

The Landau–Bloch type theorems for certain class of holomorphic and pluriharmonic mappings in \mathbb{C}^n

VASUDEVARAO ALLU and ROHIT KUMAR

Abstract. In this paper, we define two classes of holomorphic mappings defined on the unit ball B^n of n -dimensional complex space \mathbb{C}^n and obtain the lower estimates for Bloch's constant for these classes. Also, we derive the Landau–Bloch type theorem for some subclasses of pluriharmonic mappings defined on the unit ball B^n .

Landaun–Blochin-tyyppiset lauseet avaruuden \mathbb{C}^n holomorfisten
ja moniharmonisten kuvausten eräälle luokalle

Tiivistelmä. Tässä työssä määritellään kaksi n -ulotteisen kompleksiavaruuden \mathbb{C}^n yksikkökuulan B^n holomorfisten kuvausten luokkaa ja saadaan alarajoja näiden luokkien Blochin vakiolle. Lisäksi johdetaan Landaun–Blochin-tyyppinen lause yksikkökuulan B^n moniharmonisten kuvausten eräille alaluokille.

1. Introduction

Let $\mathbb{D} = \{z \in \mathbb{C}: |z| < 1\}$ be the unit disc in the complex plane \mathbb{C} . In the case of one complex variable, the following theorem of Bloch is well known (see [3]).

Theorem A. [3] *Let f be a holomorphic function on the $\overline{\mathbb{D}} = \{z: |z| \leq 1\}$ and satisfying $|f'(0)| = 1$. Then there exists a positive constant b such that $f(\mathbb{D})$ contains a schlicht disc of radius b .*

By a schlicht disc, we mean a disc which is the univalent image of some region in the unit disc \mathbb{D} . Let β_f denote the least upper bound of the radii of all schlicht discs that f carries and \mathcal{F} denote the set of all holomorphic functions defined on $\overline{\mathbb{D}} = \{z: |z| \leq 1\}$ satisfying $|f'(0)| = 1$. Then the Bloch constant is the number defined by

$$\beta(\mathcal{F}) = \inf\{\beta_f: f \in \mathcal{F}\}.$$

In 1929, Landau [21] proved that if we replace the holomorphicity condition on $|z| \leq 1$ to $|z| < 1$, then the corresponding constant is also the same. If one consider the function $f(z) = z$, then clearly $\beta(\mathcal{F}) \leq 1$. However, better estimates than these are known. The exact value of $\beta(\mathcal{F})$ is still unknown.

In 1937, Ahlfors and Grunsky [1] proved that

$$0.4330 \approx \frac{\sqrt{3}}{4} \leq \beta(\mathcal{F}) \leq \frac{1}{\sqrt{1+\sqrt{3}}} \frac{\Gamma(1/3)\Gamma(11/12)}{\Gamma(1/4)} \approx 0.4719.$$

It is conjectured that this upper bound is the precise value of the Bloch constant, a conjecture known as the Ahlfors–Grunsky conjecture. In 1990, Bonk [6] obtained a

<https://doi.org/10.54330/afm.160790>

2020 Mathematics Subject Classification: Primary 32A10, 31C10; Secondary 32A18, 30C62, 31B05.

Key words: Holomorphic mapping, quasiregular mapping, (K, K') -elliptic mapping, quasiconformal mapping, Landau–Bloch type theorem, pluriharmonic mapping.

© 2025 The Finnish Mathematical Society

slight improvement to the lower bound as $\beta(\mathcal{F}) > \sqrt{3}/4 + 10^{-14}$. In 1996, Chen and Gauthier [7] improved Bonk's result and proved that $\beta(\mathcal{F}) > \sqrt{3}/4 + 2 \times 10^{-4}$.

