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Tent spaces and solutions of Weinstein type

equations with CMO(R+, dmλ) boundary values

Jorge J. Betancor, Qingdong Guo∗ and Dongyong Yang†

Abstract. Let {P [λ]
t }t>0 be the Poisson semigroup associated with the Bessel operator ∆λ on

R+ := (0,∞), where λ > 0 and

∆λ := −x−2λ d

dx
x2λ d

dx
.

In this paper, the authors show that a function u(y, t) on R+ ×R+, has the form u(y, t) = P
[λ]
t f(y)

with f ∈ CMO(R+, dmλ), where dmλ(x) := x2λ dx, if and only if u satisfies the Weinstein type
equation

Lλu(x, t) :=
∂2u(x, t)

∂t2
−∆λu(x, t) = 0, (x, t) ∈ R+ × R+,

a Carleson type condition and certain limiting conditions. For this purpose, the authors first

introduce the tent spaces T
p
2 with p ∈ [1,∞] and T∞

2,C in the Bessel setting and then show that

CMO(R+, dmλ) has a connection with T∞
2,C via {P [λ]

t }t>0. In addition, the authors obtain some

boundedness results on the operator πλ from tent spaces to some “ordinary” function spaces.

Teltta-avaruudet ja Weinsteinin-tyyppisten

CMO(R+, dmλ)-reuna-arvoyhtälöiden ratkaisut

Tiivistelmä. Olkoon {P [λ]
t }t>0 puolisuoran R+ := (0,∞) Besselin operaattoriin

∆λ := −x−2λ d

dx
x2λ d

dx

liittyvä Poissonin puoliryhmä, missä λ > 0. Tässä työssä osoitetaan, että alueessa R+ × R+ mää-

ritelty funktio u(y, t) voidaan esittää muodossa u(y, t) = P
[λ]
t f(y), missä f ∈ CMO(R+, dmλ) ja

dmλ(x) := x2λ dx, jos ja vain jos u toteuttaa Weinsteinin-tyyppisen yhtälön

Lλu(x, t) :=
∂2u(x, t)

∂t2
−∆λu(x, t) = 0, (x, t) ∈ R+ × R+,

sekä Carlesonin-tyyppisen ehdon ja tietyt raja-arvo-ominaisuudet. Tätä varten esitellään aluksi Bes-

selin asetelmaan sovitetut teltta-avaruudet T∞
2,C ja T

p
2 , missä p ∈ [1,∞], sekä osoitetaan avaruuksien

CMO(R+, dmλ) ja T∞
2,C välinen yhteys puoliryhmän {P [λ]

t }t>0 kautta. Lisäksi saadaan tuloksia, jot-

ka koskevat operaattorin πλ rajallisuutta teltta-avaruuksista eräisiin ”tavallisiin” funktioavaruuksiin.

1. Introduction

The problem of harmonic extension of a function in the space BMO(Rn) was
first studied by Fabes, Johnson and Neri in [16], based on the work of Fefferman and
Stein [17]. Fabes, Johnson and Neri [16] showed that a function u on R

n+1
+ can be
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represented as u(x, t) := Pt(f)(x), (x, t) ∈ R
n+1
+ , for some f ∈ BMO(Rn) if and only

if u is the solution to the following equation

∂2u(x, t)

∂t2
+△u(x, t) = 0, (x, t) ∈ R

n+1
+ ,

where △ :=
∑n

j=1
∂2

∂x2
j

is the Laplacian on Rn, and satisfies the Carleson condition

(1.1) sup
x∈Rn,r>0

1

rn

ˆ r

0

ˆ

B(x,r)

t
∣∣∇u(x, t)

∣∣2 dx dt < ∞.

Here ∇ := ( ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

, ∂
∂t
) and {Pt}t>0 is the classical Poisson semigroup. In

2014, Duong et al. [14] characterized harmonic functions whose traces belong to
BMOL(R

n) in terms of a Carleson type condition associated with the Schrödinger
operator L := −∆ + V , where the non-negative potential V belongs to the reverse
Hölder class RHq(R

n) for some q > n, which was further extended by Jiang and Li
[22] to general metric measure spaces with improved index. Recently, Song and Wu
[27] studied the Dirichlet problem for the Schrödinger equation with boundary value
in CMOL(R

n), which is defined as the closure in the BMOL(R
n) norm of C∞

c (Rn),
the space of smooth functions with compact support, by using the theory of classical
tent spaces. For further research on this topic and applications of tent spaces, see,
for example, [7, 6, 15, 20, 2, 28, 25, 21, 11, 22, 24, 23] and the references therein.

In this paper, we consider the following Weinstein type equation

(1.2) Lλu(x, t) :=
∂2u(x, t)

∂t2
−∆λu(x, t) = 0, (x, t) ∈ (0,∞)× (0,∞),

where u ∈ C2((0,∞)× (0,∞)), and

∆λ := −x−2λ d

dx
x2λ d

dx
= − d2

dx2
− 2λ

x

d

dx
, λ > 0,

is the Bessel operator on R+ := (0,∞). The operator ∆λ has been studied by many
mathematicians; see for example, [30, 31, 26, 4, 3, 2, 33, 12, 1] and the references
therein.

In a previous paper, the authors [18] established a characterization of solutions
of Weinstein type equations (1.2) with boundary value in BMO(R+, dmλ) studied
in [33]; that is, for λ ≥ 1/2, a solution u belongs to HMOλ(R+ × R+), if and only
if, there exists f ∈ BMO(R+, dmλ) such that u can be represented as u(x, t) =

P
[λ]
t (f)(x), (x, t) ∈ R+ × R+; see Lemma 3.1 below. In this paper, we will further

study solutions of (1.2) with boundary value in CMO(R+, dmλ) introduced in [12],
which is a subspace of BMO(R+, dmλ).

In the following, we recall some necessary notation and notions. We say that a
function f ∈ L1

loc(R+, dmλ) belongs to the space BMO(R+, dmλ), if

‖f‖∗,λ := sup
I⊂R+

1

mλ(I)

ˆ

I

|f(y)− fI,λ|y2λ dy < ∞,

where the supremum is taken over all intervals I ⊂ R+, and

fI,λ :=
1

mλ(I)

ˆ

I

f(y)y2λ dy.

