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Large disks touching three sides of a quadrilateral

Alex Rodriguez

Abstract. We show that every Jordan quadrilateral Q ⊂ C contains a disk D so that ∂D∩∂Q
contains points of three different sides ofQ. As a consequence, together with some modulus estimates
from Lehto and Virtanen, we offer a short proof of the main result obtained by Chrontsios-Garitsis
and Hinkkanen in 2024 and also improve the bounds on their result.

Nelikulmion kolmea sivua koskettavat suuret kiekot

Tiivistelmä. Tässä työssä osoitetaan, että jokainen Jordanin nelikulmio Q ⊂ C sisältää sellai-
sen kiekonD, että ∂D∩∂Q sisältää kuvion Q kolmen eri sivun pisteitä. Yhdistettynä eräisiin Lehdon
ja Virtasen moduuliarvioihin, saadaan tämän seurauksena lyhyt todistus Chrontsios-Garitsiksen ja
Hinkkasen päätulokselle vuodelta 2024, ja lisäksi parannetaan heidän arvioitaan.

1. Introduction

By a Jordan quadrilateral Q = Q(v1, v2, v3, v4) ⊂ C, we mean a bounded Jordan
domain with four marked points, which we call quad-vertices (and we suppose that
they are oriented counter-clockwise). To abbreviate we will refer to them just as
quadrilaterals. We denote the Jordan arcs joining these points by a1, b1, a2 and b2 as
it is indicated in Figure 1, which we call the sides of the quadrilateral. We refer to
each pair of non-intersecting sides as opposite sides, and we call a1, a2 the a-sides of
Q and b1, b2 the b-sides of Q.
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Figure 1. Representation of the quad-vertices, a-sides and b-sides of a quadrilateral Q, together
with its representation via conformal mapping to a rectangle.

In this paper we prove:

Theorem 1.1. For any Jordan quadrilateral Ω, there exists a disk D ⊂ Ω so
that ∂D ∩ ∂Q contains points of three sides of Q. In particular, it contains points
from opposite sides.

Here the number three is obviously sharp, in the sense that there are quadrilat-
erals Q so that ∂Q ∩ ∂D does not contain points from more than three sides of Q,
where D is any disk D ⊂ Q. For instance, in any rectangle that is not a square.
If we have a crescent we can also have at most three, with two of them being the
endpoints of a pair of adjacent sides, as it can be seen in Figure 2.
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Figure 2. Example of a quadrilateral showing that the number 3 in Theorem 1.1 is sharp, where
the figure corresponds to a crescent. The medial axis, which will be defined later in this section, is
represented by the dotted curve.

We define as the internal distances between the a-sides of Q as

(1.1) sa(Q) := inf{length(γ) : γ ⊂ Q Jordan arc joining opposide a-sides},
and we similarly define sb(Q).

A quadrilateral can be conformally mapped to a rectangle so that the quad-
vertices of the quadrilateral are mapped to the vertices of the rectangle (see [2, 6.2.3]
or [11, Chapter I, Section 2.4]). The ratio between the length of the a-side and the
b-side of this rectangle is a conformal invariant. We call the quantity M = M(Q) =
M(Q(v1, v2, v3, v4)) given as in Figure 1 the modulus of Q.

The notion of quasiconformal mapping was introduced by Grötzsch in 1928. Since
the modulus is a conformal invariant, there is no conformal map that maps a square
to a rectangle (which is not a square) mapping vertices to vertices. Grötzsch wanted
to find the most nearly conformal mapping that satisfied that. There are several
(equivalent) definitions of planar quasiconformal mappings (see for example [1, 11]).
We say that an orientation preserving homeomorphism φ : Ω ⊂ C → Ω

′ ⊂ C is
K-quasiconformal if for every quadrilateral Q ⊂ Ω, we have

M(φ(Q)) ≤ KM(Q).

We use Theorem 1.1 to give an alternative proof of the following result of Chront-
sios-Garitsis and Hinkkanen in Section 4.

Corollary 1.2. [7, Theorem 1.1] For every K ≥ 1 there is a constant δ ∈ (0, 1)
depending only on K such that every Jordan quadrilateral Q with M(Q) ∈ [1/K,K]
contains a disk of radius δmax{sa(Q), sb(Q)}.

