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On the existence of Lp-optimal

transport maps for norms on RN

Guoxi Liu, Mattia Magnabosco and Yicheng Xia

Abstract. In this paper, we prove existence of Lp-optimal transport maps with p ∈ (1,∞) in

a class of branching metric spaces defined on RN . In particular, we introduce the notion of cylinder-

like convex function and we prove an existence result for the Monge problem with cost functions of

the type c(x, y) = f(g(y − x)), where f : [0,∞) → [0,∞) is an increasing strictly convex function

and g : RN → [0,∞) is a cylinder-like convex function. When specialised to cylinder-like norm, our

results shows existence of Lp-optimal transport maps for several “branching” norms, including all

norms in R2 and all crystalline norms.

Lp-mielessä parhaan massansiirron olemassaolo avaruuden RN normien suhteen

Tiivistelmä. Tässä tutkimuksessa todistetaan Lp-mielessä parhaan massansiirtokuvauksen

olemassaolo avaruudessa RN määriteltyjen haarautuvien metristen avaruuksien luokassa, kun p ∈

(1,∞). Erityisesti esitellään lieriömäisen konveksin funktion käsite ja osoitetaan olemassaolotulos

Mongen ongelmalle, jonka kustannusfunktio on c(x, y) = f(g(y − x)), missä f : [0,∞) → [0,∞) on

kasvava ja aidosti konveksi, ja g : RN → [0,∞) on lieriömäinen ja konveksi. Lieriömäisen normin eri-

koistapauksessa työn tulokset osoittavat Lp-mielessä parhaan massansiirtokuvauksen olemassaolon

useille ”haarautuville” normeille, kuten kaikille tason R2 normeille sekä kaikille kidenormeille.

1. Introduction

The theory of optimal transport has been deeply studied in recent years due to its
many applications in pure and applied mathematics [30, 26]. The optimal transport
problem was originally introduced by Monge in the 18th century and its modern
formulation in RN is as follows: given two Borel probability measures µ, ν ∈ P(RN)
(called marginals) and a non-negative Borel cost function c : RN × RN → [0,∞],
study the following minimisation problem:

(M) inf

{
ˆ

X

c(x, T (x)) dµ(x) : T : RN → RN Borel, T#µ = ν

}

.

For several applications it is particularly interesting to identify eventual minimisers
of (M), which are called optimal transport maps. However, the infimum of the
optimal transport problem is not realised in general and therefore optimal transport
maps do not exist for many marginals and cost functions. For the development of a
general theory it was thus necessary a breakthrough due to Kantorovich in 1942. He
introduce a more general formulation of the optimal transport problem for which the
minimisers exist in many cases. Defining the set of admissible transport plans from
µ to ν as

Adm(µ, ν) := {π ∈ P(RN × RN) : (p1)#π = µ and (p2)#π = ν},
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the Kantorovich’s formulation of the optimal transport problem aims to study the
minimisation:

(K) inf

{
ˆ

X×Y

c(x, y) dπ(x, y) : π ∈ Adm(µ, ν)

}

.

In this version of the optimal transport problem, whenever the cost function c : RN ×
RN → [0,∞] is lower semicontinuous, the infimum is attained and we will denote
it by C (µ, ν). The minimisers of the Kantorovich formulation are called optimal
transport plans and the set containing them all will be denoted by OptPlans(µ, ν).
An admissible transport plan π ∈ Adm(µ, ν) is said to be induced by a map if there
exists a µ-measurable map T : RN → RN such that π = (id, T )#µ. Notice that these
admissible plans are the ones considered in the Monge Formulation (M) and thus if
π = (id, T )#µ is an optimal transport plan then T is an optimal transport map.

The problem of addressing existence and uniqueness of optimal transport maps
has been already deeply studied. The first results in this direction were obtained
by Brenier [4, 5] and Rüschendorf–Rachev [25] for the L2-optimal transport prob-

lem in RN , i.e. with cost function c(x, y) = ‖x− y‖2eu. They proved that, whenever
the first marginal µ is absolutely continuous with respect to the Lebesgue measure
L N , there exists a unique optimal transport plan in OptPlans(µ, ν) and it is in-
duced by a map. Later, this result was generalised for the L2-optimal transport
problem, i.e. with cost c(x, y) = d(x, y)2, in smooth and nonsmooth metric measure
spaces (X, d,m). In particular, for smooth spaces, we mention the works by McCann
[21] in the Riemannian setting and by Ambrosio–Rigot [2] and Figalli–Rifford [10]
in the sub-Riemannian setting. In nonsmooth spaces, existence and uniqueness of
L2-optimal transport maps is usually proved under a synthetic curvature bound and
a non-branching assumption. We mention for example the following articles: [3, 23]
for Alexandrov spaces, [12, 24, 13, 7, 27, 20] under various curvature-dimension con-
dition and [6, 14] under quantitative properties on the reference measure. We remark
that, in the nonsmooth setting, it is particularly interesting to study the L2-optimal
transport problem, as it is the fundamental tool to formulate the groundbreaking
theory of CD(K,N) spaces, pioneered by Sturm [28, 29] and Lott–Villani [16].

