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A growth estimate for the planar
Mumford–Shah minimizers at a tip point:

An alternative proof of David–Léger

Yi Ru-Ya Zhang

Abstract. Let Ω ⊂ R2 be a bounded domain and u ∈ SBV (Ω) be a local minimizer of the
Mumford–Shah problem in the plane, with 0 ∈ Su being a tip point and B1 ⊂ Ω. Then there exist
absolute constants C > 0 and 0 < r0 < 1 such that

|u(x)− u(0)| ≤ Cr
1
2 for any x ∈ Br and 0 < r < r0.

This estimate is a local version of the original one in David–Léger (2002, Proposition 10.17). Our
result is based on a dichotomy and the John structure of Ω \ Su, different from the one by David–
Léger (2002) or Bonnet–David (2001, Lemma 21.3).

Kasvuarvio tason Mumfordin–Shahin minimoijille keikahduspisteessä:
vaihtoehtoinen todistus Davidin ja Légerin tulokselle

Tiivistelmä.Olkoon Ω ⊂ R2 rajallinen alue ja u ∈ SBV (Ω) Mumfordin–Shahin taso-ongelman
paikallinen minimoija, jolle 0 ∈ Su on keikahduspiste ja B1 ⊂ Ω. Tällöin on olemassa absoluuttiset
vakiot C > 0 ja 0 < r0 < 1, joilla pätee epäyhtälö

|u(x)− u(0)| ≤ Cr
1
2 kaikilla x ∈ Br ja 0 < r < r0.

Tämä arvio on Davidin ja Légerin alkuperäisen tuloksen (2002, propositio 10.17) paikallinen versio.
Tulos perustuu tiettyyn kahtiajakoon sekä joukon Ω \Su Johnin rakenteeseen, toisin kuin Davidin–
Légerin (2002) ja Bonnet’n–Davidin (2001, lemma 21.3) vastaavat.

1. Introduction

The Mumford–Shah functional, introduced by Mumford and Shah in [21], is a
well–known model in image processing. In their seminal paper [14], De Giorgi, Car-
riero, and Leaci established the existence of minimizers for a weaker formulation of
the Mumford–Shah problem through direct methods, drawing on a lower semiconti-
nuity result by De Giorgi and Ambrosio [13].

To be more specific, for any bounded domain Ω ⊂ Rn, it was introduced in [13]
a subspace of BV (Ω), denoted by SBV (Ω), in which the functions only has jump
discontinuities (see Section 2 for more details). Then for a function u ∈ SBV (Ω), its
λ-Mumford–Shah energy on an open set Ω ⊆ Rn is defined by

MSλ(u, Ω) :=

ˆ
Ω

|Du|2 dx+ λHn−1 (Su ∩ Ω) ,

where λ > 0 and Su ⊂ Ω is the set of discontinuity points of u. A function u ∈
SBV loc (Ω) is a local λ-minimizer if for any x ∈ Ω with Br(x) ⊂ Ω, r > 0 and every
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open set U ⊂⊂ Ω ∩Br(x), we have MSλ(u, U) <∞ together with

MSλ(u, U) ≤MSλ(v, U),

whenever {u 6= v} ⊂⊂ U.
The Euler–Lagrange equation [3, Theorem 7.35] for a local minimizer is that, for

any η ∈ C1
0(Ω;Rn),

(1.1)
ˆ

Ω\Su
|Du|2 div η − 2〈∇u,∇u · ∇η〉 dx+ λ

ˆ
Su

divτ η dHn−1 = 0,

where divτ denotes the tangential divergence. This in particular implies that u is
harmonic in Ω\Su and satisfies the zero Neumann boundary value condition on both
sides of Su; see [3, (7.42)]. Moreover the (weak) mean curvature of Su equals to the
jump of the gradient [|Du|2]±, according to [3, Theorem 7.38].