Let

$$\mathbb{C}^n = \{z = (z_1, z_2, \dots, z_n) : z_1, z_2, \dots, z_n \in \mathbb{C}\}$$

be the complex space of dimension n . For any point $z = (z_1, z_2, \dots, z_n) \in \mathbb{C}^n$,

$$|z| = (|z_1|^2 + |z_2|^2 + \dots + |z_n|^2)^{1/2}.$$

We denote a ball in \mathbb{C}^n with center at z_0 and radius r by

$$B^n(z_0, r) = \{z \in \mathbb{C}^n : |z - z_0| < r\}$$

and the unit ball in \mathbb{C}^n by

$$B^n = \{z \in \mathbb{C}^n : |z| < 1\}.$$

For a mapping $f = (f_1, f_2, \dots, f_n)$ of a domain in \mathbb{C}^n into \mathbb{C}^n , $\partial f / \partial z_k$ denotes the column vector formed by $\partial f_1 / \partial z_k, \partial f_2 / \partial z_k, \dots, \partial f_n / \partial z_k$, and we denote by

$$f' = \left(\frac{\partial f}{\partial z_1}, \frac{\partial f}{\partial z_2}, \dots, \frac{\partial f}{\partial z_n} \right),$$

the matrix formed by these column vectors. For an $n \times n$ matrix A , we have the matrix norm

$$\|A\| = \left(\sum_{i,j} |a_{ij}|^2 \right)^{1/2}$$

and the operator norm

$$|A| = \sup_{z \neq 0} \frac{|Az|}{|z|}.$$

In the case of several complex variables, the classical theorem of Bloch for holomorphic mappings in the disc fails to extend to general holomorphic mappings in the ball of \mathbb{C}^n . In 1967, Wu [30] pointed out that the Bloch theorem fails unless some restrictive assumptions are made on holomorphic mappings. For example, for positive integer n , setting $f_n(z_1, z_2) = (nz_1, z_2/n)$, we see that f_n is an holomorphic function on the unit ball of \mathbb{C}^2 for each n and $|\det f_n'(0)| = 1$. But the image of f_n contains a schlicht ball of radius at most $1/n$. So, the infimum of the radii of the schlicht balls anywhere when all members of $\{f_n\}$ are taken into account is zero. In order that there is a positive Bloch constant, it is necessary to restrict the class of holomorphic mappings in higher dimensions. Earlier investigations for some subclass of holomorphic mappings were conducted by Bochner [4], Hahn [19], Harris [20], Sakaguchi [27], Takahashi [28], and Wu [30]. Outside holomorphicity, there is no Bloch theorem for quasiregular mappings of the ball, but Eremenko [17] has proved that a Bloch theorem holds for entire quasiregular mappings.

In 1946, Bochner [4] defined a subclass of the class of holomorphic functions from $B^n (\subseteq \mathbb{C}^n)$ to \mathbb{C}^n . For a constant $K \geq 1$, a holomorphic mapping f from B^n to \mathbb{C}^n is said to be Bochner K -mapping in B^n if f satisfies the differential inequality

$$\|f'(z)\| \leq K |\det f'(z)|^{1/n}$$

for all $z \in B^n$. Bochner [4] proved that, for each $K \geq 1$ and $n \geq 2$, there is a constant $\beta > 0$ such that, for each normalized Bochner K -mapping f in the unit ball, $\beta_f \geq \beta$ holds. However, Bochner has not given an estimate for this Bloch constant.

In 1951, Takahashi [28] defined a new class of normalized holomorphic mappings f satisfying the weaker condition

$$(1.1) \quad \max_{|z| < r} \|f'(z)\| \leq K \max_{|z| \leq r} |\det f'(z)|^{1/n}, \quad \text{for each } 0 \leq r < 1.$$

The holomorphic functions which satisfy (1.1) are called Takahashi K -mappings. For such normalized Takahashi K -mappings, Takahashi [28] has proved that

$$\beta \geq \frac{(n-1)^{n-2}}{12K^{2n-1}}.$$

Later in 1956, Sakaguchi [27] improved Takahashi's estimate to

$$\beta \geq \frac{(n-1)^{n-2}}{8K^{2n-1}}.$$

We now define a new class of holomorphic mappings from B^n into \mathbb{C}^n which contains the Bochner K -mappings. We call them Bochner (K, K') -mappings.

