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On the volumes of simplices

determined by a subset of Rd

Pablo Shmerkin and Alexia Yavicoli

Abstract. We prove that for 1 ≤ k < d, if E is a Borel subset of Rd of Hausdorff dimension

strictly larger than k, the set of (k + 1)-volumes determined by k + 2 points in E has positive

one-dimensional Lebesgue measure. In the case k = d − 1, we obtain an essentially sharp lower

bound on the dimension of the set of tuples in E generating a given volume. We also establish a

finer version of the classical slicing theorem of Marstrand–Mattila in terms of dimension functions,

and use it to extend our results to sets of “dimension logarithmically larger than k”.

Avaruuden Rd osajoukon määrittämien peruskoppien tilavuudesta

Tiivistelmä. Olkoon 1 ≤ k < d ja E avaruuden Rd Borelin osajoukko, jonka Hausdorffin ulot-

tuvuus on aidosti suurempi kuin k. Tässä työssä osoitetaan, että joukon E kaikkien k + 2 pistettä

käsittävien osajoukkojen määräämien (k + 1)-ulotteisten tilavuuksien joukolla on positiivinen yksi-

ulotteinen Lebesguen mitta. Kun k = d− 1, saadaan oleellisesti tarkka ulottuvuusalaraja sellaisten

joukon E pisteyhdistelmien joukolle, jotka tuottavat annetun tilavuuden. Lisäksi saadaan tarken-

nettu muotoilu klassisesta Marstrandin–Mattilan viipalointilauseesta ulottuvuuskuvausten avulla ja

sen sovelluksena em. tulosten yleistys ”ulottuvuuksiin, jotka ovat logaritmisesti suurempia kuin k”.

1. Introduction and main results

A fruitful and highly active area of analysis is concerned with the richness of
patterns inside fractal sets. A classical example, which motivated much of the de-
velopment of the area, is Falconer’s distance set problem: Given a set E ⊆ Rd, what
can be said about the Hausdorff dimension, Lebesgue measure or interior of the set
of distances between points in E, in terms of the Hausdorff dimension of E?

A huge number of generalizations of Falconer’s problem have been proposed, gen-
erally by looking at configurations spanned by k ≥ 3 points instead of two points
(some of these are briefly discussed at the end of this section). If we interpret the
distance between two points as the length (1-volume) of the one-simplex they gen-
erate, then a natural generalization is to consider the set of k-volumes of simplices
generated by k + 1 points in a set E ⊂ Rd:

Volk(E) = {Volk(x1, · · · , xk+1) : xi ∈ E} ⊆ R≥0.

This problem was considered by Grafakos, Greenleaf, Iosevich and Palsson: in [5,
Theorem 3.7], they show that if E ⊂ Rd is a Borel set with dimH(E) > d − 1 + 1

2d

if d is even, and dimH(E) > d − 1 + 1
2(d−1)

if d is odd, then L(Vold(E)) > 0, where

L denotes one-dimensional Lebesgue measure. Since a d − 1 plane determines a
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single volume of a d-simplex, namely 0, it seems reasonable to conjecture that this
is the sharp threshold. In [5, Theorem 3.8], the authors show that if this is the right
threshold for d = 2, then it is also the correct threshold in arbitrary dimensions.

In this paper, we directly establish a strong pinned form of this conjecture, which
also holds for k-volumes of simplices in Rd for any k ≥ 1:

Theorem 1.1. Fix d ∈ N≥2 and k ∈ {1, . . . , d− 1}. Let E ⊆ Rd be a Borel set
with dimH(E) > k ≥ 1. Then there exist x1, . . . , xk+1 ∈ E such that the set

Vol
(x1,...,xk+1)
k+1 (E) := {Volk+1(x1, . . . , xk+2) : xk+2 ∈ E}

has positive Lebesgue measure. Moreover, when k ≥ 2, there exist x1, . . . , xk+1 ∈ E

such that Vol
(x1,...,xk+1)
k+1 (E) has nonempty interior.

The proof of Theorem 1.1 is a very short application of the classical Marstrand–
Mattila projection and slicing theorems in geometric measure theory. Nevertheless,
to our knowledge this argument had not been noticed before (although we point out
that a similar idea was used to study the set of angles determined by a set in [8]).