The notion of modulus of a quadrilateral is closely related to what is commonly
known as modulus of a path family. By a path family Γ we mean a family of curves
in C, where each γ ∈ Γ is locally rectifiable. We define the modulus of this path
family as

(1.2) M(Γ) := inf
ρ admissible

ˆ
Q

ρ2dm(z),

where we say a non-negative Borel function ρ is admissible if

L(ρ) := inf
γ∈Γ

ˆ
γ

ρ|dz| ≥ 1.

The modulus is a conformal invariant. Moreover, if we define the path family Γ to
consist of all those locally rectifiable paths joining opposite a-sides of a quadrilateral
Q, then the modulus of this path family agrees with the modulus of the quadrilateral,
i.e. M(Γ) = M(Q).
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Our approach to Theorem 1.1 is based on using properties of the medial axis.
Given any open proper subset Ω of Rn, we define the medial axis as

MA(Ω) = {z ∈ Ω: ∃ distinct w,w′ ∈ ∂Ω s.t. d(z, w) = d(z, w′) = d(z, ∂Ω)},

i.e. it consists of the centers of balls contained in Ω so that they intersect ∂Ω in more
than one point.

Theorem 1.1 proves that the medial axis of a Jordan domain Ω ⊂ C is always
non-empty, since for any choice of four distinct points in ∂Ω there is a disk D so
that ∂D ∩ ∂Q contains points of three different sides of Q, and in particular of two
disjoint sides of Q, i.e. it contains more than one point. In a much greater generality
than what we cover in this document, i.e. for bounded open subsets Ω ⊂ Rn, in
[9] Fremlin shows that the medial axis is an Fσ set of Hausdorff dimension at most
n − 1 and that MA(Ω) is connected if and only if Ω is. For a simply connected
planar domain Ω ⊂ C, he shows show that, in addition, it is a union of countably
many rectifiable arcs. In this case, in [8] Erdös previously proved the bound on the
Hausdorff dimension mentioned before. The medial axis is a subset of the central
set of Ω, which is the set of the centers of the maximal balls contained in Ω. In [5]
Bishop and Habokyan prove that this set can have Hausdorff dimension arbitrarily
close to 2, even though the medial axis can have Hausdorff dimension at most 1.

Choi, Choi and Moon characterized in [6] the medial axis of a Jordan domain
Ω ⊂ C so that ∂Ω is a finite union of analytic arcs. In the case where ∂Ω is a finite
union of line segments, the medial axis consists of a finite union of analytic arcs each
of which is either a line segment or a parabola.

The medial axis has been proved to be useful in the literature. We cite some
references in which this set has been proved to be useful in complex analysis; in [3]
Bishop uses the medial axis to compute the conformal map in linear time, and in
[4] he uses it to find a tree-like decomposition of any simply-connected domain into
Lipschitz domains, improving a previously known result by Jones [10].

The proof of Theorem 1.1 is structured as follows. In Section 2 we show in
Lemma 2.4 that if the result is true for a sequence of quadrilaterals converging from
inside to a quadrilateral Q, then it is also true for Q. We also prove in Lemma 2.3
that any quadrilateral Q is a limit from inside of a sequence of quadrilaterals {Qn}
so that each ∂Qn is a finite union of line segments that make an angle of π/2 radians
at each one of the quad-vertices.

In [6, 9] it is proved that the medial axis of a bounded quadrilateral is connected.
In Section 3 we use this fact to prove Theorem 1.1, together with the results from
Section 2.

In Section 4, we prove Corollary 1.2 as an application of Theorem 1.1.

Acknowledgments. I would like to thank Chris Bishop for his continued guid-
ance and support, and for reading early drafts of the paper which improved the
presentation via his comments and corrections. I would also like to thank Dimitrios
Ntalampekos for his comments and corrections, which also improved the presenta-
tion. The typos and suggestions that the reviewer has highlighted also improved the
paper.

2. Preliminaries

Given any quadrilateral Q we will approximate it first with a sequence of quadri-
laterals Qn from inside, so that they satisfy Theorem 1.1. We then prove that this
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convergence allows us to conclude that the original quadrilateral also has such a disk
so that the boundary intersects the boundary of Q on three sides.

Definition 2.1. (Convergence from inside) We say that a sequence of quadrilat-
erals {Qn} with sides anj , bnj for j = 1, 2 converge to the quadrilateral Q from inside
if

(i) Qn ⊂ Q for all n.
(ii) For all ε > 0, there exists nε so that for n ≥ nε and j ∈ {1, 2}, the Hausdorff

distance (see [12, p. 280–281]) between anj (resp. bnj ) and aj (resp. bj) is less
than ε.