The space CMO(R+, dmλ) is defined by the BMO(R+, dmλ)-closure of C∞
c (R+), the

set of C∞(R+) functions on R+ with compact support.
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For a function f ∈ Lp(R+, dmλ) with p ∈ [1,∞], the Poisson semigroup {P [λ]
t }t>0

associated with the operator ∆λ is defined by

P
[λ]
t f(x) :=

ˆ ∞

0

P
[λ]
t (x, y)f(y)y2λ dy,

where

P
[λ]
t (x, y) :=

2λt

π

ˆ π

0

(sin θ)2λ−1

(x2 + y2 + t2 − 2xy cos θ)λ+1
dθ, t, x, y ∈ R+;

see [3, 26].
We define ∇x,t :=

(
∂
∂x
, ∂
∂t

)
and denote by HMOλ(R+ × R+) the class of all

C∞(R+ × R+) functions u(x, t) which are the solutions of (1.2) and satisfy the fol-
lowing Carleson type condition

‖u‖2HMOλ
:= sup

I⊂R+

1

mλ(I)

ˆ |I|

0

ˆ

I

t
∣∣∇y,tu(y, t)

∣∣2 dmλ(y) dt < ∞,

where and in the sequel, I under the supremum always represents an interval on R+.
In order to state our result in this paper, we give the following definition.

Definition 1.1. A function u belongs to HCMOλ(R+ ×R+) if u ∈ HMOλ(R+×
R+), and satisfies the following limiting conditions:

lim
a→0+

sup
mλ(I)≤a

(
1

mλ(I)

ˆ |I|

0

ˆ

I

t
∣∣∇y,tu(y, t)

∣∣2 dmλ(y) dt

) 1
2

= 0;(1.3)

lim
a→∞

sup
mλ(I)≥a

(
1

mλ(I)

ˆ |I|

0

ˆ

I

t
∣∣∇y,tu(y, t)

∣∣2 dmλ(y) dt

)1
2

= 0;(1.4)

and

(1.5) lim
R→∞

sup
I⊂[R,∞)

(
1

mλ(I)

ˆ |I|

0

ˆ

I

t
∣∣∇y,tu(y, t)

∣∣2 dmλ(y) dt

) 1
2

= 0.

We endow HCMOλ(R+ × R+) with the norm of HMOλ(R+ × R+).

We state our main result as follows.

Theorem 1.2. Let λ ≥ 1
2

and u be a function on R+ × R+. Then the following

statements are equivalent:

(ci) There exists some f ∈ CMO(R+, dmλ) such that u(x, t) = P
[λ]
t (f)(x), (x, t) ∈

R+ × R+;

(cii) u ∈ HCMOλ(R+ × R+).

Moreover, the quantities ‖f‖∗,λ and ‖u‖HMOλ
are equivalent.

Remark 1.3. We mention that the assumption λ ≥ 1
2

was made in the proof of
[18, Theorem 1.2], which is useful in the proof of Theorem 1.2. It is unknown if the
conclusion of Theorem 1.2 holds for λ ∈ (0, 1

2
); see also Remark 4.6 in [18].

In order to show the implication (cii) =⇒ (ci) of Theorem 1.2, we establish a char-
acterization of the space CMO(R+, dmλ) in terms of tent spaces in Section 2. More
precisely, in Section 2, we introduce the tent spaces T p

2 with p ∈ [1,∞] in the Bessel
setting, and provide a characterization of the space T∞

2,C via the limiting conditions,
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where T∞
2,C is a subspace of T∞

2 ; see Proposition 2.1 in Subsection 2.1. In Subsec-
tion 2.2, we apply Proposition 2.1 to establish a connection between CMO(R+, dmλ)

and T∞
2,C via {P [λ]

t }t>0; see Theorem 2.5. Section 3 is devoted to the proof of Theo-
rem 1.2. In Section 4, we introduce the operator πλ and show the connection between
tent spaces and some classical function spaces on R+ via the operator πλ.

We now make some preliminaries. In what follows, for every x, r ∈ R+, define

I(x, r) := (x− r, x+ r) ∩ R+.

Observe that for x, r ∈ (0,∞), x < r,

I(x, r) = (0, x+ r) = I

(
x+ r

2
,
x+ r

2

)
.

Thus, in the sequel, for a given interval I(x, r), without any specific condition, we
may always assume that x ≥ r. For k ∈ R+ and any interval I := I(x, r) for some
x, r ∈ R+, kI := I(x, kr). It is easy to see that for every interval I(x, r), x, r ∈ R+,

(1.6) mλ(I(x, r)) ∼

{
x2λr, x > r;

r2λ+1, x ≤ r.

Moreover, it is known that for every I ⊂ R+,

(1.7) min{2, 22λ}mλ(I) ≤ mλ(2I) ≤ 22λ+1mλ(I);

see [12, Proposition 2.1].
Throughout the paper, we use the notation f . g and f ∼ g which mean that

there exists C > 0 such that f ≤ Cg and f/C ≤ g ≤ Cf , respectively. The letter C
denotes a positive constant that can change from one line to the next.

2. A connection of CMO(R+, dmλ) and tent spaces

In this section, we introduce tent spaces to study the space CMO(R+, dmλ). In
Subsection 2.1, we introduce the spaces T p

2 (1 ≤ p ≤ ∞), T∞
2,0 and T∞

2,C , and provide
a characterization of T∞

2,C . By using the theory of tent spaces, we further obtain a
Carleson type characterization of CMO(R+, dmλ) in Subsection 2.2.

2.1. Preliminaries for tent spaces. To begin with, we denote by Γ+(x) the
cone whose vertex is x ∈ R+, i.e.,

Γ+(x) :=
{
(y, t) ∈ R+ × R+ : |x− y| < t

}
.

For any closed set E ⊂ R+, R(E) means the union of the cones with vertices in E,
i.e., R(E) :=

⋃
x∈E Γ+(x). Let O be the open set in R+ which is the complement of

E, O := Ec. Then the tent over O, denoted by Ô, is given as Ô := (R(E))c. Hence,
for any open interval I ⊂ R+, we see that

Î =
{
(y, t) ∈ R+ × R+ : I(y, t) ⊂ I

}
.

For a given measurable function f on R+ × R+, we define Ψ(f) and Φ(f) as
follows: for any x ∈ R+,

Ψ(f)(x) :=

(
¨

Γ+(x)

|f(y, t)|2 dmλ(y)

mλ(I(y, t))

dt

t

) 1
2

,

and

Φ(f)(x) := sup
I∋x

(
1

mλ(I)

¨

Î

|f(y, t)|2dmλ(y) dt

t

) 1
2

.
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By the fact that Î ⊂ I × (0, |I|) ⊂ 3̂I for any interval I ⊂ R+ and (1.7), it is obvious
that for any x ∈ R+,

(2.1) Φ(f)(x) ∼ sup
I∋x

(
1

mλ(I)

ˆ |I|

0

ˆ

I

|f(y, t)|2dmλ(y) dt

t

) 1
2

.

In the following, we introduce the space T p
2 , 1 ≤ p ≤ ∞. Let L0(R+ × R+) be

the set of all measurable functions on R+ × R+. For 1 ≤ p < ∞, we define

T p
2 :=

{
f ∈ L0(R+ × R+) : Ψ(f) ∈ Lp(R+, dmλ)

}

and endow T p
2 with the norm ‖f‖T p

2
:= ‖Ψ(f)‖Lp(R+,dmλ). For p = ∞, we define

T∞
2 :=

{
f ∈ L0(R+ × R+) : Φ(f) ∈ L∞(R+, dmλ)

}

with the norm ‖f‖T∞

2
:= ‖Φ(f)‖L∞(R+,dmλ).

