Tent spaces and solutions of Weinstein type equations with $\text{CMO}(\mathbb{R}_+, dm_{\lambda})$ boundary values

JORGE J. BETANCOR, QINGDONG GUO* and DONGYONG YANG[†]

Abstract. Let $\{P_t^{[\lambda]}\}_{t>0}$ be the Poisson semigroup associated with the Bessel operator Δ_{λ} on $\mathbb{R}_+ := (0, \infty)$, where $\lambda > 0$ and

$$\Delta_{\lambda} := -x^{-2\lambda} \frac{d}{dx} x^{2\lambda} \frac{d}{dx}.$$

In this paper, the authors show that a function u(y,t) on $\mathbb{R}_+ \times \mathbb{R}_+$, has the form $u(y,t) = P_t^{[\lambda]} f(y)$ with $f \in \text{CMO}(\mathbb{R}_+, dm_{\lambda})$, where $dm_{\lambda}(x) := x^{2\lambda} dx$, if and only if u satisfies the Weinstein type equation

$$\mathbb{L}_{\lambda}u(x,t) := \frac{\partial^2 u(x,t)}{\partial t^2} - \Delta_{\lambda}u(x,t) = 0, \quad (x,t) \in \mathbb{R}_+ \times \mathbb{R}_+,$$

a Carleson type condition and certain limiting conditions. For this purpose, the authors first introduce the tent spaces T_2^p with $p \in [1, \infty]$ and $T_{2,C}^\infty$ in the Bessel setting and then show that $\text{CMO}(\mathbb{R}_+, dm_\lambda)$ has a connection with $T_{2,C}^\infty$ via $\{P_t^{[\lambda]}\}_{t>0}$. In addition, the authors obtain some boundedness results on the operator π_λ from tent spaces to some "ordinary" function spaces.

Teltta-avaruudet ja Weinsteinin-tyyppisten $\text{CMO}(\mathbb{R}_+, dm_{\lambda})$ -reuna-arvoyhtälöiden ratkaisut

Tiivistelmä. Olkoon $\{P_t^{[\lambda]}\}_{t>0}$ puolisuoran $\mathbb{R}_+ := (0, \infty)$ Besselin operaattoriin

$$\Delta_{\lambda} := -x^{-2\lambda} \frac{d}{dx} x^{2\lambda} \frac{d}{dx}$$

liittyvä Poissonin puoliryhmä, missä $\lambda > 0$. Tässä työssä osoitetaan, että alueessa $\mathbb{R}_+ \times \mathbb{R}_+$ määritelty funktio u(y,t) voidaan esittää muodossa $u(y,t) = P_t^{[\lambda]} f(y)$, missä $f \in \text{CMO}(\mathbb{R}_+, dm_\lambda)$ ja $dm_\lambda(x) := x^{2\lambda} dx$, jos ja vain jos u toteuttaa Weinsteinin-tyyppisen yhtälön

$$\mathbb{L}_{\lambda}u(x,t) := \frac{\partial^2 u(x,t)}{\partial t^2} - \Delta_{\lambda}u(x,t) = 0, \quad (x,t) \in \mathbb{R}_+ \times \mathbb{R}_+,$$

sekä Carlesonin-tyyppisen ehdon ja tietyt raja-arvo-ominaisuudet. Tätä varten esitellään aluksi Besselin asetelmaan sovitetut teltta-avaruudet $T_{2,C}^{\infty}$ ja T_2^p , missä $p \in [1, \infty]$, sekä osoitetaan avaruuksien $\text{CMO}(\mathbb{R}_+, dm_\lambda)$ ja $T_{2,C}^{\infty}$ välinen yhteys puoliryhmän $\{P_t^{[\lambda]}\}_{t>0}$ kautta. Lisäksi saadaan tuloksia, jotka koskevat operaattorin π_λ rajallisuutta teltta-avaruuksista eräisiin "tavallisiin" funktioavaruuksiin.

1. Introduction

The problem of harmonic extension of a function in the space $BMO(\mathbb{R}^n)$ was first studied by Fabes, Johnson and Neri in [16], based on the work of Fefferman and Stein [17]. Fabes, Johnson and Neri [16] showed that a function u on \mathbb{R}^{n+1}_+ can be

https://doi.org/10.54330/afm.155908

²⁰²⁰ Mathematics Subject Classification: Primary 42B35, 42B37, 42B99.

Key words: Bessel operator, $\text{CMO}(\mathbb{R}_+, dm_\lambda)$, Weinstein type equation, tent space, boundedness.

Jorge J. Betancor is supported by grant PID2019-110712GB-I00. Dongyong Yang is supported by the NNSF of China Grant No. 11971402 and 12171399.

^{*}First author.

[†]Corresponding author.

^{© 2025} The Finnish Mathematical Society

represented as $u(x,t) := P_t(f)(x)$, $(x,t) \in \mathbb{R}^{n+1}_+$, for some $f \in BMO(\mathbb{R}^n)$ if and only if u is the solution to the following equation

$$\frac{\partial^2 u(x,t)}{\partial t^2} + \Delta u(x,t) = 0, \quad (x,t) \in \mathbb{R}^{n+1}_+,$$

where $\triangle := \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}$ is the Laplacian on \mathbb{R}^n , and satisfies the Carleson condition

(1.1)
$$\sup_{x \in \mathbb{R}^n, r > 0} \frac{1}{r^n} \int_0^r \int_{B(x,r)} t \left| \nabla u(x,t) \right|^2 dx \, dt < \infty.$$

Here $\nabla := \left(\frac{\partial}{\partial_{x_1}}, \frac{\partial}{\partial_{x_2}}, \dots, \frac{\partial}{\partial_{x_n}}, \frac{\partial}{\partial_t}\right)$ and $\{P_t\}_{t>0}$ is the classical Poisson semigroup. In 2014, Duong et al. [14] characterized harmonic functions whose traces belong to $\text{BMO}_{\mathcal{L}}(\mathbb{R}^n)$ in terms of a Carleson type condition associated with the Schrödinger operator $\mathcal{L} := -\Delta + V$, where the non-negative potential V belongs to the reverse Hölder class $RH_q(\mathbb{R}^n)$ for some q > n, which was further extended by Jiang and Li [22] to general metric measure spaces with improved index. Recently, Song and Wu [27] studied the Dirichlet problem for the Schrödinger equation with boundary value in $\text{CMO}_{\mathcal{L}}(\mathbb{R}^n)$, which is defined as the closure in the $\text{BMO}_{\mathcal{L}}(\mathbb{R}^n)$ norm of $C_c^{\infty}(\mathbb{R}^n)$, the space of smooth functions with compact support, by using the theory of classical tent spaces. For further research on this topic and applications of tent spaces, see, for example, [7, 6, 15, 20, 2, 28, 25, 21, 11, 22, 24, 23] and the references therein.

In this paper, we consider the following Weinstein type equation

(1.2)
$$\mathbb{L}_{\lambda}u(x,t) := \frac{\partial^2 u(x,t)}{\partial t^2} - \Delta_{\lambda}u(x,t) = 0, \quad (x,t) \in (0,\infty) \times (0,\infty),$$

where $u \in C^2((0, \infty) \times (0, \infty))$, and

$$\Delta_{\lambda} := -x^{-2\lambda} \frac{d}{dx} x^{2\lambda} \frac{d}{dx} = -\frac{d^2}{dx^2} - \frac{2\lambda}{x} \frac{d}{dx}, \quad \lambda > 0,$$

is the Bessel operator on $\mathbb{R}_+ := (0, \infty)$. The operator Δ_{λ} has been studied by many mathematicians; see for example, [30, 31, 26, 4, 3, 2, 33, 12, 1] and the references therein.

In a previous paper, the authors [18] established a characterization of solutions of Weinstein type equations (1.2) with boundary value in $\text{BMO}(\mathbb{R}_+, dm_\lambda)$ studied in [33]; that is, for $\lambda \geq 1/2$, a solution u belongs to $\text{HMO}_\lambda(\mathbb{R}_+ \times \mathbb{R}_+)$, if and only if, there exists $f \in \text{BMO}(\mathbb{R}_+, dm_\lambda)$ such that u can be represented as $u(x, t) = P_t^{[\lambda]}(f)(x)$, $(x, t) \in \mathbb{R}_+ \times \mathbb{R}_+$; see Lemma 3.1 below. In this paper, we will further study solutions of (1.2) with boundary value in $\text{CMO}(\mathbb{R}_+, dm_\lambda)$ introduced in [12], which is a subspace of $\text{BMO}(\mathbb{R}_+, dm_\lambda)$.

In the following, we recall some necessary notation and notions. We say that a function $f \in L^1_{\text{loc}}(\mathbb{R}_+, dm_\lambda)$ belongs to the space $\text{BMO}(\mathbb{R}_+, dm_\lambda)$, if

$$||f||_{*,\lambda} := \sup_{I \subset \mathbb{R}_+} \frac{1}{m_{\lambda}(I)} \int_I |f(y) - f_{I,\lambda}| y^{2\lambda} \, dy < \infty,$$

where the supremum is taken over all intervals $I \subset \mathbb{R}_+$, and

$$f_{I,\lambda} := \frac{1}{m_{\lambda}(I)} \int_{I} f(y) y^{2\lambda} \, dy.$$

The space $\text{CMO}(\mathbb{R}_+, dm_\lambda)$ is defined by the $\text{BMO}(\mathbb{R}_+, dm_\lambda)$ -closure of $C_c^{\infty}(\mathbb{R}_+)$, the set of $C^{\infty}(\mathbb{R}_+)$ functions on \mathbb{R}_+ with compact support.

For a function $f \in L^p(\mathbb{R}_+, dm_\lambda)$ with $p \in [1, \infty]$, the Poisson semigroup $\{P_t^{[\lambda]}\}_{t>0}$ associated with the operator Δ_λ is defined by

$$P_t^{[\lambda]}f(x) := \int_0^\infty P_t^{[\lambda]}(x,y)f(y)y^{2\lambda}\,dy,$$

where

$$P_t^{[\lambda]}(x,y) := \frac{2\lambda t}{\pi} \int_0^{\pi} \frac{(\sin \theta)^{2\lambda - 1}}{(x^2 + y^2 + t^2 - 2xy \cos \theta)^{\lambda + 1}} \, d\theta, \quad t, x, y \in \mathbb{R}_+;$$

see [3, 26].

We define $\nabla_{x,t} := \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial t}\right)$ and denote by $\text{HMO}_{\lambda}(\mathbb{R}_+ \times \mathbb{R}_+)$ the class of all $C^{\infty}(\mathbb{R}_+ \times \mathbb{R}_+)$ functions u(x,t) which are the solutions of (1.2) and satisfy the following Carleson type condition

$$\|u\|_{\mathrm{HMO}_{\lambda}}^{2} := \sup_{I \subset \mathbb{R}_{+}} \frac{1}{m_{\lambda}(I)} \int_{0}^{|I|} \int_{I} t \left| \nabla_{y,t} u(y,t) \right|^{2} dm_{\lambda}(y) \, dt < \infty,$$

where and in the sequel, I under the supremum always represents an interval on \mathbb{R}_+ .