Figure 3. Approximation of any quadrilateral Q from inside via polygons as in Lemma 2.3.
The dashed curves represent the quadrilaterals converging from inside to Q, whereas the thick curve
represents the polygon obtained in Lemma 2.3.

Convergence from inside implies convergence of the corresponding moduli, as we
see in Lemma 2.2. The proof is the same as in [11], which we include in this document
for completeness.

Lemma 2.2. [11, Lemma 4.3, p. 26] If a sequence of quadrilaterals Qn converges
from inside to the quadrilateral Q, then M(Qn)→M(Q).

Proof. Take ϕ : Q→ R conformal as in Figure 1, then ϕ is uniformly continuous
in Q, thus the sequence of quadrilaterals ϕ(Qn) converges from inside to the quadri-
lateral ϕ(Q) = R. This means that for ε > 0 small enough we have sa(ϕ(Qn)) ≥ 1−2ε
and sb(ϕ(Qn)) ≥ M(Q)− 2ε. Also, m(ϕ(Qn)) ≤ m(ϕ(Q)) = M(Q). Therefore, if in
(1.2) we take the Euclidean metric normalized so that it is admissible, i.e. ρ(z) = C|z|,
we have

(M(Q)− 2ε)2

M(Q)
≤M(ϕ(Qn)) ≤ M(Q)

(1− 2ε)2 ,

where we have used that M(Q(v2, v3, v4, v1)) = 1/M(Q) = 1/M(Q(v1, v2, v3, v4))
(that is, the modulus of the conjugate quadrilateral is the reciprocal of the original
modulus). Since M(ϕ(Qn)) = M(Qn), we see that M(Qn)→M(Q) as ε→ 0. �

Lemma 2.2 also provides a way to regard any quadrilateralQ as a limit from inside
of, for example, analytic quadrilaterals or polygonal quadrilaterals. More precisely,
we have the following result.

Lemma 2.3. Any quadrilateral Q is a limit from inside of a nested sequence
of quadrilaterals Qn so that the boundary of each one of the Qn is a finite union of
non-trivial line segments. Moreover, Qn can be taken so that the two segments that
meet at the quad-vertices of each one of the quadrilaterals Qn form an angle of π/2
radians.
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Proof. Let ϕ : Q→ R be conformal, where R is a rectangle with vertices 0,M, i
and M + i, so that the quad-vertices of the quadrilateral are mapped to the vertices
of the rectangle. Define Rn = {z ∈ R : d(z, ∂R) ≥ 1/n} for n ∈ N. Then Rn is a
compact subset of R and the sequence of quadrilaterals {Rn}n∈N converges to the
quadrilateral R from inside. Where we take the quad-vertex vj of the quadrilateral
Rn, as the vertex of the rectangle Rn that is the closest to the image under ϕ of
the quad-vertex vj of the quadrilateral Q (for j = 1, 2, 3, 4). Therefore, the sequence
{ϕ−1(Rn)} converges to Q from inside.

We now obtain the sequence of polygons that approximates Q from the inside.
By Lemma 2 in [13] we can approximate ϕ−1(∂R2n) via a polygonal Jordan curve
P̃n that is contained in ϕ−1

(
R2n+1 \R2n−1

)
. Given this approximation of ϕ−1(∂R2n)

by a polygonal P̃n, we can now modify it within the annulus ϕ−1
(
R2n+1 \R2n−1

)
so

that it contains the quad-vertices of the quadrilateral ϕ−1(R2n) and so that at the
quad-vertices of the quadrilateral ϕ−1(R2n) there are two segments of the polygonal
curve that meet at an angle of π/2 degrees. This yields a polygonal Pn. We define
Qn as the interior of the polygonal Jordan curve Pn and we take as quad-vertices
the quad-vertices of the quadrilateral ϕ−1(R2n), which are part of the polygonal by
construction. This procedure has been illustrated in Figure 3. Also, if two adjacent
line segments of ∂Qn are part of the same line, we consider them as only one line
segment. This new sequence of quadrilaterals {Qn}n∈N converges to Q from inside
by construction. �

Lemma 2 in [7] can also be used to construct the polygonal approximations given
in Lemma 2.3.