Let T p
2,c, 1 ≤ p < ∞, be the subset of all f ∈ T p

2 with compact support in R+×R+

and T∞
2,0 be the subset of all f ∈ T∞

2 such that

(2.2) lim
a→0+

sup
mλ(I)≤a

(
1

mλ(I)

¨

Î

|f(y, t)|2dmλ(y) dt

t

) 1
2

= 0.

And we endow T∞
2,0 with the norm of T∞

2 . Then we have the inclusion

T 2
2,c ⊂ T∞

2,0;

see, for example, [25, p. 226] in the setting of spaces of homogeneous type. Based on
this fact, we further denote by T∞

2,C , the closure of the set T 2
2,c in T∞

2,0 and endow T∞
2,C

with the norm of T∞
2 . Then we have an equivalent characterization of T∞

2,C ; see [25,
Lemma 3.3] for the proof.

Proposition 2.1. Let f ∈ T∞
2 . Then f ∈ T∞

2,C if and only if f satisfies (2.2),

(2.3) lim
a→∞

sup
mλ(I)≥a

(
1

mλ(I)

¨

Î

|f(y, t)|2dmλ(y) dt

t

) 1
2

= 0,

and

(2.4) lim
R→∞

sup
I⊂[R,∞)

(
1

mλ(I)

¨

Î

|f(y, t)|2dmλ(y) dt

t

) 1
2

= 0.

Remark 2.2. We remark that T∞
2,C is a proper subspace of T∞

2,0. In fact, let

f(x, t) :=

{
1, (x, t) ∈

⋃∞
k=1Ek;

0, otherwise,

where Ek := [5 · 2k−3, 7 · 2k−3] × [1, 2]. It is easy to see that {Ek}∞k=1 are pairwise
disjoint and for every k ∈ N,

¨

Ek

|f(y, t)|2dmλ(y) dt

t
=

(72λ+1 − 52λ+1) ln 2

2λ+ 1
2(k−3)(2λ+1).

By this fact, it can be seen that the function f ∈ T∞
2,0 does not satisfy (2.3) and (2.4)

of Proposition 2.1.
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2.2. Carleson type characterizations of CMO(R+, dmλ). We start with
the Carleson characterization of BMO(R+, dmλ) established in [18]. Recall that a
positive measure µ on R+ × R+ is an mλ-Carleson measure, if there exists C > 0
such that for every interval I ⊂ R+,

µ(I × (0, |I|)) ≤ Cmλ(I).

In [18, Theorem 1.1], the authors established the following characterization of the
space BMO(R+, dmλ) via the mλ-Carleson measure that a function f ∈ BMO(R+, dmλ)
if and only if (1 + x2λ+2)−1f ∈ L1(R+, dmλ), and

(2.5) t
∂

∂t
P

[λ]
t (f) ∈ T∞

2 , t ∈ R+.

Moreover, ‖f‖∗,λ ∼
∥∥t ∂

∂t
P

[λ]
t (f)

∥∥
T∞

2
.

We now gather some known pointwise estimates of derivatives of P
[λ]
t (x, y) as

follows; for the proof see, for example, [32, Proposition 2.1 (iii)] or [26, p. 86 (b)].

Lemma 2.3. There exists a positive constant C such that for any x, y, t ∈ (0,∞),
∣∣∣∣
∂

∂t
P

[λ]
t (x, y)

∣∣∣∣ ≤ Cmin

{
1

(|y − x|2 + t2)λ+1
,

1

(yx)λ (|y − x|2 + t2)

}
,(2.6)

∣∣∣∣
∂

∂x
P

[λ]
t (x, y)

∣∣∣∣ ≤ Cmin

{
t

(|y − x|2 + t2)λ+
3
2

,
t

(yx)λ (|y − x|3 + t3)

}
,(2.7)

and

(2.8)

∣∣∣∣
∂

∂y

∂

∂t
P

[λ]
t (x, y)

∣∣∣∣ ≤ Cmin

{
1

(|y − x|2 + t2)λ+
3
2

,
1

(yx)λ (|y − x|3 + t3)

}
.

Let p ∈ [1,∞) and

Mλ,p(f, I) :=

(
1

mλ(I)

ˆ

I

|f(y)− fI,λ|py2λ dy
)1/p

.

The following characterization of CMO(R+, dmλ) is an extension of [12, Theorem 3.1]
where the case p = 1 was considered. The proof for p ∈ (1,∞) follows immediately
from the John–Nirenberg inequality for functions in BMO(R+, dmλ) and [12, Theo-
rem 3.1], and is omitted.

Lemma 2.4. Let p ∈ [1,∞) and f ∈ BMO(R+, dmλ). Then f ∈ CMO(R+, dmλ)
if and only if f satisfies

lim
a→0+

sup
mλ(I)≤a

Mλ,p(f, I) = lim
a→∞

sup
mλ(I)≥a

Mλ,p(f, I) = lim
R→∞

sup
I⊂[R,∞)

Mλ,p(f, I) = 0.

We state the main result in this subsection as follows.

Theorem 2.5. Let λ > 0. Then the following statements are equivalent:

(bi) f ∈ CMO(R+, dmλ);
(bii) (1 + x2λ+2)−1f ∈ L1(R+, dmλ) and

(2.9) t
∂

∂t
P

[λ]
t (f) ∈ T∞

2,C , t ∈ R+.

Moreover, the quantities ‖f‖∗,λ and
∥∥t ∂

∂t
P

[λ]
t (f)

∥∥
T∞

2
are equivalent.
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Proof. (bi) ⇒ (bii): Assume that f ∈ CMO(R+, dmλ). Then by [18, Theo-
rem 1.1], we obtain that (1 + x2λ+2)−1f ∈ L1(R+, dmλ), (2.5) and

∥∥∥t ∂
∂t

P
[λ]
t (f)

∥∥∥
T∞

2

. ‖f‖∗,λ.

Let I := I(x0, r0), x0, r0 ∈ R+. Write

f = (f − f2I,λ)χ2I + (f − f2I,λ)χR+\2I + f2I,λ =: f1 + f2 + f2I,λ.

By

(2.10)

ˆ ∞

0

P
[λ]
t (x, y) dmλ(y) = 1, x, t ∈ R+;

see [3, p. 208], we deduce t ∂
∂t
P

[λ]
t (f2I,λ)(x) = 0, x, t ∈ R+. Hence, we have

(
1

mλ(I)

¨

Î

∣∣∣∣t
∂

∂t
P

[λ]
t (f)(y)

∣∣∣∣
2
dmλ(y) dt

t

) 1
2

(2.11)

≤
(

1

mλ(I)

¨

Î

∣∣∣∣t
∂

∂t
P

[λ]
t (f1)(y)

∣∣∣∣
2
dmλ(y) dt

t

) 1
2

+

(
1

mλ(I)

¨

Î

∣∣∣∣t
∂

∂t
P

[λ]
t (f2)(y)

∣∣∣∣
2
dmλ(y) dt

t

) 1
2

=: K(f1) +K(f2).