For the purpose of this work it is fundamental to highlight that, as shown by
Rajala in [22] (see also [17, 19]), a non-branching assumption is necessary to prove
uniqueness of the optimal transport map. Indeed, even in the simplest examples of
branching spaces, such as (RN , ‖·‖∞ ,L N), we cannot hope to have a unique optimal
transport map between two given marginals. In this paper, we aim at proving exis-
tence of Lp-optimal transport maps with p ∈ (1,∞), i.e. for the cost c(x, y) = d(x, y)p,
in a class of branching spaces defined on RN . More specifically, we introduce the no-
tion of cylinder-like convex function and we prove an existence result (Theorem 5.1)
for cost functions of the type c(x, y) = f(g(y − x)), where f : [0,∞) → [0,∞) is
an increasing strictly convex function and g : RN → [0,∞) is a cylinder-like convex
function. Roughly speaking, a convex function is cylinder-like if its level sets look
like the curved surface of a cylinder. In particular, we obtain existence of optimal
transport maps for the Lp problem in RN equipped with a cylinder-like norm. This
class of norms contains a good amount of “branching” norms, including all norms in
R2 and all crystalline norms. We remark that, for the latter, existence of L2-optimal
transport maps was firstly proved in [18].

The strategy we use to prove our main result consists in considering a secondary
variational optimisation problem, obtained by minimising a second energy functional
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among all optimal transport plans. Then, proving that all minimisers of the sec-
ondary variational problem are induced by a map, will be sufficient to prove ex-
istence of optimal transport maps. This strategy was firstly applied in branching
spaces by Rajala [22] (see also [18, 15]), but it has been successful even in proving
existence of L1-optimal transport maps, see for example [1, 8, 9]. We highlight that
the L1-optimal transport problem is, for some aspects, similar to the Lp-problem
in branching spaces, as in both cases the cost function fails to be strictly convex.
However, the latter seems more complicated as it is more difficult to identify and
deal with the set where the cost function is not strictly convex.

A fundamental notion for our strategy is cyclical monotonity, which is one of
the most basic and important tools in the theory of optimal transport. We recall
that, given a cost function c : RN × RN → [0,∞], a set Γ ⊂ RN × RN is said to be
c-cyclically monotone if

n
∑

i=1

c
(

xi, yσ(i)
)

≥

n
∑

i=1

c (xi, yi)

for every n ≥ 1, every permutation σ of {1, . . . , n} and every (xi, yi) ∈ Γ for i =
1, . . . , n. As shown by the next proposition, c-cyclical monotonicity and optimality
are strictly related.

Proposition 1.1. Let c : RN × RN → [0,∞] be a lower semicontinuous cost

function. Then, every optimal transport plan π ∈ OptPlans(µ, ν) such that
´

c dπ <
∞ is concentrated in a c-cyclically monotone set.

In Section 4, we recall a “second-order” analogous of Proposition 1.1 for the
secondary variational optimisation problem, which will be the central tool in our
strategy.

Acknowledgments. G.L. acknowledges support from the Trinity College (Uni-
versity of Oxford) that funded the summer research project. M.M. acknowledges
support from the Royal Society through the Newton International Fellowship (award
number: NIF\R1\231659). Y.X. acknowledges support from the Mathematical Insti-
tute (University of Oxford) through the departmental funding for summer research
projects.

2. The set of strict convexity

In this section we introduce the set of strict convexity of a given convex function
on RN . This object will play a relevant role in the proofs of our results.

Definition 2.1. Given a convex function h : RN → [0,∞), we define its set of
strict convexity as

Hh =
{

(x, y) ∈ RN × RN : h(tx+ (1− t)y) < th(x) + (1− t)h(y), ∀t ∈ (0, 1)
}

.

Remark 2.2. By properties of convex functions we see that

Hc
h =

{

(x, y) ∈ RN × RN : h(tx+ (1− t)y) = th(x) + (1− t)h(y), ∀t ∈ (0, 1)
}

.

Moreover, since any real-valued convex function defined on RN is continuous, it’s
easy to show that Hc

h contains all its limit points, and so is closed. As a consequence,
Hh is open.