Ambrosio, Fusco and Pallara proved in [4, 2] that, when Ω ⊂ Rn and u ∈ SBV (Ω)
is a local Mumford–Shah minimizer, there exists a subset Σ ⊂ Su, which is relatively
closed and Hn−1(Σ) = 0, such that the set Su \Σ is the union of C1, 1

4 -hypersurfaces.
Moreover, both u and Du have a Hölder continuous extension to Su \ Σ. For more
details, see also [3, Theorem 8.1], along with the survey [18], and [1, 17, 20] for more
recent results.

Nevertheless, much more is known about the planar case. In particular, in an
earlier result [7], Bonnet proved that an isolated connected component of Su is a
finite union of C1, 1-arcs. His result is based on the so–called Bonnet’s monotonicity
formula, which is applicable when the discontinuity set in the plane is connected.
Later, David [10] demonstrated a version of ε-regularity for the minimizers, and
many additional results regarding Mumford–Shah local minimizers in the plane were
established by Bonnet and David in [8].

In particular, in the monograph [11, Theorem 69.29], David proved that if Su
at a tip point x ∈ Su \ Su with B(x, 2) =: B2(x) ⊂ Ω, is sufficiently close to a
single radius in the Hausdorff distance within (which implies Su is connected in
B1(x) [11, Lemma 69.8]), then Su is locally C1, 1

loc in B1(x). Recently, this result was
independently improved by [5] and [16], showing that one actually obtains C1, 1 (and
even C2, α)-regularity up to the end point of Su, again under the assumption that
Su ∩B2(x) is sufficiently close to a single radius in the Hausdorff distance.

The planar results mentioned above generally rely on the a priori assumption
that Su is connected. In this paper, we examine the growth of u near a tip point
without assuming the connectedness of the discontinuity set. This estimate serves
as a localized version of the original estimate for global minimizers presented in [12,
Proposition 10.17], via a completely different argument; readers may also refer to [15,
Proposition 4.6.1].

Theorem 1.1. Let Ω ⊂ R2 be a bounded domain, u ∈ SBV (Ω) be a local
minimizer for the Mumford–Shah problem, and 0 ∈ Ω be a tip point, i.e. 0 ∈ Su \Su.
Suppose that B1 ⊂ Ω. Then there exist absolute constants C > 0 and 0 < r0 < 1 so
that, for any 0 < r < r0, one has

|u(x)− u(0)| ≤ Cr
1
2 for any x ∈ Br.

Our estimate is not straightforward because u ∈ SBV (Ω) might not satisfy
a Poincaré-type inequality, even if we can estimate the growth of the L2-norm of
Du within every disk (see Lemma 2.1). The discontinuity of u poses a significant
challenge.
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It is worth noting that the harmonic conjugate v of u can be defined with Hölder
continuity exponent 1

2
. This modulus of continuity follows directly from Lemma 2.1

as v ∈ W 1, 2(Ω); see e.g. [15, Proposition 4.5.1].

Remark 1.2. Some readers might compare our proof with the proof of Lem-
ma 21.3 in [8]. However, it is important to note that they are not the same.

Firstly, our estimate is directly based on an Ahlfors regularity lemma (see Lem-
ma 2.1 below), which provides an L2-estimate of |Du|. In contrast, the proof of
Lemma 21.3 in [8] relies on an L∞-estimate, as seen in equation [8, (21.1)].

Secondly, the proof of Bonnet–David assumes that x and 0 are in the same
component of B \ Su (see [8, (21.2)]). However, this assumption is addressed in our
work through Corollary 1.4 below.

More precisely, our Lemma 3.1 and Lemma 3.2 may share some similarities with
the proof of [8, Lemma 21.3]. To some extent, Lemma 3.1 can be seen as an L2-version
of [8, (21.14), Lemma 21.3]. Similarly, the finiteness of N in Lemma 3.2 is related to
the finiteness of the set E in the proof of [8, Lemma 21.3]. To handle the L2-integral
directly, one needs to use carrot John subdomains (or Boman chains). Therefore,
we must demonstrate that one can cover Br \ Su with a uniformly finite number of
carrot John subdomains whose closures contain 0, provided that r is smaller than
some uniform constant r0 > 0. This part serves as an application of a recent work in
[23, Theorem 1.7]; it was somehow implicitly used in [8, Lemma 21.3].

