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Partition function for the 2d
Coulomb gas on a Jordan curve

Klara Courteaut and Kurt Johansson

Abstract. We prove an asymptotic formula for the partition function of a 2d Coulomb gas at

inverse temperature β > 0, confined to lie on a Jordan curve. The partition function can include a

linear statistic. The asymptotic formula involves a Fredholm determinant related to the Loewner

energy of the curve, and also an expression involving the sampling function, the exterior conformal

map for the curve and the Grunsky operator. The asymptotic formula also gives a central limit

theorem for linear statistics of the particles in the gas.

Partitionsfunktionen av en 2d Coulombgas på en Jordankurva

Sammanfattning. Vi visar en asymptotisk formel för partitionsfunktionen av en 2d Coulomb-

gas på en Jordankurva med invers temperatur β > 0. Partitionsfunktionen kan också innehålla en

linjär statistika. I den asymptotiska formeln ingår en Fredholmdeterminant relaterad till kurvans

Loewnerenergi, och även ett uttryck beroende av samplingsfunktionen, den yttre konforma avbild-

ningen samt Grunskyoperatorn. Den asymptotiska formeln ger en central gränsvärdessats för linjära

statistikor av partiklarna i gasen.

1. Introduction

Consider a planar Coulomb gas restricted to lie on a Jordan curve γ in the
complex plane. More precisely, let z1, · · · , zn denote the positions of n particles on
γ with joint density given by

(1.1) dµβ
n(z1, · · · , zn) =

1

Zβ
n

∏

1≤µ<ν≤n

|zµ − zν |β
n
∏

µ=1

|dzµ|.

Here Zβ
n is a normalization constant, the partition function, and β > 0 can be thought

of as the inverse temperature of the particle system. In the case where γ is the unit
circle T we recover the well-studied Circular β-Ensemble. In this case z1, · · · , zn are
the eigenvalues of a random matrix, and in particular we get classical random matrix
ensembles COE (β = 1), CUE (β = 2), and CSE (β = 4), see e.g. [2]. The case β = 2
for general curves γ is also special as it gives rise to a determinantal point process
on γ. Let g be a function defined on γ. By Andreief’s identity,

1

n!

ˆ

γn

∏

1≤µ<ν≤n

|zµ − zν |2
n
∏

µ=1

eg(zµ)|dzµ| = det
(

ˆ

γ

zj z̄keg(z)|dz|
)n

j,k=1
.
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The right-hand side is a generalized Toeplitz determinant, which for real g is related to
polynomials on the curve γ which are orthogonal w.r.t. the weight eg, see Section 16.2
in [18].

In this paper we obtain an asymptotic formula for

(1.2) Dβ
n[e

g] :=
1

n!

ˆ

γn

∏

1≤µ<ν≤n

|zµ − zν |β
n
∏

µ=1

eg(zµ)|dzµ|,

as the number of particles n goes to infinity. In particular, we obtain the asymptotics
of the partition function Zn,β(γ) = Dβ

n[1]. The case β = 2 was studied in [5] and [6],
and the latter gave an asymptotic formula for the partition function. An asymptotic
formula for (1.2) was conjectured in [6], and in this paper we prove this conjecture
under rather strong regularity assumptions on the curve γ and the function g. We
first generalize to any β > 0 the asymptotic formula for Dβ

n[e
g]/Dβ

n[1] proved in [5]
in the case β = 2, and then use this result to obtain the asymptotics of Dβ

n[e
g]. The

asymptotic formula for Dβ
n[e

g] was predicted also in [21] via a non-rigorous argument.
The function z 7→ Dβ

n[e
zg]/Dβ

n[1] is the Laplace transform of the linear statistic
∑

µ g(zµ). Its limit therefore provides the limiting distribution (and moments) of
∑n

µ=1 g(zµ). It is typical that for eigenvalues of random matrices and one-dimensional

Coulomb gases, such linear statistics do not need to be normalized by
√
n in order

to converge, unlike in the classical central limit theorem. We will see that this is the
case here as well, and that the limit is normal with a mean and variance depending
on g and the exterior conformal mapping related to γ.

In order to state our main results we introduce the following notation. Denote
by Ω+ the unbounded component of the complement of γ, and by Ω− the bounded
component. Let D denote the open unit disc, and D∗ = {z | |z| > 1} the exterior
of the unit circle. Let φ be the unique conformal map from D∗ onto Ω+ such that
limz→∞ φ(z) = ∞ and limz→∞ φ(z)/z > 0. Then limz→∞ φ(z)/z = cap(γ), the
capacity of the curve. By Carathéodory’s theorem, φ has a continuous one-to-one
extension to Dc, so φ(eit), t ∈ [0, 2π), is a parameterization of γ.

Because φ is conformal we can write

(1.3) log
(φ(z)− φ(w)

z − w

)

= log(cap(γ))−
∑

k,l≥1

aklz
−kw−l

if |z| > 1, |w| > 1, see [14]. The coefficients {akl} are called the Grunsky coefficients.
Note that akl = alk. Taking the limit w → z gives

(1.4) log φ′(z) = −
∑

k≥2

(

k−1
∑

j=1

aj,k−j

)

z−k, |z| > 1.

The Grunsky operator is the operator on ℓ2(C) given by

B =
(
√
klakl

)

k,l≥1
.

We let B(1) and B(2) denote its real and imaginary parts and define the operator K
on ℓ2(R)⊕ ℓ2(R) by

(1.5) K =

(

B(1) B(2)

B(2) −B(1)

)

.
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Write
(

xθ

yθ

)

=

(

( 1√
k
cos(kθ))k≥1

( 1√
k
sin(kθ))k≥1

)

.

Then, by (1.3),

− log
∣

∣

∣

φ(eiθ)− φ(eiω)

eiθ − eiω

∣

∣

∣
+ log(cap(γ))

=
∑

k,l≥1

Re(akl) cos(kθ + lω) + Im(akl) sin(kθ + lω)

=

(

xω

yω

)t

K

(

xθ

yθ

)

,

(1.6)

so K appears when we take the real part in (1.3). The operator K is also related to
the Neumann–Poincaré operator, see Proposition 2.7.

Given a complex-valued function g on γ we can move it to the unit circle using
the map φ and expand it in a Fourier series

g ◦ φ(eiθ) = a0
2

+
∑

k≥1

(ak cos(kθ) + bk sin(kθ)),

where an and bn can be complex-valued. Write

(1.7) g =
1

2

(

(
√
kak)k≥1

(
√
kbk)k≥1

)

,

which is an element in ℓ2(C)⊕ ℓ2(C) if and only if g ◦φ belongs to the Sobolev space
H1/2(T). Then we can write the Fourier series as

(1.8) g ◦ φ(eiθ) = a0
2

+ 2

(

xθ

yθ

)t

g.

We also set

(1.9) d =
1

2

(

(
√
k
∑k−1

j=1 Re aj,k−j)k≥1

(
√
k
∑k−1

j=1 Im aj,k−j)k≥1

)

,

so that by (1.4)

(1.10) log |φ′(eiθ)| = −2

(

xθ

yθ

)t

d.

Furthermore, we let

(1.11) gβ = g + (
β

2
− 1)d.

Finally, in the case when γ is the unit circle T the partition function can be computed
explicitely,

(1.12) Zn,β(T) =
(2π)n

n!

Γ(1 + βn/2)

Γ(1 + β/2)n
.

This follows from Selberg’s integral, see [12, Theorem 12.1.1.]. We prove the following.

Theorem 1.1. Assume that γ is a C12+α Jordan curve and g ∈ C4+ǫ(γ), for
some α > 0, ǫ > 0. Then, as n→ ∞,

(1.13) Dβ
n[e

g] =
Zn,β(T)cap(γ)

βn2/2+(1−β/2)n

√

det(I +K)
exp

(

n
a0
2

+
2

β
gt
β(I +K)−1gβ + o(1)

)

.
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Note that when β = 2 and γ = T the left side of (1.13) is an ordinary Toeplitz
determinant and the statement of the theorem is the strong Szegő limit theorem.
The strong assumptions on the curve γ and the function g come from the techniques
used in the proof. In view of the results in [6], it is natural to conjecture that it
should be enough to assume that K is a trace class operator. The eigenvalues of
K are plus/minus the singular values of B, so that det(I + K) = det(I − BB∗),
which means that K is trace-class is equivalent to the Grunsky operator being a
Hilbert-Schmidt operator. Curves for which B is a Hilbert–Schmidt operator are
called Weil–Petersson quasicircles and form an interesting class of curves, see [1] and
[19]. The Fredholm determinant is directly related to the Loewner energy IL(γ) of
the curve, in fact IL(γ) = −12 log det(I − BB∗), and the Loewner energy is finite if
and only if γ is a Weil–Petersson quasicircle, see [19] for more on this. Concerning
the regularity condition on g it can be somewhat relaxed, see Remark 3.7. The
optimal condition on g is not clear. That the function g has a finite H1/2-norm is
not sufficient for (1.13) to hold even in the case when γ is the unit circle, see [11]
for a counterexample when β = 4. The fact that I + K in (1.13) is invertible is
a consequence of the strengthened Grunsky inequality, see the discussion following
Lemma 2.1. For the relation between the formula in (1.13) and the corresponding
formula in [21] see Remark 2.8.

Let ψ = φ−1 be the conformal map from Ω+ to the exterior of the unit circle.
If γ is a Ck+α-curve, 0 < α < 1, then by Kellogg’s theorem φ extends to a bijective
Ck+α-function on T. Hence, if k ≥ 1, ψ′ is well-defined on T. Define gβ on γ by,

gβ ◦ φ(eiθ) = 2

(

xθ

yθ

)t

gβ.

We see that

gβ(z) = g(z)− a0
2

+ (
β

2
− 1) log |ψ′(z)|, z ∈ γ,

by (1.8), (1.10), (1.11), and the fact that ψ is the inverse function of φ. In the case
when g is real-valued, an alternative expression for the quantity in the exponent in
(1.13) can be given in terms of Dirichlet energies from the following proposition.

Proposition 1.2. Assume that g is a real-valued C1+α function on the C4+α

Jordan curve γ. Let g± be the (bounded) harmonic extension of g to Ω±. Then,

(1.14) gt(I +K)−1g =
1

8π

(
ˆ

Ω+

|∇g+|2 dx dy +
ˆ

Ω−

|∇g−|2 dx dy
)

.

The conditions in the theorem are such that the computations in the proof work
easily, but they can be weakened. If we apply this to the function gβ we get the
formula

2

β
gt
β(I +K)−1gβ =

1

4πβ

(
ˆ

Ω+

|∇gβ,+|2 dx dy +
ˆ

Ω−

|∇gβ,−|2 dx dy
)

,

where gβ,± is the (bounded) harmonic extension of gβ to Ω±.

Denote by E
β
γn expectation with respect to the probability measure (1.1) on

γn = γ × · · · × γ so that

E
β
γn

[

n
∏

µ=1

eg(zµ)

]

=
Dβ

n[e
g]

Dβ
n[1]

.

The proof of Theorem 1.1 is based on the following relative Szegő type theorem.
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Theorem 1.3. Assume that γ is a C9+α Jordan curve and g a complex-valued
C4+ǫ function on γ, for some α > 0, ǫ > 0. Then, as n→ ∞,

(1.15) E
β
γn

[

n
∏

µ=1

eg(zµ)

]

= exp

(

n
a0
2

+
2

β
gt(I+K)−1g + 2

(

1− 2

β

)

dt(I+K)−1g + o(1)

)

.

By replacing g with zg, z ∈ C, in (1.15) and recognizing the Laplace transform
of
∑

µ g(zµ) on the left-hand side of (1.15), we obtain

Corollary 1.4. Assume that γ is a C9+α Jordan curve, g ∈ C4+ǫ(γ), for some
α > 0, ǫ > 0. Then, as n→ ∞,

∑

µ

g(zµ)− n

ˆ 2π

0

g(φ(eiθ))
dθ

2π

d⇒ N (µg, σ
2
g)

where

µg = 2
(

1− 2

β

)

dt(I +K)−1g, σ2
g =

4

β
gt(I +K)−1g.

Note that
a0
2

=

ˆ 2π

0

g(φ(eiθ))
dθ

2π
=

ˆ

γ

g(z) dνeq(z),

is the expectation of g with respect to the equilibrium measure νeq on the curve γ.
We recall that the case γ = T gives the Circular β-Ensemble, which can be

realized as the eigenvalues of a random matrix constructed in [9]. Results related
to Theorem 1.3 for the CβE include [4], which gives a CLT for polynomials that
follows from estimates on the moments, and [20], which generalizes this result and
gives a rate of convergence. In [11] the analogue of (1.15) for γ = T in the mesoscopic
regime was obtained, and in [3], the high temperature regime was considered, still
with γ = T.

