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Carrot John domains in variational problems

Weicong Su and Yi Ru-Ya Zhang

Abstract. In this paper, we explore carrot John domains within variational problems, dividing
our examination into two distinct sections. The initial part is dedicated to establishing the lower
semicontinuity of the (optimal) John constant with respect to Hausdorff convergence for bounded
John domains. This result holds promising implications for both shape optimization problems
and Teichmüller theory. In the subsequent section, we demonstrate that an unbounded open set
satisfying the carrot John condition with a center at ∞, appearing in the Mumford–Shah problem,
can be covered by a uniformly finite number of unbounded John domains (defined conventionally
through cigars). These domains, in particular, support Sobolev–Poincaré inequalities.

Variaatio-ongelmiin liittyvät Johnin porkkana-alueet

Tiivistelmä. Tässä kahteen osaan jaetussa tutkimuksessa tarkastellaan variaatio-ongelmiin
liittyviä Johnin porkkana-alueita. Alkuosassa osoitetaan (optimaalisen) Johnin vakion alapuolijat-
kuvuus rajallisten Johnin alueiden Hausdorffin suppenemisen suhteen. Tällä tuloksella on sekä muo-
don optimointiin että Teichmüllerin teoriaan liittyviä lupauksia. Toisessa osassa todistetaan, että
Mumfordin–Shahin ongelmassa esiintyvä rajaton avoin joukko, joka toteuttaa ∞-keskisen Johnin
porkkanaehdon, voidaan peittää tasaisesti äärellisellä määrällä (tavalliseen tapaan sikareiden avulla
määriteltyjä) rajattomia Johnin alueita. Erityisesti näissä alueissa on voimassa Sobolevin–Poincarén
epäyhtälöitä.

1. Introduction

In the realm of shape optimization problems, instances frequently arise wherein
the objective is to identify the optimal class of sets, denoted as U , based on the ratio
of functionals that incorporate the norm of a specific class of Sobolev functions u,
the norm of its gradient Du, and the norm of its trace u|∂U on ∂U . A prototypical
illustration of such a scenario is the pursuit of the optimal sets U ⊂ Rn for the first
p-Dirichlet eigenvalue, where for 1 < p <∞ and a > 0,

min
|U |=a

{ˆ
U

|Du|p dx : u ∈ W 1, p
0 (U), ‖u‖Lp(U) = 1

}
.

According to the Rayleigh–Faber–Krahn inequality, it can be deduced that this quan-
tity is not inferior to the corresponding Dirichlet eigenvalue of a Euclidean ball with
a volume of a. Subsequent research, particularly through transportation techniques
as explored in [18, 19], has revealed that balls have the worst best Sobolev inequalities.
To be more specific, for any locally Lipschitz open domain Ω in Rn and 1 ≤ p < n,
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we define

Φ
(p)
Ω (T ) := inf

{
‖∇f‖Lp(Ω) : ‖f‖Lp∗ (Ω) = 1, ‖f‖

Lp#
(∂Ω)

= T,

f ∈ L1
loc(Ω) with lim

x→∞
f = 0

}
,

where p∗ = np
n−p and p# = (n−1)p

np
. Then the unit ball B has the lowest Φ-curve in the

following sense:
Φ

(p)
Ω (T ) ≥ Φ

(p)
B (T ) on [0, Tn(p)],

where Tn(p) :=
(
n|B|1/n

)1/p#

and |B| is the Lebesgue measure of B. Additional in-
sights and recent advancements in this domain can be found in [17] and its associated
references.

Conversely, a distinctive category of domains, termed as John domains, supports
for Sobolev–Poincaré inequalities. A (bounded) domain Ω ⊂ Rn is J-John for some
J ≥ 1 if there exists a distinguished point x0 ∈ Ω so that, for any x ∈ Ω, one can
find a curve γ ⊂ Ω joining x to x0 satisfying

`(γ[x, y]) ≤ Jd(y, ∂Ω) for each y ∈ γ,
where γ[x, y] is the subcurve of γ joining x and y. The constant J is usually called
the John constant. Heuristically speaking, Ω contains a uniformly linearly opened
twisted cone at every x ∈ Ω; see Figure 1. Standard examples of John domains
encompass Lipschitz domains in any Rn, and quasidisks in the plane, which include
von Koch’s snowflakes, see e.g. [11, Chapter 6]. Stemming from the definition of a
John domain and the Lebesgue differentiation theorem, it can be deduced that the
boundary of a John domain possesses a Lebesgue measure of 0.

y

x

Figure 1. A domain Ω is John if, heuristically speaking, it contains a uniformly linearly opened
twisted cone at every x ∈ Ω.

For a domain Ω ⊂ Rn supporting a (p, p∗)-Sobolev–Poincaré inequality for 1 ≤
p < n, it implies that, for every u ∈ W 1, p(Ω), one has

inf
c

(ˆ
Ω

|u− c|p∗ dx
) 1

p∗

≤ C(n, p, Ω)

(ˆ
Ω

|Du|p dx
) 1

p

,

where p∗ = np
n−p is the critical Sobolev exponent. For comprehensive studies on the

Sobolev–Poincaré inequality, we recommend consulting [4] and [12]. Furthermore,
for an exploration of this inequality in the context of general metric measure spaces,
encompassing Carnot groups, [13] serves as a valuable resource. Moreover, in the
specific context of John domains, which inherently support a Poincaré inequality,
one can also establish trace inequalities for Sobolev functions with additional as-
sumptions. For example, a type of Poincaré inequality [3, Theorem 4.4] holds when
the domain is inner uniform (note that an inner uniform domain is John). Then the
results in [20], [15] and [21] yield the desired trace inequalities in this domain.
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In contrast, Buckley and Koskela, as shown in [7], revealed that a domain Ω ⊂
Rn, possessing finite volume and adhering to a ball-separation property, supports
Sobolev–Poincaré inequalities. This characteristic is particularly evident in scenarios
involving conformal deformations, as discussed in [5, 2], such as bounded and simply
connected domains in the plane. The implications of this discovery underscore a
deep connection between shape optimization problems involving Sobolev–Poincaré
inequalities and the concept of John domains.

This correlation prompts the need for a refined definition of the John constant,
one that can be extended to arbitrary Euclidean domains. The ensuing defini-
tion is motivated by this imperative, and it is formulated to accommodate general
Minkowski norms (defined at the beginning of Section 2) in Rn for potential appli-
cations in some other forthcoming research endeavors.

1.1. General Minkowski norm. In a recent manuscript [23], the authors
presented an alternative proof of the seminal result obtained by Figalli, Maggi, and
Pratelli [10], on the stability of isoperimetric inequality with respect to a general
Minkowski norm, utilizing the John property of (almost) minimal surfaces. Partially
motivated by this work, we consider John domains within the context of a general
Minkowski norm in the first part of our manuscript.

Some basic notations need to be clarified here. A function

‖ · ‖ : Rn → R+

is a general Minkowski norm if it satisfies

‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ Rn,

‖λx‖ = λ‖x‖, ∀x ∈ Rn, λ > 0,

and
‖x‖ = 0 if and only if x = 0;

see e.g. [1, Section 2.1]. Specifically, the standard Euclidean norm is denoted by | · |.
Naturally, there exists a convex body

K‖·‖ := {x ∈ Rn : ‖x‖ < 1}
associated to ‖ · ‖.

For a non-empty open set Ω $ Rn and x ∈ Ω, we denote by ∂Ω the topological
boundary of Ω. We write

d‖·‖(x, ∂Ω) := inf
y∈∂Ω
‖x− y‖,

and when the norm is the standard Euclidean one, we simply write

d(x, ∂Ω) := inf
y∈∂Ω
|x− y|.

For x ∈ Rn and r > 0, we use the notation

B‖·‖(x, r) := {y ∈ Rn : ‖x− y‖ < r}

and by B‖·‖(x, r) its closure. We drop the subindices and write B(x, r) when the norm
is the standard Euclidean norm. Especially, we denote the ball B‖·‖(0, r) centered at
0 by B‖·‖,r for brevity.

Suppose that (X, ‖ · ‖) is a general Minkowski space and γ ⊂ X is a rectifiable
curve. Using reparametrization, γ can be seen as a homeomorphism

γ : [0, 1]→ X, t 7→ γ(t).
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For every two distinct points a1, a2 ∈ γ, there exists t1, t2 ∈ [0, 1], such that ai = γ(ti)
for i ∈ {1, 2}. We may assume t1 < t2. Then we denote the subcurve γ([t1, t2]) joining
a1 to a2 by γ[a1, a2]. Under the assumption above, the length of the rectifiable curve
γ ⊂ X is written as

`‖·‖(γ) = sup

{
N−1∑
i=0

‖γ(ti+1)− γ(ti)‖ : 0 = a0 < a1 < a2 < · · · < aN = 1, N ∈ N+

}
.

If γ is the union of curves, then `‖·‖(γ) denotes the sum of the length of these curves
under the same parametrization.

Definition 1.1. For a general Minkowski norm ‖ · ‖ and J ≥ 1, a (bounded)
domain Ω ⊂ Rn is J-John if there exists a distinguished point x0 ∈ Ω so that, for
any x ∈ Ω, one can find a curve γ ⊂ Ω joining x to x0 satisfying

`‖·‖(γ[x, y]) ≤ Jd‖·‖(y, ∂Ω) for each y ∈ γ.
Set

(1.1) C‖·‖ := max
‖x‖=1

‖ − x‖.

We emphasize here that the value of C‖·‖ plays a crucial role in determining whether
‖ · ‖ constitutes a norm, as well as in influencing the length of the curve.

Remark 1.2. When C‖·‖ = 1, ‖·‖ satisfies the properties of a norm. Conversely,
if C‖·‖ 6= 1, the convex body K‖·‖ associated to ‖ · ‖ loses its symmetry relative
to the origin. In such instances, the length of curves becomes dependent on their
parametrized direction.

A straightforward illustration is the case where, for some point x0 ∈ K‖·‖ with
−x0 /∈ K‖·‖. Then the length of the line segment parametrized from 0 to x0 is smaller
than 1, while the one in the reverse direction is larger than 1.