Theorem 2.3. Let h : RN → [0,∞) be a convex function and consider the cost

function c(x, y) = h(y− x). Let µ, ν ∈ P(RN) be Borel probability measures on RN
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such that µ ≪ L
N and C (µ, ν) < ∞. Let π ∈ OptPlans(µ, ν) be an optimal plan,

and let (πz)z∈RN be the disintegration kernel of π with respect to the projection p1

on the first coordinate. For a fixed z ∈ RN , define the probability measure π̃z by

π̃z(B) = πz(B + z) for all B ⊆ RN Borel. Then, the set

E =
{

z ∈ RN : ∃ x, y ∈ supp π̃z such that (x, y) ∈ Hh

}

has zero µ-measure.

Proof. First of all, we recall that, by definition, the map z 7→ πz is Borel mea-
surable, in the sense that z 7→ πz(B) is a Borel measurable function for each Borel
set B ⊂ RN . As a consequence, the map z 7→ π̃z is itself Borel measurable (in the
same sense). On the other hand, since Hh is an open subset of RN × RN we have

E =
{

z ∈ RN : π̃z × π̃z(Hh) > 0
}

,

therefore E is Borel measurable.
Now, suppose by contradiction that µ(E) > 0. Recalling that the map z 7→ π̃z is

Borel measurable, we define the measure γ on RN × RN as

γ :=

ˆ

RN

π̃z × π̃z dµ(z).

We claim that γ(Hh) > 0. Indeed, using the fact that Hh is open and defining

Ea,b,δ :=
{

z ∈ RN : π̃z(Bδ(a)) > 0, π̃z(Bδ(b)) > 0
}

,

we have that

E ⊆
⋃

a,b∈QN , δ∈Q+

Bδ(a)×Bδ(b)⊆Hh

Ea,b,δ.

Then, we can find a, b ∈ RN and δ > 0 such that γ(Hh) ≥ γ(Bδ(a) × Bδ(b)) > 0.
Moreover, using the inner regularity of finite Borel measures on RN , we deduce that
there exists a closed set H1 ⊆ Hh such that γ(H1) > 0.

Take (x̄, ȳ) ∈ supp γ
∣

∣

H1
. Since H1 is closed, we have that (x̄, ȳ) ∈ H1 ⊆ Hh. Then,

consider v̄ = x̄ − ȳ, and fix 0 < ǫ < 1
2
. By strict convexity in Bδ(a) × Bδ(b) ⊆ Hh,

we have that

h(x̄− ǫv̄)− h(x̄) < h(ȳ)− h(ȳ + ǫv̄).

By continuity of h, there exists δ > 0 such that

h(x− ǫv̄)− h(x) < h(y)− h(y + ǫv̄) for all (x, y) ∈ Bδ(x̄)×Bδ(ȳ).

Now, since (x̄, ȳ) ∈ supp γ
∣

∣

H1
⊆ supp γ, we deduce that γ(Bδ(x̄) × Bδ(ȳ)) > 0 and

consequently that

F :=
{

z ∈ RN : π̃z(Bδ(x̄)) > 0, π̃z(Bδ(ȳ)) > 0
}

is a set of positive µ-measure.
On the other hand, by Theorem 1.1, π is concentrated on a c-cyclically monotone

set Γ. For z ∈ RN write Γz := {y ∈ RN : (z, y) ∈ Γ}. Then, we have πz(Γz) = 1
µ-almost everywhere, and thus

G :=
{

z ∈ RN : π̃z

(

Bδ(x̄) ∩ (Γz − z)
)

> 0, π̃z

(

Bδ(ȳ) ∩ (Γz − z)
)

> 0
}

is a set of positive µ-measure, hence of positive Lebesgue measure. By Lebesgue’s
density point theorem, we can find a density point z̄ of G. In a neighbourhood of z̄
we thus can find z, z + ηv̄ ∈ G, for a suitable 0 < η < ǫ. Using the definition of G,
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there are x ∈ Bδ(x̄), y ∈ Bδ(ȳ) such that (z, z+x), (z+ηv̄, z+ηv̄+y) ∈ Γ. Therefore,
we conclude that

[c(z, z + y + ηv̄) + c(z + ηv̄, z + x)]− [c(z, z + x) + c(z + ηv̄, z + ηv̄ + y)]

= [h(y + ηv̄) + h(x− ηv̄)]− [h(x) + h(y)]

= h

(

η

ǫ
(y + ǫv̄) +

ǫ− η

ǫ
(y)

)

+ h

(

η

ǫ
(x− ǫv̄) +

ǫ− η

ǫ
(x)

)

− h(x)− h(y)

≤

[

η

ǫ
h(y + ǫv̄) +

ǫ− η

ǫ
h(y)

]

+

[

η

ǫ
h(x− ǫv̄) +

ǫ− η

ǫ
h(x)

]

− h(x)− h(y)

=
η

ǫ
(h(y + ǫv̄) + h(x− ǫv̄)− h(x)− h(y)) < 0.

