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Continuity of solutions to complex Hessian
equations via the Dinew–Kołodziej estimate

Per Åhag and Rafał Czyż

Abstract. This study extends the celebrated volume-capacity estimates of Dinew and Kołod-
ziej, providing a foundation for examining the regularity of solutions to boundary value problems
for complex Hessian equations. By integrating the techniques established by Dinew and Kołodziej
and incorporating recent advances by Charabati and Zeriahi, we demonstrate the continuity of the
solutions.

Kontinuitet hos lösningar till komplexa Hessianska

ekvationer via ett estimat av Dinew och Kołodziej

Sammanfattning. Denna studie utvidgar det välkända volym-kapacitetsestimatet av Dinew
och Kołodziej och lägger därmed grunden för att undersöka regulariteten hos lösningar till randvär-
desproblem för komplexa Hessianska ekvationer. Genom att kombinera de metoder som utvecklats
av Dinew och Kołodziej med nyligen gjorda framsteg av Charabati och Zeriahi, visar vi kontinuitet
hos lösningarna.

1. Introduction

Let K ⊂ C be a compact subset in the complex plane with area A(K) and
logarithmic capacity c(K). In 1928, Pólya [31] established the following inequality:

A(K) ≤ πc(K)2.

which has found widespread use and has been generalized in various contexts within
analysis and geometry. For example, it inspired work in [1] that helped confirm a
conjecture by Demailly in [14].

Of particular interest to this paper is the work by Dinew and Kołodziej [16], who
proved that the volume of a relatively compact set in Cn can be estimated using the
Hessian capacity:

(1.1) V2n(K) ≤ C(capm(K))α,

where dV2n denotes the Lebesgue measure in R2n, 1 < α < n
n−m

and capm(K) is
defined as the Hessian capacity. This result is crucial for studying the complex
Hessian operator on compact Kähler manifolds.

In Theorem 3.3, we extend their volume-capacity estimate using techniques from
Orlicz theory.
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Theorem 3.3. Let Ω be a bounded m-hyperconvex domain in C
n. Then for any

0 < ǫ ≤ n+1
3n

there exist constants C1, C2 > 0 such that for all K ⋐ Ω it holds:

(1.2) V2n(K) ≤ C1 capm(K)
n

n−m W0

(

C2 capm(K)
−1

m(1+ǫ)

)

nm(1+ǫ)
n−m

,

where W0 is the Lambert W function.

In 1986, Vinacua [32] (see also [33]) expanded upon the foundational work of
Caffarelli, Nirenberg, and Spruck [8] by introducing complex Hessian equations:

(1.3) Hm(u) = µ,

bridging classical and modern theories in partial differential equations. As defined
(Definition 2.1), the 1-Hessian operator, H1, corresponds to the classical Laplace
operator on subharmonic functions, herein referred to as 1-subharmonic functions.
Similarly, the n-Hessian operator, Hn, corresponds to the complex Monge–Ampère
operator for plurisubharmonic functions. For k = 2, . . . , n − 1, the m-Hessian oper-
ators form a sequence of partial differential operators, spanning from the Laplace to
the complex Monge–Ampère operators.

The integrability of general m-subharmonic functions significantly differs from
that of n-subharmonic functions. While all plurisubharmonic functions are locally
Lp integrable for any p > 0, this is not necessarily true for m-subharmonic functions.
Błocki [6] conjectured that m-subharmonic functions should be locally Lp integrable
for p < nm

n−m
, a conjecture partially verified in [2, 16].

The complex Hessian equation and m-subharmonic functions have attracted
widespread attention. A significant advancement was made by Błocki in 2005, who
extended these concepts to non-smooth admissible functions and introduced pluripo-
tential methods [6]. More recently, Lu adapted Cegrell’s framework [9, 10, 11] for
the complex Hessian equations [22, 23, 24, 25].

In this paper, we build upon the techniques of Dinew and Kołodziej [16] and
incorporate recent insights from Charabati and Zeriahi [13] to address the regularity
of solutions for the complex Hessian equations.

Consider a bounded strictlym-pseudoconvex domain Ω ⊂ Cn. For a given density
function f and a boundary value function g ∈ C(∂Ω), the problem of interest is:

(1.4)
Hm(U(f, g)) = fdV2n,

lim
z→w

U(f, g)(z) = g(w), for all w ∈ ∂Ω.