The proof of the theorem relies on the dichotomy in Proposition 1.3, which offers
a criterion for distinguishing between tip points and jump points. We will defer the
proof of this proposition to Section 2.

Proposition 1.3. Let u ∈ SBV (Ω) be a local minimizer in the plane, which is
not locally constant, and x ∈ K := Su. We define for r > 0 with Br ⊂ Ω,

Φu(x, r) :=
r−1
´
Br
|Du|2 dx

infc∈R –́
Br
|u− c|2 dx

.

Then x is a jump point if and only if

(1.2) Φu(x) := Φu(x, 0+) := lim sup
r→0+

r−1
´
Br
|Du|2 dx

infc∈R –́
Br
|u− c|2 dx

is finite.

In other words, x is a tip point if and only if Φu(x, 0+) = +∞.

Note that Φu(·) takes values in R+ ∪ {+∞}, and Φu(x, r) is continuous with
repsect to x for each fixed r > 0. In addition,

Φu(x, 0+) = lim
s→0

sup
0<r<s

Φu(x, r)

is the limit of a monotone non-increasing sequence as r → 0. Thus Φu(·) is upper
semicontinuous. Thus we conclude the following corollary from Proposition 1.3.

Corollary 1.4. The limit of a sequence of tip points must be a tip point. Es-
pecially, when 0 is a tip point of a local minimizer u ∈ SBV (Ω) and B1 ⊂ Ω, the
compactness of Mumford–Shah problem yields that, there exists r2 > 0 such that

dist (0, V ) ≥ r2

where V is a connected component of B1 \ Su for which 0 /∈ ∂V . See Figure 1.
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We remark that, according to [15, Theorem 6.1.1] and Corollary 1.4, the only
missing part towards Mumford–Shah conjecture (see e.g. [15, Conjecture 1.2.1]) is
that, the set of tip points of u is discrete in Ω.

In the last section, we prove a Morrey-type estimate in John domains, Lemma 3.1,
and specifically, apply a version of [23, Theorem 1.7] to cover a neighborhood of the
origin with uniformly finitely many John subdomains. These results finally give us
the desired estimate.

0

V

Figure 1. The black lines represents the discontinuity set K of u. Corollary 1.4 yields that the
component V is uniformly away from 0.

Acknowledgement. The author would like to sincerely thank Prof. A. Figalli for
the insightful discussions on this topic, and also expresses his gratitude to Prof. C. De
Lellis for pointing out that the current result is a local version of the original estimate
for global minimizer proved by David and Léger [12].

2. Preliminaries and Proof of Proposition 1.3

Let us fix some notation. We denote the k-dimensional Hausdorff measure by
Hk. For a given open set Ω ⊂ Rn, we denote by BV (Ω) the space of functions of
bounded variation in Ω, whose weak (or distributional) gradientDu is a vector-valued
Radon measure. We write Dau for the absolutely continuous part of Du and Dsu
for its singular part. The set of approximately continuous points of u is denoted by
Cu, each of which is a Lebesgue point of u. We write Su = Ω \ Cu the Borel set of
approximate discontinuity of u. Furthermore, for Hn−1-almost every x ∈ Su, there
exists a direction νu ∈ Sn−1 and two numbers u± ∈ R so that u−(x) < u+(x) and

lim
r→0

ˆ
B+
r (x, νu(x))

|u(y)− u+(x)| dy = 0,

together with

lim
r→0

ˆ
B−r (x, νu(x))

|u(y)− u−(x)| dy = 0,

where
B+
r (x, νu(x)) = {y ∈ Br(x) : (y − x) · νu(x) > 0} ,

and B−r is defined similarly. These points are called jump points of u. When

Dsu = (u+ − u−)νuHn−1|Su ,

then u ∈ SBV (Ω), the space of special functions of bounded variation. When u ∈
SBV (Ω) is a local minimizer, we usually denote by K the closure of its jump set Su
unless explicitly stated otherwise. We say x is a tip point of u if x ∈ Su \ Su, which
is a Lebesgue point of u, particularly.
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For ease of reference, we assume λ = 1 in the Mumford–Shah energy throughout
the paper, unless explicitly stated otherwise. Moreover, for the ease of readablity,
we suppress the subindex and write MS := MS1. Suppose u ∈ SBV (Br) is a local
1-minimizer with 0 ∈ Su, then it follows from [3, Remark 7.13] that

ur(x) = r−
n−1
n u(rx) ∈ SBV (B1)

is also a local 1-minimizer in B1. Moreover,

MS(u, Br) = rn−1MS(ur, B1).