Definition 1.3. Consider the Euclidean space (Rn, ‖·‖) endowed with a general
Minkowski norm ‖ · ‖, and let Ω ⊂ Rn be a (bounded) domain. Then for any x ∈ Ω
and a curve γ ⊂ Ω containing x and parametrized1 as γ : [0, 1] → Ω, we define a
function j(·;x, γ,Ω): [0, 1]→ R as

j(t;x, γ,Ω) :=
`‖·‖(γ([0, t]))

d‖·‖(γ(t), ∂Ω)
for any t ∈ [0, 1].

Subsequently, we set

J(x,Ω;x0) := inf
β⊂Ω

{
sup
t∈[0,1]

j(t ;x, β,Ω): β ⊂ Ω is a curve joining x to x0 ∈ Ω

}
,

and
J(Ω;x0) := sup

x∈Ω
J(x,Ω;x0).

We say that Ω satisfies the J-carrot John condition with center x0 ∈ Ω if

J = J(Ω;x0) <∞.
We define John(·) on the collection of bounded domains of Rn as

John(Ω) := inf
x0∈Ω
{J(Ω;x0)},

1We employ the standard abuse of notation here, using the same symbol for both the map and
its image of a curve.
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and designate John(Ω) as the (optimal) John constant of Ω.

By the definition of John(·) and the definition of John domain, it follows that
Ω ⊂ Rn is a John domain with center x0 ∈ Ω if and only if John(Ω) < +∞.

In the pursuit of broader applications, we extend the definition of the J-carrot to a
pair of suitable points x, x0 ∈ Ṙn, where Ṙn represents the one-point compactification
of Rn.

Definition 1.4. Let x ∈ Rn and x0 ∈ Ṙn be distinct points and γ ⊂ Rn be a
curve joining x toward x0. Assume that J ≥ 1. When x0 6=∞, we define

car(γ, J) :=
⋃{

B‖·‖(y, `‖·‖(γ[x, y])/J) : y ∈ γ \ {x}
}
,

while when x0 =∞, we define

car(γ, J) :=
⋃{

B‖·‖(y, `‖·‖(γ[x, y])/J) : y ∈ γ \ {x,∞}
}
.

Then the (open) set car(γ, J) is called the J-carrot, with core γ and vertex x, joining
x to x0.

We say an open set Ω ⊂ Rn satisfies J-carrot John condition with center x0 ∈
Ω ∪ {∞}, if for each point x ∈ Ω, there exists a curve β ⊂ Ω joining x toward x0 so
that car(β, J) ⊂ Ω. Furthermore, if Ω also satisfies connectivity, we say that Ω is a
J-carrot John domain.

Remark 1.5. It is noteworthy that in the definition of car(γ, J), one has the
flexibility to substitute `‖·‖(γ[x, y]) by either diam ‖·‖(γ[x, y]) or simply ‖y − x‖.
Importantly, these alternative formulations are equivalent in both bounded and un-
bounded scenarios, as elucidated in, for instance, [22, Theorem 2.14].

Remark 1.6. In the literature, an alternative definition of the John domain is
sometimes employed, where the term “J-carrot” is replaced by the so-called “J-cigar”.
To elucidate, when considering a pair of distinct points x, y ∈ Rn and a curve β ⊂ Rn

containing x and y, the “J-cigar” is defined as:

cig(β, J) :=
⋃{

B‖·‖(η, ρ(η)/J) : η ∈ β \ {x, y}
}
,

where
ρ(η) = min

{
`‖·‖(β[x, η]), `‖·‖(β[y, η])

}
.

The set cig(β, J) is called the J-cigar with core β joining x and y, and Ω is J-cigar
John if each pair of points x, y ∈ Ω can be joined by a curve β ⊂ Ω satisfying
cig(β, J) ⊂ Ω. Heuristically speaking, in the bounded case, one can interpret a
J-cigar as the union of two J-carrots. Indeed, it has been rigorously established
that when Ω ⊂ Rn is bounded, these two definitions, employing either the J-carrot
or the J-cigar, are equivalent; refer to, for example, [22, Theorem 2.16], and also
Lemma 3.4 in the manuscript. In addition, for a discussion of the unbounded case,
see Remark 1.8.

1.2. Bounded John domains. Now we are prepared to articulate our first
theorem.

Theorem 1.7. (Lower-semicontinuity of (optimal) John constants) Let J0 ≥ 2
and assume that {Ωj}j∈N+ is a sequence of uniformly bounded John domains satis-
fying

John(Ωj) ≤ J0 and |Ωj| ≥ c0|B‖·‖(0, 1)|,
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for some c0 > 0. Then up to passing to a subsequence, Ωj converges to some compact
set A ⊂ Rn in the Hausdorff distance dH so that the interior Ω of A satisfies

(i) maxx∈Ω d‖·‖(x, ∂Ω) ≥ c = c(n, C‖·‖, J0, c0) > 0, where C‖·‖ is defined in (1.1).
(ii) Ω is a John domain with

John(Ω) ≤ lim inf
j→∞

John(Ωj).

In Theorem 1.7, one can only anticipate lower semicontinuity, not continuity. To
illustrate, consider the sequence of sets

Ωk := D \ [0, 1]× [−2−k, 2−k], k ≥ 1,

where D denotes the unit disk in the plane. Then John(Ωk) is uniformly bounded
below, away from 1, while the limit of Ωk is D as k → ∞, whose interior has an
(optimal) John constant of 1.

Corollary 1.8. For R� |D| satisfying that D ⊂ B‖·‖, R,

min
{

John(Ω): |Ω| = |D|, Ω ⊂ B‖·‖, R
}

has a solution, where D = −K‖·‖. Moreover, the set of minimizers precisely consists
of translations of D.

Proof. Let Ωk be a minimizing sequence. As ∂Ωk has Lebesgue measure 0,

|Ωk| = |Ωk|.
Then as a direct consequence of Theorem 1.7, up to passing to a subsequence, Ωk → Ω
for some open set Ω ⊂ B‖·‖, R, together with

John(Ω) ≤ lim inf
k→∞

John(Ωk) ≤ J

for some J ≥ 1. Moreover, by [26, Theorem 2.8]2, Lebesgue measure is continuous
with respect to the Hausdorff metric for J-carrot John domains. Thus Ω is a desired
minimizer.

Now we show that a minimizer Ω must be a translation of D. Indeed, since
John(Ω) ≥ 1 and John(D) = 1, then it follows that John(Ω) = 1. Now by the
definition of John(Ω) and Lemma 2.5, saying that the infimum of x0 is taken away
from the boundary, we conclude that for any y ∈ Ω

‖y − x0‖ ≤ `‖·‖(γy, x0) ≤ d‖·‖(x0, ∂Ω),

where γy, x0 is a John curve joining y to x0 given by Lemma 2.2. Thus Ω is a
translation of D. �

We expect that this outcome is intricately connected to the observation that
“balls have the worst best Sobolev inequalities”. In contrast, it was proven that a
Jordan domain Ω ⊂ R2 qualifies as a quasidisk if and only if both Ω and its comple-
mentary domain are John domains, as documented in [22] and [11, Theorem 6.12].

2Even though in [26, Theorem 2.8] it is only proved that for a J-carrot John domain U ⊂ Rn

with diam(U) ≤ 1,
|{x ∈ U : d(x, ∂U) < t}| ≤ µ(t, J, n)→ 0 as t→ 0.

However, it follows from a similar argument that for a bounded J-carrot John domain U ⊂ Rn with
|U | ≤M , where M is a positive constant,

|{x ∈ Rn : d(x, ∂U) < t}| ≤ µ(t, J, n,M)→ 0 as t→ 0.

This, coupled with the fact that Ωk forms a Cauchy sequence in terms of the Hausdorff distance,
leads us to the desired conclusion.
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Consequently, considering the role of normalized quasidisks in modeling the universal
Teichmüller space [16, Section III.1.5], Theorem 1.7 not only enables the exploration
of extremal maps in quasiconformal mappings but also offers insights into the prop-
erties of quasidisks.

1.3. Unbounded open sets satisfying carrot John condition with cen-
ter ∞. Advancing in our exploration, we turn our attention to the J-carrot John
condition for unbounded domains Ω ⊂ Rn (with unbounded ∂Ω). Namely, for any
x ∈ Ω, there exists a curve γ ⊂ Ω from x toward ∞ in such a way that the infinite
J-carrot

car(γ, J) ⊂ Ω.

Such domains find relevance in the exploration of the Mumford–Shah problem, as
expounded in, for instance, [6, Section 19] and [9, Section 56, Proposition 7]. Also
see [27] for the application of (a local version of) the following theorem.

Theorem 1.9. Suppose that K ⊂ Rn is a closed set, Rn \K is an unbounded
open set satisfying the J-carrot John condition with center ∞ and 0 ∈ K. Then
for any R ≥ 0, there exist at most N -many J ′-carrot John subdomains (where some
of them could be empty) {Wj,R}j∈{1,··· ,N} of Rn \ K of Rn with J ′ = J ′(n, J) and
N = N(n, J), such that:

(i) We have

BR \K ⊂
N⋃
j=1

W j, R,

together with Wj, R ⊂ BC′R with C ′ = C ′(n, J) and (if it is non-empty)

(1.2) C(n, J)−1Rn ≤ |Wj,R| ≤ C(n, J)Rn.

In addition, for each 1 ≤ k ≤ N and R > 0, there exists a sequence {kl}+∞
l=0

and k0 = k so that

(1.3) C(n, J)−1|Wkl,2lR| ≤ |Wkl,2lR ∩Wkl+1,2l+1R|, l ≥ 0.

(ii) For 1 ≤ j ≤ N and some xj ∈ Rn, the set

Wj,∞ :=
⋃

R>|xj |

Wj,R ⊂ Rn \K

is also a J ′-carrot John subdomain centered at ∞, for which

(1.4) Rn \K ⊂
N⋃
j=1

W j,∞.

Moreover, for any z, w ∈ Wj,∞, there exists a ball Bz,w ⊂ Wj,∞ whose radius
is rz,w so that there are two rectifiable curves γz, γw respectively joining z, w
to the center az,w of Bz,w satisfying

(1.5) Bz,w ⊂ car(γz, J
′) ⊂ Wj,∞ and Bz,w ⊂ car(γw, J

′) ⊂ Wj,∞,

where the radius rz,w satisfies

(1.6)
`(γz[z, az,w])

J ′
= rz,w =

`(γw[w, az,w])

J ′
.
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(iii) In particular, as a consequence of [4], [12] (for bounded domains) together
with [14] (for unbounded domains), we have

inf
c

(ˆ
Wj, R

|u− c|p∗ dx

) 1
p∗

≤ C(n, p, J)

(ˆ
Wj, R

|Du|p dx

) 1
p

for any u ∈ W 1, p(Wj, R), and

inf
c

(ˆ
Wj,∞

|u− c|p∗ dx

) 1
p∗

≤ C(n, p, J)

(ˆ
Wj,∞

|Du|p dx

) 1
p

for any u ∈ W 1, p(Wj,∞).