In order to state our result in this paper, we give the following definition.

Definition 1.1. A function u belongs to $\text{HCMO}_{\lambda}(\mathbb{R}_+ \times \mathbb{R}_+)$ if $u \in \text{HMO}_{\lambda}(\mathbb{R}_+ \times \mathbb{R}_+)$, and satisfies the following limiting conditions:

(1.3)
$$\lim_{a \to 0^+} \sup_{m_{\lambda}(I) \le a} \left(\frac{1}{m_{\lambda}(I)} \int_0^{|I|} \int_I t \left| \nabla_{y,t} u(y,t) \right|^2 dm_{\lambda}(y) dt \right)^{\frac{1}{2}} = 0;$$

(1.4)
$$\lim_{a \to \infty} \sup_{m_{\lambda}(I) \ge a} \left(\frac{1}{m_{\lambda}(I)} \int_{0}^{|I|} \int_{I} t \left| \nabla_{y,t} u(y,t) \right|^{2} dm_{\lambda}(y) dt \right)^{\frac{1}{2}} = 0;$$

and

(1.5)
$$\lim_{R \to \infty} \sup_{I \subset [R,\infty)} \left(\frac{1}{m_{\lambda}(I)} \int_{0}^{|I|} \int_{I} t \left| \nabla_{y,t} u(y,t) \right|^{2} dm_{\lambda}(y) dt \right)^{\frac{1}{2}} = 0.$$

We endow $\text{HCMO}_{\lambda}(\mathbb{R}_+ \times \mathbb{R}_+)$ with the norm of $\text{HMO}_{\lambda}(\mathbb{R}_+ \times \mathbb{R}_+)$.

We state our main result as follows.

Theorem 1.2. Let $\lambda \geq \frac{1}{2}$ and u be a function on $\mathbb{R}_+ \times \mathbb{R}_+$. Then the following statements are equivalent:

(c_i) There exists some $f \in \text{CMO}(\mathbb{R}_+, dm_\lambda)$ such that $u(x, t) = P_t^{[\lambda]}(f)(x), (x, t) \in \mathbb{R}_+ \times \mathbb{R}_+;$

$$(c_{ii}) \ u \in \mathrm{HCMO}_{\lambda}(\mathbb{R}_+ \times \mathbb{R}_+)$$

Moreover, the quantities $||f||_{*,\lambda}$ and $||u||_{HMO_{\lambda}}$ are equivalent.

Remark 1.3. We mention that the assumption $\lambda \geq \frac{1}{2}$ was made in the proof of [18, Theorem 1.2], which is useful in the proof of Theorem 1.2. It is unknown if the conclusion of Theorem 1.2 holds for $\lambda \in (0, \frac{1}{2})$; see also Remark 4.6 in [18].

In order to show the implication $(c_{ii}) \Longrightarrow (c_i)$ of Theorem 1.2, we establish a characterization of the space $\text{CMO}(\mathbb{R}_+, dm_\lambda)$ in terms of tent spaces in Section 2. More precisely, in Section 2, we introduce the tent spaces T_2^p with $p \in [1, \infty]$ in the Bessel setting, and provide a characterization of the space $T_{2,C}^p$ via the limiting conditions, where $T_{2,C}^{\infty}$ is a subspace of T_2^{∞} ; see Proposition 2.1 in Subsection 2.1. In Subsection 2.2, we apply Proposition 2.1 to establish a connection between $\text{CMO}(\mathbb{R}_+, dm_\lambda)$ and $T_{2,C}^{\infty}$ via $\{P_t^{[\lambda]}\}_{t>0}$; see Theorem 2.5. Section 3 is devoted to the proof of Theorem 1.2. In Section 4, we introduce the operator π_λ and show the connection between tent spaces and some classical function spaces on \mathbb{R}_+ via the operator π_λ .

We now make some preliminaries. In what follows, for every $x, r \in \mathbb{R}_+$, define

$$I(x,r) := (x-r, x+r) \cap \mathbb{R}_+$$

Observe that for $x, r \in (0, \infty), x < r$,

$$I(x,r) = (0, x+r) = I\left(\frac{x+r}{2}, \frac{x+r}{2}\right).$$

Thus, in the sequel, for a given interval I(x,r), without any specific condition, we may always assume that $x \ge r$. For $k \in \mathbb{R}_+$ and any interval I := I(x,r) for some $x, r \in \mathbb{R}_+, kI := I(x,kr)$. It is easy to see that for every interval $I(x,r), x, r \in \mathbb{R}_+$,

(1.6)
$$m_{\lambda}(I(x,r)) \sim \begin{cases} x^{2\lambda}r, & x > r; \\ r^{2\lambda+1}, & x \le r. \end{cases}$$

Moreover, it is known that for every $I \subset \mathbb{R}_+$,

(1.7)
$$\min\{2, 2^{2\lambda}\}m_{\lambda}(I) \le m_{\lambda}(2I) \le 2^{2\lambda+1}m_{\lambda}(I);$$

see [12, Proposition 2.1].

Throughout the paper, we use the notation $f \leq g$ and $f \sim g$ which mean that there exists C > 0 such that $f \leq Cg$ and $f/C \leq g \leq Cf$, respectively. The letter C denotes a positive constant that can change from one line to the next.

2. A connection of $\text{CMO}(\mathbb{R}_+, dm_{\lambda})$ and tent spaces

In this section, we introduce tent spaces to study the space $\text{CMO}(\mathbb{R}_+, dm_{\lambda})$. In Subsection 2.1, we introduce the spaces T_2^p $(1 \le p \le \infty)$, $T_{2,0}^{\infty}$ and $T_{2,C}^{\infty}$, and provide a characterization of $T_{2,C}^{\infty}$. By using the theory of tent spaces, we further obtain a Carleson type characterization of $\text{CMO}(\mathbb{R}_+, dm_{\lambda})$ in Subsection 2.2.

2.1. Preliminaries for tent spaces. To begin with, we denote by $\Gamma_+(x)$ the cone whose vertex is $x \in \mathbb{R}_+$, i.e.,

$$\Gamma_+(x) := \{ (y,t) \in \mathbb{R}_+ \times \mathbb{R}_+ \colon |x-y| < t \}.$$

For any closed set $E \subset \mathbb{R}_+$, $\mathcal{R}(E)$ means the union of the cones with vertices in E, i.e., $\mathcal{R}(E) := \bigcup_{x \in E} \Gamma_+(x)$. Let O be the open set in \mathbb{R}_+ which is the complement of $E, O := E^c$. Then the tent over O, denoted by \widehat{O} , is given as $\widehat{O} := (\mathcal{R}(E))^c$. Hence, for any open interval $I \subset \mathbb{R}_+$, we see that

$$\widehat{I} = \big\{ (y,t) \in \mathbb{R}_+ \times \mathbb{R}_+ \colon I(y,t) \subset I \big\}.$$

For a given measurable function f on $\mathbb{R}_+ \times \mathbb{R}_+$, we define $\Psi(f)$ and $\Phi(f)$ as follows: for any $x \in \mathbb{R}_+$,

$$\Psi(f)(x) := \left(\iint_{\Gamma_+(x)} |f(y,t)|^2 \frac{dm_\lambda(y)}{m_\lambda(I(y,t))} \frac{dt}{t} \right)^{\frac{1}{2}}$$

and

$$\Phi(f)(x) := \sup_{I \ni x} \left(\frac{1}{m_{\lambda}(I)} \iint_{\widehat{I}} |f(y,t)|^2 \frac{dm_{\lambda}(y) dt}{t} \right)^{\frac{1}{2}}.$$

By the fact that $\widehat{I} \subset I \times (0, |I|) \subset \widehat{3I}$ for any interval $I \subset \mathbb{R}_+$ and (1.7), it is obvious that for any $x \in \mathbb{R}_+$,

(2.1)
$$\Phi(f)(x) \sim \sup_{I \ni x} \left(\frac{1}{m_{\lambda}(I)} \int_{0}^{|I|} \int_{I} |f(y,t)|^{2} \frac{dm_{\lambda}(y) dt}{t} \right)^{\frac{1}{2}}$$

In the following, we introduce the space T_2^p , $1 \leq p \leq \infty$. Let $L^0(\mathbb{R}_+ \times \mathbb{R}_+)$ be the set of all measurable functions on $\mathbb{R}_+ \times \mathbb{R}_+$. For $1 \leq p < \infty$, we define

$$T_2^p := \left\{ f \in L^0(\mathbb{R}_+ \times \mathbb{R}_+) \colon \Psi(f) \in L^p(\mathbb{R}_+, dm_\lambda) \right\}$$

and endow T_2^p with the norm $||f||_{T_2^p} := ||\Psi(f)||_{L^p(\mathbb{R}_+, dm_\lambda)}$. For $p = \infty$, we define

$$T_2^{\infty} := \left\{ f \in L^0(\mathbb{R}_+ \times \mathbb{R}_+) \colon \Phi(f) \in L^{\infty}(\mathbb{R}_+, dm_{\lambda}) \right\}$$

with the norm $||f||_{T_2^{\infty}} := ||\Phi(f)||_{L^{\infty}(\mathbb{R}_+, dm_{\lambda})}$. Let $T_{2,c}^p, 1 \leq p < \infty$, be the subset of all $f \in T_2^p$ with compact support in $\mathbb{R}_+ \times \mathbb{R}_+$ and $T_{2,0}^{\infty}$ be the subset of all $f \in T_2^{\infty}$ such that

(2.2)
$$\lim_{a \to 0^+} \sup_{m_{\lambda}(I) \le a} \left(\frac{1}{m_{\lambda}(I)} \iint_{\widehat{I}} |f(y,t)|^2 \frac{dm_{\lambda}(y) dt}{t} \right)^{\frac{1}{2}} = 0$$

And we endow $T_{2,0}^{\infty}$ with the norm of T_2^{∞} . Then we have the inclusion

$$T_{2,c}^2 \subset T_{2,0}^\infty;$$

see, for example, [25, p. 226] in the setting of spaces of homogeneous type. Based on this fact, we further denote by $T_{2,C}^{\infty}$, the closure of the set $T_{2,c}^{2}$ in $T_{2,0}^{\infty}$ and endow $T_{2,C}^{\infty}$ with the norm of T_2^{∞} . Then we have an equivalent characterization of $T_{2,C}^{\infty}$; see [25, Lemma 3.3] for the proof.