For a (rectifiable) curve γ, we denote by `(γ) the Euclidean length of γ. When γ
is an arc (i.e. an injective curve), for any pair of points x, y ∈ γ, denote by γ[x, y] a
subarc joining them. For a measurable set A ⊂ R2, we write

–
ˆ

A

u dx :=
1

|A|

ˆ
A

u dx.

Let us begin with the following result, called the Ahlfors regularity of the local
minimizer, which holds for every point in K. It is clear that the density

r−1H1 (K ∩Br)

is invariant under scaling. From this point forward, we focus exclusively on the planar
case, specifically when n = 2.

Lemma 2.1. [18, Theorem 2.6], [9, Corollary 3.3] Suppose that u ∈ SBV (Ω)
is a local minimizer and 0 ∈ K. There exists a constant r1 > 0 so that for each
0 < r < r1 and Br ⊂ Ω, we have

1

C
≤ r−1H1 (K ∩Br) ≤ C,

and ˆ
Br

|Du|2 dx ≤ Cr.

We also record the following ε-regularity of David, which provides a criterion to
individuate tip points.

Lemma 2.2. [11, Proposition 60.1] Suppose that u is a minimizer and 0 ∈ K.
There exists ε0 > 0 and η > 0 so that, whenever x ∈ K satisfiesˆ

Br(x)

|Du|2 dx ≤ ε0r,

then x is a jump point and K ∩ Bηr(x) is a C1-curve or a C1-spider (see [11, Sec-
tion 51 & 53] for the definitions).

Now we are ready to show Proposition 1.3.

Proof of Proposition 1.3. Up to a translation, we may assume that x is the
origin. If (1.2) holds, then for some c0 > 0 and any sequence rk → 0 we have

lim sup
k→∞

r−1
k

ˆ
Brk

|Du|2 dx ≤ c0 lim sup
k→∞

(
inf
c∈R

–
ˆ

Brk

|u− c|2 dx

)
.

Suppose that, on the contrary, 0 is a tip point, which is particularly a Lebesgue point
of u. Then the right-hand side of the inequality above goes to 0 as k → ∞. This
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yields that

r−1

ˆ
Br

|Du|2 dx

is small whenever r > 0 is sufficiently small. However, Lemma 2.2 implies that 0
cannot be a tip point. This leads to a contradiction and thus 0 must be a jump point.

Now suppose that (1.2) fails, then by Lemma 2.1, there exists a sequence rk → 0
so that for any M > 0

lim
k→∞

(
inf
c∈R

–
ˆ

Brk

|u− c|2 dx

)
≤M−1 lim

k→∞
r−1
k

ˆ
Brk

|Du|2 dx ≤ CM−1.

Thus the origin is a Lebesgue point of u as M →∞ (and rk → 0), which yields that
0 is a tip point. �

Let us also recall the definition of John domain.

Definition 2.3. For J ≥ 1, a (bounded) domain Ω ⊂ Rn is said to be J-John
provided that, there exists a distinguished point x0 ∈ Ω so that, for every x ∈ Ω,
there exists an arc γ ⊂ Ω starting from x, ending at x0 and satisfying the following
condition:

(2.1) `(γ[x, y]) ≤ J dist (y, ∂Ω) for any y ∈ γ,

where `(γ[x, y]) denotes the length of the subcurve of γ joining x to y. We usually
call x0 the John center of Ω and γ the John curve joining x0 and x.