Remark 1.10. As noted in Remark 1.6, according to [22, Theorem 2.16], the J-
carrot John condition and the J-cigar John condition are equivalent for any bounded
domain, up to positive constants.

However, this equivalence does not necessarily hold for unbounded domains, and
the Sobolev–Poincaré inequality in [14] is proven for unbounded cigar John domains.
An example for the failure of the equivalence is given by the following: Consider the
unbounded domain

U = R2 \
(
(−∞,−1]× {0} ∪ [1,+∞)× {0}

)
which satisfies the 1-carrot John condition with center ∞. However, it does not
satisfy any cigar John condition. Nevertheless, observe that, U can be covered as the
union of two sets H+ ∪ B(0, 1) and H−, where H± denote the upper/lower (open)
half plane, and each of them individually satisfies the 2-cigar John condition.

In a similar vein, Theorem 1.9 establishes that any unbounded J-carrot John
domain can be covered by a uniformly finite number of J ′-cigar John domains, where
the number of domains is uniformly bounded depending only on J and n. We remark
that (1.5) is indeed equivalent to stating that every two distinct points z, w can be
connected by a J ′-cigar insideWj,∞. However, to streamline terminology, the theorem
is presented in the context of carrots.

The manuscript is structured as follows: In Section 2, we provide the proof of
Theorem 1.7, devoting careful attention to the continuity of functions as defined in
Definition 1.3. A pivotal lemma, namely Lemma 2.1, examines the behavior of carrots
under Hausdorff convergence. Another crucial aspect involves preventing the John
centers of converging John domains from reaching the boundary, a concern addressed
in Lemma 2.5.

The proof of Theorem 1.9 is detailed in Section 3, with an introductory overview
of the proof presented at the outset of the section.

2. Lower-semicontinuity of John constant

In our manuscript, we employ the notation as follows: For any set E ⊂ Rn, the
closure of E with respect to the Euclidean topology is denoted as E or Cl(E), and its
complement is denoted by Ec. Given that the Euclidean space is of finite dimension,
the topology induced by the norms remains the same.

The space consisting of all nonempty compact sets in Rn equipped with the
Hausdorff metric dH is denoted as (Cn, dH). The topologies of (Cn, dH) induced by
all norms in Rn are equivalent. For simplicity, one can think of dH as the metric
induced by the standard Euclidean norm in Rn.
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The Lebesgue measure of the set E ⊂ Rn is denoted by |E| and the s-dimension
Hausdorff measure of E is denoted by Hs(E). A general constant is denoted by C,
which may vary across different estimates, and we include all the constants it depends
on within the parentheses, denoted as C(·).

We next prove a key lemma, which later helps us to deduce the lower-semicontinuity
of both the function J(Ω; ·) : Ω→ [1,+∞) and the (optimal) John constant John(·).

Lemma 2.1. Let {xi}i∈N and {yi}i∈N be two sequences of points with xi ∈ Rn

and yi ∈ Ṙn for i ∈ N. Assume that {γi}i∈N is a sequence of locally rectifiable curves
in Rn joining pairs of distinct points xi, yi.

lim
i→+∞

xi =: x 6=∞ and y := lim
i→+∞

yi

exist in Ṙn and that either

`‖·‖(γi) is uniformly bounded,

or

(2.1) y =∞ and `‖·‖(γi ∩BR), R ≥ 1 uniformly bounded independent of i

holds.
Moreover, let {Ji}i∈N be a uniformly bounded sequence with J ≥ 1 and car(γi, Ji)

is the corresponding Ji-carrot joining xi toward yi, respectively. Then up to relabeling
the sequence,

(i) in (Rn, ‖ · ‖)
(2.2) γi → γ locally uniformly,

and

(2.3) car(γ, J) ⊂
+∞⋂
m=1

+∞⋃
i=m

car(γi, Ji),

where J := lim infi→+∞ Ji,
(ii) if `‖·‖(γi) is uniformly bounded, then

(2.4) `‖·‖(γ) ≤ lim inf
i→+∞

`‖·‖(γi).

Proof. Case 1: `‖·‖(γi) is uniformly bounded. Then our assumption implies that,
for some L > 0,

li := `‖·‖
(
γi
)
≤ L.

As {Ji}i∈N is a uniformly bounded sequence, we may assume

(2.5) l∞ := lim
i→+∞

li, J := lim
i→+∞

Ji

with l∞ ≤ L.
By parameterizing γi via arc length on [0, L], up to extending as a constant curve

if necessary on the interval [`‖·‖(γi), L], we obtain that {γi(·)}i∈N is equicontinuous
and uniformly bounded as xi → x 6= ∞. Thus, up to passing to a subsequence, it
follows from the Arzelá–Ascoli theorem that, up to extracting a subsequence,

(2.6) γi → γ ∈ C([0, L];Rn) uniformly.

As γi is 1-Lipschitz, γ is also 1-Lipschitz, and thus

(2.7) `‖·‖(γ) ≤ lim inf
i→∞

`‖·‖(γi)

as desired.
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In addition, for any point ζ ∈ car(γ, J), there exists tz ∈ (0, L] with z = γ(tz) ∈ γ
so that

(2.8) ζ ∈ B‖·‖(z, `‖·‖(γ([0, tz]))/J),

which yields a positive constant δ := `‖·‖(γ([0, tz]))/J − ‖z − ζ‖ > 0.
Note that (2.6) yields the existence of a sequence {zi}i∈N for which zi = γi(tz) ∈ γi

and zi → z as i→∞. Therefore, by (2.7), for any positive ε < δ/2, when i ≥ i0 for
some big integer i0, we have ‖zi − z‖ < ε and

`‖·‖(γ([0, tz])) ≤ `‖·‖(γi([0, tz])) + ε.

As a result, combining (2.8) and the triangle inequality, the estimate above gives

‖zi − ζ‖ ≤ ‖z − ζ‖+ ‖zi − z‖ < ‖z − ζ‖+ ε

≤ (`‖·‖(γ([0, tz]))/J − δ) + ε ≤ `‖·‖(γi([0, tz]))/J + 2ε− δ
< `‖·‖(γi([0, tz]))/J,

so that

ζ ∈
+∞⋃
i=m

B‖·‖
(
zi, `‖·‖(γi([0, tz]))/Ji

)
⊂

+∞⋃
i=m

car(γi, Ji).

Consequently, ζ ∈
⋂+∞
m=1

(⋃+∞
i=m car(γi, Ji)

)
, which implies (2.3). In conclusion, when

y 6=∞, Lemma 2.1 holds.

Case 2: y = ∞ and `(γi) → ∞. In this case, as γi is locally rectifiable and
satisfies (2.1), via suitable truncation, by Step 1 and applying a diagonal argument,
we have γi converges locally uniformly to a curve γ parametrized by arc length on
[0, ∞). Similarly, by taking the union of carrots along γi, (2.3) is obtained also from
Step 1. �

For a bounded domain Ω and any rectifiable curve γ ⊂ Ω joining x to x0 with
x, x0 ∈ Ω, recall the definition of j(t;x, γ,Ω) in Definition 1.3. Then j(t;x, γ,Ω) is
continuous with respect to t ∈ [0, 1], and then the compactness of [0, 1] tells that
there exists a point t0 ∈ [0, 1] such that

`‖·‖(γ([0, t0]))

d‖·‖(γ(t0), ∂Ω)
= sup

t∈[0,1]

j(t;x,E,Ω) < +∞.

Thus,

J(x,Ω;x0) := inf

{
sup
t∈[0,1]

j(t;x, β,Ω): β ⊂ Ω is a curve joining x to x0

}
is finite. We next show that Lemma 2.1 ensures the existence of the rectifiable curve
who make this infimum be reached.

Lemma 2.2. Assume Ω ⊂ Rn is a bounded domain. Let x, x0 ∈ Ω be two
distinct points with J(x,Ω;x0) < +∞. Then there exists a rectifiable curve γ ⊂ Ω
joining x to x0 such that

sup
t∈[0,1]

j(t;x, γ,Ω) = J(x,Ω;x0).

Proof. Choose a minimizing sequence {γi}i∈N+ , γi ⊂ Ω of rectifiable curves join-
ing x to x0 so that

lim
i→∞

Ji := lim
i→∞

sup
t∈[0,1]

j(t;x, γi,Ω) = J(x,Ω;x0) =: J.
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Then by the Definition 1.3, the uniform boundedness of Ji implies that `‖·‖(γi) is
bounded uniformly. Thus by letting car(γi, Ji) be the Ji-carrot joining x to x0 for
i ∈ N, Lemma 2.1 tells that there exists a rectifiable curve γ of a J-carrot joining x
to x0, such that

car(γ, J) ⊂ Ω,

which implies that J ≥ supt∈[0,1] j(t;x, γ,Ω). On the other hand, the convergence of
Ji to J together with Definition 1.3, gives

J ≤ sup
t∈[0,1]

j(t;x, γ,Ω).

The proof is completed. �

Lemma 2.3. Let x0 ∈ Ω and Ω ⊂ Rn be a bounded J-carrot John domain with
J := J(Ω;x0). Then for any z ∈ Ω, J(Ω; z) is finite. Moreover, for any y ∈ Ω
satisfying

d‖·‖(y, ∂Ω) = max
x∈Ω

d‖·‖(x, ∂Ω),

we get J(Ω; y) ≤ C(n,C‖·‖, J).

This lemma directly follows from Theorem 3.6 in [25]. Despite their findings
being initially formulated for the standard Euclidean norm, one can establish them
for a general Minkowski norm in Rn by employing identical arguments, necessitating
only notational adjustments, with additional dependency on C‖·‖3.

Lemma 2.4. Let Ω ⊂ Rn be a bounded John domain. Then

J(·,Ω; ·) : Ω× Ω→ [1,+∞), (x, y) 7→ J(x,Ω; y),

is locally Lipschitz continuous.