The paper is organized as follows: in Section 2 we give some preliminary results
that will be used in the proofs of the main theorems, and we also prove Propo-
sition 1.2. The proof of the relative Szegő type theorem, Theorem 1.3, is given in
Section 3. The last section deals with the asymptotics of the partition function which
combined with Theorem 1.3 will prove Theorem 1.1.

Acknowledgement. We thank Yacin Ameur and Fredrik Viklund for helpful com-
ments on the paper.

2. Preliminaries and an integral equation

In this section we will first discuss some preliminary results that we will need.
We will also discuss a certain integral equation that will be important in the proof
of the relative Szegő theorem, and we will give the proof of Proposition 1.2.

2.1. Preliminaries. From now on, we assume without loss of generality that
cap(γ) = 1. We can reduce the general case to this one by dividing both sides of (1.2)

by cap(γ)βn
2/2+(1−β/2)n and replacing g ◦ φ by g ◦ (φ/cap(γ)). We also assume that

the mean a0/2 = 0, and that γ is Cm+α for some α > 0, m ≥ 1. Consequently, by
Kellogg’s theorem, φ extends to be Cm+α on D∗. Note that the Grunsky coefficients
are Fourier coefficients of a function on T2 and hence we can use an integration by
parts argument to see that there exists a constant A, that only depends on γ, such
that the Grunsky coefficients satisfy

(2.16) |akl| ≤ Ak−p−α/2l−q−α/2, p+ q = m− 1,
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k, l ≥ 1. For Theorem 1.1 we will take m = 12, and for Theorem 1.3 we will take
m = 9. The Grunsky coefficients also satisfies the following inequality

∑

k≥1

∣

∣

∑

l≥1

√
klaklwl

∣

∣

2 ≤
∑

k≥1

|wk|2

for any complex sequence (wk)k≥1 ∈ ℓ2(C). This is known as the Grunsky inequality,
see e.g. [14]. We will need the following stronger version.

Lemma 2.1. (The strengthened Grunsky inequality) There is a constant κ < 1
such that

(2.17)
∑

k≥1

∣

∣

∑

l≥1

√
klaklwl

∣

∣

2 ≤ κ2
∑

k≥1

|wk|2

for any complex sequence (wk)k≥1 ∈ ℓ2(C) if and only if φ(D∗) is bounded by a
quasicircle.

A proof can be found in Chapter 9.4 of [14]. Since we assume that γ is a C9+ǫ

curve it is clearly quasiconformal and hence (2.17) holds. This implies that the
Grunsky operator satisfies ‖B‖ ≤ κ < 1, and thus, for any real x, y ∈ l2(N),

∥

∥K

(

x

y

)

∥

∥

2

2
=
∥

∥B(x− iy)
∥

∥

2

2
≤ κ2‖x− iy‖22 = κ2

∥

∥

(

x

y

)

∥

∥

2

2

i.e. ‖K‖ ≤ κ < 1 as well. In particular I +K is invertible.
Thanks to the following lemma, we can assume that g is real-valued when we

prove Theorem 1.3.

Lemma 2.2. If (1.15) holds for any real-valued function g ∈ C4+ǫ(γ), then
(1.15) holds for any complex-valued g ∈ C4+ǫ(γ), ǫ > 0. The limit is the same but
the Fourier coefficients an and bn, given by the usual formulas, are now complex
numbers.

Proof. Assume that g ∈ C4+ǫ(γ) is complex-valued. Define the analytic functions

fn(ζ) = E
β
γn

[

∏

µ

exp(Re g(zµ) + ζ Im g(zµ))

]

,

n ≥ 1, which are bounded by

|fn(ζ)| ≤ E
β
γn

[

∏

µ

exp(Re g(zµ) + Re(ζ) Im g(zµ))

]

≤ E
β
γn

[

∏

µ

exp(Re g(zµ) + 2 Im g(zµ))

]

+ E
β
γn

[

∏

µ

exp(Re g(zµ)− 2 Im g(zµ))

]

if |ζ | ≤ 2. Let

v± =
1

2

(

(
√
k(Re ak ± 2 Im ak))k≥1

(
√
k(Re bk ± 2 Im bk))k≥1

)

.

Since we assume that the theorem is true if g is real, we see that if n is large enough

E
β
γn

[

∏

µ

exp(Re g(zµ)± 2 Im g(zµ))

]

≤ 2 exp
(

2
β
vt
±(I +K)−1v± + 2

(

1− 2
β

)

(dt(I +K)−1v±)
)

.
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We have that ‖K‖ < 1 by the strengthened Grunsky’s inequality, ‖d‖2 is bounded
because of (2.16), and

‖v±‖22 = 4
∑

k≥1

k(|ak|2 + |bk|2) <∞.

by our assumption on the regularity of g. Thus,

|fn(ζ)| ≤ 2
∑

⋆=±
exp

(

‖v⋆‖2(1− ‖K‖)−1
(

2
β
‖v⋆‖2 + 2

∣

∣1− 2
β

∣

∣‖d‖2
)

uniformly on |ζ | ≤ 2, for all n large enough. By Montel’s theorem, the family
{fn}n≥1 is normal on |ζ | < 2 so there is a subsequence converging uniformly on
compact subsets. But the sequence itself converges pointwise on the real line, whence
uniformly on |ζ | ≤ 1. In particular, it converges at z = i to the desired limit. �

2.2. The integral equation. From now on we will assume that the function g
on γ is real-valued. The starting point for the analysis of the asymptotics of Dβ

n[e
g]

is to make the change of variables zµ = φ(eiθµ) in the integral in the right side of
(1.2) so that we get a particle system on the circle instead. We write

β

2

∑

1≤µ6=ν≤n

log|φ(eiθµ)−φ(eiθν)|+
∑

µ

log |φ′(eiθµ)| = β

2
Fn(θ)+

(

1− β

2

)

∑

µ

log |φ′(eiθµ)|,

where

Fn(θ) =
∑

1≤µ,ν≤n

log

∣

∣

∣

∣

φ(eiθµ)− φ(eiθν)

eiθµ − eiθν

∣

∣

∣

∣

+
∑

1≤µ6=ν≤n

log|eiθµ − eiθν |.(2.18)

Note that when µ = ν, the term in the first sum on the right side of (2.18) equals
∑

µ log |φ′(eiθµ)|. Let Eβ
n denote expectation with respect to the measure on Hn =

{0 ≤ θ1 < θ2 < · · · < θn ≤ 2π} with density

1

Zn,β
exp

(

β

2
Fn(θ) +

(

1− β

2

)

∑

µ

log |φ′(eiθµ)|
)

.

With this notation,

Dβ
n[e

g]

Dβ
n[1]

= E
β
n

[

exp

(

∑

µ

g ◦ φ(eiθµ)
)]

=
1

Dβ
n[1]

ˆ

Hn

exp

(

β

2
Fn(θ) +

∑

µ

g ◦ φ(eiθµ) + (1− β
2
) log |φ′(eiθµ)|

)

dnθ

=
1

Dβ
n[1]n!

ˆ

[0,2π]n
exp

(

β

2
Fn(θ) +

∑

µ

g ◦ φ(eiθµ) + (1− β
2
) log |φ′(eiθµ)|

)

dnθ.(2.19)

To analyze the asymptotics of this expression we will make a change of variables in
(2.19): we replace θµ by θµ − 1

n
h ◦ φ(eiθµ) where h is a function on γ that has to be

chosen appropriately. In the case when γ is the unit circle and β = 2 it was seen in
[5] that the right choice is to let h be the conjugate function of g on the unit circle.

The conjugate function f̃ of a function f(eiθ) = f(θ) =
∑∞

k=1 αk cos kθ + βk sin kθ is
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defined as

f̃(eiω) = f̃(ω) = p.v.

ˆ 2π

0

cot

(

ω − θ

2

)

f(θ)
dθ

2π
=

∞
∑

k=1

−βk cos kω + αk sin kω,(2.20)

where p.v. denotes the principal value. In the case of a general Jordan curve we need
a generalization of the conjugate function.

It turns out, as will be seen in the proof of Theorem 1.3 in the next section,
see Remark 3.8, that h should be chosen as the real-valued solution to the integral
equation

(2.21) g(z) = Re
β

2π
p.v.

ˆ

γ

h(ζ)

ζ − z
dζ

for z ∈ γ. In (2.21) we can introduce the parametrization z = φ(eiθ), 0 ≤ θ ≤ 2π, of
γ, which gives the following integral equation on T,

(2.22) g ◦ φ(eiω) = Re p.v.
β

2

ˆ 2π

0

ieiθφ′(eiθ)

φ(eiθ)− φ(eiω)
h ◦ φ(eiθ)dθ

π
.

Note that if γ = T and β = 2, then (2.22) gives g = −h̃, i.e. h = g̃.
To simplify the notation we set G(θ) = g ◦φ(eiθ) and H(θ) = h ◦φ(eiθ). We have

the Fourier expansions

G(θ) =
∑

k≥1

ak cos kθ + bk sin kθ, H(θ) =
∑

k≥1

ck cos kθ + dk sin kθ,

(recall that a0
2
=
´ 2π

0
G(θ)dθ = 0) and in analogy with (1.7), we write

(2.23) h =
1

2

(

(
√
kck)k≥1

(
√
kdk)k≥1

)

,

so that

G(θ) = 2

(

xθ

yθ

)t

g, H(θ) = 2

(

xθ

yθ

)t

h.

The equation (2.22) becomes

(2.24) G(ω) =
β

2π
Re

ˆ 2π

0

ieiθφ′(eiθ)

φ(eiθ)− φ(eiω)
H(θ) dθ.

Also, we define

L =

(

0 −I
I 0

)

, J =

(

(kδkj)k,j≥1 (0)k,j≥1

(0)k,j≥1 (kδkj)k,j≥1

)

as operators on ℓ2(R)⊕ ℓ2(R). Note that we have the formulas

(2.25)

ˆ 2π

0

(

xθ

yθ

)(

xθ

yθ

)t
dθ

π
= J−1,

and

(2.26) H ′(θ) = −2

(

xθ

yθ

)t

JLh, H̃(θ) = 2

(

xθ

yθ

)t

Lh.

Our assumption that g and hence G is C4+α will be quantified via the norm

‖G‖4,α = sup
0≤θ1,θ2≤2π

|G(4)(θ1)−G(4)(θ2)|
|eiθ1 − eiθ2|α +

4
∑

j=0

‖G(j)‖∞.
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Note that if g ∈ C4+α(γ) then G(θ) = g ◦φ(eiθ) is C4+α, since φ is C9+α, so ‖G‖4,α <
∞. The solution to the integral equation is now provided by the following lemma.

Lemma 2.3. Assume that g is C4+α, α > 0, on the C9+α Jordan curve γ, and
let

(2.27) h =
2

β
L(I +K)−1g.

Then the function

H(θ) = 2

(

xθ

yθ

)t

h,

satisfies

(2.28) ‖H‖4,α ≤ C
(

A(1− ‖K‖)−1 + 1
)

‖G‖4,α,
where A is the constant in (2.16). Furthermore, G andH satisfy the integral equation
(2.24).

Proof. We can write (2.27) as

h =
2

β
Lg − 2

β
LK(I +K)−1g,

so

(2.29) H(θ) =
2

β
G̃(θ)− 4

β

(

xθ

yθ

)t

LK(I +K)−1g.

It follows from Privalov’s theorem that ‖G̃‖4,α ≤ C‖G‖4,α. Also, if we write
(

(ξk)k≥1

(ηk)k≥1

)

= LK(I +K)−1g,

then using (2.16), and the inequalities ((I +K)−1)jk ≤ (1 − ‖K‖)−1 and |al|, |bl| ≤
C‖G‖4,αl−4−α, we see that

|ξk|+ |ηk| ≤ CA(1− ‖K‖)−1‖G‖4,αk−6−ǫ.

Hence, the ‖ · ‖4,α-norm of the function

4

β

(

xθ

yθ

)t

LK(I +K)−1g

is bounded by CA(1 − ‖K‖)−1‖G‖4,α, and we have proved the estimate (2.28). We
see that (2.24) can be written

G(ω) =
β

2
Rep.v.

ˆ 2π

0

∂

∂θ
log
(

φ(eiθ)− φ(eiω)
)

H(θ)
dθ

π

=
β

2
Rep.v.

ˆ 2π

0

∂

∂θ

(

log
φ(eiθ)− φ(eiω)

eiθ − eiω
+ log(eiθ − eiω)

)

H(θ)
dθ

π

=
β

2
Rep.v.

ˆ 2π

0

ieiθ

eiθ − eiω
H(θ)

dθ

π
− β

2

ˆ 2π

0

log

∣

∣

∣

∣

φ(eiθ)− φ(eiω)

eiθ − eiω

∣

∣

∣

∣

H ′(θ)
dθ

π

= − β

4π
p.v.

