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The Landau–Bloch type theorems for certain class
of holomorphic and pluriharmonic mappings in C

n

Vasudevarao Allu and Rohit Kumar

Abstract. In this paper, we define two classes of holomorphic mappings defined on the unit

ball Bn of n-dimensional complex space Cn and obtain the lower estimates for Bloch’s constant for

these classes. Also, we derive the Landau–Bloch type theorem for some subclasses of pluriharmonic

mappings defined on the unit ball Bn.

Landaun–Blochin-tyyppiset lauseet avaruuden Cn holomorfisten

ja moniharmonisten kuvausten eräälle luokalle

Tiivistelmä. Tässä työssä määritellään kaksi n-ulotteisen kompleksiavaruuden C
n yksikkö-

kuulan Bn holomorfisten kuvausten luokkaa ja saadaan alarajoja näiden luokkien Blochin vakiolle.

Lisäksi johdetaan Landaun–Blochin-tyyppinen lause yksikkökuulan Bn moniharmonisten kuvausten

eräille alaluokille.

1. Introduction

Let D = {z ∈ C : |z| < 1} be the unit disc in the complex plane C. In the case
of one complex variable, the following theorem of Bloch is well known (see [3]).

Theorem A. [3] Let f be a holomorphic function on the D = {z : |z| ≤ 1} and

satisfying |f ′(0)| = 1. Then there exists a positive constant b such that f(D) contains

a schlicht disc of radius b.

By a schlicht disc, we mean a disc which is the univalent image of some region
in the unit disc D. Let βf denote the least upper bound of the radii of all schlicht
discs that f carries and F denote the set of all holomorphic functions defined on
D = {z : |z| ≤ 1} satisfying |f ′(0)| = 1. Then the Bloch constant is the number
defined by

β(F) = inf{βf : f ∈ F}.
In 1929, Landau [21] proved that if we replace the holomorphicity condition on

|z| ≤ 1 to |z| < 1, then the corresponding constant is also the same. If one consider
the function f(z) = z, then clearly β(F) ≤ 1. However, better estimates than these
are known. The exact value of β(F) is still unknown.

In 1937, Ahlfors and Grunsky [1] proved that

0.4330 ≈
√
3

4
≤ β(F) ≤ 1√

1 +
√
3

Γ(1/3)Γ(11/12)

Γ(1/4)
≈ 0.4719.

It is conjectured that this upper bound is the precise value of the Bloch constant, a
conjecture known as the Ahlfors–Grunsky conjecture. In 1990, Bonk [6] obtained a
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slight improvement to the lower bound as β(F) >
√
3/4 + 10−14. In 1996, Chen and

Gauthier [7] improved Bonk’s result and proved that β(F) >
√
3/4 + 2× 10−4.

Let

C
n = {z = (z1, z2, . . . , zn) : z1, z2, . . . , zn ∈ C}

be the complex space of dimension n. For any point z = (z1, z2, · · · , zn) ∈ Cn,

|z| =
(
|z1|2 + |z2|2 + · · ·+ |zn|2

)1/2
.

We denote a ball in Cn with center at z0 and radius r by

Bn (z0, r) = {z ∈ C
n : |z − z0| < r}

and the unit ball in Cn by

Bn = {z ∈ C
n : |z| < 1}.

For a mapping f = (f1, f2, · · · , fn) of a domain in Cn into Cn, ∂f/∂zk denotes the
column vector formed by ∂f1/∂zk, ∂f2/∂zk, · · · , ∂fn/∂zk, and we denote by

f ′ =

(
∂f

∂z1
,
∂f

∂z2
, · · · , ∂f

∂zn

)
,

the matrix formed by these column vectors. For an n × n matrix A, we have the
matrix norm

‖A‖ =

(
∑

i,j

|aij |2
)1/2

and the operator norm

|A| = sup
z 6=0

|Az|
|z| .

In the case of several complex variables, the classical theorem of Bloch for holo-
morphic mappings in the disc fails to extend to general holomorphic mappings in
the ball of Cn. In 1967, Wu [30] pointed out that the Bloch theorem fails unless
some restrictive assumptions are made on holomorphic mappings. For example, for
positive integer n, setting fn(z1, z2) = (nz1, z2/n), we see that fn is an holomorphic
function on the unit ball of C2 for each n and |det fn′(0)| = 1. But the image of fn
contains a schlicht ball of radius at most 1/n. So, the infimum of the radii of the
schlicht balls anywhere when all members of {fn} are taken into account is zero. In
order that there is a positive Bloch constant, it is necessary to restrict the class of
holomorphic mappings in higher dimensions. Earlier investigations for some subclass
of holomorphic mappings were conducted by Bochner [4], Hahn [19], Harris [20], Sak-
aguchi [27], Takahashi [28], and Wu [30]. Outside holomorphicity, there is no Bloch
theorem for quasiregular mappings of the ball, but Eremenko [17] has proved that a
Bloch theorem holds for entire quasiregular mappings.