Furthermore, let γ ⊂ Ω be a curve joining x to x0, and define the J-carrot with
the vertex x and the core γ joining x to x0 as

car(γ, J) :=
⋃{

B(y, `(γ[x, y])/J) : y ∈ γ \ {x}
}
.

Then a (bounded) domain Ω ⊂ Rn is J-John with the center x0 ∈ Ω ∪ {∞}, if for
each point x ∈ Ω, there exists a curve β ⊂ Ω joining x to x0 so that car(β, J) ⊂ Ω.

We record the following result, which says that Ω \K is locally John.

Theorem 2.4. [11, Proposition 68.16] Let u ∈ SBV (Ω) be a local minimizer
and x ∈ Ω \K. Then there exists an absolute constant J ≥ 1 so that, for any

0 < r ≤ 1

2
dist (x, ∂Ω) =: r3,

one can find an arc γ ⊂ Ω\K starting from x, escaping Br(x) (i.e. for a parametriza-
tion γ : [0, 1] → Ω with γ(0) = 0, there exists t ∈ (0, 1) that γ((t, 1]) ∩ Br(x) = ∅),
and satisfying that, for any y ∈ γ,

`(γ[x, y]) ≤ J dist (y, K).

In particular, there exists a ball with radius J−1r contained in Br(x) ∩ (Ω \K).

3. Proof of Theorem 1.1

Let 0 ∈ Ω be a tip point of u, and assume that u(0) = 0 up to an additive
constant. Recall that tip points are Lebesgue points of u, i.e.

lim
r→0

–
ˆ

Br

|u| dx = 0.
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Write K = Su. Recall the definition of J-carrot. Then Theorem 2.4 implies that,
for every x ∈ Ω \ K, one can find a J-carrot contained in Ω \ K with core γ and
vertex x, which escapes Br(x).

The carrot condition above is equivalent to the following M -Boman chain condi-
tion, quantitatively: There exists M ≥ 1 and a sequence of balls {Ui}∞i=0 converging
to x so that,

• U0 = B `(γ)
4J

(x0),
• M−1 diam (Ui+1) ≤ diam (Ui) ≤M diam (Ui+1),
• There exists Ri ⊂ Ui ∩ Ui+1 so that Ui ∪ Ui+1 ⊂MRi,
•
∑

i χUi ≤M.

see e.g. [19, Theorem 9.3]. We record the following results for John domains.

Lemma 3.1. Let C0 ≥ 4, r > 0 and U ⊂ R2 be a (bounded) J ′-John domain
with center x0 ∈ ∂B3r ∩ U such that 0 ∈ U ⊂ BC0r, J ′ ≥ 1. Moreover, assume that
there exists C1 > 0 so that u ∈ W 1, 2(U) satisfies

(3.1)
ˆ
Bs(z)∩U

|Du|2 dx ≤ C1s

for any z ∈ U and 0 < s < r. Then

|u(x)− u(y)| ≤ C(C0, C1, J
′)r

1
2

for almost every pair of points x, y ∈ U ⊂ B5r.

Proof. Fix x, y ∈ U which are Lebegue points of u. Since carrot and Boman chain
conditions are equivalent, we can find two sequences of balls {Ui}+∞

i=0 and {Uj}−∞j=0 of
M -Boman chains from x and y to x0, respectively, where

M = M(J ′), U0 = Bc(C0, J ′)r(x0), Ui → x as i =→ +∞, Uj → y as j → −∞.

Then by writing in telescoping sum and applying Poincaré inequality on u, we have

|u(x)− u(y)| ≤
+∞∑

k=−∞

∣∣∣∣∣ –
ˆ

Uk

u dx− –
ˆ

Uk+1

u dx

∣∣∣∣∣
≤

+∞∑
k=−∞

–
ˆ

Uk

∣∣∣∣∣u− –
ˆ

Uk+1

u

∣∣∣∣∣ dx
≤C(J ′)

+∞∑
k=−∞

diam (Uk)

(
–
ˆ

Uk∪Uk+1

|Du|2 dx

) 1
2

.