If the density function f ∈ Lp for p > n
m

, then U(f, g) is continuous and has been
subsequently proven to be Hölder continuous, as documented in [16, 7, 12, 21, 29]. If
p < n

m
, then the solution to (1.4) need not to be bounded [16], which is a significant

contrast to the case when m = n. In [3], Cegrell’s energy classes played a crucial role
in studying the regularity of unbounded m-subharmonic functions.

Our goal is to investigate further the regularity of solutions to (1.4) when the den-
sity function f belongs to the Orlicz space Ln/m(logL)α with α > 2n. We establish
the following result:

Theorem 4.3. Let Ω ⊂ Cn be a bounded strictly m-pseudoconvex domain, let
f ∈ L

n

m (logL)α for α > 2n, and let g ∈ C(∂Ω). Then, the unique solution U(f, g)
of the Dirichlet problem for the complex Hessian operator (4.1) is continuous on Ω̄.
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Moreover, the following estimate holds:

‖U(f1, g1)− U(f2, g2)‖∞ ≤ ‖g1 − g2‖∞ + C1‖f1 − f2‖
− 1

γ

α

+ C2em,m(U(|f1 − f2|, 0))
1

2m exp

(

C3‖f1 − f2‖
− 1

γ

α

)

,

where γ = (1+ǫ)m− αm
n

with 0 < ǫ < min
(

n+1
3n
, α
n
− 2

)

. Here, ‖f‖α denotes the norm

in L
n

m (logL)α, and C1, C2, C3 are positive universal constants. Moreover, em,m(u) is
defined as

´

Ω
(−u)m Hm(u).

This paper is organized as follows: Section 2 provides the necessary background
on complex Hessian equations and the theoretical framework used throughout the
paper, including discussions on the theory of Orlicz spaces. Section 3 contains the
proof of Theorem 3.3, while in Section 4, we present the proof of Theorem 4.3. The
final section, Section 5, studies the cases when n < α ≤ 2n and α ≤ n.

We want to emphasize that the proof of Theorem 3.3 and the results in Sec-
tion 5 rely heavily on the properties of plurisubharmonic functions. Notably, sig-
nificant insights into m-subharmonic functions can be gained by examining the
subset of plurisubharmonic functions, a phenomenon first observed by Dinew and
Kołodziej [16].

Acknowledgements. We extend our heartfelt appreciation to Chinh H. Lu for his
invaluable insights and discussions, which greatly enriched a preliminary version of
this paper. We are also grateful to the referee for noting that the estimate derived
in Theorem 3.3 can alternatively be deduced from a prior result established by Ngoc
Cuong Nguyen in [28].

2. Preliminaries

This section is organized as follows: Section 2.1 provides the fundamental defini-
tions of the generalized potential theory we are interested in. Section 2.2 offers basic
information on Orlicz spaces, specifically L

n

m (logL)α. Finally, Section 2.3 reviews
some essential aspects of the Lambert W function.

2.1. Generalized potential theory. This subsection provides foundational
definitions and results for m-subharmonic functions and the complex Hessian oper-
ator. Consider Ω ⊂ C

n, where n ≥ 2, as a bounded domain, and let 1 ≤ m ≤ n.
Define C(1,1) as the set of (1, 1)-forms with constant coefficients. We then define

Γm =
{

α ∈ C(1,1) : α ∧ (ddc|z|2)n−1 ≥ 0, . . . , αm ∧ (ddc|z|2)n−m ≥ 0
}

.

Definition 2.1. Let n ≥ 2, and 1 ≤ m ≤ n. Assume Ω ⊂ Cn is a bounded
domain. A function u, defined on Ω and subharmonic, is said to be m-subharmonic

if it satisfies

ddcu ∧ α1 ∧ · · · ∧ αm−1 ∧ (ddc|z|2)n−m ≥ 0,

in the sense of currents for all α1, . . . , αm−1 ∈ Γm. We denote the set of all such
m-subharmonic functions on Ω by SHm(Ω).

Definition 2.2. Let n ≥ 2, and 1 ≤ m ≤ n. A bounded domain Ω ⊂ Cn is
termed m-hyperconvex if there is a non-negative, m-subharmonic exhaustion func-
tion, i.e., there exists an m-subharmonic function ϕ : Ω → (−∞, 0] such that for
every c < 0, the closure of {z ∈ Ω: ϕ(z) < c} is compact within Ω.