Proposition 2.1. Let $f \in T_2^{\infty}$. Then $f \in T_{2,C}^{\infty}$ if and only if f satisfies (2.2),

(2.3)
$$\lim_{a \to \infty} \sup_{m_{\lambda}(I) \ge a} \left(\frac{1}{m_{\lambda}(I)} \iint_{\widehat{I}} |f(y,t)|^2 \frac{dm_{\lambda}(y) dt}{t} \right)^{\frac{1}{2}} = 0$$

and

(2.4)
$$\lim_{R \to \infty} \sup_{I \subset [R,\infty)} \left(\frac{1}{m_{\lambda}(I)} \iint_{\widehat{I}} |f(y,t)|^2 \frac{dm_{\lambda}(y) dt}{t} \right)^{\frac{1}{2}} = 0.$$

Remark 2.2. We remark that $T_{2,C}^{\infty}$ is a proper subspace of $T_{2,0}^{\infty}$. In fact, let

$$f(x,t) := \begin{cases} 1, & (x,t) \in \bigcup_{k=1}^{\infty} E_k; \\ 0, & \text{otherwise,} \end{cases}$$

where $E_k := [5 \cdot 2^{k-3}, 7 \cdot 2^{k-3}] \times [1, 2]$. It is easy to see that $\{E_k\}_{k=1}^{\infty}$ are pairwise disjoint and for every $k \in \mathbb{N}$,

$$\iint_{E_k} |f(y,t)|^2 \frac{dm_{\lambda}(y) \, dt}{t} = \frac{(7^{2\lambda+1} - 5^{2\lambda+1}) \ln 2}{2\lambda + 1} 2^{(k-3)(2\lambda+1)}.$$

By this fact, it can be seen that the function $f \in T_{2,0}^{\infty}$ does not satisfy (2.3) and (2.4) of Proposition 2.1.

2.2. Carleson type characterizations of $\text{CMO}(\mathbb{R}_+, dm_{\lambda})$. We start with the Carleson characterization of $\text{BMO}(\mathbb{R}_+, dm_{\lambda})$ established in [18]. Recall that a positive measure μ on $\mathbb{R}_+ \times \mathbb{R}_+$ is an m_{λ} -Carleson measure, if there exists C > 0 such that for every interval $I \subset \mathbb{R}_+$,

$$\mu(I \times (0, |I|)) \le Cm_{\lambda}(I).$$

In [18, Theorem 1.1], the authors established the following characterization of the space BMO(\mathbb{R}_+, dm_λ) via the m_λ -Carleson measure that a function $f \in BMO(\mathbb{R}_+, dm_\lambda)$ if and only if $(1 + x^{2\lambda+2})^{-1}f \in L^1(\mathbb{R}_+, dm_\lambda)$, and

(2.5)
$$t\frac{\partial}{\partial t}P_t^{[\lambda]}(f) \in T_2^{\infty}, \quad t \in \mathbb{R}_+.$$

Moreover, $\|f\|_{*,\lambda} \sim \|t\frac{\partial}{\partial t}P_t^{[\lambda]}(f)\|_{T_2^{\infty}}$.

We now gather some known pointwise estimates of derivatives of $P_t^{[\lambda]}(x,y)$ as follows; for the proof see, for example, [32, Proposition 2.1 (iii)] or [26, p. 86 (b)].

Lemma 2.3. There exists a positive constant C such that for any $x, y, t \in (0, \infty)$,

(2.6)
$$\left|\frac{\partial}{\partial t}P_t^{[\lambda]}(x,y)\right| \le C \min\left\{\frac{1}{\left(|y-x|^2+t^2\right)^{\lambda+1}}, \frac{1}{\left(yx\right)^{\lambda}\left(|y-x|^2+t^2\right)}\right\},$$

(2.7)
$$\left| \frac{\partial}{\partial x} P_t^{[\lambda]}(x,y) \right| \le C \min \left\{ \frac{t}{(|y-x|^2+t^2)^{\lambda+\frac{3}{2}}}, \frac{t}{(yx)^{\lambda} (|y-x|^3+t^3)} \right\},$$

and

(2.8)
$$\left|\frac{\partial}{\partial y}\frac{\partial}{\partial t}P_t^{[\lambda]}(x,y)\right| \le C \min\left\{\frac{1}{\left(|y-x|^2+t^2\right)^{\lambda+\frac{3}{2}}}, \frac{1}{(yx)^{\lambda}\left(|y-x|^3+t^3\right)}\right\}.$$

Let $p \in [1, \infty)$ and

$$M_{\lambda,p}(f,I) := \left(\frac{1}{m_{\lambda}(I)} \int_{I} |f(y) - f_{I,\lambda}|^{p} y^{2\lambda} \, dy\right)^{1/p}$$

The following characterization of $\text{CMO}(\mathbb{R}_+, dm_{\lambda})$ is an extension of [12, Theorem 3.1] where the case p = 1 was considered. The proof for $p \in (1, \infty)$ follows immediately from the John–Nirenberg inequality for functions in $\text{BMO}(\mathbb{R}_+, dm_{\lambda})$ and [12, Theorem 3.1], and is omitted.

Lemma 2.4. Let $p \in [1, \infty)$ and $f \in BMO(\mathbb{R}_+, dm_{\lambda})$. Then $f \in CMO(\mathbb{R}_+, dm_{\lambda})$ if and only if f satisfies

$$\lim_{a \to 0^+} \sup_{m_{\lambda}(I) \le a} M_{\lambda,p}(f,I) = \lim_{a \to \infty} \sup_{m_{\lambda}(I) \ge a} M_{\lambda,p}(f,I) = \lim_{R \to \infty} \sup_{I \subset [R,\infty)} M_{\lambda,p}(f,I) = 0.$$

We state the main result in this subsection as follows.

Theorem 2.5. Let $\lambda > 0$. Then the following statements are equivalent: $(b_i) f \in CMO(\mathbb{R}_+, dm_{\lambda});$

$$(b_{ii}) \ (1+x^{2\lambda+2})^{-1}f \in L^1(\mathbb{R}_+, dm_\lambda) \text{ and}$$

(2.9)
$$t\frac{\partial}{\partial t}P_t^{[\lambda]}(f) \in T_{2,C}^{\infty}, \quad t \in \mathbb{R}_+.$$

Moreover, the quantities $||f||_{*,\lambda}$ and $||t\frac{\partial}{\partial t}P_t^{[\lambda]}(f)||_{T_2^{\infty}}$ are equivalent.

Proof. $(b_i) \Rightarrow (b_{ii})$: Assume that $f \in \text{CMO}(\mathbb{R}_+, dm_\lambda)$. Then by [18, Theorem 1.1], we obtain that $(1 + x^{2\lambda+2})^{-1} f \in L^1(\mathbb{R}_+, dm_\lambda)$, (2.5) and

$$\left\| t \frac{\partial}{\partial t} P_t^{[\lambda]}(f) \right\|_{T_2^{\infty}} \lesssim \|f\|_{*,\lambda}.$$

Let $I := I(x_0, r_0), x_0, r_0 \in \mathbb{R}_+$. Write

$$f = (f - f_{2I,\lambda})\chi_{2I} + (f - f_{2I,\lambda})\chi_{\mathbb{R}_+ \setminus 2I} + f_{2I,\lambda} =: f_1 + f_2 + f_{2I,\lambda}.$$

By

(2.10)
$$\int_0^\infty P_t^{[\lambda]}(x,y) \, dm_\lambda(y) = 1, \quad x, t \in \mathbb{R}_+;$$

see [3, p. 208], we deduce $t\frac{\partial}{\partial t}P_t^{[\lambda]}(f_{2I,\lambda})(x) = 0, x, t \in \mathbb{R}_+$. Hence, we have

(2.11)
$$\left(\frac{1}{m_{\lambda}(I)} \iint_{\widehat{I}} \left| t \frac{\partial}{\partial t} P_{t}^{[\lambda]}(f)(y) \right|^{2} \frac{dm_{\lambda}(y) dt}{t} \right)^{\frac{1}{2}} \\ \leq \left(\frac{1}{m_{\lambda}(I)} \iint_{\widehat{I}} \left| t \frac{\partial}{\partial t} P_{t}^{[\lambda]}(f_{1})(y) \right|^{2} \frac{dm_{\lambda}(y) dt}{t} \right)^{\frac{1}{2}} \\ + \left(\frac{1}{m_{\lambda}(I)} \iint_{\widehat{I}} \left| t \frac{\partial}{\partial t} P_{t}^{[\lambda]}(f_{2})(y) \right|^{2} \frac{dm_{\lambda}(y) dt}{t} \right)^{\frac{1}{2}} \\ =: K(f_{1}) + K(f_{2}).$$

For $K(f_1)$, by the boundedness of the Littlewood–Paley g-function on $L^2(\mathbb{R}_+, dm_\lambda)$ (see [18, Lemma 3.1] or [29, 5]), we get

$$(K(f_1))^2 \leq \frac{1}{m_{\lambda}(I)} \int_I \int_0^\infty \left| t \frac{\partial}{\partial t} P_t^{[\lambda]}(f_1)(y) \right|^2 \frac{dt}{t} dm_{\lambda}(y)$$
$$\lesssim \frac{1}{m_{\lambda}(2I)} \int_{2I} |f(y) - f_{2I,\lambda}|^2 dm_{\lambda}(y) = \left(M_{\lambda,2}(f,2I) \right)^2.$$

Then by Lemma 2.4 with p = 2, we have

(2.12)
$$\lim_{a \to 0} \sup_{m_{\lambda}(I) \le a} K(f_1) = \lim_{a \to \infty} \sup_{m_{\lambda}(I) \ge a} K(f_1) = \lim_{R \to \infty} \sup_{I \subset [R,\infty)} K(f_1) = 0.$$

As for $K(f_2)$, (2.6) together with (1.6) implies that for any $x, y, t \in \mathbb{R}_+$,

(2.13)
$$\left|\frac{\partial}{\partial t}P_t^{[\lambda]}(x,y)\right| \lesssim \frac{1}{m_\lambda(I(x,|y-x|+t))}\frac{1}{|y-x|+t}.$$

Moreover, for $x \in I$ and $y \in \mathbb{R}_+ \setminus 2I$, we have

$$|y - x_0| \sim |y - x|$$
 and $m_{\lambda}(I(x, |y - x|)) \sim m_{\lambda}(I(x_0, |y - x_0|)).$