When k = d− 1, we are able to obtain a much finer result. Theorem 1.1 can be
recast in the following form: suppose that dimH(E) > d − 1 for E ⊂ Rd. Then for
each v in a set V ⊂ [0,∞) of positive measure, there is a non-empty set Xv ⊂ Ed+1

such that each tuple in Xv spans a simplex of volume v. It is natural to ask whether
one can also provide a lower bound on the Hausdorff dimension of Xv; we show
that this is indeed the case, and in fact prove an essentially sharp lower bound on
dimH(Xv):

Theorem 1.2. Let E ⊂ Rd be a Borel set with dimH(E) > d − 1. Then for
every t < (d+ 1) dimH(E)− 1 the set

(1)
{
v ∈ R

+ : dimH{x ∈ Ed+1 : Vold(x) = v} ≥ t
}

has positive Lebesgue measure.

At least when E has equal Hausdorff and packing dimension, the range of t
provided by this theorem is sharp, up to the endpoint: by Proposition 2.4 below,
(1) implies that dimH(E

d+1) ≥ t + 1; in fact, for this it would be enough if the
set in (1) has full Hausdorff dimension 1. On the other hand, when E has equal
Hausdorff and packing dimensions one has dimH(E

d+1) = (d + 1) dimH(E), see e.g.
[9, Theorem 8.10]. Combining these bounds, t ≤ (d+1) dimH(E)−1, which matches
the threshold in Theorem 1.2.

We are not aware of other instances of Falconer-type problems where sharp results
are known for this refined “level-set” formulation (we note that for random sets, this
numerology is known to hold for a large variety of configurations—see [13]).

The proof of Theorem 1.2 also uses the Marstrand–Mattila slicing theorem as a
key tool, but the argument is more involved.

While Theorem 1.1 is sharp as far as the Hausdorff dimension of E is concerned,
it is natural to ask whether one can provide a finer classification among sets of
Hausdorff dimension k. For example, we do not know whether Volk+1(E) > 0 for
all Borel sets E ⊂ Rd of non-σ-finite k-dimensional Hausdorff measure. In Section 4
we present some partial results: we show that Volk+1(E) > 0 still holds if E is a
k-dimensional set which is “large enough” in terms of a suitable gauge function, see
Corollary 4.1. This is a consequence of a refined dimension function version of the
Marstrand–Mattila slicing theorem, which may be of independent interest, and is
presented in Section 3.
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To conclude the introduction, we note that several related Falconer-type problems
have been intensively studied in the literature. The articles [5, 2, 6, 7, 4] explore the
measure of the set of volumes determined by d points in a set E ⊂ Rd together
with the origin. Many works, including [2, 5, 12], investigate the size of the set of
non-congruent point configurations determined by E. All these works use harmonic-
analytic techniques, and it seems like our more direct approach here does not extend
to those situations.

2. Sharp dimension thresholds: proofs of Theorems 1.1 and 1.2

2.1. Preliminaries. We begin by recalling some key definitions and facts from
geometric measure theory. Fix 1 ≤ k < d. Let G(d, k) be the Grassmannian of
k-dimensional subspaces of Rd, and let γd,k be the unique Borel probability measure
on G(d, k) which is invariant under the action of the orthogonal group Od. See [9,
§3.9] for more details.

We denote the Grassmannian of affine k-planes in Rd by A(d, k). Given a k-
dimensional subspace W of Rd and a ∈ Rd, we let Wa := W+a ∈ A(d, k). Sometimes
we abuse notation and identify Wa with the pair (W, a). The natural measure on
A(d, k) is given by

λd,k(A) =

ˆ

G(d,k)

Hd−k{a ∈ W⊥ : Wa ∈ A} dγd,k(W ).

See [9, §3.16] for more details.
We denote the closed δ-neighbourhood of a set E ⊂ Rd by E(δ) := {x ∈

R
d : dist(x, E) ≤ δ}. Given a Radon measure µ on R

d and V ∈ G(d, k), we de-
fine the sliced measures µV ⊥,a supported on the affine plane V ⊥

a ∈ A(d, k) by

µV ⊥,a(f) := lim
δ→0

(2δ)−k
ˆ

V ⊥
a (δ)

f dµ, f ∈ C0(R
d).