For additional insights into m-hyperconvex domains, we refer to [5].
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Definition 2.3. An open set Ω ⊂ C
n is strictly m-pseudoconvex if it admits a

smooth defining function ρ which is strictly m-subharmonic in a neighborhood of Ω̄
and satisfies |∇ρ| > 0 at each point in ∂Ω = {ρ = 0}.

Next, we introduce function classes essential to this paper. A function ϕ, de-
fined on an m-hyperconvex domain Ω and m-subharmonic, belongs to E0

m(Ω) if it is
bounded,

lim
z→ξ

ϕ(z) = 0 for every ξ ∈ ∂Ω,

and
ˆ

Ω

Hm(ϕ) <∞.

Definition 2.4. Let n ≥ 2, 1 ≤ m ≤ n, and p ≥ 0. A function u defined
on a bounded m-hyperconvex domain Ω in C

n belongs to Fm(Ω) if there exists a
decreasing sequence {ϕj}, ϕj ∈ E0

m(Ω), converging pointwise to u as j → ∞, and
supj

´

Ω
Hm(ϕj) <∞.

In [22, 25], it was shown that for a function u ∈ Fm(Ω), the complex Hessian
operator Hm(u) is well-defined and given by

Hm(u) = (ddcu)m ∧ (ddc|z|2)n−m,

where d = ∂ + ∂̄ and dc =
√
−1(∂̄ − ∂).

Let us recall the Hessian capacity:

capm(E) = sup

{
ˆ

E

Hm(u) : u ∈ SHm(Ω),−1 ≤ u ≤ 0

}

.

2.2. Orlicz spaces. This subsection introduces some notations and elementary
facts concerning Orlicz spaces, which will be useful in later discussions. This section
is based on [26].

Let ϕ : [0,∞) → [0,∞) be an increasing, continuous, and convex function such

that ϕ(0) = 0, limt→0+
ϕ(t)
t

= 0, and limt→∞
ϕ(t)
t

= ∞. We shall call such a function
admissible.

Let X be the space of measurable functions (with respect to the Lebesgue mea-
sure) on Ω. Define a modular on X by

ρ(f) =

ˆ

Ω

ϕ(|f |) dV2n,

and introduce the Orlicz class:

L
ϕ
0 = {f ∈ X : ρ(f) <∞}.

The Orlicz space Lϕ is the smallest vector space containing Lϕ
0 . Moreover, Lϕ is a

Banach space equipped with the Orlicz norm

‖f‖0ϕ = sup

{
ˆ

Ω

|fg| dV2n :
ˆ

Ω

ϕ∗(|g|) dV2n ≤ 1

}

or the equivalent Luxemburg norm

‖f‖ϕ = inf

{

λ > 0:

ˆ

Ω

ϕ

( |f |
λ

)

dV2n ≤ 1

}

,

where ϕ∗, the Legendre transform of ϕ is defined as

ϕ∗(s) = sup
t≥0

(st− ϕ(t)).
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The Legendre transform ϕ∗ is also called the complementary function in the sense of
Young.

Let us now recall the following version of Young’s inequality: for all t, s ≥ 0,

st ≤ ϕ(t) + ϕ∗(s),

and note that
‖f‖ϕ ≤ ‖f‖0ϕ ≤ 2‖f‖ϕ.

Hence, by the Young inequality and the definition of the Orlicz norm,

‖f‖0ϕ = sup
g

(
ˆ

Ω

|fg| dV2n :
ˆ

Ω

ϕ∗(|g|) dV2n ≤ 1

)

≤ sup
g

(
ˆ

Ω

ϕ(|f |) + ϕ∗(|g|) dV2n :
ˆ

Ω

ϕ∗(|g|) dV2n ≤ 1

)

≤
ˆ

Ω

ϕ(|f |) dV2n + 1.

(2.1)

We present the following counterpart to the classical Hölder’s inequality:

Theorem 2.5. If f ∈ Lϕ and g ∈ Lϕ∗

, then
∣

∣

∣

∣

ˆ

Ω

fg dV2n

∣

∣

∣

∣

≤ ‖f‖0ϕ‖g‖ϕ∗ , and

∣

∣

∣

∣

ˆ

Ω

fg dV2n

∣

∣

∣

∣

≤ ‖f‖ϕ‖g‖0ϕ∗.