In 1946, Bochner [4] defined a subclass of the class of holomorphic functions from
Bn (⊆ Cn) to Cn. For a constant K ≥ 1, a holomorphic mapping f from Bn to Cn

is said to be Bochner K-mapping in Bn if f satisfies the differential inequality

‖f ′(z)‖ ≤ K |det f ′(z)|1/n

for all z ∈ Bn. Bochner [4] proved that, for each K ≥ 1 and n ≥ 2, there is a constant
β > 0 such that, for each normalized Bochner K-mapping f in the unit ball, βf ≥ β
holds. However, Bochner has not given an estimate for this Bloch constant.
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In 1951, Takahashi [28] defined a new class of normalized holomorphic mappings
f satisfying the weaker condition

(1.1) max
|z|<r

‖f ′(z)‖ ≤ Kmax
|z|≤r

| det f ′(z)|1/n, for each 0 ≤ r < 1.

The holomorphic functions which satisfy (1.1) are called Takahashi K-mappings. For
such normalized Takahashi K-mappings, Takahashi [28] has proved that

β ≥ (n− 1)n−2

12K2n−1
.

Later in 1956, Sakaguchi [27] improved Takahashi’s estimate to

β ≥ (n− 1)n−2

8K2n−1
.

We now define a new class of holomorphic mappings from Bn into Cn which
contains the Bochner K-mappings. We call them Bochner (K,K ′)-mappings.

Definition 1.1. For constants K ≥ 1, K ′ ≥ 0, a holomorphic mapping f from
Bn into Cn is said to be a Bochner (K,K ′)-mapping in Bn if f satisfies the differential
inequality

‖f ′(z)‖2 ≤ K2 |det f ′(z)|2/n +K ′

for all z ∈ Bn.

We remark that the unit ball Bn in the Definition 1.1 can be replaced by any
general domain in Cn. In particular, if K ′ = 0, then Bochner (K,K ′)-mappings
reduce to Bochner K-mappings. We see that every Bochner K-mapping is a Bochner
(K,K ′)-mapping for K ′ = 0, but the converse need not be true. This can be seen
from the following example: Let

f(z1, z2) =

(
z1 + z2,

(
z1 −

1

2

)2

+

(
z2 −

1

3

)2
)

in B2. This function is clearly a holomorphic mapping on B2. One can easily see
that the mapping f(z1, z2) is not a Bochner K-mapping for any K ≥ 1 but it is a
Bochner (1, 20)-mapping.

The motivation for defining this type of mappings came from the paper of Niren-
berg (see [24]), where Nirenberg has defined this type of mappings in the plane. For
more details on this type of mappings, we refer to [2, 10, 11, 16, 18, 24].

Let λ2f(z) and Λ2
f (z) denote the smallest and the largest eigenvalues of the Her-

mitian matrix A∗A, where A = f ′(z) and A∗ is the conjugate of A. A holomorphic
mapping f from the unit ball Bn of Cn into C

n is K-quasiregular if

Λf(z) ≤ Kλf(z)

at every point z ∈ Bn. A mapping is said to be quasiregular if it is K-quasiregular
for some K ≥ 1. From [23] we know that for n > 1, a quasiregular holomorphic
mappings are locally biholomorphic. In fact, Poletsky [25] also proved that quasireg-
ular holomorphic mappings (in any bounded domain) are rather rigid. In 2000, Chen
and Gauthier [8] proved that if f is a K-quasiregular holomorphic mapping with the
normalization det f ′(0) = 1, then the image f(Bn) contains a schlicht ball of radius
at least 1/12K1−1/n.

Now, we define a new class of holomorphic mappings from Bn into Cn which
contains the K-quasiregular mappings. We call such mappings (K,K ′)-quasiregular
mappings.
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Definition 1.2. For constants K ≥ 1, K ′ ≥ 0, a holomorphic mapping f from
Bn into Cn is said to be (K,K ′)-quasiregular mapping in Bn if

Λf(z) ≤ Kλf (z) +K ′

at each z ∈ Bn.

A continuous complex-valued function φ defined on a domain Ω ⊂ Cn is called a
pluriharmonic mapping if, for each fixed z′ ∈ Ω and θ ∈ ∂Bn, the function φ (z′ + θζ)
is harmonic in {ζ : |ζ | < dΩ(z)}, where dΩ(z) denotes the distance from z to the
boundary ∂Ω of Ω. A mapping f of Ω into C

n is called a pluriharmonic mapping if
every component of f is pluriharmonic. A mapping f of Bn into Cn is pluriharmonic
if, and only if, f has a representation f = g + h̄, where g and h are holomorphic
mappings (see [26]).