For K(f1), by the boundedness of the Littlewood–Paley g-function on L2(R+,
dmλ) (see [18, Lemma 3.1] or [29, 5]), we get

(K(f1))
2 ≤ 1

mλ(I)

ˆ

I

ˆ ∞

0

∣∣∣∣t
∂

∂t
P

[λ]
t (f1)(y)

∣∣∣∣
2
dt

t
dmλ(y)

.
1

mλ(2I)

ˆ

2I

|f(y)− f2I,λ|2 dmλ(y) =
(
Mλ,2(f, 2I)

)2
.

Then by Lemma 2.4 with p = 2, we have

(2.12) lim
a→0

sup
mλ(I)≤a

K(f1) = lim
a→∞

sup
mλ(I)≥a

K(f1) = lim
R→∞

sup
I⊂[R,∞)

K(f1) = 0.

As for K(f2), (2.6) together with (1.6) implies that for any x, y, t ∈ R+,

(2.13)

∣∣∣∣
∂

∂t
P

[λ]
t (x, y)

∣∣∣∣ .
1

mλ(I(x, |y − x|+ t))

1

|y − x|+ t
.

Moreover, for x ∈ I and y ∈ R+\2I, we have

|y − x0| ∼ |y − x| and mλ(I(x, |y − x|)) ∼ mλ(I(x0, |y − x0|)).
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Hence, by (2.13), we see that x ∈ I and t ∈ R+,
∣∣∣∣t
∂

∂t
P

[λ]
t (f2)(x)

∣∣∣∣ ≤
ˆ

R+\2I

∣∣∣∣t
∂

∂t
P

[λ]
t (x, y)f2(y)

∣∣∣∣ dmλ(y)

.

∞∑

k=1

ˆ

2k+1I\2kI

1

mλ(I(x0, |y − x0|))
t

|y − x0|+ t
|f(y)− f2I,λ| dmλ(y)

.
t

|I|

∞∑

k=1

1

2k
1

mλ(2kI)

ˆ

2k+1I\2kI

|f(y)− f2I,λ| dmλ(y) =:
t

|I|H.

By the above estimate, we have

(K(f2))
2 .

1

mλ(I)

ˆ |I|

0

ˆ

I

∣∣∣∣t
∂

∂t
P

[λ]
t (f2)(x)

∣∣∣∣
2
dmλ(x) dt

t

.
1

mλ(I)

ˆ |I|

0

ˆ

I

∣∣∣∣
t

|I|H
∣∣∣∣
2
dmλ(x) dt

t
. H2.

Hence, we have for N0 ∈ N,

K(f2) ≤
∞∑

k=1

1

2k
1

mλ(2kI)

ˆ

2k+1I

|f(y)− f2I,λ| dmλ(y)

.

(
N0∑

k=1

+

∞∑

k=N0

)
1

2k
1

mλ(2k+1I)

ˆ

2k+1I

|f(y)− f2I,λ| dmλ(y)

=: II1 + II2.

For II2, using the fact that for any k ∈ N,

|f2k+1I,λ − f2I | . k‖f‖∗,λ,
we have

II2 .
∞∑

k=N0

k

2k
‖f‖∗,λ .

‖f‖∗,λ
2N0/2

.

Note that if N0 large enough, then we have that II2 is sufficiently small.
Regarding II1, it is obvious that for every k ∈ {1, 2, . . .N0},

|f2k+1I,λ − f2kI,λ| ≤
22λ+1

mλ(2k+1I)

ˆ

2k+1I

|f(y)− f2k+1I,λ| dmλ(y).

Then

1

mλ(2k+1I)

ˆ

2k+1I

|f(y)− f2I,λ|dmλ(y)

≤ 1

mλ(2k+1I)

ˆ

2k+1I

|f(y)− f2k+1I,λ| dmλ(y)

+

k∑

j=0

22λ+1

mλ(2j+1I)

ˆ

2j+1I

|f(y)− f2j+1I,λ| dmλ(y)

.

k∑

j=0

1

mλ(2j+1I)

ˆ

2j+1I

|f(y)− f2j+1I,λ| dmλ(y).
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From this fact, we see

II1 .

N0∑

k=0

N0 − k + 2

2k
1

mλ(2k+1I)

ˆ

2k+1I

|f(y)− f2k+1I,λ| dmλ(y)(2.14)

. N0

N0∑

k=0

1

mλ(2k+1I)

ˆ

2k+1I

|f(y)− f2k+1I,λ| dmλ(y).

On the other hand, for every k ∈ {0, 1, 2, . . .N0}, we have

sup
mλ(I)≤a

1

mλ(2k+1I)

ˆ

2k+1I

|f(y)− f2k+1I,λ| dmλ(y)

≤ sup
mλ(2k+1I)≤2(k+1)(2λ+1)a

1

mλ(2k+1I)

ˆ

2k+1I

|f(y)− f2k+1I,λ| dmλ(y)

≤ sup
mλ(2k+1I)≤2(N0+1)(2λ+1)a

1

mλ(2k+1I)

ˆ

2k+1I

|f(y)− f2k+1I,λ| dmλ(y),

and

sup
mλ(I)≥a

1

mλ(2k+1I)

ˆ

2k+1I

|f(y)− f2k+1I,λ| dmλ(y)

≤ sup
mλ(2k+1I)≥a

1

mλ(2k+1I)

ˆ

2k+1I

|f(y)− f2k+1I,λ| dmλ(y).

Then by Lemma 2.4 and (2.14), we see

(2.15) lim
a→0

sup
mλ(I)≤a

II1 = lim
a→∞

sup
mλ(I)≥a

II1 = 0.

Moreover, we claim that for every k ∈ {0, 1, 2, . . .N0},

lim
R→∞

sup
I⊂[R,∞)

1

mλ(2k+1I)

ˆ

2k+1I

|f(y)− f2k+1I,λ| dmλ(y) = 0.

In fact, fix ǫ > 0. From Lemma 2.4, there exists b > 0 such that

(2.16) sup
mλ(I)≥b

1

mλ(I)

ˆ

I

|f(y)− fI,λ|y2λ dy < ǫ.

Again, by Lemma 2.4, we choose M > 0 such that mλ((M, 2M)) ≥ b and

sup
I⊂[M,∞)

1

mλ(I)

ˆ

I

|f(y)− fI,λ|y2λ dy < ǫ.

This together with (2.16) implies that

sup
I⊂[2M,∞)

1

mλ(2k+1I)

ˆ

2k+1I

|f(y)− f2k+1I,λ|y2λ dy < ǫ.

