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Area operators on large Bergman spaces

Hicham Arroussi, Jari Taskinen, Cezhong Tong
∗ and Zixing Yuan

Abstract. We completely characterize those positive Borel measures µ on the open unit disk

D for which the area operator Aµ : A
p

ϕ
→ Lq(T) is bounded. Here, the indices 0 < p, q < ∞ are

arbitrary and ϕ belongs to a certain class W0 of exponentially decreasing weights. Accordingly, the

proofs require techniques adapted to such weights, like tent spaces, Carleson measures for Ap

ϕ
-spaces,

Kahane–Khintchine inequalities, and decompositions of the unit disc by (ρ, r)-lattices, which differ

from the conventional decompositions into subsets with essentially constant hyperbolic radii.

Pinta-alaoperaattorit suurissa Bergman-avaruuksissa

Tiivistelmä. Karakterisoimme ne avoimen yksikkökiekon D positiiviset Borel-mitat µ, joille

pinta-alaoperaattoriAµ : A
p

ϕ
→ Lq(T) on rajoitettu. Indeksit 0 < p, q < ∞ voivat tässä olla mielival-

taiset, ja funktio ϕ kuuluu tiettyyn eksponentiaalisesti laskevien painojen luokkaan W0. Todistuk-

sissa tarvitaan tällaisiin painoihin soveltuvia tekniikoita, kuten teltta-avaruuksia, Ap

ϕ
-avaruuksien

Carleson-mittoja, Kahane–Khintchine-epäyhtälöitä sekä yksikkökiekon hajotelmia (ρ, r)-hiloihin,

jotka poikkeavat tavanomaisista, hyperboliselta halkaisijaltaan vakiomittaisista joukoista koostu-

vista hajotelmista.

1. Introduction

Given a positive Borel measure µ on the open unit disk D of the complex plane
C, an area operator Aµ is the sublinear operator defined by

(1.1) Aµ(f)(ζ) =

ˆ

Γ(ζ)

|f(z)| dµ(z)
1− |z| ,

where f is a holomorphic function on D, ζ ∈ T = {z ∈ C : |z| = 1} and Γ(ζ) is the
Stolz angle (see below for definition). The importance of area operators stems from
their apparent connections to nontangential maximal functions, Littlewood–Paley
operators, multipliers, Poisson integrals, tent spaces and so on. The purpose of this
paper is to characterize those measures µ for which Aµ is a well-defined and bounded
operator Ap

ϕ → Lq(T), where 0 < p, q < ∞ and Ap
ϕ is a weighted Bergman space on

D with ϕ belonging to a weight class W0.
We recall that in the setting of Hardy spaces, the boundedness of Aµ from Hp

to Lq(T) was studied by Cohn [6] in the case 0 < p = q < ∞ and by Gong, Lou and
Wu [9] in the cases 0 < p ≤ q < ∞ and 1 ≤ q < p < ∞. As for Bergman spaces,
Wu [17] discussed the boundedness of Aµ from Ap

α to Lq(T) for 0 < p ≤ q < ∞
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and 1 ≤ q < p < ∞. Here, Ap
α, α > −1, denotes the weighted Bergman space

with standard radial power weight. The first named author [1] extended this topic to
the Bergman spaces with exponential weights ω introduced by Borichev, Dhuez and
Kellay in [5]. He provided a sufficient condition for the boundedness of Aµ : A

p
ω →

Lq(T), where 0 < p ≤ q < ∞ or 1 ≤ q < p < ∞, and left the necessity open. By for
example [10], the class of the exponential weights in [5] is a subset of he class W0,
which, as mentioned, is the weight class to be treated in this paper. Finally, it is
worth mentioning that the second named author together with Pau and Wang [15]
characterized the bounded area operators on the Bergman spaces in the unit ball of
C

N , N > 1.
Let us next introduce the necessary notation and definitions. First, we write

H(D) for the space of all analytic functions in D. Given p with 0 < p < ∞ and
a positive Borel measure µ on D, we denote by Lp

µ = Lp(D, dµ) the space of p-
integrable functions with respect to the measure µ on D. In the case µ equals the
normalized Lebesgue area measure on D, i.e., dµ = π−1 dx dy = dA, the spaces are
denoted simply by Lp. Also, L∞ stands for the Banach space of bounded, measurable
functions on D, endowed with the standard unweighted sup-norm. Recall that for
0 < p < 1, Lp

µ is only a quasi-Banach space, i.e., a vector space with a quasi-norm
defining a complete metrizable topology. (A quasi-norm ‖ · ‖ in a vector space X
satisfies the norm axioms except that instead of the triangle inequality there only
holds

‖x+ y‖ ≤ C(‖x‖+ ‖y‖) for a constant C ≥ 1, for all x, y ∈ X.)

Given 0 < p < ∞, the Banach or quasi-Banach space of p-summable sequences of
complex numbers is denoted in a standard way by ℓp, and ℓ∞ denotes the Banach
space of bounded sequences. Also, Hp with 0 < p < ∞ stands for the standard Hardy
spaces on D or T. Given any (quasi-)Banach space X, its (quasi-)norm is denoted by
‖·‖X. Given a quasi-Banach space X, a mapping F : X → X is a sublinear operator,
if ‖F (x+ y)‖X ≤ ‖F (x)‖X + ‖F (y)‖X and ‖F (λx)‖X = |λ|‖F (x)‖X for all x, y ∈ X
and all scalars λ. Such an operator is bounded, if there exists a constant C > 0 such
that ‖F (x)‖X ≤ C‖x‖X for all x ∈ X.

Let C0 be the space of all continuous real valued functions on D that vanish at
the boundary of D. We denote

L =

{
ρ ∈ C0 : ‖ρ‖L = sup

z,w∈D,z 6=w

|ρ(z)− ρ(w)|
|z − w| < ∞

}
,

and the class L0 is defined to consist of those ρ ∈ L with the property that for each
ε > 0, there exists a compact subset E ⊂ D such that |ρ(z) − ρ(w)| ≤ ε|z − w|,
whenever z, w ∈ D\E. We also write

W0 =

{
ϕ ∈ C2 : ∆ϕ > 0, and ∃ρ ∈ L0 such that

1√
∆ϕ

≍ ρ

}
,

where ∆ denotes the standard Laplace operator. Here and later, given some functions
F and G with positive values, the notation F ≍ G indicates that there exists some
positive constant C, in particular independent of the variables of F and G, such that
C−1F ≤ G ≤ CF . Similarly, we write F . G if there exists a constant C > 0 such
that F ≤ CG.



Area operators on large Bergman spaces 733

Given p with 0 < p < ∞ and a subharmonic function ϕ on D, the exponential
type weighted Bergman space Ap

ϕ consists of functions f ∈ H(D) such that

‖f‖Ap
ϕ
=

(
ˆ

D

∣∣f(z)e−ϕ(z)
∣∣p dA(z)

) 1
p

< ∞.

We will focus on Bergman spaces Ap
ϕ induced by the weights w = e−pϕ with ϕ ∈ W0.

These spaces were introduced by Hu, the second named author and Schuster in [10]. It
follows from Lemma 3.3 in [10] that there exists a reproducing kernel Kz(·) = K(·, z)
in A2

ϕ having the property

f(z) =

ˆ

D

f(w)K(z, w)e−2ϕ(w) dA(w)

for all f ∈ A2
ϕ and z ∈ D. We denote by κp,z = Kz/ ‖Kz‖Ap

ϕ
the normalized Bergman

kernel of Ap
ϕ.