ˆ 2π

0

cot
ω − θ

2
H(θ) dθ − β

2

ˆ 2π

0

log

∣

∣

∣

∣

φ(eiθ)− φ(eiω)

eiθ − eiω

∣

∣

∣

∣

H ′(θ)
dθ

π
.
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If we use (1.6), (2.25) and (2.26), we obtain

G(ω) = −β
2
H̃(ω)− β

π

ˆ 2π

0

(

xω

yω

)t

K

(

xθ

yθ

)(

xθ

yθ

)t

JLh dθ

= −β
2
H̃(ω)− β

(

xω

yω

)t

KLh.

(2.30)

We see that (2.30) can be written as

(2.31) − g =
β

2
(I +K)Lh.

in Fourier form. If h is defined by (2.27) then (2.31) holds. Working backwards in
the argument above, we see that G and H satisfy (2.24). �

Remark 2.4. Since we are only working with very regular functions and curves
in this paper we will not discuss the integral equation (2.21) under weaker regularity
conditions. Note that the equation (2.31) on the Fourier side is meaningful if G and
H are H1/2 functions on T. See Section 2 in [7].

Remark 2.5. If we look at (2.29), we see that H is the conjugate function of
2
β
(G− V ), where

V (θ) = 2

(

xθ

yθ

)t

K(I +K)−1g.

If we write

V (θ) =
∞
∑

k=1

(v̄ke
ikθ + vke

−ikθ), G(θ) =
∞
∑

k=−∞
gke

ikθ

in complex Fourier form, a computation shows that (2.31) is equivalent to the system
of equations

∞
∑

k=1

kakℓv̄k + vℓ =

∞
∑

k=1

kakℓgk,

which was used in [5]. This type of system of equations goes back to [13] and the
study of the location of the Fekete points on γ.

In the proof of Theorem 1.3 we will need the formula in the next lemma.

Lemma 2.6. The following identity holds

1

4π

ˆ 2π

0

G(θ)H ′(θ) dθ + 2
(

1− β
2

) 1

4π

ˆ 2π

0

log |φ′(eiθ)|H ′(θ) dθ

=
2

β
gt(I +K)−1g + 2

(

1− 2

β

)

dt(I +K)−1g.(2.32)

Proof. It follows from (2.26) and (2.27) that

H ′(θ) = −2

(

xθ

yθ

)t

JLh =
4

β

(

xθ

yθ

)t

J(I +K)−1g,
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since L2 = −I. Thus, using (1.10) and (2.25), we obtain

1

4π

ˆ 2π

0

G(θ)H ′(θ) dθ + 2
(

1− β
2

) 1

4π

ˆ 2π

0

log |φ′(eiθ)|H ′(θ) dθ

=
2

β

ˆ 2π

0

(

gt − 2

(

1− β

2

)

dt

)(

xθ

yθ

)(

xθ

yθ

)t

J(I +K)−1g
dθ

π

=
2

β
gt(I +K)−1g + 2

(

1− 2

β

)

dt(I +K)−1g. �

Recall (1.11) and let

(2.33) hβ =
2

β
L(I +K)−1gβ.

Define hβ on γ by

(2.34) hβ ◦ φ(eiθ) = 2

(

xθ

yθ

)t

hβ .

It follows from Lemma 2.3 that gβ and hβ satisfy

(2.35) gβ(z) = Re
β

2π
p.v.

ˆ

γ

hβ(ζ)

ζ − z
dζ,

for z ∈ γ. The integral equations (2.21) and (2.35) can be solved without moving
the problem to the unit circle and using the Grunsky operator. Let ν = ν(z), z ∈ γ,
denote the exterior normal to γ. For w ∈ C \ γ = Ω+ ∪Ω−, the single-layer potential

with real-valued density f on γ is defined by

S(f)(w) =
1

2π

ˆ

γ

log |ζ − w|−1f(ζ) |dζ |.

This is a harmonic function in Ω+ ∪ Ω−. The single-layer potential is continuous

across γ but its normal derivatives have a jump. Let ∂S±(f)
∂ν

(z), z ∈ γ, denote the
derivatives in the direction ±ν. Then,

(2.36)
∂S±(f)

∂ν
(z) =

1

2π

ˆ

γ

∂

∂ν(z)
log |ζ − z|−1f(ζ) |dζ | ∓ 1

2
f(z),

see e.g. [10]. Let ∂
∂s

denote the tangential derivative along the curve γ. If ζ = ζ(t),
a ≤ t ≤ b, is some parametrization of γ, then

Re
β

2π
p.v.

ˆ

γ

h(ζ)

ζ − z
dζ =

β

2π
p.v.

ˆ b

a

(

Re
ζ ′(t)

ζ(t)− z

)

h(ζ(t)) dt

=
β

2π
p.v.

ˆ b

a

∂

∂t
log |ζ(t)− z|h(ζ(t)) dt = β

2π

ˆ b

a

log |ζ(t)− z|−1 ∂

∂t
h(ζ(t)) dt

=
β

2π

ˆ

γ

log |ζ − z|−1∂h

∂s
(ζ) |dζ | = βS

(

∂h

∂s

)

(z),

where we used ∂h
∂s
(ζ(t)) = |ζ ′(t)|−1 ∂

∂t
h(ζ(t)). Since the single-layer potential is con-

tinuous across γ, we see that if g and h satisfy (2.21), then

g±(w) := βS

(

∂h

∂s

)

(w), w ∈ Ω±,
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are harmonic extensions of g to Ω±. It follows from (2.36) that

(2.37)
∂h

∂s
(z) = − 1

β

(

∂g+
∂ν

(z)− ∂g−
∂ν

(z)

)

.

Let g̃± be the conjugate harmonic function to g± in Ω±. Then, by the Cauchy–
Riemann equations

∂h

∂s
(z) = − 1

β

(

∂g̃+
∂s

(z)− ∂g̃−
∂s

(z)

)

,

and integrating this gives

h(z) = − 1

β
(g̃+(z)− g̃−(z)).

This gives another solution formula for the integral equation (2.21).
We are now in position to prove Proposition 1.2.

Proof of Proposition 1.2. We see from (2.33), (2.26), (2.25), (2.34) and (2.37)
that

gt(I +K)−1g = −β
2
gtLh = − β

2π

ˆ 2π

0

gt

(

xθ

yθ

)(

xθ

yθ

)t

JLhβ dθ

= − β

8π

ˆ 2π

0

g(φ(eiθ))
∂

∂θ
h(φ(eiθ)) dθ = − β

8π

ˆ

γ

g(ζ)
∂h

∂s
(ζ) |dζ |

=
1

8π

ˆ

γ

g(ζ)

(

∂g+
∂ν

(ζ)− ∂g−
∂ν

(ζ)

)

|dζ |.(2.38)

Since g± are harmonic in Ω± it follows from the first Green’s theorem that this
equals the right side of (1.14). It can be checked that if G is C1+α and γ is C4+α

then Lemma 2.3 and its proof still holds and gives an H that is C1+α. �

The Neumann–Poincaré operator KNP on a C2+α curve γ is defined by

KNP(g)(z) =
1

π
p.v.

ˆ

γ

g(ζ)
∂

∂ν(ζ)
log |z − ζ | |dζ |, z ∈ γ,

where g is a real-valued function on γ. It is also called the double-layer potential
operator. The eigenvalues of KNP acting on the Sobolev space H1/2 are called the
Fredholm eigenvalues of γ and have been much studied, see e.g. [8], [16] and references
therein. By taking the real and imaginary parts of the top-right equation in (70) in
[16], we see that the eigenvalues of the operator K in (1.5) are exactly the Fredholm
eigenvalues (note that in [16], the author defines the Fredholm eigenvalues to be
their reciprocals). Hence det(I +K) = det(I + KNP). Moreover, the eigenvalues of
K correspond to the singular values of the Grunsky operator B and their negatives
(see Lemma 2.1 in [6]), so det(I −BB∗) = det(I − |B|) det(I + |B|) = det(I +K) =
det(I+KNP). The next proposition gives a more direct relation between K and KNP.

Proposition 2.7. Assume that γ is C4+α. Let g be a real-valued C1+α function
on γ with mean zero with respect to the equilibrium measure on γ and Fourier
expansion

g ◦ φ(eiθ) = 2

(

xθ

yθ

)t

g.

Then,

KNP(g) ◦ φ(eiθ) = 2

(

xθ

yθ

)t

Kg.
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Proof. Let s(ζ) be the unit tangent vector at ζ ∈ γ as a complex number. Then

∂

∂ν(ζ)
log |z − ζ | = Re

(−is(ζ)

ζ − z

)

,

and consequently

KNP(g)(z) = Re

(

1

πi
p.v.

ˆ

γ

s(ζ)

ζ − z
g(ζ) |dζ |

)

.

We see that

KNP(g) ◦ φ(eiω) = Re

(

1

πi
p.v.

ˆ 2π

0

iφ′(eiθ)

φ(eiθ)− φ(eiω)
g(φ(eiθ)) dθ

)

= Re

(

1

πi

ˆ 2π

0

(

iφ′(eiθ)

φ(eiθ)− φ(eiω)
− ieiθ

eiθ − eiω

)

g(φ(eiθ)) dθ

)

since

Re

(

eiθ

eiθ − eiω

)

=
1

2
,

and g(φ(eiθ)) has mean zero on the unit circle. It follows by differentiation of (1.3)
that

iφ′(eiθ)

φ(eiθ)− φ(eiω)
− ieiθ

eiθ − eiω
=
∑

k,ℓ≥1

ikakℓe
−ikθ−iℓω.

Recall that K is defined by (1.5) where B = B(1) + iB(2) and that g ◦ φ is given in
(1.8). Thus,

KNP(g) ◦ φ(eiω) =
∑

k,ℓ≥1

kRe
[

akℓ(ak − ibk)(cos ℓω − i sin ℓω)
]

= 2
∑

k,ℓ≥1

Re

[

(

b
(1)
kℓ + ib

(2)
kℓ

)

(

1

2

√
kak − i

1

2

√
kbk

)(

cos ℓω√
ℓ

− i
sin ℓω√

ℓ

)]

= 2

(

xω

yω

)t

Kg. �

The regularity conditions on γ and g are such that the above computation works
without difficulties. They can be weakened but we will not enter into this here.

Remark 2.8. The operator

N g(z) =
∂g+
∂ν

(z)− ∂g−
∂ν

(z),

where z ∈ γ, is called the Neumann jump operator. From (2.38) we see that

2

β
gt
β(I +K)−1gβ =

1

πβ

ˆ

γ

gβN gβ ds,

where we integrate with respect to the arclength measure. This formula agrees with
formula (4.23) in [21], (note that their β is our β/2). If we also use formula (D16) in
[21], and asymptotics of the partition function Zn,β(T) for the unit circle, (1.12), we
see that the asymptotic formula in [21] agrees with that in Theorem 1.1.
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3. A relative Szegő theorem

In the rest of the paper C will denote a constant that is independent of the
curve γ and the function g defined on the curve. It can depend on β but is always
independent of n. If the constant depends on say γ this will be indicated by C(γ),
and if it also depends on some norm ‖G‖ of G = g ◦ φ we will denote the constant
by C(γ, ‖G‖). The precise value of these constants can change between formulas.

3.1. Deforming the curve γ. In the proof of the asymptotic formula for the
partition function Zn,β(γ), Theorem 1.1, we will use a deformation γs of the curve γ.
Let φs(z) = sφ(z/s), where φ is the exterior mapping function, and define γs = φs(T)
for s ∈ [0, 1] Then φ0(z) = z, cap(γs) = cap(γ) = 1, and by (1.3)

(3.39) log
φs(z)− φs(w)

z − w
= log

φ(z/s)− φ(w/s)

z/s− w/s
= −

∑

k,l≥1

sk+laklz
−kw−l.

Set akl(s) = sl+lakl, bkl(s) =
√
klakl(s), and write B(s) := (bkl(s))k,l≥1 = B(1)(s) +

iB(2)(s) for the Grunsky operator for γs. Note that |akl(s)| ≤ |akl| for s ∈ [0, 1]. As
in (1.5) and (1.9), we define

K(s) =

(

B(1)(s) B(2)(s)
B(2)(s) −B(1)(s)

)

, d(s) =
1

2

(

(
√
ksk

∑k−1
j=1 Re aj,k−j)k≥1

(
√
ksk

∑k−1
j=1 Im aj,k−j)k≥1

)

.