Next we will show that if Theorem 1.1 holds for a sequence of quadrilaterals that
converge from inside to a quadrilateral Q, then the same holds for Q.

Lemma 2.4. Let Q be a quadrilateral and suppose that Qn is a increasing
sequence of quadrilaterals converging to Q from inside. If every Qn has a disk Dn so
that ∂Qn ∩ ∂Dn contains points of three sides of Qn, then the same holds for Q.

Proof. Let Dn = D(cn, rn) be the sequence of corresponding disks. By passing
to a subsequence and changing the labeling of the sides of Q if necessary, we can
suppose that their boundary circles all have points on opposite a-sides and on the
side b1. Observe that:

(i) diam(Q) ≥ diam(Qn) ≥ 2rn ≥ sa(Qn), and sa(Qn) → sa(Q) > 0. So {rn} is
a bounded sequence, bounded below away from 0.

(ii) Given ε > 0 small enough, there exists N so that for n ≥ N we have cn ∈
{z ∈ Q : dist(z, ∂Q) ≥ (sa(Q)− ε)/2} = Kε, which is a compact set. Observe
that if ε′ < ε, then Kε ⊃ Kε′ .

(iii) For each Dn = D(cn, rn) we have at least points pn ∈ an1 , qn ∈ an2 and wn ∈ bn1
on ∂Dn, where an1 is the a1 side of Qn, an2 is the a2 side of Qn and bn1 is the b1

side of Qn.

Take a subsequence so that cnj
, rnj

, pnj
, qnj

, wnj
converge to c ∈ Kε, r > 0, p ∈ a1, q ∈

a2 and w ∈ b1 (now referring to the corresponding sides of Q). Then the disk
D = D(c, r) is contained in Q and {p, q, w} ⊂ ∂D ∩ ∂Q, which are points of three
sides of Q. �

Observe that in the previous Lemma we are not excluding the possibility of w
being equal to either p or q. This is the case, for example, if we have a crescent, as
it can be seen in Figure 2.
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3. Proof of the main theorem

By Lemma 2.3, given any quadrilateral we can build a sequence of quadrilat-
erals Qn, so that ∂Qn is a finite union of non-trivial line segments, with the two
segments meeting at each one of the quad-vertices making an angle of π/2 radians.
By Lemma 2.4, if we show that Theorem 1.1 holds for such quadrilaterals, then the
Theorem is proved. This is what we prove in Lemma 3.1. Before we state and prove
Lemma 3.1, we need some facts from the medial axis of a polygonal quadrilateral Q.

Given any two c, c̃ ∈MA(Q), whereMA(Q) ⊂ Q is the medial axis of a polygonal
Jordan domain Q, by [6, Theorem 7.3] (or [9, Theorem 2D]) the medial axis is path-
connected. This means that there is a (continuous) path γ : [0, 1] → MA(Q) ⊂ Q
so that γ(0) = c and γ(1) = c̃. Moreover, by [6, Corollary 8.1], MA(Q) is a strong
deformation retract of Q, i.e. MA(Q) has a tree-like structure. As it was mentioned
before, it is enough to prove Theorem 1.1 for the particular case in which Q is a
polygonal quadrilateral so that the two line segments meeting at each one of the
quad-vertices make an angle of π/2 radians. Since π/2 < π, then every quad-vertex
of the quadrilateral Q is a limit point of MA(Q). Therefore, there is a simple path
γ : [0, 1] → MA(Q) ⊂ Q so that γ(0) = v1 and γ(1) = v3 (opposite quad-vertices of
the quadrilateral). This simple path γ is represented in Figure 4. Since the distance
to the boundary function is continuous, given our choice of γ, the function t 7→ rt,
where rt is the maximal radius so that D(γ(t), rt) ⊂ Q (i.e. the distance of γ(t) to
the boundary), is also continuous. Hence if we define a topology on the space of
maximal disks by taking the product topology on Q× [0, diam(Q)], then the function
t 7→ (γ(t), rt) is continuous, i.e. the maximal disks change continuously.

v1

v3

•

•

γ

Figure 4. Illustration of the proof of Lemma 3.1. The medial axis is the union of the dashed
curves. The circle has its center in the medial axis. The simple path γ joining v1 and v3 within the
medial axis is represented in a lighter color.