Proof. Given (x, y) ∈ Ω×Ω and (x̂, ŷ) ∈ Ω×Ω close to (x, y), We first estimate

J(x̂,Ω; ŷ)− J(x,Ω; y)

from above and below, respectively.

Step 1: Estimate J(x̂,Ω; ŷ)− J(x,Ω; y) from above. Let

J := J(x,Ω; y).

Then Lemma 2.2 yields a rectifiable curve γ ⊂ Ω joining x to y together with the
corresponding J-carrot car(γ, J), such that

(2.9) sup
t∈[0,1]

j(t;x, γ,Ω) = J(x,Ω; y) = J and car(γ, J) ⊂ Ω.

As a consequence of the compactness of [0, 1], the definition of j(t;x, γ,Ω) gives us a
point s ∈ [0, 1], such that

(2.10)
`‖·‖(γ([0, s]))

d‖·‖(γ(s), ∂Ω)
= J = sup

t∈[0,1]

j(t;x, γ,Ω).

3In the proof of [25, Theorem 3.6], by choosing y as the center of the largest ball contained in
Ω, for any x ∈ Ω, the John curve γ, as the core of cig(γ, J) ⊂ Ω joining x to y, is proved to be the
core of car(γ, J1) for some J1. Due to the fact that K‖·‖ might not be symmetric with respect to
the origin, the upper bound estimate for `‖·‖(γ[x, y]) becomes (1 + C‖·‖)d‖·‖(y, ∂Ω), different from
the Euclidean case. Consequently, J1 further depends on C‖·‖; see also Remark 1.2.
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We claim that

(2.11) d‖·‖(γ, ∂Ω) ≥
d‖·‖(x, ∂Ω)

2C‖·‖J
.

Indeed, for any z ∈ γ ∩B‖·‖
(
x, 1

2
d‖·‖(x, ∂Ω)

)
, the triangle inequality gives

d‖·‖(z, ∂Ω) ≥ 1

2
d‖·‖(x, ∂Ω);

while for z ∈ γ \ B‖·‖
(
x, 1

2
d‖·‖(x, ∂Ω)

)
, it follows from (2.9) and the definition of

car(γ, J) that

d‖·‖(z, ∂Ω) ≥
`‖·‖(γ[x, z])

J
≥
`‖·‖(γ[z, x])

C‖·‖J
≥
d‖·‖(x, ∂Ω)

2C‖·‖J
.

As J ≥ 1, our claim (2.11) follows.
Let (x̂, ŷ) ∈ Ω× Ω close to (x, y) with

x̂ ∈ B‖·‖
(
x,
d‖·‖(x, ∂Ω)

2

)
and ŷ ∈ B‖·‖

(
y,
d‖·‖(y, ∂Ω)

2

)
.

Set

(2.12) γ̂ ⊂ Lx̂,x ∪ γ ∪ Ly,ŷ,
be a rectifiable curve joining x̂ to ŷ. where Lx̂,x is the line segment joining x̂ to x
and Ly,ŷ is the one joining y to ŷ. As y ∈ γ, we conclude from (2.10) that

`‖·‖(γ[x, y])

d‖·‖(y, ∂Ω)
≤

`‖·‖(γ([0, s]))

d‖·‖(γ(s), ∂Ω)
,

and hence
`‖·‖(γ[x, y])

d‖·‖(y, ∂Ω)− ‖y − ŷ‖
−
`‖·‖(γ([0, s]))

d‖·‖(γ(s), ∂Ω)

=

(
`‖·‖(γ[x, y])

d‖·‖(y, ∂Ω)−‖y−ŷ‖
−
`‖·‖(γ[x, y])

d‖·‖(y, ∂Ω)

)
+

(
`‖·‖(γ[x, y])

d‖·‖(y, ∂Ω)
−
`‖·‖(γ([0, s]))

d‖·‖(γ(s), ∂Ω)

)
≤ ‖y − ŷ‖
d‖·‖(y, ∂Ω)(d‖·‖(y, ∂Ω)− ‖y − ŷ‖)

`‖·‖(γ[x, y]).(2.13)

For each z ∈ γ̂, we now estimate
`‖·‖(γ̂[x̂, z])

d‖·‖(z, ∂Ω)
−
`‖·‖(γ([0, s]))

d‖·‖(γ(s), ∂Ω)

in three cases.
First of all, when z ∈ γ, as

`‖·‖(γ[x, z])

d‖·‖(z, ∂Ω)
≤ sup

t∈[0,1]

j(t;x, γ,Ω) =
`‖·‖(γ([0, s]))

d‖·‖(γ(s), ∂Ω)

by (2.10) and d‖·‖(γ, ∂Ω) = infw∈γ d‖·‖(w, ∂Ω), then we have

`‖·‖(γ̂[x̂, z])

d‖·‖(z, ∂Ω)
−
`‖·‖(γ([0, s]))

d‖·‖(γ(s), ∂Ω)
≤
`‖·‖(γ[x, z]) + ‖x− x̂‖

d‖·‖(z, ∂Ω)
−
`‖·‖(γ([0, s]))

d‖·‖(γ(s), ∂Ω)

≤ ‖x− x̂‖
d‖·‖(γ, ∂Ω)

.(2.14)
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Secondly, suppose that z ∈ Ly,ŷ. Then as (2.12) yields

`‖·‖(γ[x̂, z]) ≤ ‖z − y‖+ `‖·‖(γ[x, y]) + ‖x− x̂‖ ≤ ‖ŷ − y‖+ `‖·‖(γ[x, y]) + ‖x− x̂‖,

and the triangle inequality yields

d‖·‖(z, ∂Ω) ≥ d‖·‖(y, ∂Ω)− ‖y − z‖ ≥ d‖·‖(y, ∂Ω)− ‖y − ŷ‖,

it follows from (2.13) that

`‖·‖(γ̂[x̂, z])

d‖·‖(z, ∂Ω)
−
`‖·‖(γ([0, s]))

d‖·‖(γ(s), ∂Ω)

≤ ‖x− x̂‖+ ‖ŷ − y‖
d‖·‖(y, ∂Ω)− ‖y − ŷ‖

+
`‖·‖(γ[x, y])

d‖·‖(y, ∂Ω)− ‖y − ŷ‖
−
`‖·‖(γ([0, s]))

d‖·‖(γ(s), ∂Ω)

≤
‖x− x̂‖+ C‖·‖‖y − ŷ‖
d‖·‖(y, ∂Ω)− ‖y − ŷ‖

+
‖y − ŷ‖

d‖·‖(y, ∂Ω)(d‖·‖(y, ∂Ω)− ‖ŷ − y‖)
`‖·‖(γ[x, y])

≤
‖x− x̂‖d‖·‖(y, ∂Ω) + C‖·‖‖y − ŷ‖d‖·‖(y, ∂Ω) + ‖y − ŷ‖`‖·‖(γ[x, y])

d‖·‖(y, ∂Ω)
(
d‖·‖(y, ∂Ω)− ‖y − ŷ‖

)
≤

2C‖·‖(d‖·‖(y, ∂Ω) + `‖·‖(γ[x, y]))(
d‖·‖(y, ∂Ω)

)2 (‖x− x̂‖+ ‖y − ŷ‖)

≤
C(n,C‖·‖, J)

d‖·‖(y, ∂Ω)
(‖x− x̂‖+ ‖y − ŷ‖) .(2.15)

The last case is when z ∈ Lx̂,x, ‖x− z‖ ≤ ‖x− x̂‖ and then

d‖·‖(z, ∂Ω) ≥ d‖·‖(x, ∂Ω)− ‖x− z‖ ≥ d‖·‖(x, ∂Ω)− ‖x− x̂‖.

Thus we obtain that
`‖·‖(γ̂[x̂, z])

d‖·‖(z, ∂Ω)
−
`‖·‖(γ([0, s]))

d‖·‖(γ(s), ∂Ω)
≤ ‖x− x̂‖
d‖·‖(x, ∂Ω)− ‖x− x̂‖

−
`‖·‖(γ([0, s]))

d‖·‖(γ(s), ∂Ω)

≤ 2‖x− x̂‖
d‖·‖(x, ∂Ω)

.(2.16)

All in all, we conclude from (2.14),(2.15) and (2.16) that, for any t ∈ [0, 1],

`‖·‖(γ̂([0, t]))

d‖·‖(γ̂(t), ∂Ω)
−
`‖·‖(γ([0, s]))

d‖·‖(γ(s), ∂Ω)

≤ max

{
‖x− x̂‖
d‖·‖(γ, ∂Ω)

,
C(n,C‖·‖, J)

d‖·‖(y, ∂Ω)
(‖x− x̂‖+ ‖y − ŷ‖) , 2‖x− x̂‖

d‖·‖(x, ∂Ω)

}
.(2.17)

As a result, we conclude from (2.11) that

J(x̂,Ω; ŷ)− J(x,Ω; y)

≤ sup
t∈[0,1]

`‖·‖(γ̂([0, t]))

d‖·‖(γ̂(t), ∂Ω)
−
`‖·‖(γ([0, s]))

d‖·‖(γ(s), ∂Ω)

≤max

{
‖x− x̂‖
d‖·‖(γ, ∂Ω)

,
C(n,C‖·‖, J)

d‖·‖(y, ∂Ω)
(‖x− x̂‖+ ‖y − ŷ‖) , 2‖x− x̂‖

d‖·‖(x, ∂Ω)

}
≤
C(n,C‖·‖, J)

d‖·‖(γ, ∂Ω)
(‖x− x̂‖+ ‖y − ŷ‖) ≤

C(n,C‖·‖, J)

d‖·‖(x, ∂Ω)
(‖x− x̂‖+ ‖y − ŷ‖) .(2.18)
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Step 2: Estimate J(x,Ω; y) − J(x̂,Ω; ŷ) from above. Similarily, we repeat the
argument and gain the following estimate:

J(x,Ω; y)− J(x̂,Ω; ŷ) ≤
C(n,C‖·‖, J)

d‖·‖(x, ∂Ω)
(‖x− x̂‖+ ‖y − ŷ‖) ,(2.19)

when ‖x− x̂‖+ ‖y − ŷ‖ < δ for a constant δ = δ(x, y, C‖·‖) satisfying

0 < δ ≤ 1

2
min

{
d‖·‖(x, ∂Ω), d‖·‖(y, ∂Ω)

}
.