Let 1 ≤ m ≤ n be integers, n ≥ 2, and let α > 0. A central tool in this paper is
the Orlicz space generated by the function

ϕ(t) = (1 + t)
n

m (log(1 + t))α,

which will be denoted by L
n

m (logL)α. The corresponding Orlicz norm will be denoted
for simplicity by ‖ · ‖α.

The following example will be used in Theorem 3.3 and Theorem 4.3

Example 2.6. Let K ⊂ Ω be such that 0 < V2n(K) < ∞, and let ϕ be an
admissible function. Then,

‖χK‖ϕ =
1

ϕ−1(V2n(K)−1)
,

and
‖χK‖0ϕ = V2n(K)(ϕ∗)−1

(

V2n(K)−1
)

,

where (ϕ∗)−1 denotes the inverse function to ϕ∗. If f ∈ Lϕ, then we have:

(2.2)

ˆ

K

f dV2n ≤ ‖f‖ϕ‖χK‖0ϕ∗ = ‖f‖ϕV2n(K)ϕ−1(V2n(K)−1),

where ϕ−1 is the inverse function to ϕ. �

2.3. Lambert W function. We present in this subsection some notations and
elementary facts concerning the Lambert W function, W0, which will be helpful later
on several occasions.

First recall that W0(x), for x > 0 is defined as the unique solution to the equation

W0(x) exp(W0(x)) = x.

It is well known that

W′
0(x) =

W0(x)

x(1 +W0(x))
> 0.

By [19] we have the following estimates:
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(1) for x ≥ e

1

2
log(x) ≤ W0(x) ≤ log(x);

(2) for x ≥ e

log(x)− log(log(x)) ≤ W0(x) ≤ log(x)− 1

2
log(log(x)).

From the above we can deduce that for x ≥ 0 it holds:

(2.3) W0(x) ≤ max(1, log x).

For further information on Lambert W function we refer the reader to [27].

3. Volume estimation via capacity

Dinew and Kołodziej in [16] proved that the volume of a relatively compact
set can be estimated using capacity. They established that for 1 < α < n

n−m
, the

following inequality holds:

V2n(K) ≤ C(capm(K))α.

This result has proven essential for studying the complex Hessian operator in Cn

and on compact Kähler manifolds. However, for our aim in Section 4.1, this result
is not sufficient. Consequently, we aim to refine the Dinew–Kołodziej estimate in
Theorem 3.3. First, we list two known facts required for the proof.

Lemma 3.1. [20, Theorem 1] Let h be an increasing function such that
ˆ ∞

1

1

yh
1
n (y)

dy <∞,

and let µ be a non-negative measure on a bounded, strictly pseudoconvex domain Ω ⊂
Cn. Assume that there exists a constant A > 0 such that for any v ∈ PSH(Ω)∩C(Ω̄),
with v = 0 on ∂Ω and

´

Ω
(ddcv)n ≤ 1 it holds:

ˆ

Ω

(−v)nh(−v) dµ ≤ A.

Then any bounded plurisubharmonic function u with (ddcu)n = µ will satisfy

‖u‖∞ ≤ B(A, h),

where the constant B(A, h) does not depend on µ.

Lemma 3.2. [1, Theorem 4.1] Let v ∈ Fn with
´

Ω
(ddcv)n ≤ 1. For all s > 0, it

follows that

V2n({v ≤ −s}) ≤ Cn(1 + s)n−1 exp(−2ns).

We are now ready to present the first result of this paper.

Theorem 3.3. Let Ω be a bounded m-hyperconvex domain in Cn. Then for any
0 < ǫ ≤ n+1

3n
there exist constants C1, C2 > 0 such that for all K ⋐ Ω it holds:

(3.1) V2n(K) ≤ C1 capm(K)
n

n−m W0

(

C2 capm(K)
−1

m(1+ǫ)

)

nm(1+ǫ)
n−m

,

where W0 is the Lambert W function.
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Proof. Without loss of generality, we may assume that Ω is a bounded strictly
pseudoconvex set with V2n(Ω) ≤ 1. Otherwise, there exists some R > 0 such that
Ω ⊂ B(0, R) and capK(0,R)(K) ≤ capΩ(K). Consider a compact set K with V2n(K) >
0. If not, there is nothing to prove.

Fix 0 < ǫ ≤ n+1
3n

and define the function

F (t) = t−1(− log t)−n−nǫ.