The strengthened Grunsky inequality gives

∑

k≥1

|bkl(s)wl|2 =
∑

k≥1

s2k

∣

∣

∣

∣

∣

∑

l≥1

bkls
lwl

∣

∣

∣

∣

∣

2

≤ s2
∑

k≥1

∣

∣

∣

∣

∣

∑

l≥1

bkls
lwl

∣

∣

∣

∣

∣

2

≤ s2κ2
∑

k≥1

s2k|wk|2 ≤ κ2s4
∑

k≥1

|wk|2,

for any complex sequence (wk)k≥1 in ℓ2(N), where κ < 1. Thus, ‖B(s)‖ ≤ κs2 and
hence ‖K(s)‖ ≤ κs2 ≤ κ, for all s ∈ [0, 1].

Write

F s
n(θ) =

∑

1≤µ,ν≤n

log

∣

∣

∣

∣

φs(e
iθµ)− φs(e

iθν)

eiθµ − eiθν

∣

∣

∣

∣

+
∑

1≤µ6=ν≤n

log|eiθµ − eiθν |,(3.40)

and let Eβ,s
n denote expectation with respect to the measure on Hn = {0 ≤ θ1 < θ2 <

· · · < θn ≤ 2π} with density proportional to

exp

(

β

2
F s
n(θ) +

(

1− β

2

)

∑

µ

log |φ′
s(e

iθµ)|
)

,

so that Eβ
n = Eβ,1

n , and Fn(θ) = F 1
n(θ). Also, we let

Dβ,s
n [egs]

=
1

n!

ˆ

[0,2π]n
exp

[

β

2
F s
n(θ) +

(

1− β

2

)

∑

µ

log |φ′
s(e

iθµ)|+
∑

µ

Gs(θµ)

]

dnθ,
(3.41)

where Gs(θ) = gs ◦ φs(e
iθ) and gs is a given real-valued function on γs. Let g(s) be

the vector associated with gs as in (1.7).
Theorem 1.3 follows from the following stronger version, which we will need in

the proof of the asymptotics of Zn,β(γ).
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Theorem 3.1. Assume that γ is a C9+α Jordan curve, gs ∈ C4+α(γs), for some
α > 0, and

´

γs
gs dν

s
eq = 0, where νseq is the equilibrium measure on γs. There is a

constant C(γ, ‖Gs‖4,α) such that

(3.42) E
β,s
n

[

e
∑

µ Gs(θµ)
]

≤ C(γ, ‖Gs‖4,α),
for n ≥ 1, s ∈ [0, 1]. Also, for each fixed s ∈ [0, 1],

lim
n→∞

E
β,s
n

[

e
∑n

µ=1 Gs(θµ)
]

= exp

(

2

β
g(s)t(I +K(s))−1g(s) + 2

(

1− 2

β

)

d(s)t(I +K(s))−1g(s)

)

.
(3.43)

3.2. A smaller domain of integration. The first step of the proof of The-
orem 3.1 is to show that we can restrict the domain of integration in (3.41) to a
domain where F s

n is close to its maximum, without changing the asymptotics. The
maximum of

∑

1≤µ<ν≤n

log
∣

∣zµ − zν
∣

∣, zµ ∈ γ,

is attained, by definition, at the Fekete points. These are close to the images under
φ of the Fekete points of the unit circle, which are any rotation of the nth roots of
unity, see [13]. Given θ ∈ Hn, we define tµ = tµ(θ) by

(3.44) θµ =
2πµ

n
+ σn(θ) + tµ(θ),

where σn(θ) is chosen so that
∑

µ tµ(θ) = 0. Set αµ = 2πµ/n + σn. Then the

maximum of Fn(θ) should be close to

∑

1≤µ,ν≤n

log

∣

∣

∣

∣

φ(eiαµ)− φ(eiαν)

eiαµ − eiαν

∣

∣

∣

∣

+
∑

µ6=ν

log |2 sin π(µ− ν)/n|

= −Re
∑

k,l≥1

akl

n
∑

µ=1

e−ikαµ

n
∑

ν=1

e−ilαν +
∑

µ6=ν

log |2 sin π(µ− ν)/n|

Now observe that
∑n

µ=1 e
−ikαµ = 0 unless k is a multiple of n and

∏

µ6=ν

|2 sinπ(µ− ν)/n| =
∏

1≤µ<ν≤n

|e2πiµ/n − e2πiν/n|2 =
n−1
∏

µ=1

|1− e2πiµ/n|n = nn

since
n−1
∏

µ=1

(z − e2πiµ/n) =
zn − 1

z − 1
,

which approaches n as z → 1. Recall that the assumption that γ is a C9+α curve
means that the estimate (2.16) holds with m = 9, and we will use it several times
below. This estimate now yields the lower bound

F s
n(α) ≥ −n2

∑

k,l≥1

|ank,l|+ n log n ≥ −CA + n logn.

We can now define the smaller domain of integration and estimate the probability of
its complement.
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Lemma 3.2. Assume that Xn is a bounded function on [0, 2π]n. Given a con-
stant K, we define

(3.45) En,s := {θ ∈ Hn | F s
n(θ) > n logn−Kn}.

Then, there is a constant C(γ) such that

(3.46) E
β,s
n [eXn

1Ec
n,s
] ≤ e(C(γ)−K)n+‖Xn‖∞ .

Proof. We want to estimate Dβ,s
n [1] from below. Since log |φ′

s(e
iθ)| ≤ log ‖φ′

s‖∞
on [0, 2π], there is a constant C(γ) such that

Dβ,s
n [1] =

ˆ

Hn

exp

(

β

2
F s
n(θ) +

(

1− β
2

)

∑

µ

log |φ′
s(e

iθµ)|
)

dnθ

≥ e−C(γ)n

ˆ

Hn

exp

(

β

2
F s
n(θ)

)

dnθ.

Now,

Dβ,s
n [1] ≥ e−C(γ)n

ˆ

supµ |tµ(θ)|≤1/n

exp

(

β

2
F s
n(θ)

)

dnθ.

Consider the first sum in (3.40). By (3.39),
∣

∣

∣

∣

∣

∑

1≤µ,ν≤n

log

∣

∣

∣

∣

φs(e
iθµ)− φs(e

iθν)

eiθµ − eiθν

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∑

k,l≥1

|akl|
∣

∣

∣

∣

∣

n
∑

µ=1

e−ikθµ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

ν=1

e−ilθν

∣

∣

∣

∣

∣

,

for 0 ≤ s ≤ 1. If k is not divisible by n,
∣

∣

∣

∣

∣

n
∑

ν=1

e−ikθν

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

µ=1

(e−ikθµ − e−ikαµ)

∣

∣

∣

∣

∣

≤ k
n
∑

µ=1

|tµ| ≤ k

if supµ |tµ| ≤ 1/n. If k ≥ 1 is a multiple of n then the sum is simply bounded by
n ≤ k. Thus,

∣

∣

∣

∣

∣

∑

1≤µ,ν≤n

log

∣

∣

∣

∣

φs(e
iθµ)− φs(e

iθν )

eiθµ − eiθν

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∑

k,l≥1

kl|akl| ≤ C(γ)(3.47)

because of the fast decay of the Grunsky coefficients, (2.16). Now consider the
second sum in (3.40). Set βµ = αµ + τtµ, and f(τ) =

∑

µ6=ν log |eiβµ − eiβν |. Then

f(0) = n log n and

f ′(0) =
∑

µ6=ν

cot

(

αµ − αν

2

)

tµ − tν
2

=
n−1
∑

k=1

cot(πk/n)
n
∑

µ=1

tµ = 0.

Thus,

(3.48) f(0)− f(1) = −
ˆ 1

0

(1− τ)f ′′(τ) dτ =

ˆ 1

0

(1− τ)
∑

µ6=ν

(tµ − tν)
2

4 sin2((βµ − βν)/2)
dτ.

If maxµ |tµ| ≤ 1/n for 1 ≤ µ ≤ n and µ 6= ν, then, then
∣

∣

∣

∣

sin

(

βµ − βν
2

)

− sin

(

αµ − αν

2

)∣

∣

∣

∣

≤ |tµ − tν |
2

≤ 1

n
≤ 1

2

∣

∣

∣

∣

sin
αµ − αν

2

∣

∣

∣

∣

since
∣

∣

∣

∣

sin
αµ − αν

2

∣

∣

∣

∣

≥ sin
π

n
≥ 2

n
,
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and thus

4 sin2

(

βµ − βν
2

)

≥ sin2

(

αµ − αν

2

)

.

This yields

n logn−
∑

µ6=ν

log |eiθµ−eiθν | ≤
∑

µ6=ν

(tµ − tν)
2

sin2(π(µ− ν)/n)
≤ 4

n

n−1
∑

k=1

sin−2(πk/n) =
4

3
(n−1/n).

Therefore,

Dβ,s
n [1] ≥ e−C(γ)n

ˆ

supµ |tµ|≤1/n

exp

(

β

2
F s
n(θ)

)

dnθ ≥ e−C(γ)nn(β/2−1)n.

Combining this with the definition of En,s and the bound on log |φ′
s(e

iθ)|, we obtain
the estimate

E
β,s
n

[

eXn1Ec
n,s

]

=
1

Dβ,s
n [1]

ˆ

Ec
n,s

exp

(

β

2
F s
n(θ) +

(

1− β
2

)

∑

µ

log |φ′
s(e

iθµ)|+Xn(θ)

)

dnθ

≤ eC(γ)nn−(β/2−1)n

ˆ

Ec
n,s

exp

(

β

2
(n logn−Kn) + ‖Xn‖∞

)

dnθ

≤ e(C(γ)−K)nnn (2π)
n

n!
e‖Xn‖∞ ≤ e(C(γ)−K)n+‖Xn‖∞ ,

since F s
n(θ) ≤ n logn−Kn if θ ∈ Ec

n,s. The lemma is proved. �

Let θ ∈ En,s and set zµ = φs(e
iθµ), 1 ≤ µ ≤ n. Since,

F s
n(θ) =

∑

1≤µ6=ν≤n

log |φs(e
iθµ)− φs(e

iθν)|+
∑

µ

log |φ′
s(e

iθµ)|

we see that if θ ∈ En,s and zµ = φs(e
iθµ) are the corresponding points on γs, then

(3.49)
∑

1≤µ6=ν≤n

log |zµ − zν |−1 ≤ −n log n+Kn + C(γ)n.

The previous lemma will be helpful because if an n-tuple θ belongs to En,s, it will
be rather close to α = (2πµ

n
+ σn)

n
µ=1. We first prove a weak result in this direction.

Lemma 3.3. Fix a K in (3.45) independent of s. Set

(3.50) ǫn = sup
0≤s≤1

sup
θ∈En,s

max
1≤µ≤n

|tµ(θ)|.

Then ǫn → 0 as n→ ∞.

Proof. Let τµ(θ) = tµ(θ) + σn(θ), and let

δn = sup
0≤s≤1

sup
θ∈En,s

max
1≤µ≤n

|τµ(θ)|.

We will show that δn → 0 as n→ ∞. By definition, we have

1

n

∑

µ

τµ(θ) =
1

n

∑

µ

tµ(θ) + σn(θ) = σn(θ),

so δn → 0 implies that
sup
0≤s≤1

sup
θ∈En,s

σn(θ) → 0

as n→ ∞. Thus, δn → 0 leads to ǫn → 0 as n→ ∞.
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First consider the probability measure

ωk =
1

nk

nk
∑

j=1

δ
e
iθ
(k)
j
.

We will show that ωk converges to the uniform measure dθ/(2π) on T. Let

z
(k)
j = φsk(e

iθ
(k)
j ), 1 ≤ j ≤ nk,

and

µk =
1

nk

nk
∑

j=1

δ
z
(k)
j
,

which is a probability measure on γsk. The set
⋃

0≤s≤1 γs is contained in a compact
set, and hence by picking a further subsequence, we can assume that sk → s ∈ [0, 1]
and µk → µ, as k → ∞, where µ is a probability measure on γs. The logarithmic
energy of a probability measure µ on a curve γs is defined by

I[µ] =

ˆ

γs

ˆ

γs

log |z − w|−1 dµ(z) dµ(w).

If νs is the equilibrium measure on γs, then I[µ] ≥ I[νs] = log(cap(γs)) = 0, and we
have equality if and only if µ = νs, by uniqueness of the equilibrium measure, see
[15]. Now,

ˆ

γsk

ˆ

γsk

min(log |z − w|−1,M) dµk(z) dµk(w)

≤ 1

n2
k

∑

1≤j1 6=j2≤nk

log |z(k)j1
− z

(k)
j2

|−1 +
1

n2
k

nk
∑

j=1

M(3.51)

≤ − log nk + C(γ) +M

nk

by (3.49) since θ(k) ∈ Enk,sk. If we let k → ∞ in (3.51), we get
ˆ

γs

ˆ

γs

min(log |z − w|−1,M) dµ(z) dµ(w) ≤ 0.