Detailed proof of (2.19) is included in the Appendix A.

Step 3: Conclusion. Combining (2.18) and (2.19), we get that J(·,Ω, ·) is con-
tinuous and

(2.20) |J(x,Ω; y)− J(x̂,Ω; ŷ)| ≤
C(n,C‖·‖, J)

d‖·‖(x, ∂Ω)
(‖x− x̂‖+ ‖y − ŷ‖) ,

when ‖x− x̂‖+ ‖y − ŷ‖ < δ. Thus for any (x, y) ∈ Ω× Ω, by letting

Ux,y :=

{
(a, b) ∈ Ω× Ω: ‖a− x‖+ ‖b− y‖ < 1

16C‖·‖
δ

}
,

the estimate (2.20) yields that whenever (x1, y1), (x2, y2) ∈ Ux,y,

(2.21) |J(x1,Ω; y1)− J(x2,Ω; y2)| ≤ Cx,y
dx,y

(‖x1 − x2‖+ ‖y1 − y2‖) ,

where
Cx,y = max

(a,b)∈Ux,y

C(n,C‖·‖, J(a,Ω; b)) <∞

by the John assumption on Ω, and

dx,y = min
(a,b)∈Ux,y

d‖·‖(a, ∂Ω).

From (2.21) we finally conclude that J(·,Ω; ·) is locally Lipschitz continuous. �

Recall that
J(Ω;x0) := sup

x∈Ω
J(x,Ω;x0).

Lemma 2.5. Let Ω ⊂ Rn be a bounded John domain. Then J(Ω; ·) : Ω →
[1,+∞) is a lower-semicontinuous function, such that

(i) For y ∈ Ω, rΩ := maxz∈Ω{d‖·‖(z, ∂Ω)}, we have

J(Ω; y) ≥
rΩ − d‖·‖(y, ∂Ω)

C‖·‖d‖·‖(y, ∂Ω)
;

(ii) Let xΩ ∈ Ω be a point with d‖·‖(xΩ, ∂Ω) = rΩ. Then J(Ω; ·) attains its
infimum in

{x ∈ Ω: d‖·‖(x, ∂Ω) ≥ r0},
where r0 := rΩ

1+2C‖·‖J(Ω;xΩ)
> 0.

Proof. Observe that for any x ∈ Ω, J(x,Ω; ·) is a continuous function in Ω by
Lemma 2.4. Then we find that J(Ω; ·) is a lower-semicontinuous function in Ω since

J(Ω; ·) = sup
x∈Ω

J(x,Ω; ·).
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Now we prove (i). Let xΩ ∈ Ω be a point satisfying

d‖·‖(xΩ, ∂Ω) = max
y∈Ω

{
d‖·‖(y, ∂Ω)

}
=: rΩ.

For any y ∈ Ω, combining the definition of J(xΩ,Ω; y), Lemma 2.2 and the triangle
inequality, there exists a rectifiable curve γ ⊂ Ω joining xΩ to y, such that

J(xΩ,Ω; y) = sup
a∈γ

`‖·‖(γ[xΩ, a])

d‖·‖(a, ∂Ω)
≥
`‖·‖(γ[xΩ, y])

d‖·‖(y, ∂Ω)
≥

`‖·‖(γ[y, xΩ])

C‖·‖d‖·‖(y, ∂Ω)
≥
rΩ − d‖·‖(y, ∂Ω)

C‖·‖d‖·‖(y, ∂Ω)
.

Then we have

(2.22) J(Ω; y) ≥ J(xΩ,Ω; y) ≥
rΩ − d‖·‖(y, ∂Ω)

C‖·‖d‖·‖(y, ∂Ω)
.

Now we proceed to (ii). Recall that J(Ω;xΩ) < +∞ by Lemma 2.3. We define

r0 :=
rΩ

1 + 2C‖·‖J(Ω;xΩ)
and Ωr0 :=

{
x ∈ Ω: d‖·‖(x, ∂Ω) > r0

}
so that for any 0 < r ≤ r0

rΩ − r
C‖·‖r

≥ rΩ − r0

C‖·‖r0

= 2J(Ω;xΩ).

Then since xΩ ∈ Ωr0 , for any z ∈ Ω \ Ωr0 , we conclude from (2.22) that

J(Ω; z) ≥ 2J(Ω;xΩ) > J(Ω;xΩ) ≥ inf
x∈Ωr0

J(Ω;x).

Then the above estimate yields that infx∈Ω J(Ω;x) = infx∈Ωr0
J(Ω;x).

Notice that Ωr0 is a compact set and J(Ω; ·) is a lower-semicontinuous function
in Ω. As a consequence, there exist a point b ∈ Ωr0 such that

J(Ω; b) = inf
x∈Ωr0

J(Ω;x) = inf
x∈Ω

J(Ω;x). �

We further need an auxiliary lemma regarding Hausdorff convergence.

Lemma 2.6. Suppose that {Kj}j∈N is a sequence of compact sets converging
to a compact set K in the Hausdorff metric and the interior of K is denoted as Ω.
Assume further that

inf
j∈N

max
x∈Kj

d‖·‖(x, ∂Kj) ≥ r0.

Then for any r ∈ (0, r0] and any converging sequence {xj}j∈N satisfying xj ∈ Kj and

d‖·‖(xj, ∂Kj) ≥ r,

the limit x := limj→∞ xj satisfies

(2.23) x ∈ Ω and d‖·‖(x, ∂Ω) ≥ r.

Proof. As Kj converge to K in the Hausdorff metric by our assumption, we claim
that K can be explicitly represented as

(2.24) K =
+∞⋂
m=1

Cl

(
+∞⋃
j=m

Kj

)
.

This conclusion can be found in [8, Exercise 7.3.4].
Now by (2.24) and the convergence of xj, we have

(2.25) {x} =
+∞⋂
m=1

Cl

(
+∞⋃
j=m

{xj}

)
⊂

+∞⋂
m=1

Cl

(
+∞⋃
j=m

Kj

)
= K.
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Choosing ε > 0 sufficiently small and for any r ∈ (0, r0], there is j0 ∈ N, such that

‖xj − x‖ < ε

for any j ≥ j0. Thus, we get

d‖·‖(x,K
c
j ) ≥ d‖·‖(xj, K

c
j )− ‖xj − x‖ ≥ r − ε ∀j ≥ j0.

The estimate above yields that

d‖·‖

(
x,

(
Cl

(
+∞⋃
j=m

Kj

))c)
≥ d‖·‖

(
x,

(
+∞⋃
j=m

Kj

)c)
≥ r − ε ∀m ≥ j0.

Let m→ +∞, then we have

d‖·‖(x,K
c) ≥ r − ε.

Further let ε→ 0, from the above estimate and (2.25) we get (2.23). �

Now we are ready to show Theorem 1.7.

Proof of Theorem 1.7. Assume that

J := lim inf
j→+∞

John(Ωj) ≤ J0 <∞.

Let

Ωj,r :=
{
x ∈ Ωj : d‖·‖(x, ∂Ωj) ≥ r

}
and Ωr :=

{
x ∈ Ω: d‖·‖(x, ∂Ω) ≥ r

}
for some r > 0 to be determined. Further let {Ωj}j∈N+ be a minimizing sequence
and xΩj

∈ Ωj be a point satisfying

d‖·‖(xΩj
, ∂Ωj) = max

x∈Ωj

d‖·‖(x, ∂Ωj) =: rΩj
.

On the other hand, by Lemma 2.5, for each i ∈ N there exists a (center) point
xj ∈ Ωj,r, such that

J(Ωj;xj) = John(Ωj).

We remark that xj might not be xΩj
. Nevertheless, by Lemma 2.3 we have

(2.26) J(Ωj;xΩj
) ≤ C(n,C‖·‖, J0).

In addition, since (Cn, dH) is complete and bounded subsets are precompact, up
to passing to a subsequence, {Ωi}i∈N converges in the Hausdorff metric to a compact
set A. We set the interior of A as Ω.

Step 1: rΩj
is uniformly bounded away from 0. To this end, for each j ∈ N+, the

definition of J(Ωj;xΩj
) and Lemma 2.2 tell that, for any x ∈ Ωj \ {xΩj

}, there exists
a rectifiable curve βj joining x to xΩj

, such that

sup
a∈[0,1]

`‖·‖(βj([0, a]))

d‖·‖(βj(a), ∂Ωj)
= J(x,Ωj;xΩj

) ≤ J(Ωj;xΩj
)

and thus by (2.26)

`‖·‖(βj[x, xΩj
]) ≤ sup

a∈[0,1]

`‖·‖(βj([0, a]))

d‖·‖(βj(a), ∂Ωj)
d‖·‖(xΩj

, ∂Ωj)

≤ J(Ωj;xΩj
)d‖·‖(xΩj

, ∂Ωj) ≤ C(n,C‖·‖, J0)rΩj
.

This yields that Ωj ⊂ B‖·‖(xΩj
, C(n,C‖·‖, J0)rΩj

), from which we conclude

c0|B‖·‖(0, 1)| ≤ |Ωj| ≤ |B‖·‖(0, 1)|(C(n,C‖·‖, J0)rΩj
)n.
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As a result, we conclude that

(2.27) rΩj
≥ c

for some c = c(n, C‖·‖, J0, c0) > 0.

Step 2: xj is uniformly away from the boundary. Up to further extracting a
subsequence, we may assume

xΩ := lim
j→+∞

xΩj
∈ Rn.

Recalling Lemma 2.6 and (2.27), it follows that

max
x∈Ω

d‖·‖(x, ∂Ω) ≥ d‖·‖(xΩ, ∂Ω) ≥ c > 0.

In addition, we can choose r > 0 so that

r ≤ inf
j∈N

rΩj

1 + 2C‖·‖J(Ω;xΩj
)
,

where its existence is ensured by (2.27), (2.26) and Lemma 2.5.
Recall that xj ∈ Ωj,r. Then up to further passing to a subsequence, we may

assume that the limit x of {xj}j∈N exists, and Lemma 2.6 implies that x ∈ Ωr .