Let ϕ be a plurisubharmonic solution to the Monge–Ampère equation:

(ddcϕ)n = F (V2n(K))χKdV2n, and ϕ = 0 on ∂Ω.

Then, by the inequality between mixed Monge–Ampère measures (see [15]), we obtain

(3.2) Hm(ϕ) ≥ F
m

n (V2n(K))χK dV2n.

Define

Φ(t) = exp
(

2n(1− ǫ)(t + 1)
1

n+nǫ

)

and note that, given the choice of ǫ, the function Φ is increasing and convex.
We apply Lemma 3.1 with h(t) = (log(1 + t))n+nǫ and µ = F (V2n(K))χKdV2n.

Consider v ∈ PSH(Ω) ∩ C(Ω̄), with v = 0 on ∂Ω and
´

Ω
(ddcv)n ≤ 1. From Theo-

rem 2.5, (2.1) and (2.2), we have
ˆ

Ω

(−v)nh(−v) dµ =

ˆ

Ω

(−v)nh(−v)F (V2n(K))χK dV2n

≤ ‖(−v)nh(−v)‖ΦF (V2n(K))‖χK‖0Φ∗ ≤ ‖(−v)nh(−v)‖0ΦF (V2n(K))‖χK‖0Φ∗

≤
(
ˆ

Ω

Φ((−v)nh(−v)) dV2n + 1

)

F (V2n(K))V2n(K)Φ−1

(

1

V2n(K)

)

,

(3.3)

where Φ−1 is the inverse function,

Φ−1

(

1

s

)

=

(

− log s

2n(1− ǫ)

)n+nǫ

− 1 ≤
(

− log s

2n(1 − ǫ)

)n+nǫ

.

Then

(3.4) F (V2n(K))V2n(K)Φ−1

(

1

V2n(K)

)

=
1

(2n(1− ǫ))n+nǫ
= C̃,

where C̃ is a constant independent of K.
On the other hand, by Lemma 3.2, we have
ˆ

Ω

Φ((−v)nh(−v)) dV2n ≤ Cn +

∞
∑

s=0

ˆ

{−s−1<v<−s}

Φ((−v)nh(−v)) dV2n

≤ Cn

∞
∑

s=0

(1 + s)n−1 exp(−2ns) exp
(

2n(1− ǫ)((s + 1)n(log(2 + s))n+nǫ)
1

n+nǫ

)

≤ A,

(3.5)

where the constant A does not depend on v.
Combining (3.3), (3.4), and (3.5), we conclude

ˆ

Ω

(−v)nh(−v) dµ ≤ C̃(A+ 1),

thereby, by Lemma 3.1, a constant d, independent of K, exists such that the solution
ϕ satisfies ‖ϕ‖∞ ≤ 1

d
.
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Now, let ψ = dϕ, then

capm(K) ≥
ˆ

Ω

Hm(ψ) = dm
ˆ

K

Hm(ϕ) ≥ dm
ˆ

K

F
m

n (V2n(K)) dV2n

= dm(V2n(K))1−
m

n (− log(V2n(K)))−(1+ǫ)m.

(3.6)

Define the function Gp,q(t) = tq(− log t)p, for p < 0, q > 0, which is increasing for
t ∈ (0, 1), with its inverse given by

G−1
p,q(s) =

(

− q
p

)
p

q

s
1
q

W0

(

− q
p
s

1
p

)
p

q

.

In our scenario p = −(1 + ǫ)m and q = 1− m
n
. Finally, it follows from (3.6) that

V2n(K) ≤ G−1
p,q

(

d−m capm(K)
)

= C1 capm(K)
n

n−m W0(C2 capm(K)
−1

(1+ǫ)m )
nm(1+ǫ)

n−m ,

for some universal constants C1 and C2. The proof is complete. �

Remark. We recall that an inequality similar to (3.6), applicable to any open set
in Cn, was previously established by Nguyen in [28]. Notably, our approach, which
leverages Orlicz space techniques, differs from the methods employed by Nguyen.
Although a statement analogous to Theorem 3.3 is not explicitly formulated in [28],
it can be obtained from the inequality resembling (3.6).