Let D(z, r) ⊂ C be the Euclidean disc with center at z and radius r > 0. For
simplicity, we write Dr(z) for the disc D(z, rρ(z)). Given a positive Borel measure µ
on D and t, r > 0, the general Berezin transform µ̃t of µ is defined by

µ̃t(z) =

ˆ

D

|κt,z(w)|t e−tϕ(w) dµ(w), z ∈ D,

and the general averaging function µ̂r,p by

µ̂r,p(z) =

´

Dr(z)
epϕ(w)dµ(w)

ρ(z)2
, z ∈ D.

In particular, the classical averaging function is µ̂r(z) = µ(Dr(z))/ρ(z)2, z ∈ D.
If ζ ∈ T and γ > 2 are given, the Stolz angle Γ(ζ) with aperture γ/2 is defined

by

Γγ(ζ) =
{
z ∈ D : |ζ − z| < γ

2
(1− |z|)

}
.

In this paper we denote Γ(ζ) := Γ4(ζ), but Stolz angles with other apertures will also
be used. Now, recall that if µ is a positive Borel measure on D, the area operator Aµ

acting on H (D) is the sublinear operator defined by the formula (1.1).
For every z ∈ D, let us denote

I(z) = {ζ ∈ ∂D : z ∈ Γ(ζ)}.
It is clear that I(z) is an open arc on ∂D with center z/|z| whenever z 6= 0. Moreover,
|I(z)| ≍ 1 − |z|. It is also easy to see that for any open arc I ⊂ ∂D, there exists a
z ∈ D such that I(z) = I. Also, for every open arc I ⊂ ∂D the set

S(I) =

{
z ∈ D :

z

|z| ∈ I, 1− |I| 6 |z|
}

is called the Carleson square based on I. Finally, for a positive function g defined
on the unit circle T, we write

Tg(z) =
1

1− |z|

ˆ

I(z)

g(λ)|dλ|, z ∈ D.

By Theorem 2.4 in [17], there holds Tg(z) ≤ CPg(z) for all z ∈ D, where Pg is the
Poisson integral of g.

With these preparations we are ready to formulate our main result, which con-
tains characterizations of the boundedness of the area operators acting in Bergman
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spaces with exponential weights. The proof will be given in Section 3 after some
preliminary considerations in Section 2.

Main Theorem. Let the functions ϕ and ρ on D be such that ϕ ∈ W0 and
1√
∆ϕ

≍ ρ ∈ L0 and let µ be a finite positive Borel measure on D.

(i) If 1 < p ≤ q < ∞, then Aµ : A
p
ϕ → Lq(T) is bounded if and only if

µ̂δ,1(z)
p′ dA(z) is a p′/q′-Carleson measure for some (or any) small enough

δ ∈ (0, α].
(ii) If p ≤ min{1, q}, then the area operator Aµ : A

p
ϕ → Lq(T) is bounded if and

only if

sup
w∈D

(1− |w|)
1−q
q

ρ(w)(2−2p)/p
µ̂r,1(w) < ∞

for every sufficiently small r > 0.
(iii) If 1 ≤ q < p < ∞, then Aµ : A

p
ϕ → Lq(T) is bounded if and only if

G(ζ) :=

ˆ

Γ(ζ)

µ̂δ,1(z)
p′

1− |z| dA(z) ∈ L
q(p−1)
p−q (T)

for some (or any) sufficiently small δ ∈ (0, α].
(iv) If 0 < q < p ≤ 1, then Aµ : A

p
ϕ → Lq(T) is bounded if and only if for every

small enough r > 0 there exists a Stolz angle Γ̃(ζ) with vertex at ζ and
aperture bigger than the aperture of Γ(ζ) such that the function

Gµ
p,q(ζ) := sup

w∈Γ̃(ζ)

(1− |w|)
1−p
p

ρ(w)(2−2p)/p
µ̂r,1(w)

belongs to L
pq
p−q (T).

(v) If 0 < q < 1 ≤ p, then Aµ : A
p
ϕ → Lq(T) is bounded if and only if

Mµ
p,q(w) :=

ˆ

Γ̃(ζ)

(1− |w|)
1−p
p

ρ(w)2/p
µ̂r,1(w) dA(w)

belongs to L
pq
p−q (T) for every sufficiently small r > 0.

2. Preliminaries

In this section, we present a number of preliminary results which will be used in
the arguments in Section 3. The proofs of these statements can mostly be found in
the existing literature.

2.1. Kahane–Khinchine inequalities. Let us start by the classical Khin-
chine’s inequality; see Appendix A in [8] for more details. For all k ∈ N = {1, 2, . . .}
we denote by rk : [0, 1] → {0,±1}, rk(t) = sign sin(2kπt), the kth Rademacher func-
tion.

Khinchine’s inequality : Let 0 < p < ∞. Then,
(
∑

k

|ck|2
)p/2

≍
ˆ 1

0

∣∣∣∣∣
∑

k

ckrk(t)

∣∣∣∣∣

p

dt,(2.1)

where {ck}∞k=1 is an arbitrary sequence of complex scalars.

Next, we recall Kahane’s inequality. The details can be found in [12] and [13].
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Kahane’s inequality : Let X be a quasi-Banach space and let 0 < p, q < ∞. There
holds

(
ˆ 1

0

∥∥∥∥∥
∑

k

rk(t)xk

∥∥∥∥∥

q

X

dt

)1/q

≍
(
ˆ 1

0

∥∥∥∥∥
∑

k

rk(t)xk

∥∥∥∥∥

p

X

dt

)1/p

,(2.2)

where {xk}∞k=1 is an arbitrary sequence in X. Moreover, the implicit constants in
(2.2) depend only on p and q and not on the quasi-Banach space X.

2.2. Separated sequences and (ρ, r)-lattices. We denote by β : D × D →
R

+
0 = [0,∞) the Bergman metric on D; see [18], Section 4.2. for the definition. Let

D(a, r) = {z ∈ D : β(a, z) < r} be the hyperbolic disk of radius r > 0 centered at
a ∈ D. A sequence of points Z = {zk}∞k=1 ⊂ D is said to be separated if there exists
δ > 0 such that β (zk, zj) ≥ δ for all k, j ∈ N with k 6= j. This implies that there
exists r > 0 such that the hyperbolic disks D (zk, r), k ∈ N, are mutually disjoint.

Decompositions of the unit disc into subsets with approximately constant hyper-
bolic radii are standard tools in the Bergman space theory, see for example Section
4.2. of [18]. Such decompositions are however quite useless in the case of Bergman
spaces with exponentially decreasing weights, but they can be replaced by decompo-
sitions with varying hyperbolic radii. The related results will be needed later, and
they are contained in the following Lemmas 2.1-2.5, the proofs of which can be found
in [2, 3, 10].

Lemma 2.1. Let ρ ∈ L be a positive function. Then, there exists a constant
α1 > 0 such that the following holds.

(a) There exist constants C1, C2 > 0 such that

C1ρ(w) ≤ ρ(z) ≤ C2ρ(w),

for all z ∈ D and w ∈ Dα1(z).
(b) There exists a constant B > 0 such that for all z ∈ D,

Dr(z) ⊂ DBr(w), Dr(w) ⊂ DBr(z),(2.3)

for all w ∈ Dr(z) and 0 < r ≤ α1.