For a continuously differentiable mapping w = f(z) = (f1(z), . . . fm(z)) : B
n →

Cm, z = (z1, . . . , zn), by fz and fz̄ denote the matrices (∂fj/∂zk)m×n and (∂fj/∂z̄k)m×n,

respectively. Denote the maximum dilation Λ̃f and minimum dilation λ̃f by

Λ̃f(z) = max
θ∈∂Bn

∣∣fz(z)θ + fz̄(z)θ̄
∣∣ and λ̃f (z) = min

θ∈∂Bn

∣∣fz(z)θ + fz̄(z)θ̄
∣∣ ,

respectively, where θ is regarded as a column vector. In particular, when n = 1, these
definitions coincide with the corresponding definitions for planar harmonic mappings.

Wang et al. [29] generalized the notion of K-quasiregular mappings to plurihar-
monic mappings and established a lower bound estimate of Bloch constant for such
mappings.

A pluriharmonic mapping f of Bn into Cn is said to be K-quasiregular plurihar-
monic if

Λ̃f(z) ≤ Kλ̃f(z)
1/n for z ∈ Bn.

Now, we define a new class of pluriharmonic mappings of Bn into C
n which con-

tains K-quasiregular pluriharmonic mappings. We call such mappings (K,K ′)-
quasiregular pluriharmonic mappings.

Definition 1.3. Let f : Bn → Cn be a pluriharmonic mapping and K ≥ 1,
K ′ ≥ 0. We say that f is a (K,K ′)-quasiregular pluriharmonic mapping if

Λ̃f(z) ≤ Kλ̃f (z)
1/n +K ′

for z ∈ Bn. In particular, if K ′ = 0, then (K,K ′)-quasiregular pluriharmonic map-
pings reduce to K-quasiregular pluriharmonic mappings.

In 2011, Chen and Gauthier [9] established Landau theorems and Bloch theorems
for pluriharmonic mappings f : Bn → Cn. Chen, Ponnusamy and Wang have studied
Landau–Bloch constants for some specified spaces such as, pluriharmonic Bergman
space, α-Bloch space and hyperbolic-harmonic Bloch space (see [12, 13, 14, 15]). In
2020, Xu and Liu [31] obtained a new version of the Bloch theorem for pluriharmonic
ν-Bloch-type mappings. In 2022, Liu and Ponnusamy [22] obtained three Bloch-type
theorems for pluriharmonic mappings in Bn, which improve the corresponding results
of Chen and Gauthier [9].

2. The Bloch theorem for Bochner (K,K ′)-mappings

The following result of Takahashi [28] is useful in proving our main result in this
section.
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Theorem B. [28] Let f(z) = (f1(z), f2(z), . . . , fn(z)) be an analytic transforma-

tion defined by n functions fi(z) of n complex variables z, each analytic in a domain

D in n dimensional complex space of the variables z, and let its Jacobian Jf (z) does

not vanish at a point a in D. Let ∂fi(a)/∂zk ≡ αik; i, k = 1, · · · , n; A = (αik),
detA = Jf(a) 6= 0, it follows that the characteristic values λ1, · · · , λn of A∗A are real

and positive, so that min{λ1, · · · , λn} = λ > 0. Next, let ρ0 be the upper limit of ρ
such that the inequality

n∑

i,k=1

∣∣∣∣
∂fi
∂zk

(z)− ∂fi
∂zk

(a)

∣∣∣∣
2

≤ λ

is satisfied for
∑n

k=1 |zk − ak|2 ≤ ρ. Then f is univalent on a ball with center a and

radius ρ0, i.e., Bn(a, ρ0). Further, f(Bn(a, ρ0)) contains a ball with center f(a) and

radius 2−1λ
1

2ρ0. Moreover, the value 2−1λ
1

2ρ0 cannot be replaced by larger one for

certain analytic transformation and for some a.

The following lemma gives an estimate of the lower bound of the smallest singular
values of a non-singular matrix.

Lemma A. [32] If A is a non-singular n × n matrix. Then A∗A is a positive

definite hermitian matrix, the characteristic values λ1, λ2, . . . , λn of A∗A are therefore

real and positive, so that λ = min {λ2, . . . , λn} > 0. Then the following inequality is

satisfied

λ > (n− 1)n−1| detA|2‖A‖−2(n−1),

‖A‖ is the Euclidean norm of the matrix A.

In this section, we show that for each K ≥ 1, K ′ ≥ 0 and n ≥ 2, there is a
constant β > 0 such that, for each normalized Bochner (K,K ′)-mapping f in the
ball, βf ≥ β.