This contradicts the c-cyclical monotonicity of Γ. �

As a consequence of the last theorem, we obtain the following corollary, which
was already proved by Gangbo and McCann [11] under some additional growth as-
sumption on the cost function. In particular, we provide a simpler proof of an easier
result that does not give any structural information about the optimal transport
map.

Corollary 2.4. Let h : RN → [0,∞) be a strictly convex function and consider

c(x, y) = h(y − x). Let µ, ν ∈ P(RN) be Borel probability measures on RN such

that µ ≪ L
N and C (µ, ν) < ∞. Then OptPlans(µ, ν) has a unique element and it

is induced by a map.

Proof. By assumption there exists at least one optimal transport plan; to show
that it is unique and it is induced by a map, it suffices to show that every optimal
plan is induced by a map. Indeed, suppose there are two distinct optimal plans
π1, π2 ∈ OptPlans(µ, ν), induced by maps T1, T2 respectively, which differ on a set of
positive µ measure. Then (π1 + π2)/2 is an optimal plan which is not induced by a
map, giving a contradiction.

Hence, take any π ∈ OptPlans(µ, ν). Since h is strictly convex, we have

Hh = {(x, y) ∈ RN × RN : x 6= y}.

Thus by Theorem 2.3, for µ-almost every z ∈ RN , supp π̃z contains one element.
Hence πz is a delta measure for µ-almost all z ∈ RN , and so π is induced by a
map. �

Specialising Corollary 2.4 to the Lp-optimal transport problem for (finite dimen-
sional) normed spaces, we obtain the following result.

Corollary 2.5. Let ‖·‖ be a strictly convex norm on RN and 1 < p < ∞.

Consider c(x, y) = ‖y − x‖p and let µ, ν ∈ P(RN) be Borel probability measures

with finite pth order moment on RN , such that µ ≪ L N . Then OptPlans(µ, ν) has

a unique element and it is induced by a map.

Remark 2.6. Observe that, in the last corollary, the finiteness assumption on
the pth order moments ensures that C (µ, ν) < ∞.

3. Cylinder-like convex functions

In this section, we introduce the notion of cylinder-like convex function, that will
be a central assumption in our main theorem. As already mentioned, the name is
due to the fact that, heuristically, a convex function is cylinder-like if its level sets
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look like the curved surface of a cylinder. In Proposition 3.4 and 3.5 we show that
the class of cylinder-like functions covers in particular all non-branching and a good
amount of branching norms in RN .

Definition 3.1. A convex function g : RN → [0,∞) is said to be cylinder-like if,
for every x̄, ȳ ∈ RN with x̄ 6= ȳ and g(x̄) = g(ȳ), there exists ǫ > 0 and δ > 0 such
that

(1) g(x− ǫ(x̄− ȳ)) ≤ g(x) ∀x ∈ Bδ(x̄) and g(y + ǫ(x̄− ȳ)) ≤ g(y) ∀y ∈ Bδ(ȳ),

where Br(z) denotes the Euclidean ball of radius r centred in z.

Remark 3.2. In Definition 3.1, if (1) holds for some ǫ > 0 and δ > 0, then it
also holds for every ε′ ∈ (0, ε) and δ′ ∈ (0, δ).

Remark 3.3 (Sufficient condition for functions to cylinder-like). It suffices to
check (1) of Definition 3.1 for points x̄, ȳ ∈ RN with x̄ 6= ȳ, g(x̄) = g(ȳ) and (x̄, ȳ) ∈
Hc

g .

To see this, fix ǫ ∈ (0, 1) and take any x̄, ȳ ∈ RN such that x̄ 6= ȳ, g(x̄) = g(ȳ)
and (x̄, ȳ) ∈ Hg. Then, by definition of Hg and since g(x̄) = g(ȳ), we have

g(x̄− ǫ(x̄− ȳ)) < g(x̄) and g(ȳ + ǫ(x̄− ȳ)) < g(ȳ).

Hence, using the continuity of the functions

z 7→ g(z − ǫ(x̄− ȳ))− g(z) and z 7→ g(z + ǫ(x̄− ȳ)− g(z),

we can find a suitable δ for which (1) holds.

The next two propositions show that the class of cylinder-like convex functions
covers a lot of interesting examples.

Proposition 3.4. The following convex functions are cylinder-like:

(i) any strictly convex norm on RN ,

(ii) any norm on R2,

(iii) the function f(x) = |〈v, x〉| where v ∈ RN is any vector.