If α1 and B are as in Lemma 2.1, it follows that there exists an s > 0 such that
for 0 < r ≤ α1 there exists a sequence {zk}∞k=1 ⊂ D with the following properties
(recall the notation Dr(z) = D(z, rρ(z)) ):

(a) D =
⋃∞

k=1D
r (zk),

(b) Dsr (zk) ∩Dsr (zj) = ∅ for all k 6= j,
(c) there exists a positive integer N depending only on B, r such that

1 ≤
∞∑

k=1

χDBr(zk)(z) ≤ N

for all z ∈ D, where χE is the characteristic function of a set E.

A sequence {zk}∞=1 with properties (a)–(c) is called a (ρ, r)-lattice. Obviously, every
(ρ, r)-lattice is a separated sequence.

Let us next consider the following subharmonicity property.

Lemma 2.2. Assume ϕ ∈ W0 with 1√
∆ϕ

≍ ρ ∈ L0 and 0 < p < ∞. Then, there

exist constants α2 > 0 and C > 0 such that
∣∣f(z)e−ϕ(z)

∣∣p ≤ C
1

ρ(z)2

ˆ

Dr(z)

∣∣f(w)e−ϕ(w)
∣∣p dA(w),
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for r ∈ (0, α2] and f ∈ H(D).

We now fix, for the rest of this paper, the constant α to be the smallest of the
numbers α1 and α2 in the previous lemmas.

The following kernel estimates can be found in [10].

Lemma 2.3. Assume that 0 < p < ∞ and ϕ ∈ W0 with 1√
∆ϕ

≍ ρ ∈ L0. Then,

for all w ∈ D and r ∈ (0, α], there holds

|κw(z)| e−ϕ(z) ≍ 1

ρ(w)
, z ∈ Dr(w),

and, for any fixed positive constant N ,

|κw(z)| e−ϕ(z) .
1

ρ(z)

(
min{ρ(z), ρ(w)}

|z − w|

)N

, z ∈ D,

Lemma 2.4. Let ϕ ∈ W0 with 1√
∆ϕ

≍ ρ ∈ L0 and 0 < p < ∞. We have

‖Kz‖Ap
ϕ
≍ eϕ(z)ρ(z)

2
p
−2, z ∈ D

and

‖κz‖Ap
ϕ
≍ ρ(z)

2
p
−1, z ∈ D.

Finally, we will need the test functions provided by the next lemma.

Lemma 2.5. Let {zk}∞k=1 be a (ρ, r)-lattice, and let 0 < r ≤ α and 0 < p < ∞.
Given a sequence λ = {λk}∞k=1 ∈ ℓp, set

f(z) =

∞∑

k=1

λkκzk(z)ρ (zk)
1− 2

p , z ∈ D.

Then f ∈ Ap
ϕ and ‖f‖p,ϕ ≤ C‖λ‖ℓp.

2.3. Tent spaces. Tent spaces were first introduced by Coifman, Meyer and
Stein [7] in order to study certain problems in harmonic analysis, and they form
a general framework for questions regarding classical spaces of analytic functions,
including Hardy, Bergman and BMOA spaces among others.

Let 0 < p, q < ∞ and let Z = {zk}∞k=1 be a separated sequence. The tent
sequence space T p

q (Z) consists of complex sequences λ = {λk} = {λk}∞k=1 satisfying

‖λ‖p
T p
q (Z)

:=

ˆ

T


 ∑

{k:zk∈Γ(ζ)}
|λk|q




p
q

|dζ | < ∞.

Also, λ = {λk} ∈ T p
∞(Z), if

‖λ‖p
T p
∞(Z)

:=

ˆ

T

(
sup{|λk| : zk ∈ Γ(ζ)}

)p
|dζ | < ∞.

Finally, λ = {λk} ∈ T∞
q (Z), if

‖λ‖T∞

q (Z) = sup
ζ∈T


 sup

w∈Γ(ζ)

1

(1− |w|2)
∑

{k:zk∈I(w)}
|λk|q

(
1− |zk|2

)



1/q

< ∞.

It is well known that λ ∈ T∞
q (Z) if and only if µλ =

∑∞
k=1 |λk|q

(
1− |zk|2

)
δzk is a

Carleson measure, where δa denotes the Dirac point mass at the point a.
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2.4. Carleson measures. Let µ be a finite positive Borel measure on D and let
0 < p, q < ∞. We recall that µ is a q-Carleson measure for Ap

ϕ if the identity operator
Id : Ap

ϕ → Lq
ϕ(µ) is bounded, where Lq

ϕ(µ) consists of all µ-measurable functions f
on D for which

‖f‖Lq
ϕ(µ) =

(
ˆ

D

|f(z)|qe−qϕ(z) dµ(z)

)1/q

< ∞.

Correspondingly, µ is a vanishing q-Carleson measure for Ap
ϕ if the identity operator

Id : Ap
ϕ → Lq

ϕ(µ) is compact, i.e.

lim
j→∞

ˆ

D

|fj(z)|q e−qϕ(z) dµ(z) = 0

whenever {fj}∞j=1 is a bounded sequence in Ap
ϕ that converges to 0 uniformly on any

compact subset of D as j → ∞.
The next Lemmas 2.6 and 2.7 can be found in [1].

Lemma 2.6. Let 0 < p ≤ q < ∞. Then the embedding Id : Hp → Lq(µ) is
bounded if and only if µ is an q/p-Carleson measure.

Lemma 2.7. Let 0 < q < p < ∞. The following conditions are equivalent.

(a) Id : Hp → Lq(µ) is bounded.

(b) The function Aµ1(ζ) =
´

Γ(ζ)
dµ(z)
1−|z| belongs to L

p
p−q (T).

(c) The sweep µ̆ of µ, defined by

µ̆(ζ) =
1

2π

ˆ

D

1− |z|2
|ζ − z|2 dµ(z),

belongs to L
p

p−q (T).

Lemmas 2.8 and 2.9 are given by Theorems 2.6 and 2.8 in [14].

Lemma 2.8. Let 0 < p ≤ q < ∞, ϕ ∈ W0 with 1√
∆ϕ

≍ ρ ∈ L0 and µ be a finite

positive Borel measure on D. Then, the following statements are equivalent:

(a) µ is a q-Carleson measure for Ap
ϕ;

(b) µ̃tρ
2−2q/p ∈ L∞;

(c) µ̂δρ
2−2q/p ∈ L∞ for some (or any) small enough δ ∈ (0, α];

(d) we have {
µ̂r (zk) ρ (zk)

2−2q/p }∞
k=1

∈ ℓ∞

for some (or any) (ρ, r)-lattice {zk} with a small enough r ∈ (0, α]. Moreover,
there holds

‖Id‖q
Ap

ϕ→Aq
ϕ
≍
∥∥µ̃tρ

2−2q/p
∥∥
L∞

≍
∥∥µ̂δρ

2−2q/p
∥∥
L∞

≍
∥∥∥
{
µ̂r (zk) ρ (zk)

2−2q/p }∞
k=1

∥∥∥
ℓ∞

.