Theorem 1. Let n ≥ 2 be any integer and K ≥ 1, K ′ ≥ 0 be any constants.

Let f(z) be Bochner (K,K ′)-mapping from B
n

to Cn with | det f ′(0)| = 1, then f
maps some subdomain of unit ball univalently onto a ball of positive radius

R(n,K,K ′) =
1

4(K2 +K ′)n−1

(√
4K2 +K ′ +

√
K2 +K ′

)−1

.

In other words, we say that Bloch Theorem holds for Bochner (K,K ′)-mappings.

Proof. Let f(z) = (f1(z), f2(z), . . . , fn(z)) be Bochner (K,K ′)-mapping from B
n

to Cn with | det f ′(0)| = 1. We introduce the functions

M(r) = max
|z|≤r

|det f ′(z)|1/n ,

and

φ(r) = rM(1 − r),

for 0 ≤ r ≤ 1.
We see that

φ(0) = 0 and φ(1) =M(0) = |det f ′(0)|1/n = 1.

Then there exists a number r0, 0 < r0 ≤ 1 such that φ (r0) = 1 and φ(r) < 1 for
0 ≤ r < r0. This implies

M (1− r0) =
φ (r0)

r0
=

1

r0
,
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and for any 0 < r < r0,

(2.1) M(1 − r) =
φ(r)

r
<

1

r
.

Let α = (α1, α2, . . . , αn) be any point inside the closed ball of radius 1− r0 such that

|det f ′(α)|1/n =M (1− r0) =
1

r0
.

Define F : B
n → Cn by

F (ζ) = F (ζ1, ζ2, . . . , ζn) = (F1(ζ), F2(ζ), · · · , Fn(ζ)) = 2
(
f
(
α+

r0
2
ζ
)
− f(α)

)

for |ζ | ≤ 1. Then clearly F (0) = 0.
It is easy to see that for |ζ | ≤ 1,

∣∣∣α +
r0
2
ζ
∣∣∣ ≤ |α|+ r0

2
|ζ | ≤ 1− r0 +

r0
2

= 1− r0
2
< 1.

Therefore, F is well-defined.
A simple computation shows that

∂Fi

∂ζj
(ζ) = 2

∂fi
∂ζj

(
α +

r0
2
ζ
)
= r0

∂fi
∂zj

(
α +

r0
2
ζ
)

where zj = αj +
r0
2
ζj, j = 1, 2, . . . , n. Therefore,

detF ′(ζ) = r0
n det f ′

(
α +

r0
2
ζ
)
,

which implies that

|detF ′(0)| = r0
n |det f ′(α)| = r0

n (M (1− r0))
n = r0

n

(
1

r0

)n

= 1.

A simple computation shows that

‖F ′(ζ)‖2 =
∑

i,j

∣∣∣∣
∂Fi

∂ζj
(ζ)

∣∣∣∣
2

=
∑

i,j

r0
2

∣∣∣∣
∂fi
∂zj

(
α +

r0
2
ζ
)∣∣∣∣

2

= r0
2
∑

i,j

∣∣∣∣
∂fi
∂zj

(
α +

r0
2
ζ
)∣∣∣∣

2

= r0
2
∥∥∥f ′
(
α +

r0
2
ζ
)∥∥∥

2

≤ r0
2

[
K2
∣∣∣det f ′

(
α +

r0
2
ζ
)∣∣∣

2/n

+K ′

]
.

Since
∣∣α+ r0

2
ζ
∣∣ ≤ 1− r0/2. By the definition of the function M , we obtain

∣∣∣det f ′
(
α +

r0
2
ζ
)∣∣∣

2/n

≤
(
M
(
1− r0

2

))2
.

From (2.1), it follows that

‖F ′(ζ)‖2 ≤ r0
2

(
K2
(
M
(
1− r0

2

))2
+K ′

)
≤ r0

2

(
K2 4

r02
+K ′

)

= 4K2 + r0
2K ′ ≤ 4K2 +K ′.(2.2)
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Further,

‖F ′(0)‖2 = r0
2
∑

i,j

∣∣∣∣
∂fi
∂zj

(α)

∣∣∣∣
2

= r0
2 ‖f ′(α)‖2 ≤ r0

2
(
K2 |det f ′(α)|2/n +K ′

)

≤ r0
2

(
K2 · 1

r20
+K ′

)
≤ K2 +K ′.(2.3)

From (2.2) and (2.3), it is easy to see that

(2.4) ‖F ′(ζ)− F ′(0)‖ ≤ ‖F ′(ζ)‖+ ‖F ′(0)‖ ≤
√
4K2 +K ′ +

√
K2 +K ′

for |ζ | ≤ 1.
By applying the Schwarz lemma for functions of several complex variables (see