These measures are well-defined for Hk-almost all a ∈ V and depend on (V, a) in a
Borel manner, see [9, §10.1].

We denote the unit sphere in Rd by Sd−1, endowed with surface measure σd−1

(which is a multiple of (d − 1)-dimensional Hausdorff measure Hd−1|S). For every
θ ∈ Sd−1, we let Lθ be the line through the origin and θ, and Pθ : R

d → Lθ be the
orthogonal projection onto Lθ. If µ is a Radon measure on Rd, then Pθµ denotes the
push-down of µ under Pθ, that is,

ˆ

f dPθµ =

ˆ

f ◦ Pθ dµ, f ∈ C0(R
d).

Note that G(d, 1) is the quotient of Sd−1 by identifying antipodal points, and γ(d, 1)
is the push-forward of σd−1 under this identification.

Given 0 < s < d, the s-energy of a finite Borel measure µ on Rd is defined as

Is(µ) :=

¨

1

|x− y|s
dµ(x) dµ(y).

We are now able to state the measure-theoretic versions of the Marstrand–Mattila
projection and slicing theorems (see [10, Theorems 5.4 and 5.5] and [9, Theorem 10.7],
respectively, for the proofs).

Theorem 2.1. Let µ be a finite Borel measure on Rd such that Is(µ) < ∞.
Then:
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(a) If s > 1, then Pθµ is absolutely continuous with an L2 density for σd−1-almost
every θ ∈ Sd−1.

(b) If s > 2, then Pθµ is absolutely continuous with a continuous density for
σd−1-almost every θ ∈ Sd−1.

Theorem 2.2. Fix 1 ≤ k < s < d. Let µ be a finite Borel measure on Rd. Then,
for γd,k-almost every W ∈ G(d, d− k),

(2) µ =

ˆ

µW,a dH
k(a)

and

(3)

ˆ

G(d,d−k)

ˆ

Rk

Is−k(µW,a) dH
k(a) dγd,d−k(W ) ≤ CdIs(µ).

Here Cd > 0 is a constant depending only on d.

We state a corollary of Theorems 2.1 and 2.2 for sets. It is obtained by considering
a Frostman measure on the set E [9, Theorem 8.8].

Theorem 2.3. Let E ⊂ R
d be a Borel set.

(a) If dimH(E) > 1, then L(Pθ(E)) > 0 for Hd−1-almost all θ ∈ Sd−1.
(b) If dimH(E) > 2, then Pθ(E) has non-empty interior for Hd−1-almost all θ ∈

Sd−1.
(c) If 1 ≤ s < dimH(E) ≤ d, then for Hd−1- almost all θ ∈ Sd−1 there is an affine

hyperplane H with normal θ such that

dimH(E ∩H) > s− 1.

(In fact, there is a positive measure family of such hyperplanes.)

To finish this section, we recall two inequalities relating the dimension of a set
and that of its projections and slices under a Lipschitz map.

Proposition 2.4. Let E ⊂ Rd and let g : E → Rk be a locally Lipschitz map.
Suppose

dimH(g
−1(x)) ≥ t for all x ∈ g(E).

Then

dimH(E) ≥ t + dimH(g(E)).

Special cases of this statement appear in [1, Corollary 3.3.2] and [9, Theorem 7.7];
the general case is similar and can be consulted in [3, §2.10.25]. By considering charts,
the statement extends easily to locally Lipschitz maps between manifolds.

2.2. Proof of Theorem 1.1.

Proof of Theorem 1.1. To begin, we recall that

Volk(x1, · · · , xk+1) =
1

k
dist(xk+1,W ) Volk−1(x1, · · · , xk),

where W is the affine (k − 1)-plane spanned by {x1, · · · , xk}.
Since claims (a) and (c) in Theorem 2.3 hold simultaneously for almost all θ,

we can fix θ and a hyperplane H normal to θ so that dimH(E ∩ H) > k − 1 and
L(Pθ(E)) > 0.