Lemma 2.9. Let 0 < q < p < ∞ and ϕ ∈ W0 with 1√
∆ϕ

≍ ρ ∈ L0, and assume µ

is a finite positive Borel measure on D. Then the following statements are equivalent:

(a) µ is a vanishing q-Carleson measure for Ap
ϕ;

(b) µ is a q-Carleson measure for Ap
ϕ;

(c) µ̃t ∈ L
p

p−q ;

(d) µ̂δ ∈ L
p

p−q for some (or any) δ ∈ (0, α] small enough;
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(e) we have
{
µ̂r (zk) ρ (zk)

2−2q/p }∞
k=1

∈ ℓ
p

p−q

for some (or any) (ρ, r)-lattice {zk}k with r ∈ (0, α]. Moreover, there holds

‖Id‖Ap
ϕ→Aq

ϕ
≍ ‖µ̃t‖

L
p

p−q
≍ ‖µ̂δ‖

L
p

p−q

≍
∥∥∥
{
µ̂r (zk) ρ (zk)

2−2q/p }∞
k=1

∥∥∥
ℓ

p
p−q

.

2.5. Additional results. We will need the following duality results for tent
sequence spaces. See [4], [11] and [13] for the details of the proofs. Given 1 < p < ∞
we denote the dual index by p′ = p/(p− 1) in the sequel.

Lemma 2.10. Let 1 < p < ∞ and Z = {zk} be a separated sequence. If

1 < q < ∞, then the dual of T p
q (Z) is isomorphic to T p′

q′ (Z) under the pairing

〈λ, µ〉T 2
2 (Z) =

∑

k

λkµk

(
1− |zk|2

)
, where λ ∈ T p

q (Z), µ ∈ T p′

q′ (Z).

If 0 < q ≤ 1, then the dual of T p
q (Z) is isomorphic to T p′

∞(Z) under the same pairing.

The following factorization of tent sequence spaces was proved by Miihkinen,
Pau, Perälä and Wang in [16].

Lemma 2.11. Assume that 0 < p, q < ∞ and that Z = {zk} is an r-lattice. Let
p < p1, p2 < ∞, q < q1, q2 < ∞ satisfy

1

p
=

1

p1
+

1

p2
,

1

q
=

1

q1
+

1

q2
.

Then, we have

T p
q (Z) = T p1

q1 (Z) · T p2
q2 (Z);

in other words, if γ = {γk} ∈ T p1
q1
(Z) and β = {βk} ∈ T p2

q2
(Z), then γ·β = {γkβk}∞k=1 ∈

T p
q (Z) with ‖γ · β‖T p

q (Z) . ‖γ‖T p1
q1

(Z). ‖β‖T p2
q2

(Z).

Conversely, if λ ∈ T p
q (Z), then there are sequences γ ∈ T p1

q1 (Z) and β ∈ T p2
q2 (Z)

such that λ = γ · β and ‖γ‖T p1
q1

(Z) · ‖β‖T p2
q2

(Z) . ‖λ‖T p
q (Z).

The following result can be found in [16, Lemma 3].

Lemma 2.12. Let 0 < p < ∞ and β ≥ 0. There exists r0 ∈ (0, 1) so that, if
0 < r < r0 and Z = {zk} is an r-lattice, then

ˆ

T

sup
z∈Γ(ξ)

|f(z)|p
(
1− |z|2

)β |dξ| .
ˆ

T

sup
zk∈Γ(ξ)

|f (zk)|p
(
1− |zk|2

)β |dξ|,

whenever f ∈ H(D) is such that the left-hand side is finite.

We finally make the following observation.

Lemma 2.13. Let {zk}∞k=1 be an (ρ, r)-lattice with a small enough r, and let
0 < p < ∞. The following statments are equivalent:

(a) λ = {λk}∞k=1 ∈ T p
p (Z);

(b)
{
(1− |zk|)

1
p λk

}∞
k=1

∈ ℓp.

Proof. Assume that λ = {λk} ∈ T p
p (Z). By the results of [16], there are sequences

γ = {γk} ∈ T p
∞(Z) and β = {βk} ∈ T∞

p (Z) such that there holds λ = γ · β with
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‖γ‖p
T p
∞(Z)

· ‖β‖pT∞

p (Z) . ‖λ‖T p
p (Z). We get

∑

k

|λk|p(1− |zk| =
∑

k

|γk|p|βk|p(1− |zk|) . ‖γ‖p
T p
∞(Z)

· ‖β‖pT∞

p (Z) . ‖λ‖T p
p (Z),

where the second line is proved in [7].

Conversely, assume that the sequence
{
(1 − |zk|)

1
pλk

}∞
k=1

belongs to ℓp. Since
|I(z)| ≍ 1− |z| for z ∈ D, we have

ˆ

T

∑

{k:a∈Γ(ζ)}
|λk|p|dζ | .

∑

j

|λk|p
ˆ

I(ak)

|dζ | ≤ C
∑

k

|λk|p(1− |zk|).

Thus, λ = {λk} ∈ T p
p (Z), which completes the proof. �

3. Proof of the Main Theorem

In this section, we formulate and prove Theorems 3.1–3.6, from which the Main
Theorem follows. The theorems concern three cases of the indices p and q, namely
those with either q = 1, p ≤ q or q < p. The case q = 1 is partially known and
the rest of it is a straightforward consequence of the Fubini theorem, whereas the
proofs of other cases are more involved and are based on the results presented in the
previous section.

Note that the choice of the parameter α > 0 was fixed in Section 2.

3.1. The case q = 1. In the case q = 1 we state the following result, where
item (ii) in particular implies part of item (iii) of the Main Theorem; see the proof
of Theorem 3.4.

Theorem 3.1. Let ϕ be a function belonging to the class W0 with 1√
∆ϕ

≍ ρ ∈ L0,

and let µ be a finite positive Borel measure on D.

(i) Let 0 < p ≤ 1. Then, the following statements are equivalent:
(a) Aµ : A

p
ϕ → L1(T) is bounded;

(b) ν̃tρ
2−2/p ∈ L∞;

(c) ν̂δρ
2−2/p ∈ L∞ for some (or any) small enough δ ∈ (0, α];

(d)
{
ν̂r (zk) ρ (zk)

2−2/p
}
k
∈ ℓ∞ for some (or any) (ρ, r)-lattice {zk} with a

small enough r ∈ (0, α].
(ii) Let 1 < p < ∞. Then, the following statements are equivalent:

(a) Aµ : A
p
ϕ → L1(T) is bounded;

(b) ν̃t ∈ L
p

p−1 ;

(c) ν̂δ ∈ L
p

p−1 for some (or any) small enough δ ∈ (0, α];

(d)
{
ν̂r (zk) ρ (zk)

2−2/p
}
k
∈ ℓ

p
p−1 for some (or any) (ρ, r)-lattice {zk} with

r ∈ (0, α].

Proof. We only need to prove (a) ⇐⇒ (b) of (i) and (ii), since the remaining
implications in this theorem have been verified in [2, 3, 14]. By Fubini’s theorem, we
have

‖Aµf‖L1(T) =

ˆ

T

ˆ

Γ(ζ)

|f(z)| dµ(z)

1− |z|2 |dζ | =
ˆ

D

|f(z)|
1− |z|2

ˆ

I(z)

|dζ | dµ(z)

≍
ˆ

D

|f(z)| dµ(z) =
ˆ

D

|f(z)e−ϕ(z)|eϕ(z) dµ(z).
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Let dν(z) := eϕ(z) dµ(z). Thus, the operator Aµ : A
p
ϕ → L1(T) is bounded if and only

if ν is a 1-Carleson measure for Ap
ϕ. Hence, the result follows from Lemmas 2.8 and

2.9. �

3.2. The case p ≤ q. In this case we formulate two theorems, namely The-
orems 3.2 and 3.3, which coincide with items (i) and (ii) of the Main Theorem,
respectively.