[5]) to (2.4), we obtain

(2.5) ‖F ′(ζ)− F ′(0)‖ ≤
(√

4K2 +K ′ +
√
K2 +K ′

)
|ζ |

for |ζ | ≤ 1. Since |detF ′(0)| = 1 6= 0, the characteristic values λ1, λ2, . . . , λn of
(F ′(0))∗ F ′(0) are real and positive, so that min {λ1, λ2, . . . , λn} = λ > 0, and the
inequality (2.5) takes the following form

(2.6) ‖F ′(ζ)− F ′(0)‖2 ≤ λ for |ζ | ≤ λ1/2√
4K2 +K ′ +

√
K2 +K ′

.

Since the product of eigenvalues is equal to determinant of the matrix, we have

λn ≤ λ1λ2 · · ·λn = | detF ′(0)|2.
This implies

λ1/2 ≤ |detF ′(0)|1/n = 1

and hence

(2.7)
λ1/2√

4K2 +K ′ +
√
K2 +K ′

≤ 1√
4K2 +K ′ +

√
K2 +K ′

< 1.

In view of (2.7) together with inequality (2.6) and applying Theorem B, we see
that F (ζ) maps some subdomain of |ζ | ≤ 1 univalently onto a ball with center 0 and
radius

λ1/2

2

λ1/2√
4K2 +K ′ +

√
K2 +K ′

=
λ

2(
√
4K2 +K ′ +

√
K2 +K ′)

.

Using Lemma A, for n ≥ 2 we obtain the following

λ > (n− 1)n−1 |detF ′(0)|2 ‖F ′(0)‖−2(n−1) ≥ |detF ′(0)|2 ‖F ′(0)‖−2(n−1)
.

By (2.3), we have

λ > (K2 +K ′)−(n−1).

Therefore, F (ζ) maps some sub-domain of the ball |ζ | ≤ 1 univalently onto a ball
with center 0 and of radius at least

1

2

(K2 +K ′)−(n−1)

√
4K2 +K ′ +

√
K2 +K ′

.

Hence by the definition of F (ζ), f(z) maps some sub-domain of the unit ball univa-
lently onto a ball of radius at least

R(n,K,K ′) =
1

4(K2 +K ′)n−1

(√
4K2 +K ′ +

√
K2 +K ′

)−1

.

This completes the proof. �
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Using Theorem 1, we obtain the following corollary.

Corollary 1. Let n ≥ 2 be any integer and K ≥ 1 be any positive constant. Let

f(z) be Bochner K-mapping from B
n

to Cn with | det f ′(0)| = 1, then f maps some

subdomain of unit ball Bn univalently onto a ball of positive radius

R(n,K) =
1

12K2n−1
.

Proof. Let f(z) be a Bochner K-mapping. Then we can easily see that f(z) is a
Bochner (K, 0)- mapping. Therefore, the proof follows by substituting K ′ = 0 in the
Theorem 1. �

3. The Bloch theorem for (K,K ′)-quasiregular mappings

Following lemma is useful in proving our main result in this section.

Lemma B. [19] Let w = f(z) be a holomorphic mapping defined in a neigh-

borhood of a point t ∈ Cn into Cn with Jf (t) 6= 0. Suppose that λf ≡ λf(t) is the

positive square root of the smallest characteristic value of the matrix A∗A at t, where

A ≡ (df/dz). Then the following hold:

(1) The mapping w = f(z) is univalent in any open convex subset K, t ∈ K, of

the set

Ωf = {z : |A(z)− A(t)| < λf} ,
where |A| = sup|x|=1 |Ax| and |x| denotes the euclidean norm of the n-vector

x.
(2) If r0 is the radius of the largest ball contained in Ωf centered at t, then

f [B (t, r0)] contains the ball of radius r0λf/2 centered at f(t), where B (t, r0)
= [z : |z − t| < r0].

In this section we show that for each K ≥ 1, K ′ ≥ 0 and n ≥ 2, there is a
constant β > 0 such that, for each normalized (K,K ′)-quasiregular mapping f in the
ball βf ≥ β.

Theorem 2. Let f : Bn → Cn be a (K,K ′)-quasiregular mapping of the unit

ball Bn into Cn with λf (0) ≥ α > 0. Then

βf ≥ α2

4(2Kα +K ′ + α)
.

Proof. Let f : Bn → Cn be a (K,K ′)-quasiregular mapping of the unit ball
Bn into Cn with λf (0) ≥ α > 0. Without loss of generality, we assume that f is

holomorphic on B
n
. We introduce the following functions

N(r) = max
|z|≤r

λf(z)

and
ψ(r) = rN(1− r)

for 0 ≤ r ≤ 1. We see that

ψ(0) = 0 and ψ(1) = N(0) = λf(0) = α > 0.