Hence, by (2.13), we see that $x \in I$ and $t \in \mathbb{R}_+$,

$$\begin{aligned} \left| t \frac{\partial}{\partial t} P_t^{[\lambda]}(f_2)(x) \right| &\leq \int_{\mathbb{R}_+ \setminus 2I} \left| t \frac{\partial}{\partial t} P_t^{[\lambda]}(x, y) f_2(y) \right| dm_\lambda(y) \\ &\lesssim \sum_{k=1}^\infty \int_{2^{k+1}I \setminus 2^kI} \frac{1}{m_\lambda(I(x_0, |y - x_0|))} \frac{t}{|y - x_0| + t} |f(y) - f_{2I,\lambda}| dm_\lambda(y) \\ &\lesssim \frac{t}{|I|} \sum_{k=1}^\infty \frac{1}{2^k} \frac{1}{m_\lambda(2^kI)} \int_{2^{k+1}I \setminus 2^kI} |f(y) - f_{2I,\lambda}| dm_\lambda(y) =: \frac{t}{|I|} H. \end{aligned}$$

By the above estimate, we have

$$(K(f_2))^2 \lesssim \frac{1}{m_{\lambda}(I)} \int_0^{|I|} \int_I \left| t \frac{\partial}{\partial t} P_t^{[\lambda]}(f_2)(x) \right|^2 \frac{dm_{\lambda}(x) dt}{t}$$
$$\lesssim \frac{1}{m_{\lambda}(I)} \int_0^{|I|} \int_I \left| \frac{t}{|I|} H \right|^2 \frac{dm_{\lambda}(x) dt}{t} \lesssim H^2.$$

Hence, we have for $N_0 \in \mathbb{N}$,

$$\begin{split} K(f_2) &\leq \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{1}{m_{\lambda}(2^k I)} \int_{2^{k+1}I} |f(y) - f_{2I,\lambda}| \, dm_{\lambda}(y) \\ &\lesssim \left(\sum_{k=1}^{N_0} + \sum_{k=N_0}^{\infty} \right) \frac{1}{2^k} \frac{1}{m_{\lambda}(2^{k+1}I)} \int_{2^{k+1}I} |f(y) - f_{2I,\lambda}| \, dm_{\lambda}(y) \\ &=: II_1 + II_2. \end{split}$$

For II_2 , using the fact that for any $k \in \mathbb{N}$,

$$|f_{2^{k+1}I,\lambda} - f_{2I}| \lesssim k ||f||_{*,\lambda},$$

we have

$$II_2 \lesssim \sum_{k=N_0}^{\infty} \frac{k}{2^k} \|f\|_{*,\lambda} \lesssim \frac{\|f\|_{*,\lambda}}{2^{N_0/2}}.$$

Note that if N_0 large enough, then we have that II_2 is sufficiently small.

Regarding II_1 , it is obvious that for every $k \in \{1, 2, \ldots, N_0\}$,

$$|f_{2^{k+1}I,\lambda} - f_{2^{k}I,\lambda}| \le \frac{2^{2\lambda+1}}{m_{\lambda}(2^{k+1}I)} \int_{2^{k+1}I} |f(y) - f_{2^{k+1}I,\lambda}| \, dm_{\lambda}(y).$$

Then

$$\begin{aligned} \frac{1}{m_{\lambda}(2^{k+1}I)} \int_{2^{k+1}I} |f(y) - f_{2I,\lambda}| dm_{\lambda}(y) \\ &\leq \frac{1}{m_{\lambda}(2^{k+1}I)} \int_{2^{k+1}I} |f(y) - f_{2^{k+1}I,\lambda}| dm_{\lambda}(y) \\ &+ \sum_{j=0}^{k} \frac{2^{2\lambda+1}}{m_{\lambda}(2^{j+1}I)} \int_{2^{j+1}I} |f(y) - f_{2^{j+1}I,\lambda}| dm_{\lambda}(y) \\ &\lesssim \sum_{j=0}^{k} \frac{1}{m_{\lambda}(2^{j+1}I)} \int_{2^{j+1}I} |f(y) - f_{2^{j+1}I,\lambda}| dm_{\lambda}(y). \end{aligned}$$

From this fact, we see

(2.14)
$$II_{1} \lesssim \sum_{k=0}^{N_{0}} \frac{N_{0} - k + 2}{2^{k}} \frac{1}{m_{\lambda}(2^{k+1}I)} \int_{2^{k+1}I} |f(y) - f_{2^{k+1}I,\lambda}| \, dm_{\lambda}(y)$$
$$\lesssim N_{0} \sum_{k=0}^{N_{0}} \frac{1}{m_{\lambda}(2^{k+1}I)} \int_{2^{k+1}I} |f(y) - f_{2^{k+1}I,\lambda}| \, dm_{\lambda}(y).$$

On the other hand, for every $k \in \{0, 1, 2, \dots, N_0\}$, we have

$$\sup_{m_{\lambda}(I) \leq a} \frac{1}{m_{\lambda}(2^{k+1}I)} \int_{2^{k+1}I} |f(y) - f_{2^{k+1}I,\lambda}| \, dm_{\lambda}(y)$$

$$\leq \sup_{m_{\lambda}(2^{k+1}I) \leq 2^{(k+1)(2\lambda+1)}a} \frac{1}{m_{\lambda}(2^{k+1}I)} \int_{2^{k+1}I} |f(y) - f_{2^{k+1}I,\lambda}| \, dm_{\lambda}(y)$$

$$\leq \sup_{m_{\lambda}(2^{k+1}I) \leq 2^{(N_{0}+1)(2\lambda+1)}a} \frac{1}{m_{\lambda}(2^{k+1}I)} \int_{2^{k+1}I} |f(y) - f_{2^{k+1}I,\lambda}| \, dm_{\lambda}(y),$$

and

$$\sup_{m_{\lambda}(I) \ge a} \frac{1}{m_{\lambda}(2^{k+1}I)} \int_{2^{k+1}I} |f(y) - f_{2^{k+1}I,\lambda}| \, dm_{\lambda}(y)$$

$$\leq \sup_{m_{\lambda}(2^{k+1}I) \ge a} \frac{1}{m_{\lambda}(2^{k+1}I)} \int_{2^{k+1}I} |f(y) - f_{2^{k+1}I,\lambda}| \, dm_{\lambda}(y).$$

Then by Lemma 2.4 and (2.14), we see

(2.15)
$$\lim_{a \to 0} \sup_{m_{\lambda}(I) \le a} II_1 = \lim_{a \to \infty} \sup_{m_{\lambda}(I) \ge a} II_1 = 0.$$

Moreover, we claim that for every $k \in \{0, 1, 2, \dots, N_0\}$,

$$\lim_{R \to \infty} \sup_{I \subset [R,\infty)} \frac{1}{m_{\lambda}(2^{k+1}I)} \int_{2^{k+1}I} |f(y) - f_{2^{k+1}I,\lambda}| \, dm_{\lambda}(y) = 0.$$

In fact, fix $\epsilon > 0$. From Lemma 2.4, there exists b > 0 such that

(2.16)
$$\sup_{m_{\lambda}(I) \ge b} \frac{1}{m_{\lambda}(I)} \int_{I} |f(y) - f_{I,\lambda}| y^{2\lambda} \, dy < \epsilon.$$

Again, by Lemma 2.4, we choose M > 0 such that $m_{\lambda}((M, 2M)) \ge b$ and

$$\sup_{I \subset [M,\infty)} \frac{1}{m_{\lambda}(I)} \int_{I} |f(y) - f_{I,\lambda}| y^{2\lambda} \, dy < \epsilon.$$

This together with (2.16) implies that

$$\sup_{I \subset [2M,\infty)} \frac{1}{m_{\lambda}(2^{k+1}I)} \int_{2^{k+1}I} |f(y) - f_{2^{k+1}I,\lambda}| y^{2\lambda} \, dy < \epsilon.$$

Thus, the claim holds. Hence, by (2.14), we see

$$\lim_{R \to \infty} \sup_{I \subset [R,\infty)} II_1 = 0,$$

which along with (2.15) and II_2 further implies that

(2.17)
$$\lim_{a \to 0} \sup_{m_{\lambda}(I) \le a} K(f_2) = \lim_{a \to \infty} \sup_{m_{\lambda}(I) \ge a} K(f_2) = \lim_{R \to \infty} \sup_{I \subset [R,\infty)} K(f_2) = 0.$$

Since $f \in BMO(\mathbb{R}_+, dm_\lambda)$, we have (2.5). Hence, from (2.17), (2.11), (2.12) and Proposition 2.1, we conclude that for any t > 0, $t \frac{\partial}{\partial t} P_t^{[\lambda]}(f) \in T_{2,C}^{\infty}$. $(b_{ii}) \Rightarrow (b_i)$: By the condition (b_{ii}) and (2.5), it is easy to deduce that $f \in \mathbb{P}$

BMO(\mathbb{R}_+, dm_λ). For any interval $I := I(x_0, r_0), x_0, r_0 \in \mathbb{R}_+$, by a duality argument, we have

$$(2.18) ||f - f_{I,\lambda}||_{L^{1}(I,dm_{\lambda})} = \sup_{\|g\|_{L^{\infty}(I,dm_{\lambda})} \leq 1} \left| \int_{I} (f(y) - f_{I,\lambda}) g(y) \, dm_{\lambda}(y) \right| \\ = \sup_{\|g\|_{L^{\infty}(I,dm_{\lambda})} \leq 1} \left| \int_{I} (g(y) - g_{I,\lambda}) f(y) \, dm_{\lambda}(y) \right| \\ = \sup_{\|g\|_{L^{\infty}(I,dm_{\lambda})} \leq 1} \left| \int_{0}^{\infty} (g(y) - g_{I,\lambda}) \chi_{I}(y) f(y) \, dm_{\lambda}(y) \right|.$$

Assume that $g \in L^{\infty}(I, dm_{\lambda})$ with $I \subset \mathbb{R}_{+}$ such that $\|g\|_{L^{\infty}(I, dm_{\lambda})} \leq 1$. Let $g_0 := (g - g_{I,\lambda}) \chi_I$. Then $\operatorname{supp} g_0 \subset I$, $c\infty$

(2.19)
$$\int_{0}^{\infty} g_{0}(y) \, dm_{\lambda}(y) = 0 \quad \text{and} \quad \|g_{0}\|_{L^{\infty}(I, dm_{\lambda})} \leq 2.$$

From the definition of g_0 and [18, Proposition 3.4], we have

(2.20)
$$\frac{1}{4} \int_0^\infty f(y)g_0(y) \, dm_\lambda(y) = \int_0^\infty \int_0^\infty t \frac{\partial}{\partial t} P_t^{[\lambda]}(f)(y) t \frac{\partial}{\partial t} P_t^{[\lambda]}(g_0)(y) \frac{dm_\lambda(y) \, dt}{t}$$
Let

$$F(y,t) := t \frac{\partial}{\partial t} P_t^{[\lambda]}(f)(y) \quad \text{and} \quad G(y,t) := t \frac{\partial}{\partial t} P_t^{[\lambda]}(g_0)(y), \quad y,t \in \mathbb{R}_+.$$