Step 3: Lower semicontinuity of John(Ωj). Let Ji := John(Ωj). Note that for any
y ∈ Ω, Hausdorff convergence yields the existence of a sequence yj ∈ Ωj such that
limj→+∞ yj = y. Combining the definition of John(Ωj), Lemma 2.2 and Lemma 2.5,
for each j ∈ N we obtain a rectifiable curve γj ⊂ Ωj joining yj to xj such that the
corresponding Ji-carrot car(γj, Jj) satisfies

car(γj, Jj) ⊂ Ωj,

which, due to the fact that Ωj is uniformly bounded and Jj ≤ J0 for each j ∈
N+, yields that `‖·‖(γj[yj, xj]) ≤ J0 maxj∈N+ rΩj

. Then by Lemma 2.1, there exists a
rectifiable curve γ ⊂ Ω joining y to x so that the J-carrot car(γ, J) (as a Euclidean
open set) satisfies

(2.28) car(γ, J) ⊂
+∞⋂
m=1

(
+∞⋃
j=m

car(γj, Jj)

)
⊂

+∞⋂
m=1

Cl

(
+∞⋃
j=m

Ωj

)
= A.

As Ω is the interior of A, from (2.28) we have car(γ, J) ⊂ Ω, which implies that

(2.29) J(y,Ω;x) ≤ J.

To conclude, each y ∈ Ω can be joint from x by a rectifiable curve inside Ω, which
implies that Ω is connected. Furthermore, the arbitrariness of y in (2.29) yields

John(Ω) ≤ J(Ω;x) ≤ J = lim inf
j→+∞

John(Ωj).

We complete the second part of the proof. �

3. John component of unbounded carrot John domain

In this section, we consider the John domain defined via the standard Euclidean
norm | · |.

The proof of Theorem 1.9 is rather technical since most of the sets defined in
question are open. To obtain the setsWj,∞ as mentioned in Theorem 1.9, we initially
decompose BR \ K into at most C(n, J)-many sets {Vj, R}. Subsequently, for each
y ∈ Vj,R, we create a bounded J ′-carrot John domain Ωj,R,y (refer to Proposition 3.2).
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In the proof of Theorem 1.9, we choose sequences of points xj,r ∈ Vj,R along with the
corresponding John curves γxj,r extending from xj,r towards∞, where r is a positive
number with r ≤ R. This selection ensures that we can obtain sets

Wj,R = Ωj, R,xj,r ⊂ BC′R, C ′ = C ′(n, J).

In particular, by eventually choosing xj ∈ Rn suitably,

Wj,∞ :=
⋃

R>|xj |

Wj,R ⊂ Rn \K

fulfills the condition that for every pair of distinct points z, w ∈ Wj,∞, there exists a
point a ∈ γxj to which both z and w can be connected by γ̂z and γ̂w, respectively.
Moreover, these connecting curves satisfy the properties (1.5) and (1.6).

Prior to identifying the desired bounded John domain Ωj,R,y, we rely on the
following proposition. While this technique has been commonly employed in previous
manuscripts, such as [22], it has not been explicitly formulated, to the best of our
knowledge, in the context of our present work.

Proposition 3.1. Let J ≥ 1. Assume that γ ⊂ Rn is a locally rectifiable curve
joining x to y, where x ∈ Rn and y ∈ Ṙn (y may be∞). Then car(γ, J) is a J-carrot
John domain.

To be more specific, for any z ∈ car(γ, J), we can find a rectifiable curve γz
joining z to y, such that for some η ∈ γ, we have

γ[η, y] = γz[η, y]

and for each a ∈ γ[η, y] \ {∞},

(3.1) `(γz[z, a]) ≤ `(γ[x, a]), car(γz, J) ⊂ car(γ, J).

Proof. For any z ∈ car(γ, J), the definition of car(γ, J) yields a ball

B(η, `(γ[x, η])/J) ⊂ car(γ, J)

for some points η ∈ γ \ {x} so that z ∈ B(η, `(γ[x, η])/J).
Let Lz,η be the line segment joining z to η and then γz := Lz,η∪γ[η, y] is a locally

rectifiable curve joining z to y. When a ∈ Lz,η,

(3.2) `(γz[z, a]) ≤ d (a, ∂B(η, `(γ[x, η])/J)) ≤ `(γ[x, η])/J.

When a ∈ γ[η, y], by applying (3.2) with a = η there, we have

`(γz[z, a]) ≤ `(γz[z, η]) + `(γz[η, a]) ≤ `(γ[x, η])

J
+ `(γ[η, a])

≤ `(γ[x, η]) + `(γ[η, a]) = `(γ[x, a]).

To conclude, we obtain that

`(γz[z, a]) ≤ `(γ[x, a]),

which is the first formula of (3.1). The second one follows directly from our con-
struction of car(γz, J) and car(γ, J), and we conclude the lemma. �

3.1. A decomposition Vj, R of BR \ K. Now for any x ∈ Rn \K, we choose
a John curve γx ⊂ Rn \K joining x towards ∞ with car(γ, J) ⊂ Rn \K. Although
there could be many choices of curves for x ∈ Rn \K, we just choose one of them.
Let Γ = {γx}x∈Rn\K be the collection of these chosen curves. In what follows, for any
points x ∈ Rn \K, γx always refers to this particular choice of John curve.
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Note that for any R > 0, we have BR ∩ K 6= ∅ as 0 ∈ K. Our first step is to
decompose BR \ K into finitely many subsets Vj,R so that, there exists a collection
Bj,R of at most C(n, J)-many balls, whose centers are on ∂B3R and whose radii at
least J−1R, satisfying that, for any x ∈ Vj,R, we can find a ball B ∈ Bj,R with

γx ∩B 6= ∅.

To this end, observe that for each x ∈ BR \K and γx ∈ Γ, there exists a point

(3.3) xR ∈ γx ∩ ∂B3R

so that

(3.4) 2R ≤ `(γ[x, xR]) ≤ Jd(xR, K).

Consider the collection of closed balls

(3.5) {Bx}x∈BR\K :=

{
B

(
xR,

d(xR, K)

2

)}
x∈BR\K

.

Then thanks to (3.4) and 0 ∈ K, we obtain that

(3.6)
R

J
≤ d(xR, K)

2
≤ 2R,

and hence Bx ∩BR = ∅.
We next let

AR :=
⋃

x∈BR\K

{xR}

be the collection of the centers of Bx’s. By Bescovitch’s covering theorem, there
exists a subcollection {Bi}i∈N of {Bx}x∈BR\K consisting of at most countably many
balls, such that

(3.7) χAR
(z) ≤

∑
Bi

χBi
(z) ≤ C(n) ∀z ∈ Rn \K;

see Figure 2.

KBR

∂B3R

Figure 2. The set K is the union of black lines. We apply Bescovitch’s covering theorem to
cover the set AR with balls centered at ∂B3R.

Recall that by (3.6)
Bi ⊂ B5R \BR
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and |Bi| ≥ c(n, J)Rn. Thus we have at most C(n, J)-many elements in {Bi} by
(3.7). As a result, the union of balls ⋃

i

Bi

has at most N̂ = N̂(n, J) components Uj,R for j ∈ {1, · · · , NR} and

NR ≤ N̂ = N̂(n, J);

By defining Uj, R to be empty for j > NR, we may assume that there exist exactly N̂
components Uj,R, and each Uj,R contains at most N̂ balls. We write

(3.8) Bj,R = {Bi : Bi ⊂ Uj,R}

Now it follows from our construction, for any x ∈ BR \ K, there exists some
1 ≤ j ≤ NR so that, xR ∈ γx is covered by a ball in Bj,R. Thus, by defining

(3.9) Vj,R := {x ∈ BR \K : xR ∈ D for some D ∈ Bj,R},

we obtain the desired decomposition of BR \K. The set Vj, R is defined to be empty
if Uj, R is empty.

3.2. Construction of Ωj, R, y. Given R > 0 and j ∈ {1, · · · , NR}, recall the
construction of Bj,R and Vj,R in the last subsection. Then for each point y ∈ Vj,R
we set up a bounded J ′-carrot John domain Ωj,R,y with John center yR, where J ′ =
J ′(n, J), such that

Vj,R ⊂ Ωj,R,y and Ωj,R,y ⊂ (Rn \K) ∩BC′R

where C ′ = C ′(n, J); see Figure 3. We formulate it as the following proposition.

y

γy[y, yR]

Vj, R

Figure 3. The set Vj, R may not necessarily be connected. We connect each point in Vj, R to the
curve γy[y, yR] using appropriate curves. Subsequently, we take the union of the carrots surrounding
these curves to form Ωj, R, y.

Proposition 3.2. For fixed y ∈ Vj, R and 1 ≤ j ≤ N̂ with N̂ = N̂(n, J) defined
above, the set

(3.10) Ωj,R,y := car(γy[y, yR], J) ∪
⋃

z∈Vj,R

car(βz, J
′).

is a J ′-carrot John domain with John center yR, where J ′ = J ′(n, J) and βz is a
rectifiable curve joining z to yR satisfying γz[z, zR] ⊂ βz; recall that γx is a chosen
curve joining x toward ∞.
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Moreover, there exists C1 = C1(n, J) ≥ 4 so that, the curve βz joining z ∈ Vj,R
to yR that is the core of a J ′-carrot satisfying

`(βz) ≤ C1R

and

(3.11) Vj,R ⊂ Ωj,R,y, car(βz, J
′) ⊂ Ωj,R,y ⊂ (Rn \K) ∩B2C1R.

Proof. Suppose that Vj,R is non-empty, and fix y ∈ Vj,R. Then the corresponding
point yR ∈ γy ∩ ∂B3R is covered by some ball D1 ∈ Bj,R according to (3.8) and (3.9).
Then we join the center x̂1 of D1 to yR by a line segment Lx̂1,yR ⊂ D1.

Now for any z ∈ Vj,R, we claim that there exists a rectifiable curve βz ⊂ Rn \K
as the core of a J ′-carrot joining z to yR, such that γz[z, zR] ⊂ βz and

(3.12) car(βz, J
′) ⊂ Rn \K.

Indeed, the point zR ∈ γz ∩ ∂B3R is also covered by another ball D2 ∈ Bj,R as
z ∈ Vj,R. Likewise, we join zR to the center x̂2 of D2 by the line segment LzR,x̂2 ⊂ D2.