Since dimH(E ∩H) > k − 1, there exist y1, · · · , yk+1 ∈ E ∩H which are affinely
independent (otherwise, E ∩ H would be contained in a (k − 1)-plane, implying
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that dimH(E ∩H) ≤ k − 1). Let v denote the k-volume of the simplex spanned by
y1, · · · , yk+1. Since L(Pθ(E)) > 0, we get

L{Volk+1(y1, · · · , yk+1, xk+2) : xk+2 ∈ E} ≥
v

k + 1
· L{dist(xk+2, H) : xk+2 ∈ E}

∼
v

k + 1
· L(Pθ(E)) > 0.

The claim of non-empty interior when k ≥ 2 (so that dimH(E) > 2) follows in
the same way, using claim (b) of Theorem 2.3 instead of (a). �

2.3. Proof of Theorem 1.2.

Proof of Theorem 1.2. Fix d − 1 < s < dimH(E). By Frostman’s Lemma
[9, Theorem 8.8], there is a Borel probability measure µ supported on E such that
Is(µ) < +∞.

By Theorem 2.2 with k = 1, for γd,d−1-almost every H ∈ G(d, d − 1) there
is a family of sliced measures {µH,a : a ∈ H⊥} supported on Ha and depending
measurably on (H, a), such that (2) and (3) hold.

Next, we define a measure ρ on Ed as

ρ(·) :=

ˆ

µ×d
H,a(·) dλd,d−1(H, a) =

ˆ

G(d,d−1)

ˆ

H⊥

µ×d
H,a(·) dH

1(a) dγd,d−1(H),

where µ×d
H,a denotes the d-fold Cartesian power of µH,a.

We claim that Vold−1(x1, . . . , xd) > 0 for ρ-almost all (x1, . . . , xd). Indeed, let
H ∈ Gµ(d, d − 1) and a ∈ GµH , so that µH,a is a finite Borel measure on Ha with
Is−1(µH,a) < ∞. Since s − 1 > d − 2, the measure µH,a cannot give positive mass
to any (d− 2)-plane. Hence, for any fixed affinely independent x1, . . . , xj ∈ Ha with
j ≤ d − 1, we have that x1, . . . , xj , xj+1 are affinely independent for µH,a-almost all
xj+1. The claim now follows from Fubini and induction in j.

By the claim, the map x 7→ W (x), where W (x) is the affine hyperplane deter-
mined by x = (x1, . . . , xd) ∈ Ed, is well-defined ρ-almost everywhere. If λd,d−1(V) =
0, then ρ(W−1V) = 0, since the integrand in the definition of ρ(W−1V) vanishes out-
side the null set V. This shows that the push-forward Wρ of ρ under W is absolutely
continuous with respect to λd,d−1.

For any H ∈ G(d, d− 1), let

(4) GµH =
{
a ∈ H⊥ : |µH,a| > 0 and Is−1(µH,a) <∞

}
.

It follows from Theorem 2.2 that H1(GµH) > 0 for H in a subset Gµ(d, d − 1) ⊂
G(d, d− 1) of full γd,d−1-measure. In particular, since Wρ≪ λd,d−1, we have

ρ(W−1G) > 0, where G =
{
Ha : H ∈ Gµ(d, d− 1), a ∈ GµH

}
.

Given x = (x1, . . . , xd) with W (x) = Ha, let

(5) Ṽold(x) =

{
Vold−1(x)

d
· |b− a| : b ∈ GµH

}
.

By the definition of GµH , we have

L
(
Ṽold(x)

)
> 0 for x ∈ W−1(G) =⇒ ρ

{
x : L

(
Ṽold(x)

)
> 0

}
> 0.

Moreover, Ṽold(x) for x = (x1, . . . , xd) ∈ Ed is a subset of the set of volumes of
simplices generated by x1, . . . , xd and a final point xd+1 ∈ E. By Fubini’s theorem,

(
ρ× L

){
(x, v) : v ∈ Ṽold(x)

}
> 0
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and hence, by Fubini’s theorem again, there is a set V ⊂ [0,∞) with L(V ) > 0 such
that for all v ∈ V we have

(6) ρ(Fv) > 0, where Fv =
{
x ∈ Ed : v ∈ Ṽold(x)

}
.