Then there exists a number r0, 0 < r0 ≤ 1 such that ψ(r0) = α and ψ(r) < α for
0 ≤ r < r0. This implies

N(1− r0) =
ψ(r0)

r0
=
α

r0
,
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and for any 0 < r < r0,

(3.1) N(1− r) =
ψ(r)

r
<
α

r
.

Let w0 be any point inside the closed ball of radius 1− r0 such that

λf(w0) = N(1− r0) =
α

r0
.

Define G : Bn → Cn by

(3.2) G(ζ) =
r0
2
A−1

(
f(w0 +

r0
2
ζ)− f(w0)

)

for |ζ | ≤ 1 and A = f ′(w0). It is easy to see that

|w0 +
r0
2
ζ | ≤ |w0|+

r0
2
|ζ | ≤ 1− r0 +

r0
2

= 1− r0
2
< 1.

Also, [f ′(w0)]
−1 exists because |det f ′(w0)| ≥ λnf (w0) > 0. Therefore, G is well

defined.
We observe that

dG(ζ)

dζ
=
r0
2
A−1 df

dζ

(
w0 +

r0
2
ζ
)
,

which implies

(3.3) G′(ζ) = A−1f ′(w0 +
r0
2
ζ).

By using Cauchy–Schwarz inequality, we obtain

ΛG(ζ) = |G′(ζ)| ≤ |A−1|
∣∣∣f ′
(
w0 +

r0
2
ζ
)∣∣∣ .

Since |A−1| = 1
λf (w0)

, we have

ΛG(ζ) ≤
Λf(w0 +

r0
2
ζ)

λf(w0)
.

Since f is (K,K ′)-quasiregular mapping, we have

ΛG(ζ) ≤
Kλf(w0 +

r0
2
ζ) +K ′

λf(w0)
.

Since |w0 +
r0
2
ζ | ≤ 1− r0/2. By the definition of the function N , we obtain

λf(w0 +
r0
2
ζ) ≤ N

(
1− r0

2

)
.

Using (3.1), we obtain

ΛG(ζ) ≤
KN

(
1− r0

2

)
+K ′

λf(w0)

≤ 2Kα/r0 +K ′

α/r0
≤ 1

α
(2Kα +K ′).(3.4)

From (3.3), we have G′(0) = In and hence, ΛG(0) = λG(0) = 1. Thus,

(3.5) |G′(ζ)−G′(0)| ≤ |G′(ζ)|+ |G′(0)| ≤ 1

α
(2Kα+K ′) + 1 =

1

α
(2Kα +K ′ + α)

for |ζ | ≤ 1. By the Schwarz lemma (see [5]), we obtain

(3.6) |G′(ζ)−G′(0)| ≤ 1

α
(2Kα +K ′ + α) |ζ |
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for |ζ | ≤ 1. Clearly (3.6) shows that

|G′(ζ)− In| ≤ 1 for |ζ | ≤ α

2Kα +K ′ + α
.

By Lemma B, w = G(ζ) maps the ball Bn (0, α/(2Kα+K ′ + α)) univalently onto a
domain containing the ball Bn (0, α/(4Kα+ 2K ′ + 2α)). Hence by (3.2), w = f(z)
maps the subdomain Bn (w0, r0α/(4Kα+ 2K ′ + 2α)) of Bn univalently onto a ball
center at f(w0) and radius

α2

4(2Kα +K ′ + α)
.

This completes the proof. �

Corollary 2. Let f : Bn → Cn be a (K,K ′)-quasiregular mapping of the unit

ball Bn into Cn with | det f ′(0)| = α > 0. Then

βf ≥ α2/n

4(2Kα1/n +K ′ + α1/n)
.

Proof. Since

α = | det f ′(0)| ≤ λnf (0),

we have,

λf(0) ≥ α1/n.

Now by replacing α by α1/n in Theorem 2, we obtain the desired result. �

4. The Landau–Bloch type theorem for pluriharmonic mappings

In 2011, Chen and Gauthier [9] proved the following Schwarz-Pick lemma for
pluriharmonic mappings:

Lemma C. [9] Let f be a pluriharmonic mapping of Bn into Bm. Then

Λ̃f(z) ≤
4

π

1

1− |z|2 for z ∈ Bn.

If f(0) = 0, then

|f(z)| ≤ 4

π
arctan |z| ≤ 4

π
|z| for z ∈ Bn.

The following Landau-type theorem for pluriharmonic mappings of Bn into Cn

with bounded dilation has been proved by Wang et al. [29].