As the assumption (3.1) gives

–
ˆ

Uk∪Uk+1

|Du|2 dx ≤ C(C1, J) diam (Uk)
−1,

it follows that

+∞∑
k=−∞

diam (Uk)

(
–
ˆ

Uk∪Uk+1

|Du|2 dx

) 1
2

≤ C(C1, J
′)

+∞∑
k=−∞

diam (Uk)
1
2

≤ C(C0, C1, J
′)r

1
2 ,
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where we applied the fact that both { diam (Ui)}+∞
i=0 and { diam (Uj)}−∞j=0 are geometric

series in the last inequality. Then our lemma follows from the chain of inequalities.
�

The following lemma is a local version of [23, Theorem 1.7] and we record its
proof in Appendix A.

Lemma 3.2. Suppose that 0 ∈ Su ⊂ R2 is a tip point. Then for r3 > 0 defined
in Theorem 2.4 and any 0 < r < r3/9, there exist C = C(J) > 0, N = N(J) ∈ N and
J ′ = J ′(J) > 0 so that, we can cover Br \ Su by (the closure of) at most N -finitely
many J ′-John domains Wj, r ⊂ BCr \ Su, 1 ≤ j ≤ N .

In particular, there exists a constant C2 = C2(J) > 0 such that, for every point
x ∈ Wj, r, one can find a rectifiable curve βx ⊂ Wj, r, which joins x to a point
wj, r ∈ ∂B3r ∩Wj, r, as the core of a J ′-carrot satisfying

`(βx) ≤ C2r.

This lemma together with Lemma 3.1 and Lemma 3.2 implies the following the-
orem.

Proof of Theorem 1.1. Observe that Theorem 2.4 together with Lemma 3.2
implies that, for any 0 < r < r3/9, we can cover Br \ Su by at most N -finitely many
(nonempty) J ′-John domains Wj, r.

Now by recalling that u(0) = 0 and the L2-estimate on the gradient from
Lemma 2.1, we employ Lemma 3.1 to u on each of the John domainsWj, r to conclude
that, for 0 < r < r0 := min{r1, r2, r3/9},

|u(x)− u(0)| = |u(x)| ≤ Cr
1
2 for any x ∈ Wj, r.

Moreover, Corollary 1.4 yields that, for any 0 < r < r0 ≤ r2, one has 0 ∈ ∂Wj, r for
every Wj, r. This yields our desired estimate as the number of John domains is at
most N . �

Appendix A. Proof of Lemma 3.2

To start with, we record the following proposition. While this technique has been
commonly employed in previous manuscripts, such as [22], it has not been explicitly
formulated, to the best of our knowledge, in the context of our present work.

Proposition A.1. Let J ≥ 1. Assume that γ ⊂ R2 is a locally rectifiable curve
joining x to y, where x, y ∈ R2. Then car(γ, J) is a J-carrot John domain. To be
more specific, for any z ∈ car(γ, J), we can find a rectifiable curve γz joining z to y,
such that for some η ∈ γ, we have

γ[η, y] = γz[η, y]

and for each a ∈ γ[η, y],

(A.1) `(γz[z, a]) ≤ `(γ[x, a]), car(γz, J) ⊂ car(γ, J).

Proof. For any z ∈ car(γ, J), the definition of car(γ, J) yields a ball

B(η, `(γ[x, η])/J) ⊂ car(γ, J)

for some points η ∈ γ \ {x} so that z ∈ B(η, `(γ[x, η])/J).
Let Lz,η be the line segment joining z to η and then γz := Lz,η ∪ γ[η, y] is locally

rectifiable curve joining z to y. When a ∈ Lz,η,
(A.2) `(γz[z, a]) ≤ d (a, ∂B(η, `(γ[x, η])/J)) ≤ `(γ[x, η])/J.
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When a ∈ γ[η, y], by applying (A.2) with a = η there, we have

`(γz[z, a]) ≤ `(γz[z, η]) + `(γz[η, a]) ≤ `(γ[x, η])

J
+ `(γ[η, a])

≤ `(γ[x, η]) + `(γ[η, a]) = `(γ[x, a]).