Thus, the claim holds. Hence, by (2.14), we see

lim
R→∞

sup
I⊂[R,∞)

II1 = 0,

which along with (2.15) and II2 further implies that

(2.17) lim
a→0

sup
mλ(I)≤a

K(f2) = lim
a→∞

sup
mλ(I)≥a

K(f2) = lim
R→∞

sup
I⊂[R,∞)

K(f2) = 0.
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Since f ∈ BMO(R+, dmλ), we have (2.5). Hence, from (2.17), (2.11), (2.12) and

Proposition 2.1, we conclude that for any t > 0, t ∂
∂t
P

[λ]
t (f) ∈ T∞

2,C .
(bii) ⇒ (bi): By the condition (bii) and (2.5), it is easy to deduce that f ∈

BMO(R+, dmλ). For any interval I := I(x0, r0), x0, r0 ∈ R+, by a duality argument,
we have

‖f − fI,λ‖L1(I,dmλ) = sup
‖g‖L∞(I,dmλ)≤1

∣∣∣∣
ˆ

I

(
f(y)− fI,λ

)
g(y) dmλ(y)

∣∣∣∣(2.18)

= sup
‖g‖L∞(I,dmλ)≤1

∣∣∣∣
ˆ

I

(
g(y)− gI,λ

)
f(y) dmλ(y)

∣∣∣∣

= sup
‖g‖L∞(I,dmλ)≤1

∣∣∣∣
ˆ ∞

0

(
g(y)− gI,λ

)
χI(y)f(y) dmλ(y)

∣∣∣∣ .

Assume that g ∈ L∞(I, dmλ) with I ⊂ R+ such that ‖g‖L∞(I,dmλ) ≤ 1. Let

g0 :=
(
g − gI,λ

)
χI . Then supp g0 ⊂ I,

(2.19)

ˆ ∞

0

g0(y) dmλ(y) = 0 and ‖g0‖L∞(I,dmλ) ≤ 2.

From the definition of g0 and [18, Proposition 3.4], we have

(2.20)
1

4

ˆ ∞

0

f(y)g0(y) dmλ(y) =

ˆ ∞

0

ˆ ∞

0

t
∂

∂t
P

[λ]
t (f)(y)t

∂

∂t
P

[λ]
t (g0)(y)

dmλ(y) dt

t
.

Let

F (y, t) := t
∂

∂t
P

[λ]
t (f)(y) and G(y, t) := t

∂

∂t
P

[λ]
t (g0)(y), y, t ∈ R+.

Write ∣∣∣∣
ˆ ∞

0

ˆ ∞

0

F (y, t)G(y, t)
dmλ(y) dt

t

∣∣∣∣(2.21)

≤
(
¨

2̂I

+

∞∑

k=1

¨

2̂k+1I\2̂kI

)
∣∣F (y, t)G(y, t)

∣∣dmλ(y) dt

t

=: A0 +

∞∑

k=1

Ak.

Consider A0. By ‖g0‖L∞(I,dmλ) ≤ 2 and by the boundedness of the Littlewood–
Paley g-function on L2(R+, dmλ), we have

¨

2̂I

|G(y, t)|2dmλ(y) dt

t
. ‖g0‖2L2(R+,dmλ)

. mλ(I).

By using Hölder’s inequality, we see

A0 ≤
(
¨

2̂I

|F (y, t)|2dmλ(y) dt

t

)1/2(¨

2̂I

|G(y, t)|2dmλ(y) dt

t

)1/2

(2.22)

. mλ(I)

(
1

mλ(2I)

¨

2̂I

|F (y, t)|2dmλ(y) dt

t

)1/2

.

For Ak, k ∈ N, using Hölder’s inequality again,

Ak ≤
(
¨

2̂k+1I\2̂kI

|F (y, t)|2dmλ(y) dt

t

)1/2(¨

2̂k+1I\2̂kI

|G(y, t)|2dmλ(y) dt

t

)1/2

.
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We now estimate

Ek :=

(
¨

2̂k+1I\2̂kI

|G(y, t)|2dmλ(y) dt

t

)1/2

.

By (2.19), (2.8) and the mean value theorem, we have that for y ∈ 2k+1I\2kI and
t ∈ (0,∞),

∣∣∣∣
∂

∂t
P

[λ]
t (g0)(y)

∣∣∣∣ =
∣∣∣∣
ˆ ∞

0

[
∂

∂t
P

[λ]
t (y, x)− ∂

∂t
P

[λ]
t (y, x0)

]
g0(x) dmλ(x)

∣∣∣∣

≤
ˆ ∞

0

|x− x0|
∣∣∣∣
∂

∂x

∂

∂t
P

[λ]
t (y, x)

∣∣∣∣
x=η

|g0(x)| dmλ(x)

.

ˆ

I

|g0(x)|
mλ(I(x0, |y − x0|))

|x− x0|
(|y − x0|+ t)2

dmλ(x)

.
mλ(I)

2k
1

mλ(2kI)

1

2kr0
,

where η := (1− s)x0 + sx for some s ∈ (0, 1). Hence, we see

Ek .
mλ(I)

2k

(
ˆ 2k+1r0

0

ˆ

2k+1I

t

∣∣∣∣
1

mλ(2kI)

1

2kr0

∣∣∣∣
2

dmλ(y) dt

)1/2

.
mλ(I)

2k

(
1

mλ(2kI)

)1/2
(

1

22kr20

ˆ 2k+1r0

0

t dt

)1/2

∼
mλ(I)

2k

(
1

mλ(2kI)

)1/2

,

which further leads to

Ak .
1

2k
mλ(I)

(
1

mλ(2k+1I)

¨

2̂k+1I

|F (y, t)|2dmλ(y) dt

t

)1/2

.

This together with (2.21) and (2.22) implies that

∣∣∣∣
ˆ ∞

0

ˆ ∞

0

F (y, t)G(y, t)
dmλ(y) dt

t

∣∣∣∣

. mλ(I)
∞∑

k=0

1

2k

(
1

mλ(2k+1I)

¨

2̂k+1I

|F (y, t)|2dmλ(y) dt

t

)1/2

.

Combining (2.18) and (2.20), we conclude

1

mλ(I)

ˆ

I

|f(y)− fI,λ|y2λ dy

.

∞∑

k=0

1

2k

(
1

mλ(2k+1I)

¨

2̂k+1I

∣∣∣∣t
∂

∂t
P

[λ]
t (f)(y)

∣∣∣∣
2
dmλ(y) dt

t

)1/2

,

which implies that ‖f‖∗,λ .
∥∥t ∂

∂t
P

[λ]
t (f)

∥∥
T∞

2
. Moreover, by using an argument similar

to the proof of (bi) ⇒ (bii), and Proposition 2.1, we see that for given f such that
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(1 + x2λ+2)−1f ∈ L1(R+, dmλ) and t ∂
∂t
P

[λ]
t (f) ∈ T∞

2,C ,

lim
a→0+

sup
mλ(I)≤a

1

mλ(I)

ˆ

I

|f(y)− fI,λ|y2λ dy

= lim
a→∞

sup
mλ(I)≥a

1

mλ(I)

ˆ

I

|f(y)− fI,λ|y2λ dy

= lim
R→∞

sup
I⊂[R,∞)

1

mλ(I)

ˆ

I

|f(y)− fI,λ|y2λ dy = 0.