Write

(2.21)
$$\left| \int_{0}^{\infty} \int_{0}^{\infty} F(y,t) G(y,t) \frac{dm_{\lambda}(y) dt}{t} \right|$$
$$\leq \left(\iint_{\widehat{2I}} + \sum_{k=1}^{\infty} \iint_{\widehat{2^{k+1}I} \setminus \widehat{2^{k}I}} \right) |F(y,t)G(y,t)| \frac{dm_{\lambda}(y) dt}{t}$$
$$=: A_{0} + \sum_{k=1}^{\infty} A_{k}.$$

Consider A_0 . By $\|g_0\|_{L^{\infty}(I,dm_{\lambda})} \leq 2$ and by the boundedness of the Littlewood-Paley g-function on $L^2(\mathbb{R}_+, dm_\lambda)$, we have

$$\iint_{\widehat{2I}} |G(y,t)|^2 \frac{dm_{\lambda}(y) dt}{t} \lesssim ||g_0||^2_{L^2(\mathbb{R}_+, dm_{\lambda})} \lesssim m_{\lambda}(I).$$

By using Hölder's inequality, we see

$$(2.22) A_0 \leq \left(\iint_{\widehat{2I}} |F(y,t)|^2 \frac{dm_\lambda(y) dt}{t} \right)^{1/2} \left(\iint_{\widehat{2I}} |G(y,t)|^2 \frac{dm_\lambda(y) dt}{t} \right)^{1/2} \\ \lesssim m_\lambda(I) \left(\frac{1}{m_\lambda(2I)} \iint_{\widehat{2I}} |F(y,t)|^2 \frac{dm_\lambda(y) dt}{t} \right)^{1/2}.$$

For $A_k, k \in \mathbb{N}$, using Hölder's inequality again,

$$A_k \leq \left(\iint_{\widehat{2^{k+1}I}\setminus\widehat{2^{k}I}} |F(y,t)|^2 \frac{dm_{\lambda}(y) dt}{t} \right)^{1/2} \left(\iint_{\widehat{2^{k+1}I}\setminus\widehat{2^{k}I}} |G(y,t)|^2 \frac{dm_{\lambda}(y) dt}{t} \right)^{1/2}.$$

We now estimate

$$E_k := \left(\iint_{\widehat{2^{k+1}I}\setminus\widehat{2^kI}} |G(y,t)|^2 \frac{dm_\lambda(y)\,dt}{t} \right)^{1/2}.$$

By (2.19), (2.8) and the mean value theorem, we have that for $y \in 2^{k+1}I \setminus 2^kI$ and $t \in (0, \infty)$,

$$\begin{split} \left| \frac{\partial}{\partial t} P_t^{[\lambda]}(g_0)(y) \right| &= \left| \int_0^\infty \left[\frac{\partial}{\partial t} P_t^{[\lambda]}(y,x) - \frac{\partial}{\partial t} P_t^{[\lambda]}(y,x_0) \right] g_0(x) \, dm_\lambda(x) \\ &\leq \int_0^\infty |x - x_0| \left| \frac{\partial}{\partial x} \frac{\partial}{\partial t} P_t^{[\lambda]}(y,x) \right|_{x=\eta} |g_0(x)| \, dm_\lambda(x) \\ &\lesssim \int_I \frac{|g_0(x)|}{m_\lambda(I(x_0,|y - x_0|))} \frac{|x - x_0|}{(|y - x_0| + t)^2} \, dm_\lambda(x) \\ &\lesssim \frac{m_\lambda(I)}{2^k} \frac{1}{m_\lambda(2^k I)} \frac{1}{2^k r_0}, \end{split}$$

where $\eta := (1 - s)x_0 + sx$ for some $s \in (0, 1)$. Hence, we see

$$E_k \lesssim \frac{m_{\lambda}(I)}{2^k} \left(\int_0^{2^{k+1}r_0} \int_{2^{k+1}I} t \left| \frac{1}{m_{\lambda}(2^kI)} \frac{1}{2^k r_0} \right|^2 dm_{\lambda}(y) dt \right)^{1/2}$$

$$\lesssim \frac{m_{\lambda}(I)}{2^k} \left(\frac{1}{m_{\lambda}(2^kI)} \right)^{1/2} \left(\frac{1}{2^{2k}r_0^2} \int_0^{2^{k+1}r_0} t dt \right)^{1/2} \sim \frac{m_{\lambda}(I)}{2^k} \left(\frac{1}{m_{\lambda}(2^kI)} \right)^{1/2},$$

which further leads to

$$A_k \lesssim \frac{1}{2^k} m_{\lambda}(I) \left(\frac{1}{m_{\lambda}(2^{k+1}I)} \iint_{\widehat{2^{k+1}I}} |F(y,t)|^2 \frac{dm_{\lambda}(y) dt}{t} \right)^{1/2}.$$

This together with (2.21) and (2.22) implies that

$$\begin{aligned} \left| \int_0^\infty \int_0^\infty F(y,t) G(y,t) \frac{dm_\lambda(y) dt}{t} \right| \\ \lesssim m_\lambda(I) \sum_{k=0}^\infty \frac{1}{2^k} \left(\frac{1}{m_\lambda(2^{k+1}I)} \iint_{\widehat{2^{k+1}I}} |F(y,t)|^2 \frac{dm_\lambda(y) dt}{t} \right)^{1/2} \end{aligned}$$

Combining (2.18) and (2.20), we conclude

$$\frac{1}{m_{\lambda}(I)} \int_{I} |f(y) - f_{I,\lambda}| y^{2\lambda} dy$$

$$\lesssim \sum_{k=0}^{\infty} \frac{1}{2^{k}} \left(\frac{1}{m_{\lambda}(2^{k+1}I)} \iint_{\widehat{2^{k+1}I}} \left| t \frac{\partial}{\partial t} P_{t}^{[\lambda]}(f)(y) \right|^{2} \frac{dm_{\lambda}(y) dt}{t} \right)^{1/2},$$

which implies that $||f||_{*,\lambda} \lesssim ||t\frac{\partial}{\partial t}P_t^{[\lambda]}(f)||_{T_2^{\infty}}$. Moreover, by using an argument similar to the proof of $(b_i) \Rightarrow (b_{ii})$, and Proposition 2.1, we see that for given f such that

Jorge J. Betancor, Qingdong Guo and Dongyong Yang

$$(1+x^{2\lambda+2})^{-1}f \in L^1(\mathbb{R}_+, dm_{\lambda}) \text{ and } t\frac{\partial}{\partial t}P_t^{[\lambda]}(f) \in T^{\infty}_{2,C},$$
$$\lim_{a \to 0^+} \sup_{m_{\lambda}(I) \leq a} \frac{1}{m_{\lambda}(I)} \int_I |f(y) - f_{I,\lambda}| y^{2\lambda} dy$$
$$= \lim_{a \to \infty} \sup_{m_{\lambda}(I) \geq a} \frac{1}{m_{\lambda}(I)} \int_I |f(y) - f_{I,\lambda}| y^{2\lambda} dy$$
$$= \lim_{R \to \infty} \sup_{I \subset [R,\infty)} \frac{1}{m_{\lambda}(I)} \int_I |f(y) - f_{I,\lambda}| y^{2\lambda} dy = 0.$$

This via Lemma 2.4 implies that $f \in \text{CMO}(\mathbb{R}_+, dm_{\lambda})$. Therefore, we complete the proof of Theorem 2.5.

Remark 2.6. (1) Let $\{W_t^{[\lambda]}\}_{t>0}$ be the heat semigroup associated with Δ_{λ} defined by setting for all $f \in \bigcup_{1 \le p \le \infty} L^p(\mathbb{R}_+, dm_{\lambda})$ and $x \in \mathbb{R}_+$,

$$W_t^{[\lambda]}f(x) := \int_0^\infty W_t^{[\lambda]}(x,y)f(y) \, dm_\lambda(y),$$

where

$$W_t^{[\lambda]}(x,y) := \frac{2^{(1-2\lambda)/2}}{\Gamma(\lambda)\sqrt{\pi}} t^{-\lambda - \frac{1}{2}} \int_0^\pi \exp\left(-\frac{x^2 + y^2 - 2xy\cos\theta}{2t}\right) (\sin\theta)^{2\lambda - 1} \, d\theta.$$

We remark the conclusion of Theorem 2.5 holds if (2.9) is replaced by

$$t^2 \frac{\partial}{\partial s} W_s^{[\lambda]}(f) \big|_{s=t^2} \in T^{\infty}_{2,C}$$

(2) Let $\lambda > 0$ and VMO(\mathbb{R}_+, dm_λ) be the subspace of functions $f \in BMO(\mathbb{R}_+, dm_\lambda)$ satisfying

$$\lim_{a \to 0^+} \sup_{m_{\lambda}(I) \le a} M_{\lambda,p}(f, I) = 0.$$

Then for $f \in BMO(\mathbb{R}_+, dm_\lambda)$, the following statements are equivalent:

$$(W_i) \ f \in \text{VMO}(\mathbb{R}_+, dm_{\lambda});$$

$$(W_{ii}) \ (1 + x^{2\lambda+2})^{-1} f \in L^1(\mathbb{R}_+, dm_{\lambda}) \text{ and}$$

$$t \frac{\partial}{\partial t} P_t^{[\lambda]}(f) \in T_{2,0}^{\infty}, \quad t \in \mathbb{R}_+;$$

$$(W_{-}) \ (1 + x^{2\lambda+2})^{-1} f \in L^1(\mathbb{R}_+, dm_{\lambda}) \text{ and}$$

 $(W_{iii}) \ (1 + x^{2\lambda+2})^{-1} f \in L^1(\mathbb{R}_+, dm_\lambda)$ and

$$t^2 \frac{\partial}{\partial s} W_s^{[\lambda]}(f) \big|_{s=t^2} \in T_{2,0}^{\infty}, \quad t \in \mathbb{R}_+.$$

Moreover, the quantities $||f||_{*,\lambda}$ and $||t\frac{\partial}{\partial t}P_t^{[\lambda]}(f)||_{T_2^{\infty}}$, $||t^2\frac{\partial}{\partial s}W_s^{[\lambda]}(f)|_{s=t^2}||_{T_2^{\infty}}$ are equivalent.

3. The proof of Theorem 1.2

In this section, we provide the proof of Theorem 1.2. Before that, we first recall a characterization of $BMO(\mathbb{R}_+, dm_\lambda)$ via $HMO_\lambda(\mathbb{R}_+ \times \mathbb{R}_+)$ obtained in [18].

Lemma 3.1. Let $\lambda \geq \frac{1}{2}$ and u be a function on $\mathbb{R}_+ \times \mathbb{R}_+$. Then the following statements are equivalent:

- (a_i) There exists some $f \in BMO(\mathbb{R}_+, dm_\lambda)$ such that $u(x, t) = P_t^{[\lambda]}(f)(x), (x, t) \in \mathbb{R}_+ \times \mathbb{R}_+;$
- $(a_{ii}) \ u \in \mathrm{HMO}_{\lambda}(\mathbb{R}_+ \times \mathbb{R}_+).$

40

Moreover, the quantities $||f||_{*,\lambda}$ and $||u||_{HMO_{\lambda}}$ are equivalent.