Since the integrand is bounded from below, we can let M → ∞ and get I[µ] ≤
0 = I[νs] by the monotone convergence theorem. Thus, µ = νs. Since φs maps the
equilibrium measure on T to the equilibrium measure on γs, we see that if we take
the same subsequence in ωk, we have that ωk converges to the uniform measure on
T.

Next, assume that lim supn→∞ δn = δ > 0. We will see that this leads to a
contradiction. There is a subsequence nk → ∞ such that limk→∞ δnk

= δ. Thus we
can find a sequence sk ∈ [0, 1] and θ(k) ∈ Enk ,sk so that

max
1≤µ≤n

|τµ(θ(k))| ≥ δ/2

for all sufficiently large k. There is a µk such that

|τµk
(θ(k))| = max

1≤µ≤nk

|τµ(θ(k))|.
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After perhaps picking a further subsequence we can assume that τµk
(θ(k)) > 0 for

all k, or τµk
(θ(k)) < 0 for all k. Assume the former, the other case being analogous.

Then, τµk
(θ(k)) ≥ δ/2, and thus

θ(k)µk
=

2πµk

nk
+ τµk

(θ(k)) ≥ 2πµk

nk
+
δ

2
.(3.52)

Since θ(k) ∈ Hnk
, i.e. the θ

(k)
l ’s are ordered,

#

{

l : θ
(k)
l ≤ 2πµk

nk
+
δ

2

}

≤ µk.(3.53)

By possibly picking a further subsequence we can assume that
µk

nk

→ a ∈ [0, 1],

as k → ∞. Since θ
(k)
µk ≤ 2π, (3.52) implies a ≤ 1 − δ

4π
. If k is sufficiently large then

2πa+ δ
4
≤ 2πµk

nk
+ δ

2
, and (3.53) gives

1

nk
#

{

l : θ
(k)
l ≤ 2πa+

δ

4

}

≤ µk

nk
.(3.54)

By weak convergence of the probability measure ωk, the left side converges to a+ δ
8π
<

1 as k → ∞. Hence, letting k → ∞ in (3.54) gives

a+
δ

8π
≤ a

which gives the desired contradiction. Consequently, δn and thus ǫn converge to zero
as n→ ∞. �

Remark. The proof also shows that the empirical measure of {zµ}nµ=1 con-
verges weakly in probability to the equilibrium measure on γ, since by Lemma 3.2,
limn→∞ P[En,s] = 1 if we take Xn = 0 and K = C(γ) + 1.

The lemma can be used to obtain the following more precise bound on the size
of the deviations tµ.

Lemma 3.4. There is a constant C(γ,K), whereK is the constant in Lemma 3.2,
such that

∑n
µ=1 t

2
µ ≤ C(γ,K) for all θ ∈ En,s.

Proof. We proceed as in the proof of Lemma 7.6 in [5]; but the structure of the
proof ultimately goes back to [13]. Set βµ = αµ + τtµ, with αµ = 2πµ/n + σn and
∑

µ tµ = 0 as above. Let

ψn(τ) = F s
n(β) =

∑

1≤µ,ν≤n

log

∣

∣

∣

∣

φs(e
iβµ)− φs(e

iβν)

eiβµ − eiβν

∣

∣

∣

∣

+
∑

1≤µ6=ν≤n

log|eiβµ − eiβν |.

Then, by (3.39),

ψ′
n(τ) =

∑

µ6=ν

cot

(

βµ − βν
2

)

tµ − tν
2

−2 Im
∑

k,l≥1

lsk+lakl(s)

(

∑

µ

e−ikβµ

)(

∑

ν

tνe
−ilβν

)

.

The first sum evaluated at τ = 0 equals

n−1
∑

k=1

cot(πk/n)

n
∑

µ=1

tµ = 0,
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and the second sum evaluated at τ = 0 equals

2 Im
∑

k,l≥1

lsnk+lank,l(s)e
−inkσn

(

∑

ν

tνe
−ilαν

)

because
∑n

µ=1 e
−ikαµ = 0 unless k is a multiple of n. It follows from (2.16), that

|ψ′
n(0)| ≤ C(γ)n

∑

k,l≥1

l(nk)−6−ǫl−2−ǫ ≤ C(γ).

Differentiating again gives

ψ′′
n(τ) = −

∑

µ6=ν

(tµ − tν)
2

4 sin2((βµ − βν)/2)
+ Aτ +Bτ ,

where

Aτ = 2Re
∑

µ,ν

∑

k,l≥1

k2sk+lakl(s)t
2
µe

−ikβµe−ilβν ,

Bτ = 2Re
∑

µ,ν

∑

k,l≥1

klsk+lakl(s)tµtνe
−ikβµe−ilβν .

Thus,
ˆ 1

0

∑

µ6=ν

(tµ − tν)
2

4 sin2((βµ − βν)/2)
(1− τ) dτ

= −
ˆ 1

0

(1− τ)ψ′′
n(τ) dτ +

ˆ 1

0

(Aτ +Bτ )(1− τ) dτ

= F s
n(α)− F s

n(θ) + ψ′
n(0) +

ˆ 1

0

(Aτ +Bτ )(1− τ) dτ(3.55)

≤ Kn+ C(γ) +

ˆ 1

0

(|Aτ |+ |Bτ |)(1− τ) dτ,

since θ ∈ En,s. To bound |Aτ |, we note that by (3.50),
∣

∣

∣

∣

∣

∑

ν

e−ilβν

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑

ν

(e−ilβν − e−ilαν )

∣

∣

∣

∣

∣

(1− 1(n|l)) + n1(n|l)

≤ l
∑

ν

|tν |+ n1(n|l) ≤ n(lǫn + 1(n|l)),(3.56)

where n|l indicates that n divides l. Thus, by (2.16) and the fact that |akl(s)| ≤ |akl|,

|Aτ | ≤ 2

(

∑

µ

t2µ

)(

∑

k,l≥1

k2|akl(s)|
∣

∣

∣

∣

∣

∑

ν

e−ilβν

∣

∣

∣

∣

∣

)

≤ 2

(

∑

µ

t2µ

)[

∑

k,l≥1

k2l|akl|nǫn + n
∑

k,l≥1

k2|ak,nl|
]

≤ C(γ)nǫ′n

(

∑

µ

t2µ

)

,

where

(3.57) ǫ′n = ǫn + 1/n2.
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To bound |Bτ | we divide it into two parts,

B1
τ = 2Re

∑

1≤k,l≤q

∑

µ,ν

klakltµtνe
−ikβµe−ilβν ,

B2
τ = 2Re

∑

k≥1,l≥1
max(k,l)>q

∑

µ,ν

klakltµtνe
−ikβµe−ilβν

where q ∈ N will be fixed later. By the strengthened Grunsky inequality, Lemma 2.1,
there exists a κ < 1 such that

|B1
τ | ≤ 2κ

q
∑

k=1

k

∣

∣

∣

∣

∣

∑

µ

e−ikβµtµ

∣

∣

∣

∣

∣

2

.

Set ρ = κ1/(2q). Then κ ≤ ρ2k, for 1 ≤ k ≤ q, so

|B1
τ | ≤ 2

∑

k≥1

kρ2k

∣

∣

∣

∣

∣

∑

µ

e−ikβµtµ

∣

∣

∣

∣

∣

2

=
∑

µ,ν

[

(

t2µ + t2ν − (tµ − tν)
2
)

∑

k≥1

kρ2ke−ik(βµ−βν)

]

,

by writing 2tµtν = t2µ + t2ν − (tµ − tν)
2.

If we use (3.56), we get

|B1
τ | ≤ 2

(

∑

µ

t2µ

)(

∑

k≥1

kρ2k

∣

∣

∣

∣

∣

∑

ν

eikβν

∣

∣

∣

∣

∣

)

+
∑

µ,ν

(tµ − tν)
2

∣

∣

∣

∣

ρ2ei(βµ−βν)

(1− ρ2ei(βµ−βν))2

∣

∣

∣

∣

≤ 2

(

∑

µ

t2µ

)(

nǫn
∑

k≥1

k2ρ2k + n2
∑

k≥1

kρ2nk

)

+
∑

µ,ν

(tµ − tν)
2

a+ 4 sin2 1
2
(βµ − βν)

≤ C

(

∑

µ

t2µ

)

(

nǫn
(1− ρ)3

+
n2ρ2n

(1− ρn)2

)

+
1

a + 4

∑

µ,ν

(tµ − tν)
2

sin2 1
2
(βµ − βν)

.

where a = (1/ρ− ρ)2. Next, (2.16) followed by the Cauchy–Schwarz inequality gives

|B2
τ | ≤ C(γ)

(

∑

k≥1

1

k2

∣

∣

∣

∣

∣

∑

µ

tµe
−ikβµ

∣

∣

∣

∣

∣

)(

∑

l≥q

1

l3+ǫ

∣

∣

∣

∣

∣

∑

ν

tνe
−ilβν

∣

∣

∣

∣

∣

)

≤ C(γ)

q1+ǫ

(

∑

k≥1

1

k2

∣

∣

∣

∣

∣

∑

µ

tµe
−ikβµ

∣

∣

∣

∣

∣

)2

≤ C(γ)

q1+ǫ

∑

k≥1

1

k2

∣

∣

∣

∣

∣

∑

µ

tµe
−ikβµ

∣

∣

∣

∣

∣

2

.

Again, writing tµtν = 1
2
(t2µ + t2ν − (tµ − tν)

2), and using (3.56) gives

|B2
τ | ≤

C(γ)

q1+ǫ

∑

k≥1

1

k2

∑

µ,ν

1

2
+
(

t2µ + t2ν − (tµ − tν)
2
)

e−ik(βµ−βν)

≤ C(γ)

q1+ǫ

[

∑

k≥1

1

k2

(

∑

µ

t2µ

) ∣

∣

∣

∣

∣

∑

µ

eikβν

∣

∣

∣

∣

∣

+

(

∑

k≥1

1

k2

)

∑

µ,ν

(tµ − tν)
2

]

≤ C(γ)

q1+ǫ

[

nǫ′n

(

∑

µ

t2µ

)

+
∑

µ,ν

(tµ − tν)
2

]

.
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Inserting these estimates into (3.55) we find
(

1

4
− 1

a+ 4

)
ˆ 1

0

∑

µ6=ν

(tµ − tν)
2

sin2 1
2
(βµ − βν)

(1− τ) dτ − C(γ)

q1+ǫ

∑

µ,ν

(tµ − tν)
2

≤ Kn + C(γ) + C(γ)nǫ′′n
(

∑

µ

t2µ
)

,

where

ǫ′′n = ǫ′n +
ǫn

(1− ρ)3
+

nρ2n

(1− ρn)2
.

Observe that
∑

µ6=ν

(tµ − tν)
2 = 2n

∑

µ

t2µ − 2
∑

µ,ν

tµtν = 2n
∑

µ

t2µ

since
∑

µ tµ = 0. Using that a
a+4

= (1−ρ2

1+ρ2
)2, we obtain the inequality

(

1

2

(

1− ρ2

1 + ρ2

)2

− C(γ)

q1+ǫ

)(

∑

µ

t2µ

)

≤ K +
C(γ)

n
+ C(γ)ǫ′′n

(

∑

µ

t2µ

)

.

Since, ρ = κ1/2q < 1, we see that

1

2

(

1− ρ2

1 + ρ2

)2

− C(γ)

q1+ǫ
≥ 1

4

(

1− e−
1
q
log 1

κ
)

− C(γ)

q1+ǫ
≥ C0(γ,K) > 0,

if we pick q large enough. Since ǫ′′n → 0 as n → ∞ we see that if we pick n large
enough depending on γ andK then C(γ)ǫ′′n ≤ 1

2
C0(γ,K). This proves the lemma. �

Remark. This result can be used to obtain a rate of convergence of the empirical
measure λn = 1

n

∑

µ δθµ to the uniform distribution on the unit circle in the L2

Wasserstein metric. We take Xn = 0, s = 1, and K = C(γ)+1 in Lemma 3.2. Then,
with νn = 1

n

∑

µ δαµ ,

W2(λn, νn)
2 ≤ 1

n

n−1
∑

µ=0

(θµ − αµ)
2 =

1

n

n−1
∑

µ=0

t2µ ≤ C(γ)

n

if θ ∈ En,1, by Lemma 3.4. Thus,

P[W2(λn, νn) >
C(γ)√

n
] ≤ P[Ec

n,1] < e−n

by Lemma 3.2, so the Borel–Cantelli lemma gives that W2(λn, νn) ≤ C(γ)√
n

for n

sufficiently large, almost surely. Moreover, W2(νn,
dθ
2π
) ≤

√
2W1(νn,

dθ
2π
)1/2 ≤ (2π

n
)1/2,

by using the dual representation of W1. We obtain

W2(λn,
dθ

2π
) ≤ C(γ)√

n
a.s.