This via Lemma 2.4 implies that f ∈ CMO(R+, dmλ). Therefore, we complete the
proof of Theorem 2.5. �

Remark 2.6. (1) Let {W [λ]
t }t>0 be the heat semigroup associated with ∆λ de-

fined by setting for all f ∈
⋃

1≤p≤∞Lp(R+, dmλ) and x ∈ R+,

W
[λ]
t f(x) :=

ˆ ∞

0

W
[λ]
t (x, y)f(y) dmλ(y),

where

W
[λ]
t (x, y) :=

2(1−2λ)/2

Γ(λ)
√
π
t−λ− 1

2

ˆ π

0

exp

(
−x2 + y2 − 2xy cos θ

2t

)
(sin θ)2λ−1 dθ.

We remark the conclusion of Theorem 2.5 holds if (2.9) is replaced by

t2
∂

∂s
W [λ]

s (f)
∣∣
s=t2

∈ T∞
2,C .

(2) Let λ > 0 and VMO(R+, dmλ) be the subspace of functions f ∈ BMO(R+,
dmλ) satisfying

lim
a→0+

sup
mλ(I)≤a

Mλ,p(f, I) = 0.

Then for f ∈ BMO(R+, dmλ), the following statements are equivalent:

(Wi) f ∈ VMO(R+, dmλ);
(Wii) (1 + x2λ+2)−1f ∈ L1(R+, dmλ) and

t
∂

∂t
P

[λ]
t (f) ∈ T∞

2,0, t ∈ R+;

(Wiii) (1 + x2λ+2)−1f ∈ L1(R+, dmλ) and

t2
∂

∂s
W [λ]

s (f)
∣∣
s=t2

∈ T∞
2,0, t ∈ R+.

Moreover, the quantities ‖f‖∗,λ and
∥∥t ∂

∂t
P

[λ]
t (f)

∥∥
T∞

2
,
∥∥t2 ∂

∂s
W

[λ]
s (f)

∣∣
s=t2

∥∥
T∞

2
are equiv-

alent.

3. The proof of Theorem 1.2

In this section, we provide the proof of Theorem 1.2. Before that, we first recall
a characterization of BMO(R+, dmλ) via HMOλ(R+ × R+) obtained in [18].

Lemma 3.1. Let λ ≥ 1
2

and u be a function on R+ × R+. Then the following

statements are equivalent:

(ai) There exists some f ∈ BMO(R+, dmλ) such that u(x, t) = P
[λ]
t (f)(x), (x, t) ∈

R+ × R+;

(aii) u ∈ HMOλ(R+ × R+).
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Moreover, the quantities ‖f‖∗,λ and ‖u‖HMOλ
are equivalent.

Proof of Theorem 1.2. (cii) =⇒ (ci). If u ∈ HCMOλ(R+ × R+), then u ∈
HMOλ(R+ × R+). By Lemma 3.1, there exists a function f ∈ BMO(R+, dmλ) such

that u(x, t) = P
[λ]
t (f)(x), (x, t) ∈ R+ × R+ and

‖f‖∗,λ . ‖u‖HMOλ
.

It follows from u(x, t) = P
[λ]
t (f)(x) ∈ HCMOλ(R+ × R+) that

t
∂

∂t
P

[λ]
t (f) ∈ T∞

2,C , t ∈ R+.

By Theorem 2.5, we have f ∈ CMO(R+, dmλ).
(ci) =⇒ (cii). If f ∈ CMO(R+, dmλ), then f ∈ BMO(R+, dmλ). From Lemma 3.1,

we have that u(x, t) = P
[λ]
t (f)(x) ∈ HMOλ(R+ × R+) and

‖u‖HMOλ
. ‖f‖∗,λ.

From Theorem 2.5, we have

t
∂

∂t
P

[λ]
t (f) ∈ T∞

2,C , t ∈ R+.

Hence, in order to prove u ∈ HCMOλ(R+ × R+), it suffices to show that

lim
a→0+

sup
mλ(I)≤a

(
1

mλ(I)

ˆ |I|

0

ˆ

I

t

∣∣∣∣
∂

∂y
P

[λ]
t (f)(y)

∣∣∣∣
2

dmλ(y) dt

) 1
2

= 0;

lim
a→∞

sup
mλ(I)≥a

(
1

mλ(I)

ˆ |I|

0

ˆ

I

t

∣∣∣∣
∂

∂y
P

[λ]
t (f)(y)

∣∣∣∣
2

dmλ(y) dt

) 1
2

= 0;

and

lim
R→∞

sup
I⊂[R,∞)

(
1

mλ(I)

ˆ |I|

0

ˆ

I

t

∣∣∣∣
∂

∂y
P

[λ]
t (f)(y)

∣∣∣∣
2

dmλ(y) dt

) 1
2

= 0.

By (2.7) and an argument similar to the proof of (bi) ⇒ (bii) in Theorem 2.5, we get

t
∂

∂x
P

[λ]
t (f)(x) ∈ T∞

2,C , t ∈ R+.

Thus, we complete the proof of Theorem 1.2. �

4. Boundedness of the operator πλ

In this section, we study the close connection between T p
2 (1 ≤ p ≤ ∞) and

some classical function spaces by considering the operator πλ, λ > 0 defined on
T p
2,c (1 ≤ p < ∞) by

πλf(x) :=

ˆ ∞

0

ˆ ∞

0

∂

∂t
P

[λ]
t (x, y)f(y, t) dmλ(y) dt, x ∈ R+.

Such operator was first introduced by Coifman, Meyer and Stein [8] in the study of
tent spaces on R

n+1
+ ; see also [13, 10, 28].

We first claim that for any f ∈ T p
2,c with compact support K ⊂ R+ × R+,

(4.1)

(
¨

K

|f(y, t)|2 dmλ(y) dt

)1/2

≤ CK‖Ψ(f)‖Lp(R+,dmλ),
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where and in the sequel, the constant CK only depends on K. In fact, there exists
R > 0 such that for any (y, t) ∈ K, we have y + t ≤ R. Then by Minkowski’s
inequality,

(
¨

K

|f(y, t)|2 dmλ(y) dt

)1/2

≤ CK

(
¨

K

∣∣∣∣
ˆ R

0

χ{x∈R+:|x−y|<t}(x)f(y, t) dmλ(x)

∣∣∣∣
2

dmλ(y) dt

mλ(I(y, t))t

)1/2

≤ CK

ˆ R

0

(
¨

K

∣∣χ{x∈R+:|x−y|<t}(x)f(y, t)
∣∣2 dmλ(y) dt

mλ(I(y, t))t

)1/2

dmλ(x)

≤ CK

ˆ R

0

(
¨

Γ+(x)

∣∣f(y, t)
∣∣2 dmλ(y) dt

mλ(I(y, t))t

)1/2

dmλ(x) ≤ CK‖Ψ(f)‖Lp(R+,dmλ).