We claim that for any set F with ρ(F ) > 0 we have

(7) dimH(F ) ≥ ds.

The goal is to apply Proposition 2.4 to the set F and the map W .
We define a natural metric on A(d, d− 1) as follows (see [9, §3.16]). Let Wi + ai,

i = 1, 2 be two affine hyperplanes, with Wi ∈ G(d, d− 1) and ai ∈ W⊥
i . Then

d(W1 + a1,W2 + a2) = ‖PW1 − PW2‖+ |a1 − a2|,

where P· denotes the orthogonal projection onto the corresponding hyperplane, and
‖ · ‖ is the operator norm. With this metric, the map W is locally Lipschitz on its
domain. Indeed, write x = (x, xd) with x ∈ (Rd)d−1. The direction H(x)⊥ orthogonal
to x1, . . . , xd−1 depends smoothly on x in its domain (this follows for example from
the Gramm–Schmidt process), and the translation is the orthogonal projection of xd
onto H(x)⊥, and therefore also depends smoothly on x.

Since Wρ≪ γd,d−1, the image W (F ) has positive γd,d−1-measure, and in particu-
lar full Hausdorff dimension d. It remains to bound the dimension of the pre-images
W−1(Ha) for Ha ∈ W (F ). By Theorem 2.2, Is−1(µH,a) < ∞ for γd,d−1-almost all
(H, a). Using Wρ ≪ γd,d−1 once again, we may assume without loss of generality
that Is−1(µH,a) <∞ for all (H, a) ∈ W (F ). It follows that, for any Ha ∈ W (F ),

Id(s−1)

(
µ×d
H,a|F

)
≤ Id(s−1)

(
µ×d
H,a

)
<∞,

and hence

dimH{x ∈ F : W (x) = Ha} ≥ dimH

(
F ∩H×d

a

)
≥ d(s− 1).

Proposition 2.4 applied to F and W now yields the claimed bound (7).
Fix v ∈ V for the rest of the proof. Pick x ∈ Fv and let W (x) = Ha. By the

definitions (5) and (6), there exists b = b(x) ∈ GµH such that

v =
Vold(x)

d
· |b− a|.

A routine verification, using the Borel dependence of the conditional measures on the
parameters, shows that b can be chosen to depend Borel measurably on x. By the
definition (4), we have Is−1(Hb) <∞. In particular, E∩Hb has Hausdorff dimension
≥ s− 1.

We have shown that Vold(x1, . . . , xd+1) = v for all (x1, . . . , xd+1) in the set

(8)
{
(x1, . . . , xd+1) : (x1, . . . , xd) ∈ Fv, xd+1 ∈ E ∩Hb(x1,...,xd)

}
.

Applying Proposition 2.4 to the projection of this set to the last coordinate, the claim
(7) yields that the set defined in (8) has Hausdorff dimension at least

dimH(Fv) + (s− 1) ≥ ds+ s− 1 = (d+ 1)s− 1.

Since s is arbitrarily close to dimH(E), this completes the proof. �
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3. A finer slicing theorem

In this section we obtain a finer version of the Marstrand–Mattila slicing theorem
[9, Theorem 10.10], in terms of gauge functions. We begin by recalling the defini-
tion of gauge functions and generalized Hausdorff measures, and then we state the
theorem.

Definition 3.1. (Gauge functions) We say that ϕ : R≥0 → R≥0 is a gauge func-

tion (or dimension function) if it right-continuous, increasing, ϕ(0) = 0, and ϕ(t) > 0
if t > 0. We denote the set of all gauge functions by G. We endow G with the partial
order

ϕ2 ≺ ϕ1 if lim
x→0+

ϕ1(x)

ϕ2(x)
= 0.

Definition 3.2. (Generalized Hausdorff measures) Let ϕ ∈ G. We define the
generalized Hausdorff measure associated to ϕ as

Hϕ(E) := lim
δ→0

Hϕ
δ (E) ∈ [0,+∞],

where Hϕ
δ (E) := inf

{∑
i ϕ(|Ui|) : {Ui}i is a δ-covering of E

}
.