Proof of Theorem 1.2. $(c_{ii}) \Longrightarrow (c_i)$. If $u \in \text{HCMO}_{\lambda}(\mathbb{R}_+ \times \mathbb{R}_+)$, then $u \in \text{HMO}_{\lambda}(\mathbb{R}_+ \times \mathbb{R}_+)$. By Lemma 3.1, there exists a function $f \in \text{BMO}(\mathbb{R}_+, dm_{\lambda})$ such that $u(x,t) = P_t^{[\lambda]}(f)(x), (x,t) \in \mathbb{R}_+ \times \mathbb{R}_+$ and

$$||f||_{*,\lambda} \lesssim ||u||_{\mathrm{HMO}_{\lambda}}.$$

It follows from $u(x,t) = P_t^{[\lambda]}(f)(x) \in \mathrm{HCMO}_{\lambda}(\mathbb{R}_+ \times \mathbb{R}_+)$ that

$$t\frac{\partial}{\partial t}P_t^{[\lambda]}(f) \in T_{2,C}^{\infty}, \quad t \in \mathbb{R}_+.$$

By Theorem 2.5, we have $f \in \text{CMO}(\mathbb{R}_+, dm_{\lambda})$.

 $(c_i) \Longrightarrow (c_{ii})$. If $f \in CMO(\mathbb{R}_+, dm_\lambda)$, then $f \in BMO(\mathbb{R}_+, dm_\lambda)$. From Lemma 3.1, we have that $u(x, t) = P_t^{[\lambda]}(f)(x) \in HMO_\lambda(\mathbb{R}_+ \times \mathbb{R}_+)$ and

$$\|u\|_{\mathrm{HMO}_{\lambda}} \lesssim \|f\|_{*,\lambda}.$$

From Theorem 2.5, we have

$$t\frac{\partial}{\partial t}P_t^{[\lambda]}(f) \in T_{2,C}^{\infty}, \quad t \in \mathbb{R}_+.$$

Hence, in order to prove $u \in \mathrm{HCMO}_{\lambda}(\mathbb{R}_+ \times \mathbb{R}_+)$, it suffices to show that

$$\lim_{a \to 0^+} \sup_{m_{\lambda}(I) \leq a} \left(\frac{1}{m_{\lambda}(I)} \int_{0}^{|I|} \int_{I} t \left| \frac{\partial}{\partial y} P_{t}^{[\lambda]}(f)(y) \right|^{2} dm_{\lambda}(y) dt \right)^{\frac{1}{2}} = 0;$$
$$\lim_{a \to \infty} \sup_{m_{\lambda}(I) \geq a} \left(\frac{1}{m_{\lambda}(I)} \int_{0}^{|I|} \int_{I} t \left| \frac{\partial}{\partial y} P_{t}^{[\lambda]}(f)(y) \right|^{2} dm_{\lambda}(y) dt \right)^{\frac{1}{2}} = 0;$$

and

$$\lim_{R \to \infty} \sup_{I \subset [R,\infty)} \left(\frac{1}{m_{\lambda}(I)} \int_{0}^{|I|} \int_{I} t \left| \frac{\partial}{\partial y} P_{t}^{[\lambda]}(f)(y) \right|^{2} dm_{\lambda}(y) dt \right)^{\frac{1}{2}} = 0.$$

By (2.7) and an argument similar to the proof of $(b_i) \Rightarrow (b_{ii})$ in Theorem 2.5, we get

$$t\frac{\partial}{\partial x}P_t^{[\lambda]}(f)(x) \in T^{\infty}_{2,C}, \quad t \in \mathbb{R}_+.$$

Thus, we complete the proof of Theorem 1.2.

4. Boundedness of the operator π_{λ}

In this section, we study the close connection between $T_2^p(1 \le p \le \infty)$ and some classical function spaces by considering the operator π_{λ} , $\lambda > 0$ defined on $T_{2,c}^p(1 \le p < \infty)$ by

$$\pi_{\lambda}f(x) := \int_0^\infty \int_0^\infty \frac{\partial}{\partial t} P_t^{[\lambda]}(x,y) f(y,t) \, dm_{\lambda}(y) \, dt, \quad x \in \mathbb{R}_+.$$

Such operator was first introduced by Coifman, Meyer and Stein [8] in the study of tent spaces on \mathbb{R}^{n+1}_+ ; see also [13, 10, 28].

We first claim that for any $f \in T_{2,c}^p$ with compact support $K \subset \mathbb{R}_+ \times \mathbb{R}_+$,

(4.1)
$$\left(\iint_{K} |f(y,t)|^2 \, dm_{\lambda}(y) \, dt\right)^{1/2} \leq C_K \|\Psi(f)\|_{L^p(\mathbb{R}_+, dm_{\lambda})},$$

where and in the sequel, the constant C_K only depends on K. In fact, there exists R > 0 such that for any $(y,t) \in K$, we have $y + t \leq R$. Then by Minkowski's inequality,

$$\left(\iint_{K} |f(y,t)|^{2} dm_{\lambda}(y) dt\right)^{1/2}$$

$$\leq C_{K} \left(\iint_{K} \left|\int_{0}^{R} \chi_{\{x \in \mathbb{R}_{+}:|x-y| < t\}}(x)f(y,t) dm_{\lambda}(x)\right|^{2} \frac{dm_{\lambda}(y) dt}{m_{\lambda}(I(y,t))t}\right)^{1/2}$$

$$\leq C_{K} \int_{0}^{R} \left(\iint_{K} \left|\chi_{\{x \in \mathbb{R}_{+}:|x-y| < t\}}(x)f(y,t)\right|^{2} \frac{dm_{\lambda}(y) dt}{m_{\lambda}(I(y,t))t}\right)^{1/2} dm_{\lambda}(x)$$

$$\leq C_{K} \int_{0}^{R} \left(\iint_{\Gamma_{+}(x)} |f(y,t)|^{2} \frac{dm_{\lambda}(y) dt}{m_{\lambda}(I(y,t))t}\right)^{1/2} dm_{\lambda}(x) \leq C_{K} \|\Psi(f)\|_{L^{p}(\mathbb{R}_{+},dm_{\lambda})}$$

Thus, the integral $\pi_{\lambda} f$ is well defined. From (4.1), we further deduce that $\pi_{\lambda} f \in L^2(\mathbb{R}_+, dm_{\lambda})$. In fact, by (2.6), we see

$$|\pi_{\lambda}f(x)| \le C_K \left(\iint_K |f(y,t)|^2 \, dm_{\lambda}(y) \, dt\right)^{1/2}, \quad x \in \mathbb{R}_+.$$

On the other hand, by (4.1) and the fact that for $x, y, t \in \mathbb{R}_+$,

$$\left|\frac{\partial}{\partial t}P_t^{[\lambda]}(x,y)\right| \lesssim \int_0^\pi \frac{(\sin\theta)^{2\lambda-1}}{(x^2+y^2+t^2-2xy\cos\theta)^{\lambda+1}} \, d\theta,$$

we have

$$\begin{aligned} \|\pi_{\lambda}f\|_{L^{2}(\mathbb{R}_{+},dm_{\lambda})} &\leq \iint_{K} \left(\int_{0}^{\infty} \left| \frac{\partial}{\partial t} P_{t}^{[\lambda]}(x,y) \right|^{2} dm_{\lambda}(x) \right)^{1/2} |f(y,t)| dm_{\lambda}(y) dt \\ &\leq C_{K} \iint_{K} \frac{1}{t^{\lambda+3/2}} \left(\int_{0}^{\infty} \left| t \frac{\partial}{\partial t} P_{t}^{[\lambda]}(x,y) \right| dm_{\lambda}(x) \right)^{1/2} |f(y,t)| dm_{\lambda}(y) dt \\ &\leq C_{K} \iint_{K} |f(y,t)| dm_{\lambda}(y) dt \\ &\leq C_{K} \left(\iint_{K} |f(y,t)|^{2} dm_{\lambda}(y) dt \right)^{1/2} \leq C_{K} \|\Psi(f)\|_{L^{p}(\mathbb{R}_{+},dm_{\lambda})}. \end{aligned}$$

The proof of the following lemma is similar to [18, Proposition 3.3] and we omit the details.

Lemma 4.1. Let F, G be measurable functions on $\mathbb{R}_+ \times \mathbb{R}_+$. Then there exists a constant C > 0 independent of F and G such that

$$\int_0^\infty \int_0^\infty |F(y,t)G(y,t)| \, dm_\lambda(y) \frac{dt}{t}$$

$$\leq C \min\left\{\int_0^\infty \Psi(F)(x)\Psi(G)(x) \, dm_\lambda(x), \int_0^\infty \Phi(F)(x)\Psi(G)(x) \, dm_\lambda(x)\right\}.$$

To state our result, we now recall the Hardy space $H^1(\mathbb{R}_+, dm_\lambda)$ in [3, 33]. The space $H^1(\mathbb{R}_+, dm_\lambda)$ is defined by

$$H^{1}(\mathbb{R}_{+}, dm_{\lambda}) := \left\{ f \in L^{1}(\mathbb{R}_{+}, dm_{\lambda}) \colon \sup_{s>0} \left| P_{s}^{[\lambda]}(f) \right| \in L^{1}(\mathbb{R}_{+}, dm_{\lambda}) \right\}$$

with norm

$$||f||_{H^{1}(\mathbb{R}_{+},dm_{\lambda})} := ||f||_{L^{1}(\mathbb{R}_{+},dm_{\lambda})} + \left\| \sup_{s>0} \left| P_{s}^{[\lambda]}(f) \right| \right\|_{L^{1}(\mathbb{R}_{+},dm_{\lambda})}.$$

Now we are in a position to state our main result in this section. From the theorem below, the operator π_{λ} can be seen as the reverse direction mapping of T defined by $T(f) := t \frac{\partial}{\partial t} P_t^{[\lambda]}(f), t > 0$, where f is a suitable function on \mathbb{R}_+ , from $L^p(\mathbb{R}_+, dm_\lambda)(1 , <math>BMO(\mathbb{R}_+, dm_\lambda)$ and $CMO(\mathbb{R}_+, dm_\lambda)$ to T_2^p , T_2^1, T_2^∞ and $T_{2,C}^\infty$, respectively.