To conclude, we obtain that

`(γz[z, a]) ≤ `(γ[x, a]),

which is the first formula of (A.1). The second one follows directly from out con-
struction of car(γz, J) and car(γ, J), and we conclude the lemma. �

A.1. A decomposition Vj, r of Br \ K. Recall that K = Su. Now for any
x ∈ Br\K with Br ⊂ Ω, 0 < r < r0/9, we choose an escaping (John) curve γx ⊂ Ω\K
from x with car(γ, J) ⊂ Br \K. Although there could be many choices of curves for
x ∈ Ω\K, we just choose one of them. Let Γ = {γx}x∈Br\K be the collection of these
chosen curves. In what follows, for any points x ∈ Br \K, γx always refers to this
particular choice of escaping curve.

Note that for 0 < r < r0/9, we have Br ∩K 6= ∅ as 0 ∈ K. Our first step is to
decompose Br \ K into finitely many subsets Vj, r so that, there exists a collection
Bj ,r of at most C(J)-many balls, whose center is on ∂B3r and whose radius is at least
J−1r, satisfying that, for any x ∈ Vj, r, we can find a ball B ∈ Bj, r with

γx ∩B 6= ∅.
To this end, observe that, according to Theorem 2.4, for each x ∈ Br \ K and

γx ∈ Γ, there exists a point

(A.3) xr ∈ γx ∩ ∂B3r

so that

(A.4) 2r ≤ `(γ[x, xr]) ≤ J dist (xr, K).

Consider the collection of closed balls

(A.5) {Bx}x∈Br\K :=

{
B

(
xr,

dist (xr, K)

2

)}
x∈Br\K

.

Then thanks to (A.4) and 0 ∈ K, we obtain that

(A.6)
r

J
≤ dist (xr, K)

2
≤ 3

2
r,

and hence Bx ∩Br = ∅.
We next let

Ar :=
⋃

x∈Br\K

{xr}

be the collection of the centers of Bx’s. By Bescovitch’s covering theorem, there
exists a subcollection {Bi}i∈N of {Bx}x∈Br\K consisting of at most countably many
balls, such that

(A.7) χAr(z) ≤
∑
Bi

χBi(z) ≤ C, ∀z ∈ B5r \K.

Recall that by (A.6)
Bi ⊂ B5r \Br
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and |Bi| ≥ c(J)rn. Thus we have at most C(J)-many elements in {Bi} by (A.7). As
a result, the union of balls ⋃

i

Bi

has at most N = N(J) components Uj,r for j ∈ {1, · · · , Nr} and Nr ≤ N. By defining
Uj, r to be empty for j > Nr, we may assume that there exists exactly N components
Uj,r, and each Uj, r contains at most N̂ = N̂(J) balls. We write Bj,r as the collection
of balls Bi contained in each component Uj,r.

Now it follows from our construction, for any x ∈ Br \ K, there exists some
1 ≤ j ≤ Nr so that, xr ∈ γx is covered by a ball in Bj,r. Thus, by defining

(A.8) Vj,r := {x ∈ Br \K : xr ∈ D for some D ∈ Bj,r},

we obtain the desired decomposition of Br \K. The set Vj, r is defined to be empty
if Uj, r is empty.

The following lemma is a version of [23, Proposition 3.2].

Proposition A.2. For 1 ≤ j ≤ N with N = N(J) defined above, the set Wj, r

is either empty (if Vj, r is empty), or for any fixed y ∈ Vj, r together with the escaping
point yr ∈ ∂B3r, the set

(A.9) Wj, r := car(γy[y, yr], J) ∪
⋃

x∈Vj,r

car(βx, J
′).

is a J ′-John domain with John center yr, where J ′ = J ′(J) > 0 and βx is a rectifiable
curve joining x to yr satisfying γx[x, xr] ⊂ βx; recall that γx is the escaping curve
starting from x.