Thus, the integral πλf is well defined. From (4.1), we further deduce that πλf ∈
L2(R+, dmλ). In fact, by (2.6), we see

|πλf(x)| ≤ CK

(
¨

K

|f(y, t)|2 dmλ(y) dt

)1/2

, x ∈ R+.

On the other hand, by (4.1) and the fact that for x, y, t ∈ R+,
∣∣∣∣
∂

∂t
P

[λ]
t (x, y)

∣∣∣∣ .
ˆ π

0

(sin θ)2λ−1

(x2 + y2 + t2 − 2xy cos θ)λ+1
dθ,

we have

‖πλf‖L2(R+,dmλ) ≤
¨

K

(
ˆ ∞

0

∣∣∣∣
∂

∂t
P

[λ]
t (x, y)

∣∣∣∣
2

dmλ(x)

)1/2

|f(y, t)| dmλ(y) dt

≤ CK

¨

K

1

tλ+3/2

(
ˆ ∞

0

∣∣∣∣t
∂

∂t
P

[λ]
t (x, y)

∣∣∣∣ dmλ(x)

)1/2

|f(y, t)| dmλ(y) dt

≤ CK

¨

K

|f(y, t)| dmλ(y) dt

≤ CK

(
¨

K

|f(y, t)|2 dmλ(y) dt

)1/2

≤ CK‖Ψ(f)‖Lp(R+,dmλ).

The proof of the following lemma is similar to [18, Proposition 3.3] and we omit
the details.

Lemma 4.1. Let F,G be measurable functions on R+ × R+. Then there exists

a constant C > 0 independent of F and G such that
ˆ ∞

0

ˆ ∞

0

|F (y, t)G(y, t)|dmλ(y)
dt

t

≤ Cmin

{
ˆ ∞

0

Ψ(F )(x)Ψ(G)(x) dmλ(x),

ˆ ∞

0

Φ(F )(x)Ψ(G)(x) dmλ(x)

}
.

To state our result, we now recall the Hardy space H1(R+, dmλ) in [3, 33]. The
space H1(R+, dmλ) is defined by

H1(R+, dmλ) :=

{
f ∈ L1(R+, dmλ) : sup

s>0

∣∣P [λ]
s (f)

∣∣ ∈ L1(R+, dmλ)

}
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with norm

‖f‖H1(R+,dmλ) := ‖f‖L1(R+,dmλ) +

∥∥∥∥sup
s>0

∣∣P [λ]
s (f)

∣∣
∥∥∥∥
L1(R+,dmλ)

.

Now we are in a position to state our main result in this section. From the
theorem below, the operator πλ can be seen as the reverse direction mapping of T

defined by T (f) := t ∂
∂t
P

[λ]
t (f), t > 0, where f is a suitable function on R+, from

Lp(R+, dmλ)(1 < p < ∞), H1(R+, dmλ), BMO(R+, dmλ) and CMO(R+, dmλ) to T p
2 ,

T 1
2 , T∞

2 and T∞
2,C , respectively.

Theorem 4.2. Let λ > 0 and 1 ≤ p < ∞. Then the operator πλ initially defined

T p
2,c extends to a bounded linear operator:

(i) from T p
2 to Lp(R+, dmλ), 1 < p < ∞;

(ii) from T 1
2 to H1(R+, dmλ);

(iii) from T∞
2 to BMO(R+, dmλ);

(iv) from T∞
2,C to CMO(R+, dmλ);

(v) from T∞
2,0 to VMO(R+, dmλ).

Proof. (i): Suppose that g ∈ Lq(R+, dmλ) where 1
p
+ 1

q
= 1. By using Lemma 4.1,

we have
∣∣∣∣
ˆ ∞

0

πλf(x)g(x) dmλ(x)

∣∣∣∣ =
∣∣∣∣
ˆ ∞

0

ˆ ∞

0

ˆ ∞

0

∂

∂t
P

[λ]
t (x, y)f(y, t) dmλ(y)g(x) dt dmλ(x)

∣∣∣∣

=

∣∣∣∣
ˆ ∞

0

ˆ ∞

0

t
∂

∂t
P

[λ]
t (g)(y)f(y, t) dmλ(y)

dt

t

∣∣∣∣

.

∣∣∣∣
ˆ ∞

0

Ψ

(
t
∂

∂t
P

[λ]
t (g)

)
(y)Ψ(f)(y) dmλ(y)

∣∣∣∣

. ‖Ψ(f)‖Lp(R+,dmλ)

∥∥∥∥Ψ
(
t
∂

∂t
P

[λ]
t (g)

)∥∥∥∥
Lq(R+,dmλ)

. ‖f‖T p
2
‖g‖Lq(R+,dmλ),

where the last inequality follows from the Lp(R+, dmλ)-boundednesss of the Little-
wood–Paley S-function; see [19, Proposition 2.17]. This implies that

‖πλf‖Lp(R+,dmλ) . ‖f‖T p
2
.

We now prove (ii). Let f ∈ T 1
2 and g ∈ C∞

c (R+). It follows from the Fubini
theorem and Lemma 4.1 that

∣∣∣∣
ˆ ∞

0

πλf(x)g(x) dmλ(x)

∣∣∣∣ =
∣∣∣∣
ˆ ∞

0

ˆ ∞

0

t
∂

∂t
P

[λ]
t (g)(y)f(y, t)

dmλ(y) dt

t

∣∣∣∣

.

∣∣∣∣
ˆ ∞

0

Φ

(
t
∂

∂t
P

[λ]
t (g)

)
(y)Ψ(f)(y) dmλ(y)

∣∣∣∣

. ‖Ψ(f)‖L1(R+,dmλ)

∥∥∥∥Φ
(
t
∂

∂t
P

[λ]
t (g)

)∥∥∥∥
L∞(R+,dmλ)

.

By (2.1) and Theorem 2.5, we have
∥∥∥∥Φ
(
t
∂

∂t
P

[λ]
t (g)

)∥∥∥∥
L∞(R+,dmλ)

. ‖g‖∗,λ.



44 Jorge J. Betancor, Qingdong Guo and Dongyong Yang

Hence, we see

∣∣∣∣
ˆ ∞

0

πλf(x)g(x) dmλ(x)

∣∣∣∣ . ‖f‖T 1
2
‖g‖∗,λ.