Definition 1.1. For constants $K \geq 1, K' \geq 0$, a holomorphic mapping f from B^n into \mathbb{C}^n is said to be a Bochner (K, K') -mapping in B^n if f satisfies the differential inequality

$$\|f'(z)\|^2 \leq K^2 |\det f'(z)|^{2/n} + K'$$

for all $z \in B^n$.

We remark that the unit ball B^n in the Definition 1.1 can be replaced by any general domain in \mathbb{C}^n . In particular, if $K' = 0$, then Bochner (K, K') -mappings reduce to Bochner K -mappings. We see that every Bochner K -mapping is a Bochner (K, K') -mapping for $K' = 0$, but the converse need not be true. This can be seen from the following example: Let

$$f(z_1, z_2) = \left(z_1 + z_2, \left(z_1 - \frac{1}{2} \right)^2 + \left(z_2 - \frac{1}{3} \right)^2 \right)$$

in B^2 . This function is clearly a holomorphic mapping on B^2 . One can easily see that the mapping $f(z_1, z_2)$ is not a Bochner K -mapping for any $K \geq 1$ but it is a Bochner $(1, 20)$ -mapping.

The motivation for defining this type of mappings came from the paper of Nirenberg (see [24]), where Nirenberg has defined this type of mappings in the plane. For more details on this type of mappings, we refer to [2, 10, 11, 16, 18, 24].

Let $\lambda_f^2(z)$ and $\Lambda_f^2(z)$ denote the smallest and the largest eigenvalues of the Hermitian matrix A^*A , where $A = f'(z)$ and A^* is the conjugate of A . A holomorphic mapping f from the unit ball B^n of \mathbb{C}^n into \mathbb{C}^n is K -quasiregular if

$$\Lambda_f(z) \leq K \lambda_f(z)$$

at every point $z \in B^n$. A mapping is said to be quasiregular if it is K -quasiregular for some $K \geq 1$. From [23] we know that for $n > 1$, a quasiregular holomorphic mappings are locally biholomorphic. In fact, Poletsky [25] also proved that quasiregular holomorphic mappings (in any bounded domain) are rather rigid. In 2000, Chen and Gauthier [8] proved that if f is a K -quasiregular holomorphic mapping with the normalization $\det f'(0) = 1$, then the image $f(B^n)$ contains a schlicht ball of radius at least $1/12K^{1-1/n}$.

Now, we define a new class of holomorphic mappings from B^n into \mathbb{C}^n which contains the K -quasiregular mappings. We call such mappings (K, K') -quasiregular mappings.

Definition 1.2. For constants $K \geq 1, K' \geq 0$, a holomorphic mapping f from B^n into \mathbb{C}^n is said to be (K, K') -quasiregular mapping in B^n if

$$\Lambda_f(z) \leq K\lambda_f(z) + K'$$

at each $z \in \mathbb{B}^n$.

A continuous complex-valued function ϕ defined on a domain $\Omega \subset \mathbb{C}^n$ is called a pluriharmonic mapping if, for each fixed $z' \in \Omega$ and $\theta \in \partial B^n$, the function $\phi(z' + \theta\zeta)$ is harmonic in $\{\zeta : |\zeta| < d_\Omega(z)\}$, where $d_\Omega(z)$ denotes the distance from z to the boundary $\partial\Omega$ of Ω . A mapping f of Ω into \mathbb{C}^n is called a pluriharmonic mapping if every component of f is pluriharmonic. A mapping f of B^n into \mathbb{C}^n is pluriharmonic if, and only if, f has a representation $f = g + \bar{h}$, where g and h are holomorphic mappings (see [26]).