It can also be proved that the simple path γ : [0, 1] → MA(Q) ⊂ Q so that
γ(0) = v1 and γ(1) = v3, as we considered before, satisfies the following: given the
maximal disk Dt = D(γ(t), rt), then ∂Dt intersects the two connected components
of ∂Q \ {v1, v3}.

We can now prove Theorem 1.1 when Q is a polygonal Jordan domain so that
the two line segments that meet at the quad-vertices of Q make an angle of π/2.

Lemma 3.1. Let Q = Q(v1, v2, v3, v4) be a polygonal quadrilateral so that ∂Q
is a finite union of non-trivial line segments that form an angle of π/2 radians at
each one of the quad-vertices vj. Then there exists a disk D ⊂ Q so that ∂D ∩ ∂Q
contains points of three sides of the quadrilateral Q.
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Proof. Take a simple path γ : [0, 1] → MA(Q) ⊂ Q so that γ(0) = v1 and
γ(0) = v3, opposite quad-vertices of Q. Close to v1, the maximal disks around those
points intersect the two line segments that are adjacent to v1 (by the π/2 angle), and
in particular, to the two adjacent sides of the quadrilateral to v1. Close to v3, by the
π/2 angle, the maximal disks around those points intersect the two line segments that
are adjacent to v3. Since γ is path joining those points, there is one last s ∈ (0, 1) for
which the corresponding maximal disks intersect the two sides of the quadrilateral
Q that are adjacent to v1. For such s, the maximal disk D = D(γ(s), rs) is so that
∂D ∩ ∂Q contains points from three sides of Q. �

Proof of Theorem 1.1. Observe that Lemma 3.1 is precisely the particular case of
Theorem 1.1 for the quadrilaterals obtained in Lemma 2.3. Therefore, by Lemma 2.4,
Theorem 1.1 is proved. �

4. Proof of Corollary 1.2

The characterization of the modulus in (1.2) leads to many interesting appli-
cations. It yields bounds on the modulus provided that we know some geometric
properties of the quadrilateral by choosing adequate admissible metrics. For exam-
ple, in [11] Lehto and Virtanen prove the following:

Proposition 4.1. [11, Lemma 4.1, p. 23] The modulus of a quadrilateral Q
satisfies the following double inequality

(log(1 + 2sb(Q)/sa(Q)))2

π + 2π log(1 + 2sb(Q)/sa(Q))
≤M(Q) ≤ π + 2π log(1 + 2sa(Q)/sb(Q))

(log(1 + 2sa(Q)/sb(Q)))2 ,

where sa(Q) and sb(Q) are defined as in (1.1).

Observe that Proposition 4.1 shows that having a family of quadrilaterals Q with
uniformly bounded modulus M(Q) ∈ [1/K,K] is equivalent to having a uniformly
bounded ratio between the internal distances, that is, sa(Q)/sb(Q) ∈ [1/L, L], where
L depends only on K.

Let’s see how Theorem 1.1 implies Corollary 1.2. Let C the boundary of the
disk D given in Theorem 1.1, as represented in Figure 5. Then, there is a segment
γ, contained in D, joining opposite sides. Suppose it joins the a-sides. We have
diam(C) ≥ length(γ) ≥ sa(Q). Thus there exists a disk with the same center as D,
and of radius sa(Q)/2 contained in Q. Since we are considering quadrilaterals with
uniformly bounded modulus, then by Proposition 4.1,

sa(Q) ≥ sb(Q)/L.

Q
γ

•

•

•

Figure 5. Representation of the circle obtained in Theorem 1.1 that intersects three sides of
our quadrilateral Q.

That is, it also contains a disk of radius sb(Q)/2L. Therefore, our quadrilateral
Q contains a disk of radius δmax{sa(Q), sb(Q)}, where δ = 1/2L ∈ (0, 1) and as



802 Alex Rodriguez

we have mentioned before, this constant L only depends on the bound K for the
modulus.

This completes the proof of Corollary 1.2.

Remark 4.2. The constant obtained in this new proof of Corollary 1.2 is sharp
with respect to L, i.e. with respect to the quadrilaterals Q so that sa(Q)/sb(Q) ∈
[1/L, L] (as it can be seen by considering a rectangle). But it is not with respect to
K; given K, Proposition 4.1 yields some L, but given this L, Proposition 4.1 gives
K̃ > K.
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