Theorem C. [29] Let f be a pluriharmonic mapping of Bn into Cn such that

f(0) = 0, λ̃f(0) = 1 and Λ̃f(z) ≤ Λ̃ for z ∈ Bn. Then f is univalent on the ball

Bn(o, ρ) and the range f(Bn(0, ρ)) covers the ball Bn(0, R), where

ρ =
π

4(Λ̃f(0) + Λ̃)
and R =

π

8(Λ̃f(0) + Λ̃)
.

If, in addition, Λ̃f(0) = 1, then f is univalent on the ball Bn(0, ρ′) and range

f(Bn(0, ρ′)) covers the ball Bn(0, R′), where

ρ′ =
π

4(1 + Λ̃)
and R′ =

π

8(1 + Λ̃)
.

For (K,K ′)-quasiregular pluriharmonic mappings with bounded dilation, we prove
the following Landau-type theorem.
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Theorem 3. Let f : Bn → C
n be a (K,K ′)-quasiregular pluriharmonic mapping,

n > 1, such that f(0) = 0, λ̃f(0) = 1 and Λ̃f(z) ≤ Λ̃ for z ∈ Bn. Then f is univalent

on the ball Bn(0, ρ) and f(Bn(0, ρ)) contains the ball Bn(0, R), where

ρ =
π

4(K +K ′ + Λ̃)
and R =

π

8(K +K ′ + Λ̃)
.

Proof. Let z1, z2 ∈ Bn(0, ρ) be two fixed distinct points and z1 − z2 = |z1 − z2|θ
for some θ ∈ ∂Bn. Define the plurihamomic mapping

φθ(z) = (fz(z)− fz(0)) θ + (fz̄(z)− fz̄(0)) θ̄.

Then, the definition of Λ̃f(z) gives that

|φθ(z)| ≤ Λ̃f(z) + Λ̃f(0) ≤ Λ̃ +Kλ̃f (0)
1/n +K ′ = Λ̃ +K +K ′ for z ∈ Bn.

Note that φθ(0) = 0. By Lemma C, we obtain

|φθ(z)| ≤
4

π

(
Λ̃ +K +K ′

)
|z| for z ∈ Bn.

We have

|f(z2)− f(z1)| =
∣∣∣∣
ˆ

[z1,z2]

fz(z) dz + fz̄(z) dz̄

∣∣∣∣

≥
∣∣∣∣
ˆ

[z1,z2]

fz(0) dz + fz̄(0) dz̄

∣∣∣∣−
∣∣∣∣
ˆ

[z1,z2]

(fz(z)− fz(0)) dz + (fz̄(z)− fz̄(0)) dz̄

∣∣∣∣

≥ |z2 − z1|λ̃f(0)−
ˆ

[z1,z2]

|φθ(z)| ds

> |z2 − z1| −
4
(
Λ̃ +K +K ′

)
ρ

π
|z2 − z1| = 0.

Thus f(z1) 6= f(z2). This shows that f is univalent in Bn(0, ρ).
Now, let z′ ∈ ∂Bn(0, ρ). As f(0) = 0, we have

|f(z′)| =
∣∣∣∣
ˆ

[0,z′]

fz(z) dz + fz̄(z) dz̄

∣∣∣∣

≥
∣∣∣∣
ˆ

[0,z′]

fz(0) dz + fz̄(0) dz̄

∣∣∣∣−
∣∣∣∣
ˆ

[0,z′]

(fz(z)− fz(0)) dz + (fz̄(z)− fz̄(0)) dz̄

∣∣∣∣

≥ λ̃f(0)ρ−
ˆ ρ

0

4(K +K ′ + Λ̃)r

π
dr

= ρ− 2(K +K ′ + Λ̃)ρ2

π
=

π

8(K +K ′ + Λ̃)
= R.

This shows that f(Bn(0, ρ)) contains the ball Bn(0, R). This completes the proof of
this theorem. �

Next, we establish a Bloch-type theorem for (K,K ′)-quasuregular pluriharmonic
mappings.

Theorem 4. Let f : Bn → Cn be a (K,K ′)-quasiregular pluriharmonic mapping,

n > 1, such that λ̃f(0) = 1. Then f(Bn) contains a schlicht ball of radius bf , with

bf ≥ π

16(3K + 2K ′)
.
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Proof. Let f : Bn → C
n be a (K,K ′)-quasiregular pluriharmonic mapping of the

unit ball Bn into Cn with λ̃f (0) = 1. Without loss of generality, we assume that f is

pluriharmonic on B
n
. We introduce the following functions

M1(r) = max
|z|≤r

λ̃f(z)
1/n,

and

φ1(r) = (1− r)M1(r)

for 0 ≤ r ≤ 1. It is easy to see that φ1(0) = M1(0) = λ̃f(0)
1/n = 1 and φ1(1) = 0.