Moreover, there exists a constant C3 = C3(J) ≥ 4 so that, the curve βx joining
x ∈ Wj,r to yr is the core of a J ′-carrot satisfying

`(βx) ≤ C3r

and

(A.10) Vj,r ⊂ Wj,r, car(βx, J
′) ⊂ Wj,r ⊂ (Ω \K) ∩B2C3r.

Proof. Suppose that Vj,r is non-empty, and fix a point y ∈ Vj,r. Then the
corresponding escaping point yr ∈ γy ∩ ∂B3r is covered by some ball D1 ∈ Bj,r
according to (A.7). Then we can join yr to the center x̂1 of D1 by the line segment
Lyr,x̂1 ⊂ D1.

Now for any x ∈ Vj,r, we claim that there exists a rectifiable curve βx ⊂ Ω \K
as the core of a J ′-carrot joining x to yr, such that γx[x, xr] ⊂ βx and

(A.11) car(βx, J
′) ⊂ Ω \K.

Indeed, the escaping point xr ∈ ∂B3r∩D2 is also covered by another ballD2 ∈ Bj,r
as x ∈ Vj,r. Moreover, we can also joint xr to the center x̂2 of D2 by the line segment
Lxr,x̂2 ⊂ D2.

Recall that Uj,r is connected and consists of at most N̂ -many balls from Bj,r. This
implies that x̂1 and x̂2 can be joined by a union of at most N̂ -many line segments
with the endpoints being the centers of balls in Bj,r. Therefore, combining with Lyr,x̂1
and Lxr,x̂2 , we can join xr to yr by a polyline γxr,yr .

We show that
βx := γx[x, xr] ∪ γxr, yr
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is the desired John curve. To this end, we estimate the length of βx and the distance
dist (η,K) for any η ∈ βx, respectively.

We start with the estimate on the length of βx. Thanks to (A.6), for any pair
of intersecting balls D,D′ ∈ Bj,r, the line segments L joining the center of D with
radius s to the center of D′ with radius s′ satisfies

(A.12) L ⊂ D ∪D′ and `(L) ≤ s+ s′ ≤ 4r.

In particular, (A.6) together with the facts that Lxr,x̂2 ⊂ D2 and that Lyr,x̂1 ⊂ D1

also yields `(Lxr,x̂2) ≤ 2r, `(Lyr,x̂1) ≤ 2r. Therefore employing (A.12) and (A.4), the
construction of βx tells

`(βx) ≤ `(γx[x, xr]) + `(γxr, yr)

≤ J dist (xr, K) + `(Lxr,x̂2) + `(Lyr,x̂1) + 4N̂r

≤ C(J)r =: C3r;(A.13)

we may assume that C3 ≥ 4. This gives the first part of the proposition.
Towards (A.10), for any η ∈ βx we need to estimate the distance dist (η,K)

from above. First of all, note that when η ∈ γxr,yr , there exists some ball Dη ∈ Bj,r
containing η. Then combining (A.4), (A.5) and (A.6), we get

(A.14) dist (η,K) ≥ dist (Dη, K) ≥ r

J
.

Let

(A.15) J ′ := C3J.

Then combining (A.4), (A.13) and (A.14), we conclude

`(βx[x, η]) ≤ `(βx) ≤ C3r ≤ J ′ dist (η,K) when η ∈ γxr, yr .
On the other hand, when η ∈ γx[x, xr], since our construction yields βx[x, η] =

γx[x, η], which is particularly contained in a John curve, it follows that

`(βx[x, η]) ≤ J dist (η, K) ≤ J ′ dist (η,K).

This implies (A.11). Moreover by Proposition A.1, every point w ∈ car(βx, J
′) also

can be joined to yr by a rectifiable curve γ̂w satisfying

`(γ̂w) ≤ `(βx) and car(γ̂w, J
′) ⊂ car(βx, J

′).

Hence, by employing (A.11), the arbitrariness of x gives the second formula in (A.10).
The first formula in (A.10) holds due to x ∈ Cl(car(βx, J

′)), the closure of the carrot,
for any x ∈ Vj,r. �

Now Lemma 3.2 follows immediately from Proposition A.2, where wj, r is chosen
to be yr in the Proposition A.2.
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