Theorem 3.2. Let 1 < p ≤ q < ∞ and assume that ϕ ∈ W0 with 1√
∆ϕ

≍ ρ ∈ L0

and that µ is a finite positive Borel measure on D. Then, the operator Aµ : A
p
ϕ →

Lq(T) is bounded if and only if µ̂δ,1(z)
p′dA(z) is a p′/q′-Carleson measure for some

(or any) small enough δ ∈ (0, α].

Proof. If 1 < q < ∞, then, by duality, the area operator Aµ : A
p
ϕ → Lq(T) is

bounded if and only if there is a positive constant C such that
ˆ

T

Aµ(f)(ζ)g(ζ)|dζ | ≤ C‖g‖Lq′(T)‖f‖Ap
ϕ
,(3.1)

for every positive function g ∈ Lq′(T), where q′ is the conjugate exponent of q. An
application of Fubini’s theorem yields

ˆ

T

Aµ(f)(ζ)g(ζ)|dζ | =
ˆ

T

ˆ

Γ(ζ)

|f(z)| dµ(z)

1− |z|2g(ζ)|dζ |

=

ˆ

D

(
1

1− |z|2
ˆ

I(z)

g(ζ) dζ

)
|f(z)| dµ(z)

=

ˆ

D

|f(z)e−ϕ(z)|Tg(z)eϕ(z) dµ(z).

Let dv(z) := Tg(z)eϕ(z) dµ(z). In view of (3.1), we see that Aµ : A
p
ϕ → Lq(T) is

bounded if and only if Id : Ap
ϕ → L1

ϕ(v) is bounded, which is equivalent to saying
v is a 1-Carleson measure. Using the characterization of 1-Carleson measures in

Lemma 2.9, we conclude that Aµ : A
p
ϕ → Lq(T) is bounded, if and only if v̂δ ∈ L

p
p−1

and there holds
ˆ

D

∣∣∣∣
ˆ

Dδ(z)

Tg(w)ρ(w)−2eϕ(w) dµ(w)

∣∣∣∣
p′

dA(z) ≤ C‖g‖p′
Lq′(T)

(3.2)

for all positive g ∈ Lq′(T).
Let us now assume that µ̂δ,1(z)

p′dA(z) is a p′/q′-Carleson measure for some (or
any) δ ∈ (0, α] small enough. We use the facts that Tg(w) ≤ CPg(w) and |Pg(w)|
. |Pg(z)| for w ∈ Dδ(z) (see Theorem 2.4 and the proof of Theorem 3 in [17]) and
Lemma 2.6 to obtain (3.2):

ˆ

D

∣∣∣∣
ˆ

Dδ(z)

Tg(w)ρ(w)−2eϕ(w) dµ(w)

∣∣∣∣
p′

dA(z)

≤ C

ˆ

D

|Pg(z)|p′µ̂δ,1(z)
p′dA(z) ≤ C‖g‖p′

Lq′(T)
.

This completes the proof of the “if”-statement. To prove the converse implication,
we consider an arc I ⊂ T and take g = χI in (3.2) and obtain

ˆ

S(I)

(
ˆ

Dδ(z)

|TχI(w)| ρ(w)−2eϕ(w) dµ(w)

)p′

dA(z) ≤ C|I|
p′

q′ .
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Then, the proof is completed by observing that TχI(w) ≥ 1 for w ∈ Dδ(z) and
z ∈ S(I). �

The second assertion of this section reads as follows.

Theorem 3.3. Assume p ≤ min{1, q} and ϕ ∈ W0 with 1√
∆ϕ

≍ ρ ∈ L0, and let

µ be a finite positive Borel measure on D. Then, the area operator Aµ : A
p
ϕ → Lq(T)

is bounded if and only if for all sufficiently small r > 0 there holds

sup
w∈D

(1− |w|)
1−q
q

ρ(w)(2−2p)/p
µ̂r,1(w) < ∞.(3.3)

Proof. Assume first that Aµ : A
p
ϕ → Lq(T) is bounded. We fix w ∈ D and

consider the normalized kernel κw (see Section 1) as a test function. By Lemma 2.4,
we get

‖Aµκw‖Lq(T) ≤ C ‖κw‖Ap
ϕ
≤ Cρ(w)2/p−1,(3.4)

for some positive constant C. On the other hand, there is an r > 0 (independent of
w and ζ ) with Dr(w) ⊂ Γ(ζ) for ζ ∈ 1

2
I(w). Here we use the notation sI with s > 0

to denote the arc with the same center as the arc I and length s|I|. Therefore, using
the fact that |κw(z)| ≍ 1

ρ(w)
eϕ(z) for z ∈ Dr(w) (see Lemma 2.3) one obtains

‖Aµ (κw)‖qLq(T) ≥
ˆ

1
2
I(w)

(Aµκw(ζ))
q |dζ |

=

ˆ

1
2
I(w)

(
ˆ

Γ(ζ)

|κw(z)|
dµ(z)

1− |z|2
)q

|dζ | ≥
ˆ

1
2
I(w)

(
ˆ

Dr(w)

|κw(z)|
dµ(z)

1− |z|2
)q

|dζ |

≥ C|I(w)|
(
ˆ

Dr(w)

1

ρ(w)
eϕ(z)

dµ(z)

1− |z|2
)q

≥ C(1− |w|)1−q

(
ˆ

Dr(w)

1

ρ(w)
eϕ(z) dµ(z)

)q

.

Combining this with (3.4) yields

sup
w∈D

(1− |w|)
1−q
q

ρ(w)(2−2p)/p
µ̂r,1(w) < ∞.

Conversely, assume that (3.3) holds. Let r ∈ (0, α], and let {zk}∞k=1 be a (ρ, r)-

lattice on D. We adopt the notation D̃r(zk) =
⋃

z∈Dr(zk)
Dr(z). Taking into account

Lemma 2.2 we obtain

Aµf(ζ) .

ˆ

Γ(ζ)

(
epϕ(z)

ρ(z)2

ˆ

Dr(z)

|f(ξ)|pe−pϕ(ξ) dA(ξ)

)1/p
dµ(z)

1− |z|

.
∑

k∈N(ζ)

ˆ

Dr(zk)

eϕ(z)

ρ(z)2/p

(
ˆ

Dr(z)

|f(ξ)|pe−pϕ(ξ) dA(ξ)

)1/p
dµ(z)

1− |z|

.
∑

k∈N(ζ)

(
ˆ

D̃r(zk)

|f(ξ)|pe−pϕ(ξ) dA(ξ)

)1/p
(1− |zk|)−1

ρ (zk)
2/p

ˆ

Dr(zk)

eϕ(z) dµ(z),
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where we denoted N(ζ) = {k ∈ N : Dr(zk)∩Γ(ζ) 6= ∅} and also used that ρ(z) ≍ ρ (zk)
for z ∈ Dr(zk) in the last inequality. This, together with the assumption (3.3) yields

Aµf(ζ) ≤ C
∑

k∈N(ζ)

(
ˆ

D̃r(zk)

|f(ξ)|pe−pϕ(ξ) dA(ξ)

)1/p

(1− |zk|)−1/q .