It is well known and easy to see that if ϕ2 ≺ ϕ1 and Hϕ2(E) > 0 for some set E,
then E has non-σ-finite Hϕ1-measure.

Definition 3.3. (Generalized energies) Let ϕ be a gauge function, and let µ be
a Radon measure on Rd. We define the ϕ-energy of µ as

Iϕ(µ) :=

¨

1

ϕ(|x− y|)
dµ(x) dµ(y).

Recall that if ϕ̃ : R → R is a right-continuous function, its pseudo-inverse is
defined as

ϕ̃−1(y) := inf{x ∈ R : ϕ̃(x) ≥ y}.

Because of right-continuity of ϕ̃, we have ϕ̃(ϕ̃−1(y)) = y for all y.

Theorem 3.4. Fix integers 1 ≤ m < d. Let ϕ, ψ be gauge functions such that

(9)

ˆ 1

0

r−2(ϕ ◦ [xmψ]−1)(r) dr <∞

Let E ⊆ Rd be a Borel set with Hϕ
∞(E) > 0. Then, for γd,d−m-almost every W ∈

G(d, d−m),

Hψ(E ∩Wa) > 0 for a set of a ∈ W⊥ of positive Hm-measure.

A class of functions satisfying the theorem is given by ϕ(x) = [x · log−a(1/x)]k

and xmψ(x) = [x · log−b(1/x)]k, for any k > 0, a > 1 and 0 < b < a− 1.
For the proof of this theorem, we follow the proof of the classical case as presented

in [9], with suitable adaptations. We begin by recalling the following lemma, which
is a variant of Frostman’s lemma for gauge functions. See [1, Lemma 3.1.1] for its
proof.

Lemma 3.5. (Generalized Frostman’s Lemma) For every d there is a constant
Cd > 0 such that the following holds. Let ϕ be a gauge function, and let E ⊆ Rd be
a Borel set with Hϕ

∞(E) > 0. Then, there exists a Radon measure µ supported on E
such that

(10) µ(B(x, r)) ≤
Cd

Hϕ
∞(E)

ϕ(r) for all r > 0.
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Lemma 3.6. Let µ be a probability measure supported on E satisfying (10) for
some ϕ ∈ G. Let ϕ̃ be a right-continuous function such that

ˆ ∞

1

ϕ(ϕ̃−1(1/u)) du <∞.

Then, Iϕ̃(µ) <∞.

Proof. By Fubini,
ˆ

1

ϕ̃(‖x− y‖)
dµ(y) =

ˆ ∞

0

µ

{
y :

1

ϕ̃(‖x− y‖)
≥ u

}
du

≤

ˆ ∞

0

µ
(
B(x, ϕ̃−1(1/u))

)
du

≤

ˆ 1

0

1 du+
Cd

Hϕ
∞(E)

ˆ ∞

1

ϕ(ϕ̃−1(1/u)) du <∞. �

Theorem 3.7. Let m < d, and let ϕ̃ be a continuous gauge function such that
ψ(x) := ϕ̃(x)x−m is also a gauge function. Let µ a Radon measure on Rd. Then,

¨

W⊥

Iψ(µW,a) dH
m(a) dγd,d−m(W ) ≤ Cd Iϕ̃(µ).

Proof. Using [9, Equation (10.5)] applied to the lower semicontinuous function
x 7→ 1

ψ(x−y)
and Fatou’s Lemma, we get

Iψ(µW,a) ≤ lim inf
δ→0

(2δ)−m
¨

W
(δ)
a

1

ψ(‖x− y‖)
dµ(x) dµW,a(y).

Using this, Fubini, and [9, Inequality (10.6)] with

B(x) :=
{
a ∈ W⊥ : x ∈ W (δ)

a

}
,

so that P−1
W⊥(B(x)) = {y : |PW⊥(x− y)| ≤ δ}, we have

I(W ) :=

ˆ

W⊥

Iψ(µW,a) dH
m(a)

≤ lim inf
δ→0

(2δ)−m
¨

B(x)

ˆ

1

ψ(‖x− y‖)
dµW,a(y) dH

m(a) dµ(x)

≤ lim inf
δ→0

(2δ)−m
¨

{y : |P
W⊥(x−y)|≤δ}

1

ψ(‖x− y‖)
dµ(y) dµ(x).