According to [9, Theorem (4.1)], H1(R+, dmλ) is dual space of CMO(R+, dmλ). Then
we have that ‖πλf‖H1(R+,dmλ) . ‖f‖T 1

2
. Thus (ii) holds.

Moreover, from an argument analogous to the proof of (ii) and the boundedness
of the Littlewood–Paley S-function from H1(R+, dmλ) to L1(R+, dmλ) in [19, The-
orem 2.21], and the fact that BMO(R+, dmλ) is dual space of H1(R+, dmλ); see [9,
Theorem B], we see that (iii) holds

We continue to prove (iv). Let f ∈ T∞
2,C . To prove that πλf ∈ CMO(R+, dmλ),

by Theorem 2.5, it suffices to prove

(4.2) (1 + x2λ+2)−1πλ(f) ∈ L1(R+, dmλ) and t
∂

∂t
P

[λ]
t (πλf) ∈ T∞

2,C , t ∈ R+.

From (iii), we have that πλf ∈ BMO(R+, dmλ), which in turn implies that (1 +
x2λ+2)−1πλ(f) ∈ L1(R+, dmλ) and

t
∂

∂t
P

[λ]
t (πλf) ∈ T∞

2 , t ∈ R+.

Suppose I := I(x0, r0), x0, r0 ∈ R+. Let

f0 := fχ2̂I and fk := fχ
2̂k+1I\2̂kI

, k = 1, 2 . . . .

Then f =
∑∞

k=0 fk. We write

(
¨

Î

∣∣∣∣t
∂

∂t
P

[λ]
t (πλf)(y)

∣∣∣∣
2
dmλ(y) dt

t

)1/2

(4.3)

≤
∞∑

k=0

(
¨

Î

∣∣∣∣t
∂

∂t
P

[λ]
t (πλfk)(y)

∣∣∣∣
2
dmλ(y) dt

t

)1/2

=:

∞∑

k=0

Hk.

For H0, we use the boundedness of Littlewood–Paley g-function on L2(R+, dmλ)
(see [29, 5] or [18]) together with (i) to obtain

H0 . ‖πλf0‖L2(R+,dmλ) . ‖f0‖T 2
2

=

(
ˆ ∞

0

¨

Γ+(x)

∣∣f(y, t)χ2̂I(y, t)
∣∣2 dmλ(y)

mλ(I(y, t))

dt

t
dmλ(x)

)1/2

.
(
mλ(I)

)1/2
(

1

mλ(2I)

¨

2̂I

∣∣f(y, t)
∣∣2dmλ(y) dt

t

)1/2

.
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Regarding Hk, k ∈ N, by (iii) and the property of Poisson semigroup, for any
y ∈ I,∣∣∣∣
∂

∂t
P

[λ]
t (πλfk)(y)

∣∣∣∣ =
∣∣∣∣
ˆ ∞

0

∂

∂t
P

[λ]
t (y, x)πλfk(x) dmλ(x)

∣∣∣∣

≤
ˆ ∞

0

ˆ ∞

0

∣∣∣∣
ˆ ∞

0

∂

∂t
P

[λ]
t (y, x)

∂

∂s
P [λ]
s (x, z)fk(z, s) dmλ(x)

∣∣∣∣ dmλ(z) ds

=

ˆ ∞

0

ˆ ∞

0

∣∣∣∣
∂

∂t

∂

∂s

ˆ ∞

0

P
[λ]
t (y, x)P [λ]

s (x, z) dmλ(x)

∣∣∣∣|fk(z, s)| dmλ(z) ds

=

ˆ ∞

0

ˆ ∞

0

|fk(z, s)|
∣∣∣∣
∂

∂t

∂

∂s
P

[λ]
t+s(y, z)

∣∣∣∣ dmλ(z) ds.

By a computation, for y ∈ I and z ∈ 2k+1I\2kI, we have
∣∣∣∣
∂

∂t

∂

∂s
P

[λ]
t+s(y, z)

∣∣∣∣ .
1

mλ(I(x0, |y − z|))
1

(
|y − z| + t+ s

)2 .

Here the implicit constant is independent of k. Using this estimate, we obtain for
y ∈ I, ∣∣∣∣

∂

∂t
P

[λ]
t (πλfk)(y)

∣∣∣∣ .
1

mλ(2kI)

¨

2̂k+1I\2̂kI

|f(z, s)|
(
|y − z|+ t + s

)2 dmλ(z) ds.

By Minkowski’s inequality and Hölder’s inequality, we have

Hk .
1

mλ(2kI)



¨

Î

t

∣∣∣∣∣

¨

2̂k+1I\2̂kI

|f(z, s)|
(
|y − z|+ t + s

)2 dmλ(z) ds

∣∣∣∣∣

2

dmλ(y) dt




1/2

.
1

mλ(2kI)

¨

2̂k+1I\2̂kI

(
¨

Î

t|f(z, s)|2
(
|y − z| + t+ s

)4 dmλ(y) dt

)1/2

dmλ(z) ds

.
1

mλ(2kI)

¨

2̂k+1I\2̂kI

(
ˆ |I|

0

ˆ

I

t|f(z, s)|2
(
|y − z|+ t + s

)4 dmλ(y) dt

)1/2

dmλ(z) ds

.

(
mλ(I)

)1/2

mλ(2kI)

1

22k|I|

¨

2̂k+1I\2̂kI

|f(z, s)| dmλ(z) ds

.

(
mλ(I)

)1/2

(mλ(2kI))1/2
2kr0
22k|I|

(
¨

2̂k+1I

|f(z, s)|2dmλ(z) ds

s

)1/2

.
1

2k
(
mλ(I)

)1/2
(

1

mλ(2kI)

¨

2̂k+1I

|f(z, s)|2dmλ(z) ds

s

)1/2

.

Combining all the estimates of Hk, k ∈ N ∪ {0} and applying (4.3), we have
(

1

mλ(I)

¨

Î

∣∣∣t ∂
∂t

P
[λ]
t (πλf)(y)

∣∣∣
2dmλ(y) dt

t

)1/2

.

∞∑

k=0

1

2k

(
1

mλ(2kI)

¨

2̂k+1I

|f(z, s)|2dmλ(z) ds

s

)1/2

.

With an argument similar to the proof of (bi) ⇒ (bii) of Theorem 2.5, we see that
(4.2) holds, from which we further get πλf ∈ CMO(R+, dmλ). Thus (iv) holds.
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Since the argument of (v) is analogous to that of (iv), hence we omit the details.
Therefore, we complete the proof of Theorem 4.2. �

Remark 4.3. If we substitute the operator πλ with the operator

Wλf(x) :=

ˆ ∞

0

ˆ ∞

0

t2
∂

∂s
W [λ]

s (x, y)∣∣
s=t2

f(y, t)
dmλ(y) dt

t
, x ∈ R+,

where f ∈ T p
2,c, 1 ≤ p < ∞, the conclusions of Theorem 4.2 also hold.
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