3.3. The change of variables. Let gs be a function on γs. Recall that we
define Gs(θ) = gs ◦φs(e

iθ), and g(s) as in (1.7) but with gs ◦φs instead of g ◦φ. Also,
as in Lemma 2.3, we let

h(s) =
2

β
L(I +K(s))−1g(s),

and

Hs(θ) = 2

(

xθ

yθ

)t

h(s).
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Since |akl(s)| ≤ |akl|, the constant A in (2.16) is independent of s, and we also have
that ‖K(s)‖ ≤ κ < 1. Hence, by (2.28),

(3.58) ‖Hs‖4,α ≤ C(γ)‖Gs‖4,α.
Let hk(s) be the k:th complex Fourier coefficient of Hs.

Consider now the expectation

E
β,s
n

[

exp

(

∑

µ

Gs(θµ)

)]

=
1

Dβ,s
n [1]n!

ˆ

[0,2π]n
exp

(

β

2
F s
n(x) +

∑

µ

Gs(xµ) + (1− β
2
) log |φ′

s(e
ixµ)|

)

dnx.

In this integral we make the change of variables xµ = θµ − 1
n
Hs(θµ). The domain of

integration, [0, 2π]n, is unchanged by periodicity. It follows from (3.39) and (3.40)
that

F s
n(x) =

∑

µ6=ν

log

∣

∣

∣

∣

2 sin
xµ − xν

2

∣

∣

∣

∣

− Re
∑

k,l≥1

akl(s)

(

∑

µ

e−ikxµ

)(

∑

ν

e−ilxν

)

.

Write

Ls(x) = log |φ′
s(e

ix)|,
and let xµ = xµ(τ) := θµ − τ

n
Hs(θµ), so that x′µ(τ) = − 1

n
Hs(θµ) and x′′µ(τ) = 0.

Define

fn(τ)

=
β

2

∑

µ6=ν

(

log

∣

∣

∣

∣

2 sin
xµ(τ)− xν(τ)

2

∣

∣

∣

∣

− Re
∑

k,l≥1

akl(s)

(

∑

µ

e−ikxµ(τ)

)(

∑

ν

e−ilxν(τ)

))

+
∑

µ

Gs(xµ(τ)) +
(

1− β
2

)

∑

µ

Ls(xµ(τ)).

We have the Taylor expansions

fn(1) = fn(0) + f ′
n(0) +

1

2
f ′′
n(0) +

1

2

ˆ 1

0

(1− τ)2f (3)
n (τ) dτ,

log

(

1− H ′
s(θµ)

n

)

= −1

n
H ′

s(x)−
1

n2

∑

µ

ˆ 1

0

(1− τ)
(

1− τ

n
H ′

s(θµ)
)−2

H ′
s(θµ)

2 dτ.

Let

Rs
n(θ) = −β Re

∑

k,l≥1

ikakl(s)hk(s)

(

n
∑

µ=1

e−ilθµ

)

− β

4n

∑

µ6=ν

cot

(

θµ − θν
2

)

(

Hs(θµ)

−Hs(θν)
)

+
n
∑

µ=1

Gs(θµ),

T s
n(θ) = β Re

∑

k,l≥1

ikakl(s)

(

hk(s)−
1

n

n
∑

µ=1

e−ikθµHs(θµ)

)

n
∑

ν=1

e−ilθν ,
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Us
n(θ) = −1

n

n
∑

µ=1

(

G′
s(θµ) + (1− β

2
)L′

s(θµ)
)

H(θµ)−
β

16n2

∑

µ,ν

(Hs(θµ)−Hs(θν))
2

sin2((θµ − θν)/2)

− 1

n

n
∑

µ=1

H ′
s(θµ)+

β

2
Re
∑

k,l≥1

klakl(s)

(

1

n

n
∑

µ=1

e−ikθµHs(θµ)

)(

1

n

n
∑

ν=1

e−ilθνHs(θν)

)

+
β

2
Re
∑

k,l≥1

k2akl(s)

(

1

n

n
∑

µ=1

e−ikθµH2
s (θµ)

)(

1

n

n
∑

ν=1

e−ilθν

)

.(3.59)

and

Ss
n(θ) =

1

2

ˆ 1

0

(1− τ)2f (3)
n (τ) dτ +

1

2n2

∑

µ

G′′
s(θµ)Hs(θµ)

2

+
(

1− β
2

) 1

2n2

∑

µ

L′′
s(θµ)Hs(θµ)

2

− 1

n2

∑

µ

ˆ 1

0

(1− τ)
(

1− τ

n
H ′

s(θµ)
)−2

H ′
s(θµ)

2 dτ.(3.60)

The change of variables gives, after some computation,

(3.61) E
β,s
n

[

exp

(

∑

µ

Gs(θµ)

)]

= E
β,s
n [exp ((Rs

n + T s
n + Us

n + Ss
n)(θ))] .

Also,

f (3)
n (τ) = − 1

4n3

∑

µ6=ν

cos xµ−xν

2

sin3 xµ−xν

2

(

Hs(θµ)−Hs(θν)
)3

− 2

n3
Re
∑

k,l≥1

(−i)k3akl(s)

(

∑

µ

e−ikxµHs(θµ)
3

)(

∑

ν

e−ilxν

)

− 6

n3
Re
∑

k,l≥1

(−i)k2lakl(s)

(

∑

µ

e−ikxµHs(θµ)
2

)(

∑

ν

e−ilxνHs(θν)

)

− 1

n3

∑

µ

G(3)
s (xµ)Hs(θµ)

3 −
(

1− β
2

) 1

n3

∑

µ

L(3)
s (xµ)Hs(θµ)

3,(3.62)

where xµ = θµ − τ
n
Hs(θµ).

It follows from (1.4) and (2.16) that there is a constant C(γ) such that

(3.63)

∥

∥

∥

∥

dr

dθr
Ls

∥

∥

∥

∥

∞
≤ C(γ),

for 0 ≤ r ≤ 3. Using (2.16), (3.58) and (3.63), we obtain the estimate

|f (3)
n (τ)| ≤ 1

n

(

C‖Hs‖3∞ + CA‖Hs‖3∞ + ‖G(3)
s ‖∞‖Hs‖3∞

)

≤ C(γ, ‖Gs‖4,α)
n

.

From this and (3.60) we see that

(3.64) ‖Ss
n‖∞ ≤ C(γ, ‖Gs‖4,α)

n
.
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Also from (3.59), we obtain the estimates

(3.65) ‖Us
n‖∞ ≤ C(γ, ‖Gs‖4,α),

and

(3.66) ‖Rs
n + T s

n‖∞ ≤ C(γ, ‖Gs‖4,α)n.

Combining (3.64), (3.65) and (3.66), we see that there is a constant C1(γ, ‖Gs‖4,α)
such that

(3.67) ‖Rs
n + T s

n + Us
n + Ss

n‖∞ ≤ C1(γ, ‖Gs‖4,α)n.

In Lemma 3.2 we now choose K = C(γ) + C1(γ, ‖Gs‖4,α) + 1, where C(γ) is the
constant in the lemma. Below En,s will denote the set obtained from Lemma 3.2
with this choice of K. This gives us the estimate

(3.68)

∣

∣

∣

∣

∣

E
β,s
n

[

exp

(

∑

µ

Gs(θµ)

)]

− E
β,s
n

[

exp ((Rs
n + T s

n + Us
n + Ss

n)(θ))1En,s

]

∣

∣

∣

∣

∣

≤ e−n.

It follows from Lemma 3.4 that there is a constant C(γ, ‖Gs‖4,α) such that if θ ∈ En,s

then

(3.69)
∑

µ

t2µ =
∑

µ

tµ(θ)
2 ≤ C(γ, ‖Gs‖4,α).

Hence, if θ ∈ En,s and l does not divide n, then

∣

∣

∣

∣

∣

∑

ν

eilθν

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

ν

(eilθν − eilαν )

∣

∣

∣

∣

∣

≤ l
∑

ν

|tν | ≤ l
√
n

(

∑

ν

t2ν

)1/2

≤ C(γ, ‖Gs‖4,α)l
√
n.

Note that if l ≥ 1 divides n, then l ≥ n and the sum is always ≤ n, so we always
have an estimate

(3.70)

∣

∣

∣

∣

∣

∑

ν

eilθν

∣

∣

∣

∣

∣

≤ C(γ, ‖Gs‖4,α)l
√
n.

A simple Riemann sum estimate gives

(3.71)

∣

∣

∣

∣

∣

1

n

∑

µ

f(e2πiµ/n)− 1

2π

ˆ 2π

0

f(eit) dt

∣

∣

∣

∣

∣

≤ ‖f ′‖∞
n

.

It follows from this estimate and (3.58) that

(3.72)

∣

∣

∣

∣

∣

hk(s)−
1

n

∑

µ

e−ikαµHs(αµ)

∣

∣

∣

∣

∣

≤ C
k‖Hs‖∞ + ‖H ′

s‖∞
n

≤ C(γ, ‖Gs‖4,α)
k

n
.

Lemma 3.5. There is a constant C(γ, ‖Gs‖4,α) such that |T s
n(θ)| ≤ C(γ, ‖Gs‖4,α)

for all n ≥ 1 and θ ∈ En,s.
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Proof. We have the estimate

∣

∣

∣

∣

∣

1

n

∑

µ

(

e−ikθµH(θµ)− e−ikαµH(αµ)
)

∣

∣

∣

∣

∣

≤ C‖Hs‖4,α
k

n

∑

µ

|tµ|

≤ C‖Hs‖4,α
k√
n

(

∑

µ

t2µ

)1/2

≤ C(γ, ‖Gs‖4,α)
k√
n
,(3.73)

where we used (3.58). This estimate, together with (2.16), (3.70), and (3.72), gives

|T s
n(θ)| ≤ C(γ, ‖Gs‖4,α)

∑

k,l≥1

k2l|akl(s)| ≤ C(γ, ‖Gs‖4,α),

and we are done. �

Lemma 3.6. There is a constant C(γ, ‖Gs‖4,α) such that |Rs
n(θ)| ≤ C(γ, ‖Gs‖4,α)

for all n ≥ 1 and θ ∈ En,s.

Remark 3.7. This proposition is the origin of the assumption g ∈ C4+ǫ. It is
possible to only assume g ∈ C1+ǫ, by following the techniques of proof of [5], and
prove the analogues of Lemma 1.2, 2.1, and 2.2 in [5]. We chose to present a shorter
proof here for the sake of brevity and simplicity.

Proof. It follows from (1.3) by differentiation that

Re
ieiθφ′(eiθ)

φ(eiθ)− φ(eiω)
= −1

2
cot(1

2
(ω − θ)) + Re

∑

k,l≥1

ikakle
−ikθ−ilω.

and hence we can write the integral equation (2.22) as

Gs(ω) = −β
2

p.v.

ˆ 2π

0

cot
(

1
2
(ω − θ)

)

Hs(θ)
dθ

2π
+ β Re

∑

k,l≥1

ikaklhk(s)e
−ilω(3.74)

It follows that

Rs
n(θ) = −β

2

∑

µ

[

ˆ 2π

0

cot(1
2
(θµ − θ))Hs(θ)

dθ

2π

+
1

2n

∑

ν:ν 6=µ

cot(1
2
(θµ − θν))(Hs(θµ)−Hs(θν))

]

.

(3.75)

We recognize the integral above as the Hilbert transform giving the conjugate func-
tion on T, so

(3.76)

ˆ 2π

0

cot
(

1
2
(θµ − θ)

)

Hs(θ)
dθ

2π
=
∑

k∈Z
−i sgn(k)hk(s)e

ikθµ.
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Note that for k ≥ 1,

cot(1
2
(x− y))(eikx − eiky) = i(eix + eiy)

k−1
∑

j=0

ei(jx+(k−1−j)y

= i

(

eikx + eiky + 2

k−1
∑

j=1

ei(jx+(k−j)y.

)

Changing the sign of k, x and y, we see that if |k| ≥ 1, then

cot(1
2
(x− y))(eikx − eiky) = i sgn(k)



eikx + eiky + 2

|k|−1
∑

j=1

ei sgn(k)(jx+(|k|−j)y)



 .

If we use this and (3.76), we obtain

Rs
n(θ) =

β

2

∑

k∈Z
i sgn(k)hk(s)





|k|
n

∑

µ

eikθµ +
1

n

∑

µ,ν

|k|−1
∑

j=1

ei sgn(k)(jθµ+(|k|−j)θν)



 .