Theorem 4.2. Let $\lambda > 0$ and $1 \le p < \infty$. Then the operator π_{λ} initially defined $T_{2,c}^p$ extends to a bounded linear operator:

- (i) from T_2^p to $L^p(\mathbb{R}_+, dm_\lambda)$, 1 ; $(ii) from <math>T_2^1$ to $H^1(\mathbb{R}_+, dm_\lambda)$;
- (iii) from T_2^{∞} to BMO($\mathbb{R}_+, dm_{\lambda}$); (iv) from $T_{2,C}^{\infty}$ to CMO($\mathbb{R}_+, dm_{\lambda}$);
- (v) from $T_{2,0}^{\infty}$ to VMO($\mathbb{R}_+, dm_{\lambda}$).

Proof. (i): Suppose that $g \in L^q(\mathbb{R}_+, dm_\lambda)$ where $\frac{1}{p} + \frac{1}{q} = 1$. By using Lemma 4.1, we have

$$\begin{split} \left| \int_{0}^{\infty} \pi_{\lambda} f(x) g(x) \, dm_{\lambda}(x) \right| &= \left| \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\partial}{\partial t} P_{t}^{[\lambda]}(x, y) f(y, t) \, dm_{\lambda}(y) g(x) \, dt \, dm_{\lambda}(x) \right| \\ &= \left| \int_{0}^{\infty} \int_{0}^{\infty} t \frac{\partial}{\partial t} P_{t}^{[\lambda]}(g)(y) f(y, t) \, dm_{\lambda}(y) \frac{dt}{t} \right| \\ &\lesssim \left| \int_{0}^{\infty} \Psi \left(t \frac{\partial}{\partial t} P_{t}^{[\lambda]}(g) \right) (y) \Psi(f)(y) \, dm_{\lambda}(y) \right| \\ &\lesssim \|\Psi(f)\|_{L^{p}(\mathbb{R}_{+}, dm_{\lambda})} \left\| \Psi \left(t \frac{\partial}{\partial t} P_{t}^{[\lambda]}(g) \right) \right\|_{L^{q}(\mathbb{R}_{+}, dm_{\lambda})} \\ &\lesssim \|f\|_{T_{2}^{p}} \|g\|_{L^{q}(\mathbb{R}_{+}, dm_{\lambda})}, \end{split}$$

where the last inequality follows from the $L^p(\mathbb{R}_+, dm_\lambda)$ -boundednesss of the Littlewood–Paley S-function; see [19, Proposition 2.17]. This implies that

$$\|\pi_{\lambda}f\|_{L^{p}(\mathbb{R}_{+},dm_{\lambda})} \lesssim \|f\|_{T_{2}^{p}}.$$

We now prove (ii). Let $f \in T_2^1$ and $g \in C_c^{\infty}(\mathbb{R}_+)$. It follows from the Fubini theorem and Lemma 4.1 that

$$\begin{split} \left| \int_{0}^{\infty} \pi_{\lambda} f(x) g(x) \, dm_{\lambda}(x) \right| &= \left| \int_{0}^{\infty} \int_{0}^{\infty} t \frac{\partial}{\partial t} P_{t}^{[\lambda]}(g)(y) f(y,t) \frac{dm_{\lambda}(y) \, dt}{t} \right| \\ &\lesssim \left| \int_{0}^{\infty} \Phi\left(t \frac{\partial}{\partial t} P_{t}^{[\lambda]}(g) \right)(y) \Psi(f)(y) \, dm_{\lambda}(y) \right| \\ &\lesssim \|\Psi(f)\|_{L^{1}(\mathbb{R}_{+}, dm_{\lambda})} \left\| \Phi\left(t \frac{\partial}{\partial t} P_{t}^{[\lambda]}(g) \right) \right\|_{L^{\infty}(\mathbb{R}_{+}, dm_{\lambda})} \end{split}$$

By (2.1) and Theorem 2.5, we have

$$\left\| \Phi\left(t\frac{\partial}{\partial t}P_t^{[\lambda]}(g)\right) \right\|_{L^{\infty}(\mathbb{R}_+, dm_{\lambda})} \lesssim \|g\|_{*, \lambda}$$

Hence, we see

$$\left|\int_0^\infty \pi_\lambda f(x)g(x)\,dm_\lambda(x)\right| \lesssim \|f\|_{T_2^1} \|g\|_{*,\lambda}.$$

According to [9, Theorem (4.1)], $H^1(\mathbb{R}_+, dm_\lambda)$ is dual space of $\text{CMO}(\mathbb{R}_+, dm_\lambda)$. Then we have that $\|\pi_\lambda f\|_{H^1(\mathbb{R}_+, dm_\lambda)} \lesssim \|f\|_{T_2^1}$. Thus (ii) holds.

Moreover, from an argument analogous to the proof of (ii) and the boundedness of the Littlewood–Paley S-function from $H^1(\mathbb{R}_+, dm_\lambda)$ to $L^1(\mathbb{R}_+, dm_\lambda)$ in [19, Theorem 2.21], and the fact that BMO(\mathbb{R}_+, dm_λ) is dual space of $H^1(\mathbb{R}_+, dm_\lambda)$; see [9, Theorem B], we see that (iii) holds

We continue to prove (iv). Let $f \in T_{2,C}^{\infty}$. To prove that $\pi_{\lambda} f \in \text{CMO}(\mathbb{R}_+, dm_{\lambda})$, by Theorem 2.5, it suffices to prove

(4.2)
$$(1+x^{2\lambda+2})^{-1}\pi_{\lambda}(f) \in L^{1}(\mathbb{R}_{+}, dm_{\lambda}) \text{ and } t\frac{\partial}{\partial t}P_{t}^{[\lambda]}(\pi_{\lambda}f) \in T_{2,C}^{\infty}, \quad t \in \mathbb{R}_{+}.$$

From (iii), we have that $\pi_{\lambda} f \in BMO(\mathbb{R}_+, dm_{\lambda})$, which in turn implies that $(1 + x^{2\lambda+2})^{-1}\pi_{\lambda}(f) \in L^1(\mathbb{R}_+, dm_{\lambda})$ and

$$t\frac{\partial}{\partial t}P_t^{[\lambda]}(\pi_\lambda f)\in T_2^\infty, \quad t\in\mathbb{R}_+.$$

Suppose $I := I(x_0, r_0), x_0, r_0 \in \mathbb{R}_+$. Let

$$f_0 := f\chi_{\widehat{2I}}$$
 and $f_k := f\chi_{\widehat{2^{k+1}I\setminus 2^kI}}, \quad k = 1, 2....$

Then $f = \sum_{k=0}^{\infty} f_k$. We write

(4.3)
$$\left(\iint_{\widehat{I}} \left| t \frac{\partial}{\partial t} P_t^{[\lambda]}(\pi_\lambda f)(y) \right|^2 \frac{dm_\lambda(y) dt}{t} \right)^{1/2} \\ \leq \sum_{k=0}^{\infty} \left(\iint_{\widehat{I}} \left| t \frac{\partial}{\partial t} P_t^{[\lambda]}(\pi_\lambda f_k)(y) \right|^2 \frac{dm_\lambda(y) dt}{t} \right)^{1/2} =: \sum_{k=0}^{\infty} H_k$$

For H_0 , we use the boundedness of Littlewood–Paley g-function on $L^2(\mathbb{R}_+, dm_\lambda)$ (see [29, 5] or [18]) together with (i) to obtain

$$H_0 \lesssim \|\pi_{\lambda} f_0\|_{L^2(\mathbb{R}_+, dm_{\lambda})} \lesssim \|f_0\|_{T_2^2}$$

= $\left(\int_0^{\infty} \iint_{\Gamma_+(x)} |f(y, t)\chi_{\widehat{2I}}(y, t)|^2 \frac{dm_{\lambda}(y)}{m_{\lambda}(I(y, t))} \frac{dt}{t} dm_{\lambda}(x)\right)^{1/2}$
 $\lesssim (m_{\lambda}(I))^{1/2} \left(\frac{1}{m_{\lambda}(2I)} \iint_{\widehat{2I}} |f(y, t)|^2 \frac{dm_{\lambda}(y) dt}{t}\right)^{1/2}.$

44

Regarding $H_k, k \in \mathbb{N}$, by (iii) and the property of Poisson semigroup, for any $y \in I$,

$$\begin{aligned} \left| \frac{\partial}{\partial t} P_t^{[\lambda]}(\pi_\lambda f_k)(y) \right| &= \left| \int_0^\infty \frac{\partial}{\partial t} P_t^{[\lambda]}(y, x) \pi_\lambda f_k(x) \, dm_\lambda(x) \right| \\ &\leq \int_0^\infty \int_0^\infty \left| \int_0^\infty \frac{\partial}{\partial t} P_t^{[\lambda]}(y, x) \frac{\partial}{\partial s} P_s^{[\lambda]}(x, z) f_k(z, s) \, dm_\lambda(x) \right| \, dm_\lambda(z) \, ds \\ &= \int_0^\infty \int_0^\infty \left| \frac{\partial}{\partial t} \frac{\partial}{\partial s} \int_0^\infty P_t^{[\lambda]}(y, x) P_s^{[\lambda]}(x, z) \, dm_\lambda(x) \right| \left| f_k(z, s) \right| \, dm_\lambda(z) \, ds \\ &= \int_0^\infty \int_0^\infty \left| f_k(z, s) \right| \left| \frac{\partial}{\partial t} \frac{\partial}{\partial s} P_{t+s}^{[\lambda]}(y, z) \right| \, dm_\lambda(z) \, ds. \end{aligned}$$

By a computation, for $y \in I$ and $z \in 2^{k+1}I \backslash 2^k I$, we have

$$\left|\frac{\partial}{\partial t}\frac{\partial}{\partial s}P_{t+s}^{[\lambda]}(y,z)\right| \lesssim \frac{1}{m_{\lambda}(I(x_0,|y-z|))}\frac{1}{\left(|y-z|+t+s\right)^2}$$

Here the implicit constant is independent of k. Using this estimate, we obtain for $y \in I$,

$$\left|\frac{\partial}{\partial t}P_t^{[\lambda]}(\pi_{\lambda}f_k)(y)\right| \lesssim \frac{1}{m_{\lambda}(2^kI)} \iint_{\widehat{2^{k+1}I\setminus 2^kI}} \frac{|f(z,s)|}{\left(|y-z|+t+s\right)^2} \, dm_{\lambda}(z) \, ds.$$