Since 0 < p ≤ 1 and there holds 1− |zk| ≍ 1− |ξ| for ξ ∈ D̃r(zk), we get

Aµf(ζ)
p ≤ C

∑

k∈N(ζ)

ˆ

D̃r(zk)

|f(ξ)|p (1− |ξ|)−p/q e−pϕ(ξ) dA(ξ)

≤ C

ˆ

Γ̃(ζ)

|f(ξ)|p(1− |ξ|)−p/qe−pϕ(ξ) dA(ξ),

where Γ̃(ζ) is a Stolz angle with vertex at ζ with a bigger aperture than Γ(ζ). Thus,
by Hölder’s inequality and Fubini’s theorem, we have

‖Aµf‖qLq =

ˆ

T

(Aµf(ζ)
p)q/p |dζ |

≤ C

ˆ

T

(
ˆ

Γ̃(ζ)

|f(ξ)|p(1− |ξ|)−p/qe−pϕ(ξ) dA(ξ)

)q/p

|dζ |

≤ C

ˆ

T

(
ˆ

Γ̃(ζ)

|f(ξ)|pe−pϕ(ξ) dA(ξ)

)(q−p)/p(ˆ

Γ̃(ζ)

|f(ξ)|pe−pϕ(ξ) dA(ξ)

1− |ξ|)

)
|dζ |

≤ C‖f‖q−p
Ap

ϕ

ˆ

T

ˆ

Γ̃(ζ)

|f(ξ)|pe−pϕ(ξ) dA(ξ)

1− |ξ| |dζ |

= C‖f‖q−p
Ap

ϕ

ˆ

D

|f(ξ)|pe−pϕ(ξ)

(
ˆ

T

χΓ̃(ζ)(ξ)|dζ |
)

dA(ξ)

1− |ξ|
≤ C‖f‖q

Ap
ϕ
,

where the last inequality is due to the fact that
´

T
χΓ̃(ζ)(ξ)|dζ | ≍ 1−|ξ|. This finishes

the proof. �

3.3. The case q < p. In this final section we present Theorems 3.4, 3.5 and
3.6, which correspond to items (iii), (iv) and (v) of the Main Theorem, respectively,
and thus complete its proof.

Theorem 3.4. Let 1 ≤ q < p < ∞ and ϕ ∈ W0 with 1√
∆ϕ

≍ ρ ∈ L0 and let µ

be a finite positive Borel measure on D. Then Aµ : A
p
ϕ → Lq(T) is bounded if and

only if for some (or any) sufficiently small δ ∈ (0, α] there holds

G(ζ) =

ˆ

Γ(ζ)

µ̂δ,1(z)
p′

1− |z| dA(z) ∈ L
q(p−1)
p−q (T).(3.5)

Proof. Observe that, by Fubini’s theorem, the condition G ∈ L1(T) is equivalent
to the relation ν̂δ(z) = µ̂δ,1(z) ∈ Lp/(p−1)(D). Thus, the case q = 1 is exactly (ii)(c)
of Theorem 3.1, and it suffices to consider the case 1 < q < ∞. In the same way as
in the proof of Theorem 3.2, we see that Aµ : A

p
ϕ → Lq(T) is bounded if and only if

v̂δ ∈ L
p

p−1 and there holds
ˆ

D

∣∣∣∣
ˆ

Dδ(z)

Tg(w)ρ(w)−2eϕ(w) dµ(w)

∣∣∣∣
p′

dA(z) ≤ C‖g‖p′
Lq′(T)

,(3.6)
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for all positive g ∈ Lq′(T).
Let us assume (3.5) holds. Recalling that |Tg(w)| . |Pg(w)| and |Pg(w)| .

|Pg(z)| for w ∈ Dδ(z) yields

ˆ

D

∣∣∣∣
ˆ

Dδ(z)

Tg(w)ρ(w)−2eϕ(w) dµ(w)

∣∣∣∣
p′

dA(z)(3.7)

≤ C

ˆ

D

|Pg(z)|p′µ̂δ,1(z)
p′dA(z).

Denoting dm := µ̂δ,1(z)
p′dA(z), we observe that the assumption (3.5) is equivalent

with

Aµ1(ζ) =

ˆ

Γ(ζ)

dm(z)

1− |z| ∈ L
q′

q′−p′ (T),

since q′

q′−p′
= q(p−1)

p−q
with p′ < q′. Hence, Lemma 2.7 gives that Id : Hq′ → Lp′(m) is

bounded. We obtain
ˆ

D

|Pg(z)|p′µ̂δ,1(z)
p′dA(z) = ‖Pg‖p′

Lp′(m)
≤ C‖g‖p′

Lq′(T)

and combining this with (3.7) shows that (3.6) holds. Therefore, the a area operator
Aµ : A

p
ϕ → Lq(T) is bounded.

For the converse implication, we denote by u∗(ζ) = supz∈Γ(ζ) |u(z)| the non-
tangential maximal function of u. We integrate both sides of the obvious inequality
Ph(z) ≤ (Ph)∗(w) for w ∈ I(z) with respect to w on I(z) to obtain

Ph(z) ≍ Ph(z)

1− |z|

ˆ

I(z)

dw .
1

1− |z|

ˆ

I(z)

(Ph)∗(w) dw = T ((Ph)∗)(z).

Hence, applying (3.6) with g = (Ph)∗ yields

ˆ

D

∣∣∣∣
ˆ

Dδ(z)

|Ph(w)|ρ(w)−2eϕ(w) dµ(w)

∣∣∣∣
p′

dA(z)

.

ˆ

D

∣∣∣∣
ˆ

Dδ(z)

|Tg(w)|ρ(w)−2eϕ(w) dµ(w)

∣∣∣∣
p′

dA(z) ≤ C‖h‖p′
Lq′ (T)

.

Noting that |Ph(w)| ≍ |Ph(z)| for w ∈ Dδ(z), we get
ˆ

D

|Ph(z)|p′µ̂δ,1(z)
p′dA(z) ≤ C‖h‖p′

Lq′(T)
.

Thus, Id : Hq′ → Lp′(m) is bounded and by Lemma 2.7 we get G(ζ) ∈ L
q(p−1)
p−q (T),

which completes the proof. �

Theorem 3.5. Let 0 < q < p ≤ 1 and ϕ ∈ W0 with 1√
∆ϕ

≍ ρ ∈ L0 and µ be a

finite positive Borel measure on D. Then Aµ : A
p
ϕ → Lq(T) is bounded if and only if

for any sufficiently small r > 0, the function

Gµ
p,q(ζ) := sup

w∈Γ̃(ζ)

(1− |w|)
1−p
p

ρ(w)(2−2p)/p
µ̂r,1(w), ζ ∈ T,

belongs to L
pq
p−q (T), where Γ̃(ζ) is some Stolz angle with vertex at ζ with a bigger

aperture than that of Γ(ζ).
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Proof. We first prove the sufficiency. Let r ∈ (0, α] and let {zk}∞k=1 be a (ρ, r)-
lattice on D. We consider first

Bµ
p,q(w) =

(1− |w|)
1−p
p

ρ(w)(2−2p)/p
µ̂r,1(w), w ∈ D.

By Lemma 2.2, we have

|Aµ(f)(ζ)| ≤
ˆ

Γ(ζ)

|f(z)| dµ(z)
1− |z|

.

ˆ

Γ(ζ)

(
1

ρ(z)2

ˆ

Dr(z)

|f(ξ)|e−ϕ(ξ) dA(ξ)

)
eϕ(z)

dµ(z)

1− |z| .