We can now use (3.70) to see that if θ ∈ En,s then

|Rs
n(θ)| ≤ C(γ, ‖Gs‖4,α)

∑

k∈Z
|hk(s)|

(

k2√
n
+ |k|3

)

.

Here we can use (3.58) and a standard bound of Fourier coefficients to obtain the
estimate

|hk(s)| ≤ C‖Hs‖4,α
1

|k|4+α
≤ C(γ, ‖Gs‖4,α)

1

|k|4+α
.

From the last two estimates we can now conclude that |Rs
n(θ)| ≤ C(γ, ‖Gs‖4,α). �

Remark 3.8. Equations (3.74) and (3.75) are the reason for picking h to be the
solution of the integral equation (2.22). Thanks to this choice we see that the first
two terms of Rs

n in (3.59) almost cancel the third one.

Combining the estimates (3.64), (3.65), (3.68), Lemma 3.5, and Lemma 3.6, we
see that we have proved the bound (3.42) in Theorem 3.1. It remains to prove the
limit (3.43) for each fixed s.

3.4. Computing the limit. We will use the following simple lemma.

Lemma 3.9. [17] Let En,s be the set in Lemma 3.2 with the choice of K above.
Assume that there is a constant C0 = C(γ,G) such that supn ‖Xn1En,s‖∞ ≤ C0, and
that limn→∞ Eβ,s

n [|Xn|1En,s] = 0. Then

lim
n→∞

E
β,s
n [eXn

1En,s] = 1.

Proof. By Lemma 3.2, limn→∞ P
β,s
n [Ec

n,s] = 0, so

lim
n→∞

∣

∣E
β,s
n [eXn

1En,s]− 1
∣

∣ ≤ lim
n→∞

∣

∣E
β,s
n [(eXn − 1)1En,s ]|+ P

β,s
n [Ec

n,s]
∣

∣

= lim
n→∞

∣

∣E
β,s
n [(eXn − 1)1En,s]

∣

∣ .

But
∣

∣E
β,s
n [(eXn − 1)1En,s ]

∣

∣ ≤ E
β,s
n [|Xn|e|Xn|

1En,s ] ≤ eC0E
β,s
n [|Xn|1En ],

which goes to zero as n→ ∞ by assumption. �
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Let

us(θ, ω) = −G′
s(θ)Hs(θ)− (1− β

2
)L′

s(θ)H(s)−H ′
s(θ)−

β

16

(Hs(θ)−Hs(ω))
2

sin2 θ−ω
2

+
β

2
Re
∑

k,l≥1

klakl(s)e
−ikθ−ilωHs(θ)Hs(ω)(3.77)

+ β Re
∑

k,l≥1

k2akl(s)e
−ikθ−ilωHs(θ)

2,

and let

dλn,θ(t) =
1

n

∑

µ

δ(t− θµ),

be the empirical measure. Note that

Us
n(θ) =

ˆ

[0,2π]2
us(x1, x2) dλn,θ(x1) dλn,θ(x2),

and write

(3.78) As[Gs] :=
1

4π2

ˆ

[0,2π]2
us(x1, x2) dx1 dx2.

It follows from Lemma 3.3 and the bound (3.65) that

(3.79) E
β,s
n

[

|Us
n(θ)− As[Gs]|1En,s

]

→ 0

as n→ ∞.
The next lemma gives the analogous result for Rs

n and T s
n.

Lemma 3.10. We have the limit

lim
n→∞

E
β,s
n

[

(|T s
n|+ |Rs

n|)1En,s

]

= 0

Proof. We can choose gs on γs so that Gs(θ) = cosmθ. It follows from (3.42)
that there is a constant C(γ,m) so that

E
β,s
n

[

exp

(

∑

µ

cosmθµ

)]

≤ C(γ,m)

for all n ≥ 1. Jensen’s inequality now gives the bound

exp

(

E
β,s
n

[∣

∣

∣

∣

∣

∑

µ

cos(mθµ)

∣

∣

∣

∣

∣

])

≤ E
β,s
n

[

exp

(

∑

µ

cosmθµ

)]

+ E
β,s
n

[

exp

(

−
∑

µ

cosmθµ

)]

≤ 2C(γ,m),

and the same bound holds for Eβ,s
n [|∑µ sin(mθµ)|]. Hence there exists a strictly

increasing function f on R such that

E
β,s
n

[∣

∣

∣

∣

∣

∑

µ

eimθµ

∣

∣

∣

∣

∣

]

≤ f(m)

for m ≥ 1. From (3.70), we also have the estimate

E
β,s
n

[∣

∣

∣

∣

∣

∑

µ

eimθµ

∣

∣

∣

∣

∣

1En,s

]

≤ C(γ, ‖Gs‖4,α)m
√
n,
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where Gs is now the function in Theorem 3.1. These two bounds combined with
(2.16), (3.72) and (3.73) give

E
β,s
n [|Tn(θ)|1En ] ≤

∑

k,l≥1

k|akl(s)|Eβ,s
n

[∣

∣

∣

∣

∣

hk(s)−
1

n

n
∑

µ=1

e−ikθµHs(θµ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

ν=1

e−ilθν

∣

∣

∣

∣

∣

1En,s

]

≤ C(γ, ‖Gs‖4,α√
n

∑

k,l≥1

k2|akl|Eβ,s
n

[∣

∣

∣

∣

∣

n
∑

ν=1

e−ilθν

∣

∣

∣

∣

∣

1En,s

]

≤ C(γ, ‖Gs‖4,α√
n

∑

k≥1

k2





⌊f−1(n1/4)⌋
∑

l=1

|akl|f(l) +
√
n

∑

l>⌊f−1(n1/4)⌋

l|akl|





≤ C(γ, ‖Gs‖4,α√
n

∑

k≥1

1

k2



n1/4
∞
∑

l=1

1

l3
+
√
n

∑

l>⌊f−1(n1/4)⌋

1

l2





≤ C(γ, ‖Gs‖4,α
(

1

n1/4
+

1

⌊f−1(n1/4)⌋

)

.

But since f is strictly increasing so is f−1, which is unbounded, which shows that
Eβ,s
n

[

|T s
n(θ)|1En,s

]

= o(1) as n → ∞. The proof of Eβ,s
n

[

|Rs
n(θ)|1En,s

]

= o(1) is
similar. �

We now see that by (3.64), (3.65), Lemma 3.5, Lemma 3.6 and Lemma 3.9

lim
n→∞

E
β,s
n

[

e(R
s
n+T s

n+Us
n+Ss

n)(θ)
1En,s

]

= eAs[Gs].

If we combine this with (3.68), we have proved

(3.80) lim
n→∞

E
β,s
n

[

exp

(

∑

µ

Gs(θµ)

)]

= eAs[Gs].

It remains to show that this agrees with the formula for the limit in (3.43). From
(3.77) and (3.78), we find

As[Gs] = − 1

2π

ˆ 2π

0

G′
s(θ)Hs(θ) dθ − (1− β

2
)
1

2π

ˆ 2π

0

L′
s(θ)Hs(θ) dθ

− β

64π2

ˆ 2π

0

ˆ 2π

0

(Hs(θ)−Hs(ω))
2

sin2 θ−ω
2

dθ dω +
β

2
Re
∑

k,l≥1

klakl(s)hk(s)hl(s).

An integration by parts gives

− β

64π2

ˆ 2π

0

ˆ 2π

0

(Hs(θ)−Hs(ω))
2

sin2 θ−ω
2

dθ dω

=
β

16π2

ˆ 2π

0

ˆ 2π

0

H ′
s(θ)(Hs(θ)−Hs(ω)) cot

θ − ω

2
dθ dω(3.81)

= − β

8π2
p.v.

ˆ 2π

0

ˆ 2π

0

H ′
s(θ)Hs(ω)

∂

∂ω
log |eiθ − eiω| dθ dω
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since p.v.
´ 2π

0
cot θ−ω

2
dω = 0. Also, by (1.3)

β

2
Re
∑

k,l≥1

klakl(s)hk(s)hl(s)

=
β

8π2

ˆ 2π

0

ˆ 2π

0

H ′
s(θ)H

′
s(ω) log

∣

∣

∣

∣

φ(eiθ)− φ(eiω)

eiθ − eiω

∣

∣

∣

∣

dθ dω(3.82)

= − β

8π2

ˆ 2π

0

ˆ 2π

0

H ′
s(θ)Hs(ω)

∂

∂ω
log

∣

∣

∣

∣

φ(eiθ)− φ(eiω)

eiθ − eiω

∣

∣

∣

∣

dθ dω.

Added together, (3.81) and (3.82) give

− β

8π2
Re

ˆ 2π

0

ˆ 2π

0

H ′
s(θ)Hs(ω)

ieiθφ′(eiθ)

φ(eiθ)− φ(eiω)
dθ dω = − 1

4π

ˆ 2π

0

Gs(θ)H
′
s(θ) dθ

by (2.22). Thus

As[Gs] =
1

4π

ˆ 2π

0

Gs(θ)H
′
s(θ) dθ + 2(1− β

2
)
1

4π

ˆ 2π

0

log |φ′(eiθ)|H ′
s(θ) dθ.

Combining this formula with Lemma 2.6 and (3.80), we see that (3.43) follows and
we have proved Theorem 3.1, and hence also Theorem 1.3.

4. The partition function

In this section we obtain the asymptotics of the partition function,

Zn,β(γ) = Dβ
n[1] =

1

n!

ˆ

γn

∏

µ6=ν

|zµ − zν |β/2|dnz|.

The case γ = T is a well-known Selberg integral and the partition function is given
in (1.12). We will now prove the following proposition which gives the asymptotics
of the partition function for sufficiently regular curves.

Proposition 4.1. Let γ be a C12+α Jordan curve, for some α > 0. Then

lim
n→∞

Zn,β(γ)

Zn,β(T)cap(γ)βn
2/2+(1−β/2)n

=
exp

(

2
β
(1− β

2
)2dt(I +K)−1d

)

√

det(I +K)

where d and K are given by (1.5) and (1.9).

This proposition together with Theorem 1.3 proves Theorem 1.1. In this section
we will use (2.16) with m = 12, i.e.

(4.83) |akl| ≤ Ak−p−ǫl−q−ǫ, p+ q = 11,

for all k, l ≥ 1.
Introduce the vectors

X =

(

1√
k

∑

µ

cos(kθµ)

)

k≥1

, Y =

(

1√
k

∑

µ

sin(kθµ)

)

k≥1

.
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Now, by the change of variables zµ = φs(e
iθµ),

Zn,β(γs) =
1

n!

ˆ

[−π,π]n

∏

µ6=ν

|eiθµ − eiθν |β/2 exp
(

β
∑

1≤µ<ν≤n

log

∣

∣

∣

∣

φs(e
iθµ)− φs(e

iθν )

eiθµ − eiθν

∣

∣

∣

∣

+
∑

µ

log |φ′
s(e

iθµ)|
)

dnθ

=
1

n!

ˆ

[−π,π]n

∏

µ6=ν

|eiθµ − eiθν |β/2 exp
(

− β

2
Re
∑

k,l≥1

akl(s)
∑

µ

e−ikθµ
∑

ν

e−ilθν

+
∑

µ

(1− β
2
) log |φ′

s(e
iθµ)|

)

dnθ

by (3.39). Just as in [6] we can use (1.6) and (1.10) and rewrite this as

Zn,β(γs) =
1

n!

ˆ

[−π,π]n

∏

µ6=ν

|eiθµ − eiθν |β/2 exp
(

− β

2

(

X

Y

)t

K(s)

(

X

Y

)

− 2

(

1− β

2

)

d(s)t
(

X

Y

)

)

dnθ.

Differentiation gives the formula

d

ds
log
(

Zn(γs)
)

=
1

Zn(γs)n!

ˆ

[−π,π]n

[

−β
2

(

X

Y

)t

K ′(s)

(

X

Y

)

− 2
(

1− β
2

)

d′(s)t
(

X

Y

)

]

∏

µ6=ν

|eiθµ − eiθν |β/2 exp
(

− β
2

(

X

Y

)t

K(s)

(

X

Y

)

− 2
(

1− β
2

)

d(s)t
(

X

Y

)

)

dnθ

= E
β,s
n

[

−β
2

(

X

Y

)t

K ′(s)

(

X

Y

)

− 2
(

1− β
2

)

d′(s)t
(

X

Y

)

]

,

and thus,

log
Zn,β(γ)

Zn,β(T)
=

ˆ 1

0

E
β,s
n

[

−β
2

(

X

Y

)t

K ′(s)

(

X

Y

)

− 2
(

1− β
2

)

d′(s)t
(

X

Y

)

]

ds.(4.84)

The rest of this section is devoted to computing the limit of this expression as
n → ∞. The estimates obtained in the last section provide uniform bounds on the
moments of the empirical spectral measure, and its limits, as follows.