Corollary 3.4. Let Ω be a bounded m-hyperconvex domain in Cn. Then for
any 0 < ǫ ≤ n+1

3n
there exist constants D1, D2 > 0 such that for all K ⋐ Ω it holds:

(3.7) V2n(K) ≤ D1 capm(K)
n

n−m max(1, 1−D2 log(capm(K))
nm(1+ǫ)

n−m

Proof. It follows from Theorem 3.3 and the estimate (2.3) for the Lambert W
function. �

4. Continuous solution

Let n ≥ 2 and 1 ≤ m ≤ n. In this section, we confine our discussion to a bounded
strictly m-pseudoconvex domain Ω ⊂ Cn, as defined in Definition 2.3. Consider the
following Dirichlet problem for the complex Hessian equation given a density function
f and a boundary value function g ∈ C(∂Ω):

(4.1)
Hm(U(f, g)) = fdV2n,

lim
z→w

U(f, g)(z) = g(w), for all w ∈ ∂Ω,

where dV2n represents the Lebesgue measure in R2n. Theorem 4.3 establishes that if
the density function f is in L

n

m (logL)α with α > 2n, then the solution exists and is
continuous on Ω̄. The proof is using the following result recently proved in [13].

Theorem 4.1. Let Ω ⊂ Cn be a bounded strictly m-pseudoconvex domain and
let µ be a positive finite Borel measure on Ω such that for all compact sets K ⊂ Ω
the following holds:

µ(K) ≤ A capm(K)F (capm(K)),
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where F : (0,∞) → (0,∞) is a continuous increasing function that satisfies
ˆ

0+

F (t)
1
m

t
dt <∞.

Then, for any positive continuous boundary function g ∈ C(∂Ω), there exists a unique
continuous solution U(µ, g) of the Dirichlet problem for the complex Hessian equation
(4.1).

To provide an L∞-estimate of the solution we shall use the following lemma
from [13].

Lemma 4.2. Let h : [0,∞) → [0,∞) be a decreasing, right-continuous function
with lims→∞ h(s) = 0. Let η : [0,∞) → [0,∞) be a non-decreasing function that
satisfies the integrability condition:

ˆ

0+

η(t)

t
dt <∞.

Assume for any t ∈ [0, 1] and any s > 0, the inequality

th(s+ t) ≤ h(s)η(h(s))

holds. Then h(s) = 0 for all s ≥ S∞, where S∞ is defined as

S∞ = s0 + e

ˆ eh(s0)

0

η(t)

t
dt,

and s0 is determined by the condition η(h(s0)) ≤ 1
e
.

Using the above theorem and lemma, we proceed with our proof that the solution
is continuous under the stated conditions.

Theorem 4.3. Let Ω ⊂ Cn be a bounded strictly m-pseudoconvex domain, let
f ∈ L

n

m (logL)α for α > 2n, and let g ∈ C(∂Ω). Then, the unique solution U(f, g)
of the Dirichlet problem for the complex Hessian operator (4.1) is continuous on Ω̄.
Moreover, the following estimate holds:

‖U(f1, g1)−U(f2, g2)‖∞ ≤ ‖g1 − g2‖∞ + C1‖f1 − f2‖
− 1

γ

α

+ C2em,m(U(|f1−f2|, 0))
1

2m exp

(

C3‖f1−f2‖
− 1

γ

α

)

,
(4.2)

where γ = (1+ǫ)m− αm
n

with 0 < ǫ < min
(

n+1
3n
, α
n
− 2

)

. Here, ‖f‖α denotes the norm

in L
n

m (logL)α, and C1, C2, C3 are positive universal constants. Moreover, em,m(u) is
defined as

´

Ω
(−u)m Hm(u).

Proof. Define the function

Gα, n
m

(t) = (1 + t)
n

m (log(1 + t))α,

which is increasing and convex. Its inverse is given by

G−1
α, n

m

(s) =

(

n
αm

)
αm

n s
m

n

W0

(

n
αm
s

1
α

)
αm

n

− 1,

and the function t
(

G−1
n

m
,α(

1
t
) + 1

)

is increasing. Assuming 0 < ǫ < min
(

n+1
3n
, α
n
− 2

)

and choosing a relatively compact subset K ⊂ Ω, using the Corollary 3.4, (2.1) and
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(2.2), we have:

(4.3)

µ(K) =

ˆ

K

f dV2n =

ˆ

Ω

fχK dV2n ≤ ‖f‖α‖χK‖0G∗

α,
n

m

≤
(
ˆ

Ω

Gα, n
m

(f) dV2n + 1

)

V2n(K)G−1
n

m
,α

(

1

V2n(K)

)

≤ D1 capm(K)max(1, 1−D2 log(capm(K)))γ,

where γ = (1 + ǫ)m− αm
n

. Define

F (t) = max(1, 1−D2 log t)
γ.