Proof. (i) Follows from Remark 3.3, as given a strictly convex norm N on RN ,
no x̄ 6= ȳ can satisfy N(x) = N(y) and (x̄, ȳ) ∈ Hc

N .

(ii) Given a norm ‖·‖ on R2, convexity and non-negativity are automatic. By
Remark 3.3, it suffices to check (1) (for some ǫ > 0, δ > 0 and) for x̄ 6= ȳ, ‖x̄‖ = ‖ȳ‖
and

(2) ‖tx̄+ (1− t)ȳ‖ = ‖x̄‖ = ‖ȳ‖ ∀t ∈ (0, 1).

Let v̄ = x̄− ȳ and define the function

f : R → [0,+∞), f(t) := ‖ȳ + tv̄‖ .

Note that f is convex and constant on [0, 1], by (2). By the monotonicity of difference
quotients, f is increasing on [1/2,∞) and decreasing on (−∞, 1/2]. Define the cones

C1 := {λ(ȳ + µv̄) : λ > 0, µ ∈ (1/2, 3/2)},

C2 := {λ(ȳ + µv̄) : λ > 0, µ ∈ (−1/2, 1/2)}.

Choose δ > 0 such that

ǫ0 :=
1

2
min

{

dist(B̄δ(x̄), C
c
1), dist(B̄δ(ȳ), C

c
2)
}

> 0,
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where we have used the fact that for K ⊆ RN non-empty and compact and F ⊆ RN

non-empty and closed, dist(K,F ) := inf{d(x, y) : x ∈ K, y ∈ F} > 0, where d(x, y)
denotes the Euclidean distance.

Take any x ∈ Bδ(x̄) and call R := ‖v̄‖eu, where ‖·‖eu denotes the Euclidean
norm. Then, we have that x, x − ǫ0

R
v̄ ∈ C1. By definition of C1, there exist α > 0

and β ∈ (1/2, 3/2) such that

x = α(ȳ + βv̄),

therefore

x−
ǫ0
R
v̄ = α

(

ȳ +
(

β −
ǫ0
Rα

)

v̄
)

.

As x, x− ǫ0
R
v̄ ∈ C1, we have that

1

2
< β −

ǫ0
Rα

< β <
3

2

and thus, taking into account the monotonicity of f on [1/2,∞), we conclude that

(3)
∥

∥

∥
x−

ǫ0
R
v̄
∥

∥

∥
= αf

(

β −
ǫ0
Rα

)

≤ αf(β) = ‖x‖ .

Similarly, using the monotonicity of f on (−∞, 1/2], we deduce that

(4)
∥

∥

∥
y +

ǫ0
R
v̄
∥

∥

∥
≤ ‖y‖ .

The combination of (3) and (4) proves (ii).

(iii) This is straightforward using Remark 3.3. �

Proposition 3.5. The following statements hold:

(i) If f, g : RN → [0,∞) are cylinder-like convex functions, then so is max(f, g);
(ii) If M > N are positive integers, g : RN → [0,∞) is a cylinder-like convex

function and p : RM → RN is projection onto any N distinct coordinates of

RM , then g ◦ p is a convex cylinder-like function.

Proof. (i) Call h = max(f, g) and note that h is convex and takes values in
[0,∞). Then, take x̄, ȳ ∈ RN such that x̄ 6= ȳ and h(x̄) = h(ȳ). By Remark 3.3 we
may assume that (x̄, ȳ) ∈ Hc

h, hence h is constant on the line segment between x̄ and
ȳ.

We divide the problem into three cases.

Case 1: Assume one of the following holds:

• f(x̄) < h(x̄) and f(ȳ) < h(ȳ),
• g(x̄) < h(x̄) and g(ȳ) < h(ȳ).

Without losing generality we assume to be under the first assumption, the proofs in
the other case is analogous. Then, we have g(x̄) = h(x̄) = h(ȳ) = g(ȳ). By continuity
of f and h, we deduce that there is δ > 0 such that

h = g in Bδ(x̄) ∪ Bδ(ȳ).

We can then use the cylinder-like property of g to conclude the proof in this case.

Case 2: Assume one of the following holds:

• f(x̄) = h(x̄) and f(ȳ) < h(ȳ),
• g(x̄) = h(x̄) and g(ȳ) < h(ȳ),
• f(x̄) < h(x̄) and f(ȳ) = h(ȳ),
• g(x̄) < h(x̄) and g(ȳ) = h(ȳ).
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Suppose that the first assumption holds, the proofs for the other cases are similar.
In particular, we have f(x̄) = h(x̄) = h(ȳ) > f(ȳ). By continuity of f along the line
segment connecting x̄ and ȳ, we can find ǫ1 > 0 such that

f(x̄− ǫ1(x̄− ȳ)) < f(x̄),

Then, the continuity of the function

z 7→ f(z − ǫ1(x̄− ȳ))− f(z)

and of h, gives us δ1 > 0 such that

(5) f(x− ǫ1(x̄− ȳ)) < f(x) ≤ h(x) ∀x ∈ Bδ1(x̄).