Lemma 4.2. Fix ǫ ∈ (0, 1). There is a constant C(γ) such that

sup
s∈[0,1]

sup
j≥1

E
β,s
n





(

∑

µ

cos(jθµ)

j4+ǫ

)2


≤ C(γ), sup
s∈[0,1]

sup
j≥1

E
β,s
n





(

∑

µ

sin(jθµ)

j4+ǫ

)2


≤ C(γ)

for all n ≥ 1.
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Proof. We prove the first inequality, the second one is treated similarly.
First note that since |∑µ cos(jθµ)| ≤ n,

lim
j→∞

E
β,s
n





(

∑

µ

cos(jθµ)

j4+ǫ

)2


 = 0,

so for any fixed s ∈ [0, 1] there exists a j(n) ∈ N (which may depend on s) such that

sup
j≥1

E
β,s
n





(

∑

µ

cos(jθµ)

j4+ǫ

)2


 = E
β,s
n





(

∑

µ

cos(j(n)θµ)

j(n)4+ǫ

)2


 .

Set Gn(θ) =
cos(j(n)θ)
j(n)4+ǫ and define the analytic function

f s
n(z) = E

β,s
n

[

exp

(

z
∑

µ

Gn(θµ)

)]

,

which is uniformly bounded by

E
β,s
n

[

exp

(

∑

µ

Gn(θµ)

)]

+ E
β,s
n

[

exp

(

−
∑

µ

Gn(θµ)

)]

in the closed unit disc. We see that G
(4)
n (θ) = cos(j(n)θ)

j(n)ǫ
, and

sup
0≤θ1,θ2≤2π

|G(4)
n (θ1)−G

(4)
n (θ2)|

|eiθ1 − eiθ2 |ǫ ≤ 2 sup
0≤θ1,θ2≤2π

∣

∣ sin j(n)(θ1−θ2)
2

∣

∣

∣

∣j(n) sin (θ1−θ2)
2

∣

∣

ǫ

≤ 2 sup
x

| sin x|
∣

∣j(n) sin x
j(n)

∣

∣

ǫ ≤ C,

where C is independent of j(n) and hence of s. Hence ‖Gn‖4,ǫ < ∞, and it follows
from Theorem 3.1 that there is a constant C(γ) such that

sup
s∈[0,1]

E
β,s
n

[

exp

(

±
∑

µ

Gn(θµ)

)]

≤ C(γ)

for all n ≥ 1. This implies that f s
n(z) is uniformly bounded by 2C(γ) in the unit

disc, for all s ∈ [0, 1], so by Cauchy’s estimates, |(f s
n)

(k)(0)| ≤ 2k!C(γ). In particular,

sup
j≥1

E
β,s
n





(

∑

µ

cos(jθµ)

j4

)2


 = f ′′
n(0) ≤ 4C(γ).

The upper bound holds for all s ∈ [0, 1] so this proves the lemma. �

Lemma 4.3. Set Pm to be the projection onto the first m components of ℓ2(R).
For any m ≥ 1, s ∈ [0, 1],

lim
n→∞

E
β,s
n

[(

Pm 0
0 Pm

)(

X

Y

)]

= (1− 2
β
)

(

Pm 0
0 Pm

)

(I +K(s))−1d(s),
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lim
n→∞

E
β,s
n

[

(

Pm 0
0 Pm

)(

X

Y

)(

X

Y

)t(
Pm 0
0 Pm

)

]

=

(

Pm 0
0 Pm

)(

1

β
(I +K(s))−1

+ (1− 2
β
)2(I +K(s))−1d(s)d(s)t(I +K(s))−1

)(

Pm 0
0 Pm

)

.

Proof. Let z = {zk}mk=1 ∈ D
m

, w = {wk}mk=1 ∈ D
m

. For any fixed s, define the
analytic function in 2m variables,

fn(z, w) = E
β,s
n

[

exp

(

m
∑

k=1

(

zk
∑

µ

cos(kθµ) + wk

∑

µ

sin(kθµ)

))]

.

We have that

|fn(z, w)| ≤ E
β,s
n

[

exp

(

m
∑

k=1

(

Re zk
∑

µ

cos(kθµ) + Rewk

∑

µ

sin(kθµ)

))]

≤
∑

p∈{−1,1}2m
E
β,s
n

[

exp

(

m
∑

k=1

(

pk
∑

µ

cos(kθµ) + pm+k

∑

µ

sin(kθµ)

))]

since |zk| ≤ 1 and |wk| ≤ 1 for all 1 ≤ k ≤ m.
By Theorem 1.3, there exist a N ∈ N such that for all p ∈ {−1, 1}2m, if n ≥ N ,

E
β,s
n

[

exp

(

m
∑

k=1

pk
∑

µ

cos(kθµ) + pm+k

∑

µ

sin(kθµ)

)]

≤ 2 exp
(

2
β
vt(I +K(s))−1v + 2(1− 2

β
)d(s)t(I +K(s))−1v

)

where

v =
1

2

((

p1,
√
2p2, . . . ,

√
mpm, 0, 0, . . .

)(

pm+1,
√
2pm+2, . . . ,

√
mp2m, 0, 0, . . .

))t

is a vector in ℓ2(R)⊕ ℓ2(R). This implies that for n ≥ N ,
∣

∣fn(z, w)
∣

∣ ≤
∑

p∈{−1,1}2m
exp

(

‖v‖‖(I +K(s))−1‖( 2
β
‖v‖+ 2|1− 2

β
|‖d(s)‖)

)

.

We know that sups∈[0,1] ‖d(s)‖ < ∞ by (4.83) and ‖v‖ = (m(m+1)
4

)1/2 for all p.

Moreover we know that sups∈[0,1] ‖K(s)‖ ≤ κ < 1 so ‖(I + K(s))−1‖ ≤ (1 − κ)−1.
Hence there is a constant C which does not depend on s such that

sup
n∈N

∣

∣fn(z, w)
∣

∣ ≤ C

uniformly in D
2m

, which makes the analytic functions fn(z, w) a normal family in D
2m.

By Theorem 1.3 the sequence converges pointwise, whence uniformly on compact
subsets, to

f(z, w) = exp
(

2
β
ut(I +K(s))−1u+ 2(1− 2

β
)d(s)t(I +K(s))−1u

)

,

where

u =
1

2

((

z1,
√
2z2, . . . ,

√
mzm, 0, 0, . . .

)(

w1,
√
2w2, . . . ,

√
mwm, 0, 0,

))t

.
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As a consequence its derivatives converge to those of f(z, w). In particular,

lim
n→∞

E
β,s
n

[

∑

µ

cos(jθµ)

]

=
∂

∂zj
f(z, w)

∣

∣

∣

z=w=0
=
√

j(1− 2
β
)((I +K(s))−1d(s))j.

The second derivatives give the limiting variances and covariances. For example,

lim
n→∞

E
β,s
n

[

∑

µ

cos(jθµ)
∑

µ

sin(kθµ)

]

=
∂

∂zj

∂

∂wk

f(z, w)
∣

∣

∣

z=w=0

=

√
jk

β
(I +K(s))−1

j,m+k +
√

jk(1− 2
β
)2((I +K(s))−1d(s))j((I +K(s))−1d(s))m+k,

and this proves the lemma. �

We are now ready for the proof of the proposition on the asymptotics of the
partition function.

Proof of Proposition 4.1. Proposition 4.2 allows us to use the dominated con-
vergence theorem to compute the limit (4.84). Indeed, by the definition of K(s) and
d(s),

sup
s∈[0,1]

∣

∣

∣

∣

∣

E
β,s
n

[

(

X

Y

)t

K ′(s)

(

X

Y

)

]∣

∣

∣

∣

∣

≤ sup
s∈[0,1]

∑

k,l≥1

1√
kl
(k + l)sk+l−1

(

|b(1)kl (s)|Eβ,s
n

∣

∣

∣

∣

∣

∑

µ

cos(kθµ)
∑

ν

cos(lθν)

∣

∣

∣

∣

∣

+ 2|b(2)kl (s)|Eβ,s
n

∣

∣

∣

∣

∣

∑

µ

cos(kθµ)
∑

ν

sin(lθν)

∣

∣

∣

∣

∣

+ |b(1)kl (s)|Eβ,s
n

∣

∣

∣

∣

∣

∑

µ

sin(kθµ)
∑

ν

sin(lθν)

∣

∣

∣

∣

∣

)

≤ C(γ)
∑

k,l≥1

(k + l)|akl|(kl)4+ǫ,

where we used the Cauchy–Schwarz inequality and Lemma 4.2. By (4.83) this is
bounded for ǫ sufficiently small. Similarly,

sup
s∈[0,1]

∣

∣

∣

∣

E
β,s
n

[

d′(s)t
(

X

Y

)]∣

∣

∣

∣

≤ sup
s∈[0,1]

∑

k≥1

√
k

k−1
∑

j=1

|aj,k−j|
(

E
β,s
n

∣

∣

∣

∣

∣

∑

µ

cos(kθµ)

∣

∣

∣

∣

∣

+ E
β,s
n

∣

∣

∣

∣

∣

∑

µ

sin(kθµ)

∣

∣

∣

∣

∣

)

<∞

by Lemma 4.2 and (4.83). Thus,

lim
n→∞

ˆ 1

0

E
β,s
n

[

−β
2

(

X

Y

)t

K ′(s)

(

X

Y

)

− 2

(

1− β

2

)

d′(s)t
(

X

Y

)

]

ds

=

ˆ 1

0

lim
n→∞

E
β,s
n

[

−β
2

(

X

Y

)t

K ′(s)

(

X

Y

)

− 2

(

1− β

2

)

d′(s)t
(

X

Y

)

]

ds.
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Moreover, for all n large enough,
∣

∣

∣

∣

∣

E
β,s
n

[

(

X

Y

)t

K ′(s)

(

X

Y

)

]

− E
β,s
n

[

(

X

Y

)t(
Pm 0
0 Pm

)

K ′(s)

(

Pm 0
0 Pm

)(

X

Y

)

]∣

∣

∣

∣

∣

≤
∑

max(k,l)≥m

1√
kl
(k + l)sk+l−1

(

|b(1)kl |Eβ,s
n

∣

∣

∣

∣

∣

∑

µ

cos(kθµ)
∑

ν

cos(lθν)

∣

∣

∣

∣

∣

+ 2|b(2)kl |Eβ,s
n

∣

∣

∣

∣

∣

∑

µ

cos(kθµ)
∑

ν

sin(lθν)

∣

∣

∣

∣

∣

+ |b(1)kl |Eβ,s
n

∣

∣

∣

∣

∣

∑

µ

sin(kθµ)
∑

ν

sin(lθν)

∣

∣

∣

∣

∣

)

≤ C(γ)
∑

k≥1,l≥m

(kl)−1−ǫ =
C(γ)

mǫ
.

The bound is uniform in n, hence,

lim
n→∞

E
β,s
n

[

(

X

Y

)t

K ′(s)

(

X

Y

)

]

= lim
m→∞

lim
n→∞

E
β,s
n

[

(

X

Y

)t(
Pm 0
0 Pm

)

K ′(s)

(

Pm 0
0 Pm

)(

X

Y

)

]

.

The limit can now be computed with Lemma 4.3:

=
1

β
TrK ′(s)(I +K(s))−1 + (1− 2

β
)2d(s)t(I +K(s))−1K ′(s)(I +K(s))−1d(s).

Similarly,

lim
n→∞

E
β,s
n

[

d′(s)t
(

X

Y

)]

= lim
m→∞

lim
n→∞

E
β,s
n

[

d′(s)t
(

Pm 0
0 Pm

)(

X

Y

)]

= (1− 2
β
)d′(s)t(I +K(s))−1d(s).

Combined, these limits give

lim
n→∞

E
β,s
n

[

−β
2

(

X

Y

)t

K ′(s)

(

X

Y

)

− 2

(

1− β

2

)

d′(s)t
(

X

Y

)

]

= 2(1− 2
β
)2d′(s)t(I +K(s))−1d(s)− 1

2
Tr K ′(s)(I +K(s))−1

− β
2
(1− 2

β
)2d(s)t(I +K(s))−1K ′(s)(I +K(s))−1d(s)

=
d

ds

(

−1
2
log det(I +K(s)) + β

2
(1− 2

β
)2d(s)t(I +K(s))−1d(s)

)

.

Integrating from 0 to 1, and using that K(0) = d(0) = 0 and K(1) = K, d(1) = d,
finishes the proof. �
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