Note that since by our assumption α > (2 + ǫ)n, the function t−1F
1
m (t) is locally

integrable near zero, therefore by Theorem 4.1 there exists a unique solution U(f, g)
of the Dirichlet problem for the complex Hessian operator (4.1) which is continuous
on Ω̄.

Now we shall provide the L∞-estimate of the solution U(f, g). First, note that it
follows from the comparison principle that:

|U(f1, g1)− U(f2, g2)| ≤ −U(|f1 − f2|,−|g1 − g2|)
≤ −U(|f1 − f2|, 0) + ‖g1 − g2‖∞.

(4.4)

Therefore, it is sufficient to prove the result for the density function belonging to
the Orlicz space L

n

m (logL)α and with boundary values equal to zero. Set, u =
U(|f1 − f2|, 0).

From [13], for all s, t > 0, it follows

(4.5) tm capm({u < −s− t}) ≤
ˆ

{u<−s}

Hm(u) ≤
1

tm
em,m(u).

Define

h(t) = capm({u < −t}) 1
m ,

then (4.3) and (4.5) yields

th(t + s) ≤ h(s)η(h(s))

with

η(t) = D
1
m

1

(

max

(

1, 1− D2

m
log t

))
γ

m

.

By Lemma 4.2, there exists S∞ such that

h(t) = 0 for t ≥ S∞,

provided
´

0+
η(t)
t
< ∞. Note that γ

m
< −1, since α > (2 + ǫ)n. The result then

follows from the fact that if

capm({u < −t}) = 0 ⇒ V2n({u < −t}) = 0, for t ≥ S∞,

then u is bounded by S∞.
Next, we shall estimate the norm of u. We need to examine S∞ and s0. Assume

s0 is such that η(h(s0)) ≤ 1
e
, then the expression for η(t) can be simplified to, see

(4.3),

η(t) = d
1
m

1 ‖f‖
1
m

α

(

d2 −
1

m
log t

)
γ

m

,
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where d1, d2 > 0 are universal constants. The condition η(h(s0)) =
1
e

leads us to the
equation

d2 −
1

m
log h(s0) = e−

m

γ d
− 1

γ

1 ‖f‖−
1
γ

α .

This equality implies that

e

ˆ eh(s0)

0

η(t)

t
dt = −ed

1
m

1 m
2

γ +m
‖f‖

1
m

α

(

d2 −
1

m
log(eh(s0))

)
γ+m

m

= −ed
1
m

1 m
2

γ +m
‖f‖

1
m

α (e−
m

γ d
− 1

γ

1 ‖f‖−
1
γ

α −m−1)
γ+m

m

≤ C1‖f‖
1
m

α ‖f‖−
γ+m

γm

α = C1‖f‖
− 1

γ

α ,

(4.6)

where C1 > 0 is a universal constant.
The condition η(h(s0)) ≤ 1

e
is equivalent to

capm({u < −s0})
1
m = h(s0) ≤ exp

(

md2 −me
−m

γ d
− 1

γ

1 ‖f‖−
1
γ

α

)

.

Therefore, applying (4.5) with s = t, we find s0 that satisfies
(

4m

s2m0
em,m(u)

)
1
m

= exp

(

md2 −me−
m

γ d
− 1

γ

1 ‖f‖−
1
γ

α

)

,

which can be rewritten as

(4.7) s0 = C2em,m(u)
1

2m exp

(

C3‖f‖
− 1

γ

α

)

,

where C2, C3 > 0 are universal constants.
To finalize the proof, observe that the estimation (4.2) follows from (4.7) and

(4.6). �

Remark. Theorem 4.3 states that for α > 2n, the solution U(f, g) is continuous
up to the boundary of a bounded strictly m-pseudoconvex domain Ω ⊂ Cn. It is
unclear whether our assumption on the power α is optimal. Moreover, whether the
condition on the domain Ω can be relaxed to an m-hyperconvex domain remains an
open question.