Using Fubini again, [9, Lemma 3.11] and, finally, the definition of ψ, we conclude
that
ˆ

G(d,d−m)

I(W ) dγd,d−m(W )

≤ lim inf
δ→0

(2δ)−m
˚

{y : |P
W⊥ (x−y)|≤δ}

1

ψ(‖x− y‖)
dµ(y) dµ(x) dγd,d−m(W )

= lim inf
δ→0

(2δ)−m
¨

1

ψ(‖x− y‖)
γd,d−m({W : |PW⊥(x− y)| ≤ δ}) dµ(y) dµ(x)

≤ lim inf
δ→0

(2δ)−m
¨

‖x− y‖m

ϕ̃(‖x− y‖)
· Cd δ

m ‖x− y‖−m dµ(y) dµ(x)

= 2−mCdIϕ̃(µ). �
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Lemma 3.8. Let ν be a positive finite measure on R
d with E = spt(ν), and let

ψ be a gauge function such that Iψ(ν) <∞. Then, there exists F ⊆ E of positive ν
measure and a constant C so that

ν|F (B(x, r)) ≤ Cψ(r) for all x ∈ R
d, r > 0.

Proof. Take C > 0 large enough so that

F :=

{
x :

ˆ

1

ψ(‖x− y‖)
dν(y) ≤ C

}

has positive ν-measure. Then, using that a gauge function is non-decreasing,

ν|F (B(x, r)) =

ˆ

F∩B(x,r)

ψ(‖x− y‖)

ψ(‖x− y‖)
dν(y) ≤ C ψ(r). �

We can now conclude the proof of Theorem 3.4.

Proof of Theorem 3.4. Since by hypothesis Hϕ
∞(E) > 0, by Lemma 3.5, there

exists a measure µ supported on E so that

µ(B(x, r)) ≤
Cd

Hϕ
∞(E)

ϕ(r) for all r > 0.

We may assume that µ is a probability measure.
By the assumption (9) and a change of variables,

ˆ ∞

1

ϕ ◦ [xmψ]−1(1/u) du <∞.

Thus, we get from Lemma 3.6 that Ixmψ(µ) <∞. Hence, we can apply Theorem 3.7
to get

¨

W⊥

Iψ(µW,a) dH
m(a) dγd,d−m(W ) <∞.

This implies that

(11) Iψ(µW,a) <∞ for γd,d−m-almost all W and Hm-almost all a ∈ W⊥.

On the other hand, since ψ ∈ G, we have xm ≥ xmψ(x) if x is sufficiently small.
Since Ixmψ(µ) < ∞, it follows that also Ixm(µ) < ∞. Therefore, we get from [9,
Theorem 9.7] that PV (µ) ≪ Hm for γd,m-almost every V ∈ G(d,m). Hence, by [9,
Equation (10.6) and next line], we get

ˆ

W⊥

µW,a(Wa) dH
m(a) = µ(Rd) > 0,

for γd,d−m-almost all W (note that γd,m is the push-forward of γd,d−m under W 7→
W⊥). Therefore,

|µW,a| > 0

for γd,d−m-almost all W and a in a subset of W⊥ of positive Hm-measure. Fix such
a pair (W, a) for the rest of the proof.

By Lemma 3.8 applied to µW,a, there is a set F ⊂ spt µW,a ⊂ E ∩ Wa with
µW,a(F ) > 0 such that

µW,a|F (B(x, r)) ≤ C ψ(r) for all x, r.

Then, for every covering by balls {B(xi, ri)}i of E ∩Wa (and in particular of F ) we
have

0 < µW,a(F ) ≤
∑

i

µW,a|F (B(xi, ri)) ≤ C
∑

i

ψ(ri).
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This shows that Hψ(E ∩Wa) > 0, completing the proof. �

4. Partial results in the critical dimension

4.1. A sufficient condition in terms of gauge functions. As a consequence
of Theorem 3.4, we have a finer version of Theorem 1.1 for dimension functions.