Moreover, as f(ȳ) < f(x̄), we can find ρ > 0 such that

(6) h(y) = g(y) ∀y ∈ Bρ(ȳ).

On the other hand, by monotonicity of difference quotients of f along the line
segment connecting x̄ and ȳ, for all t ∈ (0, 1) we have

f((1− t)x̄+ tȳ) < f(x̄) = h(x̄) = h((1− t)x̄+ tȳ).

So we must have g = h on the open segment between x̄ and ȳ. By continuity the
equality holds on the closed segment, hence g(x̄) = g(ȳ). As g is cylinder-like, we
can find δ2 > 0 and ǫ2 > 0 such that

g(x− ǫ2(x̄− ȳ)) ≤ g(x) ≤ h(x) ∀x ∈ Bδ2(x̄),

g(y + ǫ2(x̄− ȳ)) ≤ g(y) ≤ h(y) ∀y ∈ Bδ2(ȳ).
(7)

Now, defining δ := min(δ1, δ2) and ǫ := min(ǫ1, ǫ2) and keeping in mind Remark 3.2,
the combination of (5) and (7) guarantees that

h(x− ǫ(x̄− ȳ)) ≤ h(x) ∀x ∈ Bδ(x̄).

Moreover, up to taking smaller δ and ε (cf. Remark 3.2), we can ensure that

y + ǫ(x̄− ȳ) ∈ Bρ(ȳ) ∀y ∈ Bδ(ȳ)

and thus the combination of (6) and (7) yields that

h(y + ǫ(x̄− ȳ)) ≤ h(y) ∀y ∈ Bδ(ȳ),

concluding the proof of this case.

Case 3: Assume that f(x̄) = h(x̄) = g(x̄) and f(ȳ) = h(ȳ) = g(ȳ). Let δ1 and
ǫ1 be the parameters with which (1) is satisfied for f and δ2 and ǫ2 the ones for g.
Then, taking δ = min(δ1, δ2) and ǫ = min(ǫ1, ǫ2) and keeping in mind Remark 3.2, it
is straightforward to see that (1) holds for h with δ and ǫ.

(ii) First, observe that g ◦ p is clearly convex and non-negative. Then, take any
distinct x̄, ȳ ∈ RN with g(p(x̄)) = g(p(ȳ)). We divide the proof in two cases.

Case 1: Suppose that p(x̄) 6= p(ȳ). Then, as g is cylinder-like, we can find ǫ > 0
and δ > 0 such that for all x ∈ Bδ(p(x̄)) and all y ∈ Bδ(p(ȳ)) we have

g(x− ǫ(p(x̄)− p(ȳ))) ≤ g(x) and g(y + ǫ(p(x̄)− p(ȳ))) ≤ g(y).

Now, for all x̃ ∈ Bδ(x̄), we have p(x̃) ∈ Bδ(p(x̄)), so we can set x = p(x̃) in the above
to get

g(p(x̃− ǫ(x̄− ȳ))) ≤ g(p(x̃)).

Similarly, for all ỹ ∈ Bδ(ȳ), we obtain

g(p(ỹ + ǫ(x̄− ȳ))) ≤ g(p(ỹ)).
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Case 2: Suppose that p(x̄) = p(ȳ). In this case g(p(z ± ǫ(x̄ − ȳ))) = g(p(z)) for
all z ∈ RN , so the result is trivial.

The combination of Cases 1 and 2 proves (ii). �

Example 3.6. By (2), (3) of Proposition 3.4 and all of Proposition 3.5, the
“cylinder norm” of R3, defined by

‖(x, y, z)‖ = max
{

√

x2 + y2, |z|
}

is cylinder-like.

Example 3.7. Given a finite set of vectors V ⊆ RN such that span(V ) = RN ,
the associated crystalline norm is defined by

‖x‖ := max
v∈V

|〈x, v〉|.

Combining (i) of Proposition 3.4 and (i) of Proposition 3.5, we deduce that every
crystalline norm is cylinder-like.

We remark that, according to point (ii) of Proposition 3.4, all norms of R2 are
cylinder-like. Unfortunately, this does not hold for higher dimension, as shown by
the following example.

Example 3.8. Define the “double cone” norm of R3 by

‖(x, y, z)‖ :=
√

x2 + y2 + |z|.

