖e,∞→q.

Let (Bn) be a sequence in A such that, for any B ∈ A, for any ε > 0, there exists
n ≥ 1 with µ(B∆Bn) < ε. Let An be the σ-algebra generated by B1, . . . , Bn and
for f ∈ L1(µ), let Qn(f) = E(f |An) be the conditional expectation of f given An.
Each Qn is a contraction of Lq(Ω) and it is a compact operator. Moreover, for any
f ∈ Lq(Ω), Qn(f) goes to f : this is true if f is a linear combination of step functions
and we argue by density of these functions, using ‖Qn‖ ≤ 1. Let RN = I−Qn which
satisfies ‖Rn‖ ≤ 2 and (Rn) converges to 0 pointwise. Therefore by Lemma 1.5, one
obtains

‖Mu‖e,∞→q ≥
1

2
lim sup
n→+∞

‖RnMu‖∞→q.

Now, for n ≥ 1, I ⊂ {1, . . . , n}, I 6= ∅, let us set

CI =
⋂

k∈I

Bk\

(
⋃

k∈Ic

Bk

)
.

We define a function gn as follows. If
´

CI
|u| dµ = 0, we set gn = 1 on CI . Otherwise,

since |u|dµ is still a diffuse measure, we may split CI into a partition C ′
I ∪ C ′′

I such
that

ˆ

C′

I

|u| dµ =

ˆ

C′′

I

|u| dµ =
1

2

ˆ

CI

|u| dµ.

In that case, we set

gn =

{
1 on C ′

I ,

−1 on C ′′
I .

We finally define gn on Ω\
⋃n

k=1Bk by gn = 1. This construction ensures that, for all
A ∈ An,

´

A
ugn dµ = 0. This yields QnMugn = 0. Now,

‖RnMu‖∞→q ≥ ‖Mugn‖∞→q − ‖QnMugn‖∞→q ≥ ‖Mugn‖∞→q ≥

(
ˆ

Ω

|u|q
)1/q

.

This finishes the proof of the lower bound ‖Mu‖e,∞→q ≥
1
2
‖u‖q. �

When q = 2, Qn is an orthogonal projection and ‖Rn‖ ≤ 1 for all n ≥ 1.
Therefore we obtain the following corollary:

Corollary 5.1. Let (Ω,A, µ) be a σ-finite separable measure space and let u ∈
L2(µ). Then ‖Mu‖e,∞→2 = ‖u|Ωd

‖2.

5.3. The case 1 ≤ p < q. Our method also gives the essential norm of
‖Mu‖e,p→q when 1 ≤ p < q. The situation here is easier. Indeed, for any u : Ω → Ω
measurable, Mu ∈ L(Lp, Lq) if and only if u|Ωd

= 0 and supn |u(An)|/µ(An)
1/r < +∞

where r = pq/(p− q) and u is a.e. equal to u(An) on An (see [22]).

Proposition 5.2. Let 1 ≤ p < q and set r = pq/(p − q). Let (Ω,A, µ) be a
σ-finite measure space and let u : Ω → Ω be measurable such that u|Ωd

= 0 and

supn |u(An)|/µ(An)
1/r < +∞. Then

‖Mu‖e,p→q = lim sup
n→+∞

|u(An)|

µ(An)1/r
.
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Proof. Without loss of generality, we can assume that the sequence (An) is
infinite and µ(An) 6= 0 for all n (otherwise, Mu is always compact since it has finite
rank). For s ∈ {p, q}, denote Qs

nf =
∑n

k=1 1Ak
f ∈ Ls(µ) and Rs

n = IdLs −Qn. Then
‖Rs

n‖ = 1 and by Lemma 1.5,

lim sup
n

‖Rq
nMu‖ ≤ ‖Mu‖e,p→q ≤ lim inf

n
‖MuR

p
n‖.

Now, for any f ∈ Lp, Rq
nMuf = MuR

p
nf =

∑+∞
k=n+1 u(Ak)1Ak

f =: Tnf . We conclude
by [22, Theorem 1.4] that

‖Tn‖p→q = sup
k≥n

|u(An)|

µ(An)1/r
. �

5.4. Weighted composition operators. In the spirit of [15] or of Section 3.2
of the present paper, our method of proof has applications to weighted composition
operators. Let (Ω1,A, µ) and (Ω2,B, ν) be two σ-finite measure spaces, let u : Ω2 → C

be measurable and let ϕ : Ω1 → Ω2 be measurable and nonsingular. The weighted
composition operator uCϕ is defined for f ∈ Lp(µ) by

uCϕf(x) = u(x) · f ◦ ϕ(x), x ∈ Ω2.

For q ≥ 1, the measure µq defined for any A ∈ A by

µq(A) =

ˆ

ϕ−1(A)

|u|q dν

is absolutely continuous with respect to µ. Its Radon–Nikodym derivative will be
denoted by dµq/dµ. It satisfies the important property

‖uCϕf‖Lq(ν) = ‖MFq,u,ϕ
f‖Lq(µ)

where Fq,u,ϕ = (dµq/dµ)
1/q. Then Theorem 1.3 and its proofs yields the following

statement.

Theorem 5.3. Let (Ω1,A, µ) and (Ω2,B, ν) be two σ-finite measure spaces with
Ω1 separable, let u : Ω2 → C be measurable and let ϕ : Ω1 → Ω2 be measurable
and nonsingular. Let finally p > q ≥ 1. Then ‖uCϕ‖e,p→q = ‖Fq,u,ϕ|Ω1,d

‖r where
r = pq/(p− q) and Ω1,d is the diffuse part of Ω1.
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