By Minkowski's inequality and Hölder's inequality, we have

$$\begin{split} H_k &\lesssim \frac{1}{m_{\lambda}(2^k I)} \left(\iint_{\widehat{I}} t \left| \iint_{\widehat{2^{k+1}I \setminus 2^k I}} \frac{|f(z,s)|}{(|y-z|+t+s)^2} \, dm_{\lambda}(z) \, ds \right|^2 \, dm_{\lambda}(y) \, dt \right)^{1/2} \\ &\lesssim \frac{1}{m_{\lambda}(2^k I)} \iint_{\widehat{2^{k+1}I \setminus 2^k I}} \left(\iint_{\widehat{I}} \frac{t |f(z,s)|^2}{(|y-z|+t+s)^4} \, dm_{\lambda}(y) \, dt \right)^{1/2} \, dm_{\lambda}(z) \, ds \\ &\lesssim \frac{1}{m_{\lambda}(2^k I)} \iint_{\widehat{2^{k+1}I \setminus 2^k I}} \left(\int_{0}^{|I|} \int_{I} \frac{t |f(z,s)|^2}{(|y-z|+t+s)^4} \, dm_{\lambda}(y) \, dt \right)^{1/2} \, dm_{\lambda}(z) \, ds \\ &\lesssim \frac{(m_{\lambda}(I))^{1/2}}{m_{\lambda}(2^k I)} \frac{1}{2^{2k} |I|} \iint_{\widehat{2^{k+1}I \setminus 2^k I}} |f(z,s)| \, dm_{\lambda}(z) \, ds \\ &\lesssim \frac{(m_{\lambda}(I))^{1/2}}{(m_{\lambda}(2^k I))^{1/2}} \frac{2^k r_0}{2^{2k} |I|} \left(\iint_{\widehat{2^{k+1}I}} |f(z,s)|^2 \frac{dm_{\lambda}(z) \, ds}{s} \right)^{1/2} \\ &\lesssim \frac{1}{2^k} (m_{\lambda}(I))^{1/2} \left(\frac{1}{m_{\lambda}(2^k I)} \iint_{\widehat{2^{k+1}I}} |f(z,s)|^2 \frac{dm_{\lambda}(z) \, ds}{s} \right)^{1/2}. \end{split}$$

Combining all the estimates of H_k , $k \in \mathbb{N} \cup \{0\}$ and applying (4.3), we have

$$\left(\frac{1}{m_{\lambda}(I)}\iint_{\widehat{I}}\left|t\frac{\partial}{\partial t}P_{t}^{[\lambda]}(\pi_{\lambda}f)(y)\right|^{2}\frac{dm_{\lambda}(y)\,dt}{t}\right)^{1/2}$$
$$\lesssim \sum_{k=0}^{\infty}\frac{1}{2^{k}}\left(\frac{1}{m_{\lambda}(2^{k}I)}\iint_{\widehat{2^{k+1}I}}|f(z,s)|^{2}\frac{dm_{\lambda}(z)\,ds}{s}\right)^{1/2}$$

With an argument similar to the proof of $(b_i) \Rightarrow (b_{ii})$ of Theorem 2.5, we see that (4.2) holds, from which we further get $\pi_{\lambda} f \in \text{CMO}(\mathbb{R}_+, dm_{\lambda})$. Thus (iv) holds.

.

Since the argument of (v) is analogous to that of (iv), hence we omit the details. Therefore, we complete the proof of Theorem 4.2.

Remark 4.3. If we substitute the operator π_{λ} with the operator

$$W_{\lambda}f(x) := \int_0^\infty \int_0^\infty t^2 \frac{\partial}{\partial s} W_s^{[\lambda]}(x,y) \Big|_{s=t^2} f(y,t) \frac{dm_{\lambda}(y) dt}{t}, \quad x \in \mathbb{R}_+$$

where $f \in T_{2,c}^p$, $1 \le p < \infty$, the conclusions of Theorem 4.2 also hold.

Acknowledgements. The authors would like to express their deep thanks to the referee for his/her very careful reading and useful comments which do improve the presentation of this article.

References

- BETANCOR, J. J., A. J. CASTRO, J. C. FARIÑA, and L. RODRÍGUEZ-MESA: Solutions of Weinstein equations representable by Bessel Poisson integrals of BMO functions. - J. Math. Anal. Appl. 431:1, 2015, 440–470.
- [2] BETANCOR, J. J., A. CHICCO RUIZ, J. C. FARIÑA, and L. RODRÍGUEZ-MESA: Odd BMO(ℝ) functions and Carleson measures in the Bessel setting. Integral Equations Operator Theory 66:4, 2010, 463–494.
- [3] BETANCOR, J. J., J. DZIUBAŃSKI, and J. L. TORREA: On Hardy spaces associated with Bessel operators. - J. Anal. Math. 107, 2009, 195–219.
- [4] BETANCOR, J. J., J. C. FARIÑA, T. MARTÍNEZ, and J. L. TORREA: Riesz transform and g-function associated with Bessel operators and their appropriate Banach spaces. - Israel J. Math. 157, 2007, 259–282.
- [5] BETANCOR, J. J., J. C. FARIÑA, and A. SANABRIA: On Littlewood–Paley functions associated with Bessel operators. - Glasg. Math. J. 51:1, 2009, 55–70.
- [6] CHEN, J.: Boundary behavior of harmonic functions on manifolds. J. Math. Anal. Appl. 267:1, 2002, 310–328.
- [7] CHEN, J., and C. LUO: Duality of H¹ and BMO on positively curved manifolds and their characterizations. - In: Harmonic analysis (Tianjin, 1988), Lecture Notes in Math. 1494, Springer, Berlin, 1991, 23–38.
- [8] COIFMAN, R. R., Y. MEYER, and E. M. STEIN: Some new function spaces and their applications to harmonic analysis. - J. Funct. Anal. 62:2, 1985, 304–335.
- [9] COIFMAN, R. R., and G. WEISS: Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83:4, 1977, 569–645.
- [10] DENG, D., X. T. DUONG, L. SONG, C. TAN, and L. YAN: Functions of vanishing mean oscillation associated with operators and applications. - Michigan Math. J. 56:3, 2008, 529– 550.
- [11] DING, Y., M.-Y. LEE, and C.-C. LIN: Carleson measure characterization of weighted BMO associated with a family of general sets. - J. Geom. Anal. 27:1, 2017, 842–867.
- [12] DUONG, X. T., J. LI, S. MAO, H. WU, and D. YANG: Compactness of Riesz transform commutator associated with Bessel operators. - J. Anal. Math. 135:2, 2018, 639–673.
- [13] DUONG, X. T., and L. YAN: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. - J. Amer. Math. Soc. 18:4, 2005, 943–973.
- [14] DUONG, X. T., L. YAN, and C. ZHANG: On characterization of Poisson integrals of Schrödinger operators with BMO traces. - J. Funct. Anal. 266:4, 2014, 2053–2085.
- [15] DZIUBAŃSKI, J., G. GARRIGÓS, T. MARTÍNEZ, J. L. TORREA, and J. ZIENKIEWICZ: BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality. - Math. Z. 249:2, 2005, 329–356.

- [16] FABES, E. B., R. L. JOHNSON, and U. NERI: Spaces of harmonic functions representable by Poisson integrals of functions in BMO and $\mathcal{L}_{p,\lambda}$. Indiana Univ. Math. J. 25:2, 1976, 159–170.
- [17] FEFFERMAN, C., and E. M. STEIN: H^p spaces of several variables. Acta Math. 129:3-4, 1972, 137–193.
- [18] GUO, Q., J. J. BETANCOR, and D. YANG: Solutions of Weinstein type equations, Carleson measures and BMO(\mathbb{R}_+ , dm_{λ}). J. Math. Anal. Appl. 536:1, 2024, Paper No. 128230.
- [19] HAN, Y., D. MÜLLER, and D. YANG: Littlewood–Paley characterizations for Hardy spaces on spaces of homogeneous type. - Math. Nachr. 279:13-14, 2006, 1505–1537.
- [20] HARTZSTEIN, S., and O. SALINAS Weighted BMO and Carleson measures on spaces of homogeneous type. - J. Math. Anal. Appl. 342:2, 2008, 950–969.
- [21] HOFMANN, S., S. MAYBORODA, and M. MOURGOGLOU: Layer potentials and boundary value problems for elliptic equations with complex L[∞] coefficients satisfying the small Carleson measure norm condition. - Adv. Math. 270, 2015, 480–564.
- [22] JIANG, R., and B. LI: Dirichlet problem for Schrödinger equation with the boundary value in the BMO space. - Sci. China Math. 65:7, 2022, 1431–1468.
- [23] JIN, Y., B. LI, and T. SHEN: Harmonic functions with BMO traces and their limiting behaviors on metric measure spaces. - Bull. Malays. Math. Sci. Soc. 47:1, 2024, Paper No. 12, 33.
- [24] LI, B., B. MA, T. SHEN, X. WU, and C. ZHANG: On the caloric functions with BMO traces and their limiting behaviors. - J. Geom. Anal. 33:7, 2023, Paper No. 215, 42.
- [25] LIANG, Y., D. YANG, and W. YUAN: Vanishing mean oscillation spaces associated with operators satisfying Davies-Gaffney estimates. - Kyoto J. Math. 52:2, 2012, 205–247.
- [26] MUCKENHOUPT, B., and E. M. STEIN: Classical expansions and their relation to conjugate harmonic functions. - Trans. Amer. Math. Soc. 118, 1965, 17–92.
- [27] SONG, L., and L. WU: The CMO-Dirichlet problem for the Schrödinger equation in the upper half-space and characterizations of CMO. - J. Geom. Anal. 32:4, 2022, Paper No. 130, 37.
- [28] SONG, L., and M. XU: VMO spaces associated with divergence form elliptic operators. Math. Z. 269:3-4, 2011, 927–943.
- [29] STEMPAK, K.: The Littlewood–Paley theory for the Fourier–Bessel transfom. Preprint n. 45, Math. Inst. Univ. Wroclaw, Poland, 1985.
- [30] WEINSTEIN, A.: Discontinuous integrals and generalized potential theory. Trans. Amer. Math. Soc. 63, 1948, 342–354.
- [31] WEINSTEIN, A.: Generalized axially symmetric potential theory. Bull. Amer. Math. Soc. 59, 1953, 20–38.
- [32] WU, H., D. YANG, and J. ZHANG: Oscillation and variation for semigroups associated with Bessel operators. - J. Math. Anal. Appl. 443:2, 2016, 848–867.
- [33] YANG, D., and D. YANG: Real-variable characterizations of Hardy spaces associated with Bessel operators. - Anal. Appl. (Singap.) 9:3, 20111, 345–368.

Received 4 October 2023 • Revision received 22 September 2024 • Accepted 15 December 2024 Published online 9 January 2025 Jorge J. Betancor Universidad de La Laguna, Campus de Anchieta Avda, Departamento de Análisis Matemático Astrofísico Francisco Sánchez, s/n 38271, La Laguna (Sta. Cruz de Tenerife), Spain jbetanco@ull.es

Qingdong Guo Xiamen University School of Mathematical Sciences Xiamen 361005, P. R. China qingdongmath@stu.xmu.edu.cn

Dongyong Yang Xiamen University School of Mathematical Sciences Xiamen 361005, P. R. China dyyang@xmu.edu.cn