Recall that Uj,R is connected and consists of at most N̂ -many balls from Bj,R,
where N̂ = N̂(n, J). This implies that x̂1 and x̂2 can be joined by a union of at
most N̂ -many line segments with the endpoints being the centers of balls in Bj,R.
Therefore, combining with LzR,x̂2 and Lx̂1,yR , we can join zR to yR by a polyline
γzR,yR .

We show that
βz := γz[z, zR] ∪ γzR,yR

is the desired John curve. To this end, we estimate the length of βz and the distance
d(η,K) for any η ∈ βz, respectively.

We start with the estimate on the length of βz. Thanks to (3.6) and (3.8), for
any pair of intersecting balls D,D′ ∈ Bj,R, the line segments L joining the center of
D with radius r to the center of D′ with radius r′ satisfies

(3.13) L ⊂ D ∪D′ and `(L) ≤ r + r′ ≤ 4R.

In particular, (3.6) together with the facts that LzR,x̂2 ⊂ D2 and that Lx̂1,yR ⊂ D1

also yields `(LzR,x̂2) ≤ 2R, `(Lx̂1,yR) ≤ 2R. Therefore employing (3.13) and (3.4), the
construction of βz tells

`(βz) ≤ `(γz[z, zR]) + `(γzR,yR)

≤ Jd(zR, K) + `(LzR,x̂2) + `(Lx̂1,yR) + 4N̂(n, J)R

≤ C(n, J)R =: C1R;(3.14)

we may assume that C1 ≥ 4. This gives the first part of the proposition.
Towards (3.11), for any η ∈ βz, we need to estimate the distance d(η,K) from

above. First of all, note that when η ∈ γzR,yR , there exists some ball Dη ∈ Bj,R
containing η. Then combining (3.4),(3.5) and (3.6), we get

(3.15) d(η,K) ≥ d(Dη, K) ≥ R

J
.

Let

(3.16) J ′ := C1J.

Then combining (3.4), (3.14) and (3.15), we conclude

`(βz[z, η]) ≤ `(βz) ≤ C1R ≤ J ′d(η,K) when η ∈ γzR,yR .
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On the other hand, when η ∈ γx[x, xR], since our construction yields βz[z, η] =
γz[z, η], which is particularly contained in a John curve, it follows that

`(βz[z, η]) ≤ Jd(η, K) ≤ J ′d(η,K) when η ∈ γz[z, zR].

This implies (3.12). Moreover by Proposition 3.1, every point w ∈ car(βz, J
′) also

can be joined to yR by a rectifiable curve γ̂w satisfying

`(γ̂w) ≤ `(βz) and car(γ̂w, J
′) ⊂ car(βz, J

′).

Hence, by employing (3.12), the arbitrariness of z gives the second formula in (3.11).
The first formula in (3.11) holds due to z ∈ Cl(car(βz, J

′)), the closure of the carrot,
for any z ∈ Vj,R. �

We need two more technical lemmas. The first one states how to choose a smaller
carrot in the union of two carrots.

γ1

γ2
z1

z2

y2

y1

Figure 4. The two curves γ1 and γ2 are presented, respectively, with their end points and the
intersection point y2.

Lemma 3.3. Let 1 ≤ J1 ≤ J2. Assume that z1, z2 ∈ Rn and y1 ∈ Ṙn. Let γ1 be
a rectifiable curve joining z1 to y1. If there exists a curve γ2 joining z2 to some point
y2 ∈ γ1, so that

(3.17)
`(γ2[z2, y2])

J2

≤ `(γ1[z1, y2])

J1

,

then, for any point w ∈ γ1[y2, y1), the curve γ̂ := γ2∪γ1[y2, w] joining z2 to w satisfies

(3.18) car(γ̂, J2) ⊂ car(γ2, J2) ∪ car(γ1, J1).

See Figure 4 for a illustration.

Proof. We first note that

(3.19) car(γ̂[z2, y2], J2) ⊂ car(γ2, J2).

In addition, for any a ∈ γ1[y2, w], the assumption J1 ≤ J2 together with (3.17) yields
`(γ̂[z2, a])

J2

=
`(γ2[z2, y2])

J2

+
`(γ1[y2, a])

J2

≤ `(γ1[z1, y2])

J1

+
`(γ1[y2, a])

J1

≤ `(γ1[z1, a])

J1

.

As a result, for any a ∈ γ1[y2, w], the definition of car(γ1, J1) tells that

B

(
a,
`(γ̂[z2, a])

J2

)
⊂ B

(
a,
`(γ1[z1, a])

J1

)
⊂ car(γ1, J1).
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Thus, by recalling the definition of car(γ̂, J2) and (3.19), we finally get (3.18). �

Lemma 3.4. Let x, y, z ∈ Rn and J ≥ 1. Assume that there exist two curves
γx,z, γy,z respectively joining x, y to z. We denote the parametrization of

γ := γx,z ∪ γy,z
starting from x and ending at y as γ1, and the one in the reversed direction, starting
from y and ending at x, as γ2. Then there exists a ball B with center a ∈ γ satisfying

car(γ1[x, a], J) ∪ car(γ2[y, a], J) ⊂ car(γx,z, J) ∪ car(γy,z, J)

and radius r satisfying

r =
`(γ1[x, a])

J
=
`(γ2[y, a])

J
.

Remark 3.5. Lemma 3.4 is a corollary following from [25, Theorem 3.6] and [25,
Lemma 4.3]. Since [25, Lemma 4.3] has used the concept of cigar in the statement,
for the sake of completeness, we provide a proof avoiding the concept of “cigar” in
the Appendix B.

Now we are ready to prove Theorem 1.9.

Proof of Theorem 1.9. We construct a sequence {Wj,∞}j∈{1,··· ,N} inductively.
Step 1: Construct W1,∞. We start from a point x1 ∈ Rn \K close to the origin.

Then for any R ≥ 1, the corresponding point (x1)R ∈ γx ∩ ∂B3R is covered by some
ball, say DR ∈ B1,R. Thus, by (3.9), we know that

(3.20) x1 ∈ V1,R.

Recall the definition (3.10). Let

W1,R := Ω1,R,x1 , and W1,∞ :=
⋃
R≥1

W1,R.

Then from (3.20) and (3.10), it follows that

car(γx1 [x1, (x1)R], J) ⊂ W1, R, and car(γx1 , J) ⊂ W1,∞,

and from Proposition 3.2 that W1, R is J ′-carrot John domain with W1,R ⊂ B2C1R.

Step 2: Proceeding inductively to construct {Wj,∞}. We run the induction based
on the two subindices j and r for Wj, r.

For any r > 0, define x1, r := x1. Suppose that for some m ≥ 1, via the induction
process, we have obtained points {xj}mj=1 and the corresponding sets {Wj,R}mj=1 so
that for any 1 ≤ j ≤ m, R > |xj| and some r = r(R, j) > 0,

Wj,R := Ωj,R,xj,r , and Wj,∞ :=
⋃

R>|xj |

Wj,R for some r < R.

Suppose that, for some s > 0

(3.21) Bs \

(
K ∪

m⋃
j=1

W j, s

)
6= ∅.

This yields the existence of another point in Bs \
(
K ∪

⋃m
j=1W j, s

)
. Take r > 0 to

be (almost) the smallest s > 0 for which (3.21) holds. Next, we consider two cases.
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Case 1: Suppose that

(3.22) Br \K ⊂
⋃
R≥r

m⋃
j=1

Vj,R.

R

R′′

V2, R′
V3, R

V1, R′′

R′

V2, R′′

V3, R′′

Figure 5. The set W3, R is contained in W2, R′ , and W2, R′ is contained in W1, R′′ , where
R ≤ R′ ≤ R′′. Eventually they are all contained in W1,∞. However, we note that W3, R and W3, R′′

could have no intersection.

Since Vj, r is a decomposition of Br \ K for any r > 0, (3.21) and (3.11) imply
that there exists some point xm+1, r ∈ Vm+1,r, and

(3.23) car
(
γxm+1, r [xm+1, r, (xm+1, r)r], J

)
⊂ Ωm+1,r, xm+1, r

according to Proposition 3.2. Now from (3.22) it follows that for some R > r , we
have

(3.24) xm+1,r ∈ Vk,R 6= ∅, for some 1 ≤ k ≤ m.

Let R′ be the infimum among all positive number for which (3.24) happens. Then if
R′ > r, we define

Wm+1, s := Ωm+1, s, xm+1, r .

for r ≤ s < R′. If R′ = r, then we only define Wm+1, s := Ωm+1, s, xm+1, r for s = r.
In addition, it follows from (3.23) that

car
(
γxm+1, r [xm+1, r, (xm+1, r)s], J

)
⊂ Wm+1, s

and from Proposition 3.2 thatWm+1, s is J ′-carrot John domain withWm+1,s ⊂ B2C1s.
Next we check if

(3.25) Br \

(
K ∪

m+1⋃
j=1

W j, r

)
6= ∅.

If it is non-empty, we continue to define Wm+2, r and iterate our process. Otherwise,
we define Wj,r := ∅ for j ∈ {m + 1, · · · , N̂}. Then increase r until (3.25) holds for
some r′ ≥ r, and consider the set Wm+1, r′ .

Case 2: If (3.22) fails, then there exists a point xm+1,r /∈ Vj,R for any k ∈
{1, · · · ,m} and R ≥ r. Since {Vj, R} decomposes BR \K, then for every R > r, there
exists kR ∈ {m+ 1, · · · , N̂} such that xm+1,r ∈ VkR,R. Then up to relabeling the first
subindex of {Vj,R}N̂j=m+1, we may assume that xm+1,r ∈ Vm+1,R.
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As we need to define Wm+1,∞ later, in order to distinguish from the first case, we
write xm+1 := xm+1,r (also recall that x1 := x1, r at the beginning of Step 2). Then
define

Wm+1, s := Ωm+1, s, xm+1 for all s > |xm+1|,
and let
(3.26) Wm+1,∞ :=

⋃
R>|xm+1|

Wm+1,R.

Likewise, (3.11) gives
car(γxm+1 [xm+1, (xm+1)R], J) ⊂ Wm+1, R ∀R > |xm+1|, car(γxm+1 , J) ⊂ Wm+1,∞,

and from Proposition 3.2 that Wm+1, R is J ′-carrot John domain with Wm+1,R ⊂
B2C1R.