To see this is not cylinder-like, take x̄ = (2/3, 0, 1/3) and ȳ = (1/3, 0, 2/3) in Defini-
tion 3.1.

4. The secondary variational problem

In the next section we will prove the existence of optimal transport maps for cost
functions of the form c(x, y) = f(g(y − x)), where f : [0,∞) → [0,∞) is increasing
and strictly convex, and g : RN → [0,∞) is a convex cylinder-like function. As the
resulting cost function c is not strictly convex, we cannot expect to have uniqueness
of optimal transport maps. However, we are able to prove their existence, solving
the secondary variational problem we introduce in this section.

Consider a continuous cost function c : RN × RN → [0,∞). Given two measures
µ, ν ∈ P(RN) such that C (µ, ν) < ∞, consider the usual Kantorivich problem

min
π∈Adm(µ,ν)

ˆ

RN×RN

c(x, y) dπ(x, y),

and call Π1(µ, ν) the set of minimizers. Then, consider the secondary variational
problem

(8) min
π∈Π1(µ,ν)

ˆ

RN×RN

d2eu(x, y) dπ(x, y),

where deu denotes the Euclidean distance. Call Π2(µ, ν) ⊆ Π1(µ, ν) the set of min-
imisers, which by weak compactness of Π1(µ, ν) is not empty. The next statement
provides a second order cyclical monotonicity property of the plans in Π2(µ, ν). We
refer the reader to [18, Proposition 3.1] for the proof.

Proposition 4.1. If µ and ν have compact support, every π ∈ Π2(µ, ν) is con-

centrated in a set Γ, such that for every (x, y), (x′, y′) ∈ Γ it holds that

(9) c(x, y) + c(x′, y′) ≤ c(x, y′) + c(x′, y),
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moreover, if c(x, y) + c(x′, y′) = c(x, y′) + c(x′, y), then

(10) d2eu(x, y) + d2eu(x
′, y′) ≤ d2eu(x, y

′) + d2eu(x
′, y).

5. Proof of the main result

We can now prove one of the main results of this work.

Theorem 5.1. Let f : [0,∞) → [0,∞) be an increasing strictly convex function,

g : RN → [0,∞) be a cylinder-like convex function and consider the cost function

c(x, y) = f(g(y − x)). Let µ, ν ∈ P(RN) with µ ≪ L N such that C (µ, ν) < ∞.

Then Π2(µ, ν) has a unique element and it is induced by a map.

Proof. As in the proof of Corollary 2.4, since Π2(µ, ν) is convex, it suffices to
show that every element of Π2(µ, ν) is induced by a map. Moreover, according to
[15, Lemma 2.9], we can assume without loss of generality that both µ and ν have
compact support. Thus take any π ∈ Π2(µ, ν). Applying Proposition 4.1, we can
find a full π-measure set Γ, satisfying the cyclical monotonicity requirements (9) and
(10).

Assume by contradiction that π is not induced by a map. Let (πz)z∈RN be the
disintegration kernel of π with respect to p1. Then the set

E := {z ∈ RN : πz is not a delta measure}

has positive µ-measure. For any fixed z ∈ RN define the probability measure π̃z by
π̃z(B) = πz(B+z) for all B ⊆ RN Borel. Introduce the following probability measure
on RN × RN

γ :=

ˆ

RN

π̃z × π̃z dµ(z).

Observe that γ is not concentrated on the diagonal set {(x, y) ∈ RN × RN : x = y}.
Therefore, we can take (x̄, ȳ) ∈ supp γ, with x̄ 6= ȳ.

Call h = f ◦ g and let L := {(x, y) ∈ RN × RN : g(x) 6= g(y)}. Notice that, since
f is strictly convex, we have L ⊆ Hh. Thus, applying Theorem 2.3 to the convex
function h, we obtain

(11) µ({z ∈ RN : supp π̃z contains x, y with (x, y) ∈ L}) = 0.

Since L is open, we have that (x̄, ȳ) /∈ L. Indeed, if this was not the case, we could
find s > 0 such that

γ(Bs(x̄)× Bs(ȳ)) > 0 and Bs(x̄)× Bs(ȳ) ⊆ L

and so

µ({z ∈ RN : π̃z(Bs(x̄)) > 0, π̃z(Bs(ȳ)) > 0}) > 0,

contradicting (11).
We have then found that g(x̄) = g(ȳ). As g is cylinder-like, letting v̄ := x̄ − ȳ,

there exists ǫ > 0 and δ0 > 0 such that for all x ∈ Bδ0(x̄) and all y ∈ Bδ0(ȳ)

g(x− ǫv̄) ≤ g(x) and g(y + ǫv̄) ≤ g(y).(12)