For a continuously differentiable mapping $w = f(z) = (f_1(z), \dots, f_m(z)) : B^n \rightarrow \mathbb{C}^m$, $z = (z_1, \dots, z_n)$, by f_z and $f_{\bar{z}}$ denote the matrices $(\partial f_j / \partial z_k)_{m \times n}$ and $(\partial f_j / \partial \bar{z}_k)_{m \times n}$, respectively. Denote the maximum dilation $\tilde{\Lambda}_f$ and minimum dilation $\tilde{\lambda}_f$ by

$$\tilde{\Lambda}_f(z) = \max_{\theta \in \partial B^n} |f_z(z)\theta + f_{\bar{z}}(z)\bar{\theta}| \quad \text{and} \quad \tilde{\lambda}_f(z) = \min_{\theta \in \partial B^n} |f_z(z)\theta + f_{\bar{z}}(z)\bar{\theta}|,$$

respectively, where θ is regarded as a column vector. In particular, when $n = 1$, these definitions coincide with the corresponding definitions for planar harmonic mappings.

Wang et al. [29] generalized the notion of K -quasiregular mappings to pluriharmonic mappings and established a lower bound estimate of Bloch constant for such mappings.

A pluriharmonic mapping f of B^n into \mathbb{C}^n is said to be K -quasiregular pluriharmonic if

$$\tilde{\Lambda}_f(z) \leq K\tilde{\lambda}_f(z)^{1/n} \quad \text{for } z \in B^n.$$

Now, we define a new class of pluriharmonic mappings of B^n into \mathbb{C}^n which contains K -quasiregular pluriharmonic mappings. We call such mappings (K, K') -quasiregular pluriharmonic mappings.

Definition 1.3. Let $f : B^n \rightarrow \mathbb{C}^n$ be a pluriharmonic mapping and $K \geq 1, K' \geq 0$. We say that f is a (K, K') -quasiregular pluriharmonic mapping if

$$\tilde{\Lambda}_f(z) \leq K\tilde{\lambda}_f(z)^{1/n} + K'$$

for $z \in B^n$. In particular, if $K' = 0$, then (K, K') -quasiregular pluriharmonic mappings reduce to K -quasiregular pluriharmonic mappings.

In 2011, Chen and Gauthier [9] established Landau theorems and Bloch theorems for pluriharmonic mappings $f : B^n \rightarrow \mathbb{C}^n$. Chen, Ponnusamy and Wang have studied Landau–Bloch constants for some specified spaces such as, pluriharmonic Bergman space, α -Bloch space and hyperbolic-harmonic Bloch space (see [12, 13, 14, 15]). In 2020, Xu and Liu [31] obtained a new version of the Bloch theorem for pluriharmonic ν -Bloch-type mappings. In 2022, Liu and Ponnusamy [22] obtained three Bloch-type theorems for pluriharmonic mappings in B^n , which improve the corresponding results of Chen and Gauthier [9].

2. The Bloch theorem for Bochner (K, K') -mappings

The following result of Takahashi [28] is useful in proving our main result in this section.

Theorem B. [28] Let $f(z) = (f_1(z), f_2(z), \dots, f_n(z))$ be an analytic transformation defined by n functions $f_i(z)$ of n complex variables z , each analytic in a domain D in n dimensional complex space of the variables z , and let its Jacobian $J_f(z)$ does not vanish at a point a in D . Let $\partial f_i(a)/\partial z_k \equiv \alpha_{ik}$; $i, k = 1, \dots, n$; $A = (\alpha_{ik})$, $\det A = J_f(a) \neq 0$, it follows that the characteristic values $\lambda_1, \dots, \lambda_n$ of A^*A are real and positive, so that $\min\{\lambda_1, \dots, \lambda_n\} = \lambda > 0$. Next, let ρ_0 be the upper limit of ρ such that the inequality

$$\sum_{i,k=1}^n \left| \frac{\partial f_i}{\partial z_k}(z) - \frac{\partial f_i}{\partial z_k}(a) \right|^2 \leq \lambda$$

is satisfied for $\sum_{k=1}^n |z_k - a_k|^2 \leq \rho$. Then f is univalent on a ball with center a and radius ρ_0 , i.e., $B^n(a, \rho_0)$. Further, $f(B^n(a, \rho_0))$ contains a ball with center $f(a)$ and radius $2^{-1}\lambda^{\frac{1}{2}}\rho_0$. Moreover, the value $2^{-1}\lambda^{\frac{1}{2}}\rho_0$ cannot be replaced by larger one for certain analytic transformation and for some a .