Step 3: Uniformly finitely many Wj,∞. Our process is stopped when, for any
R > 0,

BR \

K ∪ N̂⋃
j=1

W j, R

 = ∅

and in particular, all Wj,∞ have been founded so that

(3.27) Rn =

(
K ∪

N⋃
j=1

W j,∞

)
for some N ≤ N̂ . Suppose that (3.27) is not true. Then there exists a point

z ∈ Rn \

(
K ∪

N⋃
j=1

W j,∞

)
.

Further observe that (3.26) and (3.11) give Vj,R ⊂ W j,∞. Then our induction
process tells that we can obtain a new set WN+1,∞ according to z /∈ Vj,R for any
j ∈ {1, · · · , N} and those sufficiently large R, which is impossible.

Moreover, for any 1 ≤ j ≤ N̂ , Wj, R is a J ′-carrot John domain with Wj,R ⊂
B2C1R, and for each R ≥ 1, there exists 0 < r ≤ R so that
(3.28) car(γxj , r[xj, r, (xj, r)R], J) ⊂ Wj, R

and
(3.29) car(γxj , J) ⊂ Wj,∞ for any 1 ≤ j ≤ N.

Step 4: Wj,∞ is J ′-carrot John with John center ∞. Fix j ∈ {1, · · · , N}. For
every z ∈ Wj,∞, it follows that z ∈ Wj, R for some R > |xj|. Hence, thanks to
Proposition 3.2, z can be joined to (xj)R by a rectifiable curve βz as the core of a
J ′-carrot satisfying
(3.30) `(βz) ≤ C1R and car(βz, J

′) ⊂ Wj,∞,

In addition, by employing the definition of J ′ (3.16) and (3.4), Proposition 3.2 tells

(3.31)
`(βz)

J ′
≤ R

J
≤
`(γxj [xj, (xj)R])

J
.

Further note that (xj)R ∈ γxj . Then by employing (3.31), Lemma 3.3 tells that the
curve ζz := βz ∪ γxj [(xj)R,∞) joining z toward ∞ satisfies

car(ζz, J
′) ⊂ car(βz, J

′) ∪ car(γxj , J).
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Moreover, (3.29) and (3.30) yield

car(βz, J
′) ∪ car(γxj , J) ⊂ Wj,∞.

Thus the arbitrariness of z implies that Wj,∞ is J ′-carrot John with John center ∞.

Step 5: Proof of (1.5) and (1.6). In addition, for each pair of points z, w ∈ Wj,∞,
we can find Rz, Rw > |xj|, such that z ∈ Wj,Rz and w ∈ Wj,Rw . We may assume
Rz ≤ Rw. Then Step 4 gives us two curves βz, βw joining z, w to (xj)Rz , (xj)Rw ,
respectively, such that

car(βw, J
′) ⊂ Wj,∞, car(βz, J

′) ⊂ Wj,∞ and
`(βz)

J ′
≤
`(γxj [xj, (xj)Rz ])

J
;

see (3.30) and (3.31). Therefore, applying (3.29) and Lemma 3.3 with γ1 = γxj [xj, (xj)Rw ],
γ2 = βz, and

J = J1 ≤ J2 = J ′,

there is a curve γ̂ := βz ∪ γxj [(xj)Rz , (xj)Rw ] joining z to (xj)Rw , such that

car(γ̂, J ′) ⊂ car(βz, J
′) ∪ car(γxj , J) ⊂ Wj,∞.

Then, by Lemma 3.4, we finally arrive at (1.5) and (1.6).

Step 6: Proof of (1.2) and (1.3). The remaining task is to prove (1.2) and (1.3).
As Wj,R is a J ′-carrot John domain with center (xj,r)R with some r < R, it follows
from the definition of John domain that

B

(
xj,r,

`(γxj,r [xj,r, (xj,r)R])

J

)
⊂ car(γxj,r [xj,r, (xj,r)R], J) ⊂ Wj,R

⊂ B ((xj,r)R, J
′d((xj,r)R, K)) .

As a result, by (3.4) and (3.6), the above estimate yields that

C(n, J)−1Rn ≤ |Wj,R| ≤ C(n, J)Rn

and then the inequality (1.2) follows.
Furthermore, given k ∈ {1, · · · , N̂}, we consider the set Wk,R which contains the

carrot
car(γxk, r [xk, r, (xk, r)R], J)

by (3.28). Then we choose 1 ≤ kl ≤ N̂ so that xk, r ∈ Vkl, 2lR; such a kl exists since
{Vj, 2lR}j covers B2lR \K.

Toward the inequality (1.3), recall thatWkl, 2lR is constructed via Proposition 3.2,
which, in particular by the definition of βxk, r , contains the carrot

car(γxk, r [xk, r, (xk, r)2lR], J ′);

recall that
γxk, r [xk, r, (xk, r)2lR] ⊂ βxk, r .

Especially,
car(γxk, r [xk, r, (xk, r)2lR], J ′) ⊂ Wkl, 2lR ∩Wkl+1, 2l+1R,

and (1.3) follows from (1.2) as∣∣car(γxk, r [xk, r, (xk, r)2lR], J ′)
∣∣ ≥ C(n, J)(2lR)n. �
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Appendix A. Proof of the estimate (2.19)

Proof. Let
Ĵ := J(x̂,Ω; ŷ).

Then using Lemma 2.2, there exists a rectifiable curve β ⊂ Ω joining x̂ to ŷ together
with the corresponding Ĵ-carrot car(β, Ĵ), such that

(A.1) sup
t∈[0,1]

j(t; x̂, β,Ω) = J(x̂,Ω; ŷ) = Ĵ and car(β, Ĵ) ⊂ Ω.

Analogously, thanks to the compactness of [0, 1], the definition of j(t; x̂, β,Ω) tells
that we can find a point ŝ ∈ [0, 1], such that

`‖·‖(β([0, ŝ]))

d‖·‖(β(ŝ), ∂Ω)
= Ĵ = sup

t∈[0,1]

j(t; x̂, β,Ω).

We repeat the argument by replacing γ, x and J respectively by β, x̂ and Ĵ in
the proof of (2.11). Then we have

(A.2) d‖·‖(β, ∂Ω) ≥
d‖·‖(x̂, ∂Ω)

2C‖·‖Ĵ
.

Further assume that Lx,x̂ ⊂ Ω is the line segment joining x to x̂ and Lŷ,y ⊂ Ω is the
one joining ŷ to y. Then

β̂ := Lx,x̂ ∪ β ∪ Lŷ,y
is a rectifiable curve within Ω joining x to y. Now we also repeat the argument by
replacing s, J, γ and γ̂ with ŝ, Ĵ , β and β̂, respectively, and swapping x, y respectively
with x̂, ŷ, respectively. By letting (x̂, ŷ) close enough to (x, y), (2.17) changes into

`‖·‖(β̂([0, t]))

d‖·‖(β̂(t), ∂Ω)
−
`‖·‖(β([0, ŝ]))

d‖·‖(β(ŝ), ∂Ω)

≤ max

{
‖x̂− x‖
d‖·‖(β, ∂Ω)

,
C(n,C‖·‖, Ĵ)

d‖·‖(ŷ, ∂Ω)
(‖x̂− x‖+ ‖ŷ − y‖) , 2‖x̂− x‖

d‖·‖(x̂, ∂Ω)

}
(A.3)

for any z ∈ β̂. Further note that when ‖x− x̂‖+ ‖y − ŷ‖ < δ for a sufficiently small
and positive constant δ = δ(x, y, C‖·‖) satisfying δ ≤ 1

2
min{d‖·‖(x, ∂Ω), d‖·‖(y, ∂Ω)}

at least, by (2.9) and (A.1), the estimate (2.18) gives

(A.4) Ĵ ≤ C(n,C‖·‖, J).

Consequently, combining the construction of β̂, (A.3), (A.2) and (A.4), it follows
that when ‖x− x̂‖+ ‖y − ŷ‖ < δ,

J(x,Ω; y)− J(x̂,Ω; ŷ) ≤ sup
t∈[0,1]

`‖·‖(β̂([0, t]))

d‖·‖(β̂(t), ∂Ω)
−
`‖·‖(β([0, ŝ]))

d‖·‖(β(ŝ), ∂Ω)

≤ max

{
‖x̂− x‖
d‖·‖(β, ∂Ω)

,
C(n,C‖·‖, Ĵ)

d‖·‖(ŷ, ∂Ω)
(‖x̂− x‖+ ‖ŷ − y‖) , 2‖x̂− x‖

d‖·‖(x̂, ∂Ω)

}

≤
C(n,C‖·‖, Ĵ)

d‖·‖(β, ∂Ω)
(‖x̂− x‖+ ‖ŷ − y‖) ≤

C(n,C‖·‖, Ĵ)

d‖·‖(x̂, ∂Ω)
(‖x̂− x‖+ ‖ŷ − y‖)

≤
C(n,C‖·‖, Ĵ)

d‖·‖(x, ∂Ω)
(‖x̂− x‖+ ‖ŷ − y‖) ≤

C(n,C‖·‖, J)

d‖·‖(x, ∂Ω)
(‖x− x̂‖+ ‖y − ŷ‖) ,(A.5)
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which yields (2.19). �

Appendix B. Proof of Lemma 3.4

Proof. We may assume that `(γx,z) ≥ `(γy,z). Then there exists a point a ∈ γx,z,
such that

(B.1) `(γx,z[x, a]) = `(γy,z) + `(γx,z[z, a]).

Note that the construction of γ tells that

(B.2) γ1[x, a] = γx,z[x, a], γ2[y, a] = γy,z ∪ γ1[z, a].

Then, due to (B.1) and (B.2), it follows that `(γ1[x, a]) = `(γ2[y, a]). This implies
that for each η ∈ γ2[z, a] = γx,z[z, a],

(B.3) `(γ2[y, η]) ≤ `(γ2[y, a]) = `(γ1[x, a]) ≤ `(γ1[x, η]).

Besides, (B.2) directly yields that

(B.4) car(γ1[x, a], J) ⊂ car(γx,z, J), car(γy,z, J) = car(γ2[y, z], J),

which, together with the definition of car(γy,z, J) and (B.3), implies that

car(γ1[x, a], J) ∪ car(γ2[y, a], J) ⊂ car(γx,z, J) ∪ car(γy,z, J).

As a result, the desired ball is

B = B

(
a,
`(γ1[x, a])

J

)
.

The proof is completed. �
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