Then there exist r0 such that φ1(r0) = 1 and φ1(r) < 1 for r0 < r ≤ 1.
Also, since the set {z : |z| ≤ r0} is compact, there exist z0 such that |z0| ≤ r0 and

M1(r0) = λ̃f(z0)
1/n, which implies

φ1(r0) = (1− r0)M1(r0) = (1− r0)λ̃f (z0)
1/n.

Therefore,

(4.1) (1− r0) λ̃f(z0)
1/n = 1.

Let z ∈ Bn with |z| = r ≥ r0, then

(4.2) (1− |z|)λ̃f(z)1/n ≤ (1− r)M1(r) ≤ 1.

In particular, we have

(4.3) λ̃f(z) ≤ λ̃f(z0) for |z| = r0.

We consider the following two cases.

Case 1. r0 > 0: Fix a point w0 with 0 < |w0| ≤ r0 and assume that Λ̃f(w0) =
|fz(w0)θ + fz̄(w0)θ̄| with θ ∈ ∂Bn. Define the function ϕ by

ϕ(ζ) = fz(ζw0/|w0|)θ + fz̄(ζw0/|w0|)θ̄ for ζ ∈ D.

Since ϕ is harmonic, by the maximum modulus principle, there exists a point ζ ′ with
|ζ ′| = r0, such that

Λ̃f(w0) = |ϕ(|w0|)| ≤ |fz(ζ ′w0/|w0|)θ + fz̄(ζ
′w0/|w0|)θ̄|.

Let z1 = ζ ′w0/|w0|. Since |z1| = r0, by the definition of (K,K ′)-quasiregular pluri-
harmonic mappings and (4.3), we have

Λ̃f(w0) ≤
∣∣fz(z1)θ + fz̄(z1)θ̄

∣∣ ≤ Λ̃f(z1) ≤ Kλ̃f(z1)
1/n +K ′ ≤ Kλ̃f(z0)

1/n +K ′.

On the other hand, by the definition of (K,K ′)-quasiregular pluriharmonic mappings

and (4.1) with λ̃f (0) = 1, we have

Λ̃f(0) ≤ Kλ̃f(0)
1/n +K ′ = K +K ′ = K(1− r0)λ̃f(z0)

1/n +K ′.

This shows that

(4.4) Λ̃f(z) ≤ Kλ̃f(z0)
1/n +K ′ for |z| ≤ r0.

For ξ ∈ Bn, define

(4.5) g(ξ) = z0 +
(1− r0)

n

2
ξ and F (ξ) = 2 (f(g(ξ))− f(z0)) .

Then, it is easy to see that

F (0) = 0 and λ̃F (0) = (1− r0)
nλ̃f(z0) = 1.
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If |g(ξ)| ≤ r0, from (4.4) and (4.1) we have

Λ̃F (ξ) = (1− r0)
nΛ̃F (g(ξ)) ≤ K(1− r0)

nλ̃f(z0)
1/n + (1− r0)

nK ′

≤ K(1− r0)λ̃f(z0)
1/n +K ′ = K +K ′,

and if |g(ξ)| ≥ r0, from (4.2), we obtain

Λ̃F (ξ) = (1− r0)
nΛ̃F (g(ξ)) ≤ K(1− r0)

nλ̃f(g(ξ))
1/n + (1− r0)

nK ′

≤ K(1− r0)λ̃f ((g(ξ))
1/n +K ′

= K

(
1− r0

1− |g(ξ)|

)
(1− |g(ξ)|)λ̃f((g(ξ))1/n +K ′

≤ K

(
1− r0

1− |g(ξ)|

)
+K ′ ≤ K(1− r0)

1− r0 − (1− r0)n|ξ|/2
+K ′

≤ K(1− r0)

1− r0 − (1− r0)|ξ|/2
+K ′ =

2K

2− |ξ| +K ′.(4.6)

Case 2. r0 = 0: Consider the functions g and F defined by (4.5) with r0 = 0.
Then |g(ξ)| ≥ r0 = 0 and it follows from (4.6) that

Λ̃F (ξ) =
2K

2− |ξ| +K ′ for ξ ∈ Bn.

Therefore, we conclude that

Λ̃F (ξ) < 2K +K ′ for ξ ∈ Bn.

In particular, Λ̃F (0) ≤ K +K ′.
Now, applying Theorem C to the mapping F , we see that F (Bn) contains a

schlicht ball with the center 0 and radius

R′ =
π

8(3K + 2K ′)
.

Consequently, f(Bn) contains a schlicht ball of radius

R =
π

16(3K + 2K ′)
.

This completes the proof. �
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