By Fubini’s theorem, (a) of Lemma 2.1, (2.3) and the fact that (1− |z|) ≍ (1− |ξ|),
for ξ ∈ Dr(z), we get

|Aµ(f)(ζ)| .
ˆ

Γ(ζ)

|f(ξ)|e−ϕ(ξ)

(
(1− |ξ|)−1

ρ(ξ)2

ˆ

DBr(ξ)

eϕ(z) dµ(z)

)
dA(ξ)(3.8)

=

ˆ

Γ(ζ)

|f(ξ)|e−ϕ(ξ)

(
(1− |ξ|)−1/p

ρ(ξ)2(1−
1
p
)
Bµ

p,q(ξ)

)
dA(ξ)

≤ sup
ξ∈Γ(ζ)

Bµ
p,q(ξ)

ˆ

Γ(ζ)

|f(ξ)|e−ϕ(ξ) (1− |ξ|)−1/p

ρ(ξ)2(1−
1
p
)

dA(ξ)

= Gµ
p,q(ζ)

ˆ

Γ(ζ)

|f(ξ)|e−ϕ(ξ) (1− |ξ|)−1/p

ρ(ξ)2(1−
1
p
)

dA(ξ).

By Hölder’s inequality, we obtain
ˆ

T

|Aµ(f)(ζ)|q|dζ | .
(
ˆ

T

Gµ
p,q(ζ)

pq/(p−q)|dζ |
)(p−q)/p(ˆ

T

(II)p |dζ |
)q/p

,(3.9)

where

II(ζ) =

ˆ

Γ(ζ)

|f(ξ)|e−ϕ(ξ) (1− |ξ|)−1/p

ρ(ξ)2(1−
1
p
)

dA(ξ)

On the other hand, Lemma 2.2 and (a) of Lemma 2.1 yield

II(ζ) .
∑

k∈N(ζ)

ˆ

Dr(zk)

(1− |ξ|)−1/p

ρ(ξ)2(1−
1
p
)

(
1

ρ(ξ)2

ˆ

Dr(ξ)

|f(z)|pe−pϕ(z) dA(z)

)1/p

dA(ξ)

.
∑

k∈N(ζ)

ˆ

Dr(zk)

(1− |ξ|)−1/p

ρ(ξ)2

(
ˆ

Dr(ξ)

|f(z)|pe−pϕ(z) dA(z)

)1/p

dA(ξ)

.
∑

k∈N(ζ)
(1− |zk|)−1/p

(
ˆ

DBr(ξ)

|f(z)|pe−pϕ(z) dA(z)

)1/p

.

where N(ζ) = {k ∈ N : Dr(zk) ∩ Γ(ζ) 6= ∅}. Since p ≤ 1, we obtain

II(ζ)p .
∑

k∈N(ζ)
(1− |zk|)−1/p

(
ˆ

DBr(ξ)

|f(z)|pe−pϕ(z) dA(z)

)1/p

.

ˆ

Γ(ζ)

|f(z)|pe−pϕ(z) dA(z)

1− |z| .



Area operators on large Bergman spaces 745

Then, applying Fubini’s theorem, we have

ˆ

T

II(ζ)p|dζ | .
ˆ

T

ˆ

Γ(ζ)

|f(z)|pe−pϕ(z) dA(z)

1− |z| |dζ |

≤
ˆ

D

|f(z)|pe−pϕ(z) dA(z)

1− |z|

ˆ

I(z)

|dζ |,

where I(z) = {ζ ∈ ∂D : z ∈ Γ(ζ)}. Since |I(z)| ≍ (1− |z|), we get

ˆ

T

II(ζ)p|dζ | . ‖f‖p
Ap

ϕ
.

By inserting this into (3.9), we obtain

ˆ

T

|Aµ(f)(ζ)|q|dζ | . ‖Gµ
p,q‖qLpq/(p−q)(T)

‖f‖q
Ap

ϕ
.

Thus,

‖Aµ(f)‖Lq(T) . ‖Gµ
p,q‖Lpq/(p−q)(T) ‖f‖Ap

ϕ

so that Aµ is bounded.
Next, we prove the necessity. The proof follows the idea in [15]. Let {zk}∞k=1 be

a (ρ, r)-lattice with a small enough r ∈ (0, α]. The test function Ft under concern is
defined for z ∈ D as

Ft(z) =
∑

k

(1− |zk|)
1
p λkrk(t)κzk(z)ρ(zk)

1− 2
p ,

where λ = {λk} ∈ T p
p (Z), and rk : [0, 1] → {0,±1} are the Rademacher functions.

For t ∈ [0, 1], Lemmas 2.5 and 2.13 show that Ft ∈ Ap
ϕ and

‖Ft‖Ap
ϕ
≤ C‖λ‖T p

p (Z).

On the other hand, it follows from the boundedness of Aµ : A
p
ϕ → Lq(T) that

ˆ

T

(
ˆ

Γ(ζ)

∣∣∣∣∣
∑

k

(1− |zk|)
1
p λkrk(t)κzk(z)ρ(zk)

1− 2
p

∣∣∣∣∣
dµ(z)

1− |z|2

)q

|dζ |

=

ˆ

T

|AµFt(ζ)|q |dζ | . ‖Aµ‖qAp
ϕ→Lq(T)

· ‖λ‖q
T p
p (Z)

.

Integrating with respect to t in [0, 1] and using the notation

‖f‖ζ =
ˆ

Γ(ζ)

|f(z)| dµ(z)

1− |z|2

for f ∈ H (D) , we get

ˆ 1

0

ˆ

T

∥∥∥∥∥
∑

k

(1− |zk|)
1
p λkrk(t)ρ(zk)

1− 2
pκzk(·)

∥∥∥∥∥

q

ζ

dζ dt . ‖Aµ‖qAp
ϕ→Lq(T)

· ‖λ‖q
T p
p (Z)

.
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By (2.2) and (2.1), we obtain

ˆ

T



ˆ

Γ(ζ)

(
∑

k

(1− |zk|)
2
p |λk|2|κzk(z)|2ρ(zk)2−

4
p

)1/2
dµ(z)

1− |z|




q

dζ

.

ˆ

T



ˆ 1

0

∥∥∥∥∥
∑

k

(1− |zk|)
1
p λkrk(t)ρ(zk)

1− 2
pκzk(·)

∥∥∥∥∥
ζ

dt




q

dζ

. ‖Aµ‖qAp
ϕ→Lq(T)

· ‖λ‖q
T p
p (Z)

.

On the other hand, there exists a τ > 1 such that Dr(z) ⊂ Γ(ζ) for z ∈ Γτ (ζ). Thus,
Lemma 2.3 yields

ˆ

Γ(ζ)

(
∑

k

(1− |zk|)
2
p |λk|2|κzk(z)|2ρ(zk)2−

4
p

)1/2
dµ(z)

1− |z|

≥
∑

{j:zj∈Γτ (ζ)}

ˆ

Γ(ζ)∩Dr(zj)

(
∑

k

(1− |zk|)
2
p |λk|2|κzk(z)|2ρ(zk)2−

4
p

)1/2
dµ(z)

1− |z|

≥
∑

{j:zj∈Γτ (ζ)}
(1− |zj |)

1
p |λj|

ˆ

Dr(zj)

|κzk(z)|ρ(zk)1−
2
p
dµ(z)

1− |z|

&
∑

{j:zj∈Γτ (ζ)}
|λj |

(1− |zj |)
1−p
p

ρ(zj)2/p

ˆ

Dr(zj)

eϕ(z) dµ(z).