5. Bounded solution

In the previous section, we proved in Theorem 4.3 that under the assumption
f ∈ L

n

m (logL)α for α > 2n, and g ∈ C(∂Ω), the unique solution U(f, g) of the
Dirichlet problem for the complex Hessian operator (4.1) is continuous on Ω̄. This
section focuses on the case where α > n and Ω ⊂ Cn is a bounded, strictly n-
pseudoconvex domain. In Theorem 5.1, we show that the solution to (4.1) is bounded,
and in Example 5.2, we observe that when α ≤ n, the solution may be unbounded.

Lu and Guedj proved a result similar to Theorem 5.1 in the setting of compact
Kähler manifolds (see Theorem B and the remark just above the acknowledgments
in [18]).

Theorem 5.1. Let Ω ⊂ Cn be a bounded strictly n-pseudoconvex domain, and
let f ∈ L

n

m (logL)α for α > n and let g ∈ C(∂Ω). Then, there exists the unique
solution U(f, g) of the Dirichlet problem for the complex Hessian operator (4.1) and
it is bounded.
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Proof. Without loss of generality, we assume that g ≤ 0. Assume that (1 +
f)n/m(log(1+f))α ∈ L1 for some α > n, and set h = (1+f)n/m. Then h(log h)α ∈ L1,
and by [20], there exists a bounded plurisubharmonic (and hence m-subharmonic)
solution v to

(ddcv)n = h dV2n, and v = g on ∂Ω.

By the mixed Monge–Ampère inequality [15], we have

(ddcv)m ∧ βn−m ≥ hm/n dV2n ≥ f dV2n.

Additionally, as shown in [5], U(0, g) ∈ SHm(Ω) is a maximal and continuous m-
subharmonic function satisfying

lim
z→w

U(0, g)(z) = g(w) for all w ∈ ∂Ω.

It follows from [17] that there exists U(f, g) in the Cegrell class Fm with general-
ized boundary value U(0, g), and such that Hm(U(f, g)) = f dV2n. Applying the
comparison principle [17] gives

v ≤ U(f, g) ≤ U(0, g),

and thus U(f, g) is a bounded m-subharmonic function satisfying

lim
z→w

U(f, g)(z) = g(w) for all w ∈ ∂Ω. �

Example 5.2. Let B(0, 1) ⊂ C
n be the unit ball, and consider a radially sym-

metric density function f with α ≤ n. Set g = f
m

n . Let Um be a solution to
Hm(Um) = f dV2n, with limz→w Um(z) = 0 for all w ∈ ∂B(0, 1), and Un be a solution
to (ddcUn)

n = g dV2n, with limz→w Un(z) = 0 for all w ∈ ∂B(0, 1).
Then by [30], we have

−Um(z) =

ˆ 1

|z|

t1−
2n
m F (t)

1
m dt, F (t) =

1

22n−m−1(n− 1)!

ˆ t

0

r2n−1f(r) dr;

−Un(z) =

ˆ 1

|z|

t−1G(t)
1
n dt, G(t) =

1

2n−1(n− 1)!

ˆ t

0

r2n−1g(r) dr.

Using Hölder’s inequality, we obtain

G(t) =
1

2n−1(n− 1)!

ˆ t

0

r2n−1g(r) dr

≤ 1

2n−1(n− 1)!

(
ˆ t

0

r2n−1f(r) dr

)

m

n

(
ˆ t

0

r2n−1 dr

)

n−m

n

= C(n,m)F (t)
m

n t2n−2m,

where C(n,m) is a constant depending only on n and m. Again, using Hölder’s
inequality, we have

(5.1)

−Un(z) =

ˆ 1

|z|

t−1G(t)
1
n dt ≤ C(n,m)

1
n

ˆ 1

|z|

F (t)
m

n2 t1−
2m
n dt

≤ C(n,m)
1
n

(
ˆ 1

|z|

t1−
2n
m F (t)

1
m dt

)

m
2

n2
(
ˆ 1

|z|

t1−
2m
n dt

)

n
2
−m

2

n2

= D(n,m)(−Um(z))
m

2

n2

(

1− |z| 2n−2m
n

)
n
2
−m

2

n2

,

where D(n,m) is a constant depending only on n and m.
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Therefore, we have shown that if Un is unbounded, then Um is also unbounded.
By Example 3.3 in [4], there exists an unbounded plurisubharmonic function Un for
which (ddcUn)

n = g dV2n with g ∈ L(logL)n. Therefore, by (5.1), the m-subharmonic
solution Um to Hm(Um) = g

n

mdV2n is also unbounded.
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