Corollary 4.1. Fix 1 ≤ k < d. Let ϕ be a gauge function such that there exists
another gauge function ψ such that xk−1 ≺ ψ, and

ˆ 1

0

r−2(ϕ ◦ [xψ]−1)(r) dr <∞

In particular, this holds for ϕ(x) = [x · log−a(1/x)]k for any a > 1.
Let E ⊆ Rd (d ≥ 2) be a Borel set with Hϕ(E) > 0. Then,

L
(
Volk+1(E)

)
> 0.

Proof. As corollary of Theorem 3.4, we have that, for almost every θ ∈ Sd−1,

(a) Pθ(E) has positive Lebesgue measure,
(b) there is an affine hyperplane H with normal vector θ so that Hψ(E ∩H) > 0.

Fix θ satisfying both conclusions and a hyperplane H as in (b). Since Hψ(E∩H) > 0
with xk−1 ≺ ψ, the set E∩H has non-σ-finite (k−1)-dimensional Hausdorff measure,
and hence there exist y1, . . . , yk+1 ∈ E ∩H which are affinely independent.

Since Pθ(E) has positive Lebesgue measure, we conclude that

L(Volk+1(E)) ≥ L{Volk+1(y1, · · · , yk+1, xk+2) : xk+2 ∈ E}

≥
Volk(y1, · · · , yk+1)

k + 1
L{dist(xk+2, H) : xk+2 ∈ E} > 0. �

In the case k = d− 1, we have the following extension of Theorem 1.2.

Theorem 4.2. Fix 1 ≤ k < d. Let ϕ be a gauge function such that there exists
another gauge function ψ satisfying that xd−2 ≺ ψ, and

ˆ 1

0

r−2(ϕ ◦ [xψ]−1)(r) dr <∞

In particular, this holds for ϕ(x) = [x · log−a(1/x)]d−1 for any a > 1.
Let E ⊆ Rd be a Borel set with Hϕ(E) > 0. Then there exists a set V ⊂ [0,∞)

with L(V ) > 0 such that for all v ∈ V we have

dimH

{
(x1, . . . , xd+1) ∈ Ed+1 : Vold(x1, . . . , xd+1) = v

}
≥ (d+ 1)(d− 1)− 1.

This follows exactly as in the proof of Theorem 1.2, using Theorem 3.7 with
m = 1 in place of Theorem 2.2. We remark that (2) still holds in this case, since the
assumption on ϕ̃ in Theorem 3.7 implies that x ≺ ϕ, which in turn implies that Pθµ
is absolutely continuous for Hd−1-almost every θ (see [9, Theorem 9.7]), and in turn
this yields (2) by [9, p. 141]. The details are left to the interested reader.

4.2. Dimension of the set of areas. If E ⊆ R2 with dimH(E) = 1, then the
set of areas spanned by E might be a singleton (if E is contained in a line). But
what if E is not contained in a line? As a corollary of recent radial projection results
[11], we have the following result.

Lemma 4.3. Let E ⊂ R
2 be a Borel set with dimH(E) ≤ 1 which is not contained

in a line. Then
dimH(Vol2(E)) ≥ dimH(E).



On the volumes of simplices determined by a subset of Rd
107

Proof. By [11, Theorem 1.1], the set D(E) ⊂ S1 of directions spanned by pairs
of distinct points in E has Hausdorff dimension ≥ dimH(E). By Kaufman’s pro-
jection theorem (see [10, Theorem 5.1]), for any ε > 0 there is θ ∈ D(E) such
that dimH(P

⊥
θ (E)) ≥ dimH(E) − ε. The usual base times height argument, using

points y1, y2 ∈ E spanning the direction θ ∈ D(E) as the base, and the orthogonal
projections onto θ⊥ as the height, now gives the claim. �

When dimH(E) > 1, we know from Theorem 1.1 that the set of areas spanned
by E has positive Lebesgue measure, and in particular full dimension. This lemma
shows that the “phase transition” in the dimension of the set of areas (jumping from 0
to 1 at the threshold dimH(E) = 1) goes away if one assumes that E is not contained
in a line.
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