Therefore, we have

ˆ

T


 ∑

{j:zj∈Γτ (ζ)}
|λj |

(1− |zj |)
1−p
p

ρ(zj)2/p

ˆ

Dr(zj)

eϕ(z) dµ(z)




q

|dζ |(3.10)

. ‖Aµ‖qAp
ϕ→Lq(T)

· ‖λ‖q
T p
p (Z)

.

To prove Gµ
p,q ∈ L

pq
(p−q) (T), by Lemma 2.12, it is sufficient to show that

Kµ
p,q :=

ˆ

T

sup
zk∈Γ̃(ζ)

(1− |zk|)
q(1−p)
p−q

ρ(zk)2q/p−q

(
ˆ

Dr(zk)

eϕ(z) dµ(z)

) pq
p−q

|dζ | < ∞.(3.11)

We write, for all k ∈ N,

νk =
(1− |zk|)

q(1−p)
p

ρ(zk)
2q
p

(
ˆ

Dr(zk)

eϕ(z) dµ(z)

)q

.

Then, (3.11) holds if and only if the sequence ν = {νk} belongs to the tent sequence

space T
p

p−q
∞ (Z). For t > 1, this is equivalent to the statement ν1/t :=

{
ν
1/t
k

}
∈

T
pt

p−q
∞ (Z). Choose t > 1 such that pt > 1 and write

t− q

t
+

q

pt
=

1

̺
,

where 0 < ̺ ≤ 1 due to 0 < q < p ≤ 1. By Lemma 2.10 and Lemma 2.11, we have

T
pt

p−q
∞ (Z) =

(
T
( pt
p−q )

′

̺ (Z)

)∗
=

(
T

t′1
t

t−q

(Z) · T
pt
q

pt
q

(Z)

)∗
.
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Take any η = {ηk} ∈ T
( pt
p−q )

′

̺ (Z), and factor it as ηk = τkλ
q/t
k , with τ = {τk} ∈

T t′
t

t−q

(Z) and λ = {λk} ∈ T p
p (Z). Using Fubini’s theorem, Hölder’s inequality twice,

(3.10) and Lemma 2.11 and denoting N(ζ) = {k ∈ N : zk ∈ Γ̃(ζ)}, we obtain

∑

k∈N(ζ)
|ηk|

∣∣∣ν1/t
k

∣∣∣ (1− |zk|) ≍
ˆ

T


 ∑

k∈N(ζ)
τkλ

q/t
k ν

1/t
k


 |dζ |(3.12)

≤
ˆ

T


 ∑

k∈N(ζ)
τ
(t/q)′

k




t−q
t

 ∑

k∈N(ζ)
λkν

1/q
k




q
t

|dζ |

. ‖τ‖T t′
t

t−q



ˆ

T


 ∑

k∈N(ζ)
λkν

1/q
k




q

|dζ |



1/t

. ‖τ‖T t′
t

t−q

‖Aµ‖q/tAp
ϕ→Lq(T)

· ‖λ‖q/t
T p
p (Z)

. ‖η‖
T
( pt
p−q )

′

̺

· ‖Aµ‖q/tAp
ϕ→Lq(T)

.

By duality, we get ν1/t ∈ T
pt

p−q
∞ (Z) . The proof is complete. �

Our last theorem reads as follows.

Theorem 3.6. Let 0 < q < 1 ≤ p and ϕ ∈ W0 with 1√
∆ϕ

≍ ρ ∈ L0, and let µ be

a finite positive Borel measure on D. Then, Aµ : A
p
ϕ → Lq(T) is bounded if and only

if for all sufficiently small r > 0, the function

Mµ
p,q(ζ) :=

ˆ

Γ̃(ζ)

(1− |w|)
1−p
p

ρ(w)2/p
µ̂r,1(w) dA(w), ζ ∈ T,

belongs to L
pq
p−q (T).

Proof. We first discuss the “if” part. Using (2.3) and denoting N(ζ) = {k ∈
N : Dr(zk) ∩ Γ̃(ζ) 6= ∅}, we get

Mµ
p,q(ζ) ≤

∑

k∈N(ζ)

ˆ

Dr(zk)

(1− |w|)
1−p
p

ρ(w)(2+2p)/p

ˆ

Dr(w)

eϕ(z) dµ(z) dA(w)

≤
∑

k∈N(ζ)

(1− |zk|)
1−p
p

ρ (zk)
(2+2p)/p

ρ (zk)
2

ˆ

DBr(zk)

eϕ(z) dµ(z)

=
∑

k∈N(ζ)

(1− |zk|)
1−p
p

ρ (zk)
2/p

ˆ

DBr(zk)

eϕ(z) dµ(z).

Write, for all k ∈ N,

νk =
(1− |zk|)

q(1−p)
p

ρ(zk)
2q
p

(
ˆ

DBr(zk)

eϕ(z) dµ(z)

)q

.

It is clear that we only need prove ν = {νk} ∈ T
p

p−q
1
q

(Z). For t > 1, this is equivalent

to the statement ν1/t :=
{
ν
1/t
k

}
∈ T

pt
p−q
t
q

(Z). By Lemma 2.10 and Lemma 2.11, we
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have

T
pt

p−q
t
q

(Z) =

(
T
( pt
p−q )

′

( t
q
)′

(Z)

)∗
=

(
T t′

̺ (Z) · T
pt
q

pt
q

(Z)

)∗
,

since
1

̺
+

q

pt
=

1

( t
q
)′
.

Take any η = {ηk} ∈ T
( pt
p−q )

′

( t
q
)′

(Z), and factor it as ηk = τkλ
q/t
k , with τ = {τk} ∈ T t′

̺ (Z)

and λ = {λk} ∈ T p
p (Z). We obtain ν1/t ∈ T

pt
p−q
t
q

(Z) similarly to (3.12) in the proof of

Theorem 3.5.
We finally prove the “only if” part, by arguing in the same way as in the sufficiency

proof of Theorem 3.5 and denoting N(ζ) = {k ∈ N : Dr(zk) ∩ Γ(ζ) 6= ∅}:
∑

k∈N(ζ)

(1− |zk)
1−p
p

ρ (zk)
2/p

ˆ

Dr(zk)

eϕ(z) dµ(z)

=
∑

k∈N(ζ)

(1− |zk)
1−p
p

ρ (zk)
(2+2p)/p

ρ (zk)
2

ˆ

Dr(zk)

eϕ(z) dµ(z)

.
∑

k∈N(ζ)

ˆ

Dr(zk)

(1− |w|)
1−p
p

ρ(w)(2+2p)/p

ˆ

DBr(w)

eϕ(z) dµ(z) dA(w) . Mµ
p,q(w).

This gives the desired results and completes the proof. �

Remark 3.7. From our main result one can deduce the following two statements:

• For 1 ≤ q < p = ∞, Aµ : A
∞
ϕ → Lq(T) is bounded if and only if

G(ζ) :=

ˆ

Γ(ζ)

µ̂δ,1(z)

1− |z| dA(z) ∈ Lq(T)

for some (or any) sufficiently small δ ∈ (0, α].
• For q ≤ 1 < p = ∞, the operator Aµ : A

∞
ϕ → Lq(T) is bounded if and only if

Mµ
∞,q(ζ) :=

ˆ

Γ̃(ζ)

µ̂δ,1(z)

1− |z| dA(z)

belongs to Lq(T) for every sufficiently small r > 0.

We thus observe that the sufficient and necessary conditions are almost the same in
both cases 1 ≤ q < p = ∞ or q ≤ 1 < p = ∞.

Acknowledgment. Tong thanks Professor Xiaofen Lv for discussions and sugges-
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