As η := 〈v̄, x̄ − ȳ〉 > 0, we can choose 0 < δ < δ0 small enough so that for all
x ∈ Bδ(x̄) and all y ∈ Bδ(ȳ) we have

〈v̄, x− y〉 > η/2.
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With this choice of δ, since (x̄, ȳ) ∈ supp γ, we have that

0 < γ(Bδ(x̄)× Bδ(ȳ)) =

ˆ

RN

π̃z(Bδ(x̄))π̃z(Bδ(ȳ)) dµ(z),

and therefore the set

F := {z ∈ RN : π̃z(Bδ(x̄)) > 0, π̃z(Bδ(ȳ)) > 0}

has positive µ-measure. For any z ∈ RN we write Γz := {w ∈ RN : (z, w) ∈ Γ}, then
π(Γ) = 1 implies that π̃z(Γz) = 1 µ-almost everywhere. Therefore, the set

G := {z ∈ RN : π̃z

(

Bδ(x̄) ∩ (Γz − z)
)

> 0, π̃z

(

Bδ(ȳ) ∩ (Γz − z)
)

> 0}

has positive µ-measure.
Take a Lebesgue density point z̄ of G. In a neighbourhood of z̄, we can find

z, z + εv̄ for a suitable 0 < ε < min
{

ǫ, η

2〈v̄,v̄〉

}

. This means there is x ∈ Bδ(x̄) and

y ∈ Bδ(ȳ) such that (z, z + x), (z + εv̄, z + εv̄ + y) ∈ Γ. Since 0 < ε < ǫ and
x ∈ Bδ(x̄) ⊆ Bδ0(x̄), y ∈ Bδ(ȳ) ⊆ Bδ0(ȳ), it follows from (12) that

g(x− εv̄) ≤ g(x) and g(y + εv̄) ≤ g(y).(13)

On the other hand, the assumptions on f imply that f is strictly increasing. So if
one of the two inequalities in (13) is strict, then

c(z + εv̄, z + x) + c(z, z + εv̄ + y) = f(g(x− εv̄)) + f(g(y + εv̄))

< f(g(x)) + f(g(y))

= c(z, z + x) + c(z + εv̄, z + εv̄ + y),

contradicting the condition (9) of Proposition 4.1. Otherwise, an analogous calcula-
tion gives that

c(z + εv̄, z + x) + c(z, z + εv̄ + y) = c(z, z + x) + c(z + εv̄, z + εv̄ + y)

but at the same time we have that

d2eu(z + εv̄, z + x) + d2eu(z, z + εv̄ + y) = 〈x− εv̄, x− εv̄〉+ 〈y + εv̄, y + εv̄〉

= 〈x, x〉+ 〈y, y〉+ 2ε(〈v̄, y − x〉 + ε〈v̄, v̄〉)

< 〈x, x〉+ 〈y, y〉+ 2ε
(

−
η

2
+

η

2

)

= d2eu(z, z + x) + d2eu(z + εv̄, z + εv̄ + y),

contradicting the condition (10) of Proposition 4.1. This concludes the proof. �

Specialising Theorem 5.1 to the Lp-optimal transport problem for cylinder-like
norm, we obtain the following corollary, cf. Corollary 2.4.

Corollary 5.2. Let ‖·‖ be a cylinder-like norm on RN and 1 < p < ∞. Consider

c(x, y) = ‖y − x‖p and let µ, ν ∈ P(RN) be Borel probability measures with finite

p-th order moment on RN , such that µ ≪ L N . Then C (µ, ν) < ∞ and Π2(µ, ν) has

a unique element which is induced by a map.

Remark 5.3. For a convex function g : RN → [0,∞), the condition that g is
cylinder-like in Theorem 5.1 can be weakened to the condition below, only requiring
small modifications to the proof:
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There is a (countable) partition RN =
⋃∞

i=1Ai such that whenever x̄ 6= ȳ and
g(x̄) = g(ȳ), there is δ > 0 and ǫ > 0 such that

g(x− ǫ(x̄− ȳ)) ≤ g(x) ∀x ∈ Bδ(x̄) ∩Ai,

g(y + ǫ(x̄− ȳ)) ≤ g(y) ∀y ∈ Bδ(ȳ) ∩Aj ,

where Ai, Aj are the equivalence classes of x̄, ȳ respectively. An example of a function
which is not cylinder-like but satisfies the above condition is the norm in R3 whose
unit ball is the closed convex hull of the points

{(0, 0, 1), (0, 0,−1)} ∪

∞
⋃

i=1

{(cos(π/2i), sin(π/2i), 0), (− cos(π/2i),− sin(π/2i), 0)}.
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