The following lemma gives an estimate of the lower bound of the smallest singular values of a non-singular matrix.

Lemma A. [32] If A is a non-singular $n \times n$ matrix. Then A^*A is a positive definite hermitian matrix, the characteristic values $\lambda_1, \lambda_2, \dots, \lambda_n$ of A^*A are therefore real and positive, so that $\lambda = \min\{\lambda_1, \dots, \lambda_n\} > 0$. Then the following inequality is satisfied

$$\lambda > (n-1)^{n-1} |\det A|^2 \|A\|^{-2(n-1)},$$

$\|A\|$ is the Euclidean norm of the matrix A .

In this section, we show that for each $K \geq 1$, $K' \geq 0$ and $n \geq 2$, there is a constant $\beta > 0$ such that, for each normalized Bochner (K, K') -mapping f in the ball, $\beta_f \geq \beta$.

Theorem 1. Let $n \geq 2$ be any integer and $K \geq 1$, $K' \geq 0$ be any constants. Let $f(z)$ be Bochner (K, K') -mapping from \overline{B}^n to \mathbb{C}^n with $|\det f'(0)| = 1$, then f maps some subdomain of unit ball univalently onto a ball of positive radius

$$R(n, K, K') = \frac{1}{4(K^2 + K')^{n-1}} \left(\sqrt{4K^2 + K'} + \sqrt{K^2 + K'} \right)^{-1}.$$

In other words, we say that Bloch Theorem holds for Bochner (K, K') -mappings.

Proof. Let $f(z) = (f_1(z), f_2(z), \dots, f_n(z))$ be Bochner (K, K') -mapping from \overline{B}^n to \mathbb{C}^n with $|\det f'(0)| = 1$. We introduce the functions

$$M(r) = \max_{|z| \leq r} |\det f'(z)|^{1/n},$$

and

$$\phi(r) = rM(1-r),$$

for $0 \leq r \leq 1$.

We see that

$$\phi(0) = 0 \quad \text{and} \quad \phi(1) = M(0) = |\det f'(0)|^{1/n} = 1.$$

Then there exists a number r_0 , $0 < r_0 \leq 1$ such that $\phi(r_0) = 1$ and $\phi(r) < 1$ for $0 \leq r < r_0$. This implies

$$M(1-r_0) = \frac{\phi(r_0)}{r_0} = \frac{1}{r_0},$$

and for any $0 < r < r_0$,

$$(2.1) \quad M(1-r) = \frac{\phi(r)}{r} < \frac{1}{r}.$$

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ be any point inside the closed ball of radius $1 - r_0$ such that

$$|\det f'(\alpha)|^{1/n} = M(1 - r_0) = \frac{1}{r_0}.$$

Define $F: \overline{B}^n \rightarrow \mathbb{C}^n$ by

$$F(\zeta) = F(\zeta_1, \zeta_2, \dots, \zeta_n) = (F_1(\zeta), F_2(\zeta), \dots, F_n(\zeta)) = 2 \left(f \left(\alpha + \frac{r_0}{2} \zeta \right) - f(\alpha) \right)$$

for $|\zeta| \leq 1$. Then clearly $F(0) = 0$.

It is easy to see that for $|\zeta| \leq 1$,

$$\left| \alpha + \frac{r_0}{2} \zeta \right| \leq |\alpha| + \frac{r_0}{2} |\zeta| \leq 1 - r_0 + \frac{r_0}{2} = 1 - \frac{r_0}{2} < 1.$$

Therefore, F is well-defined.

A simple computation shows that

$$\frac{\partial F_i}{\partial \zeta_j}(\zeta) = 2 \frac{\partial f_i}{\partial \zeta_j} \left(\alpha + \frac{r_0}{2} \zeta \right) = r_0 \frac{\partial f_i}{\partial z_j} \left(\alpha + \frac{r_0}{2} \zeta \right)$$

where $z_j = \alpha_j + \frac{r_0}{2} \zeta_j$, $j = 1, 2, \dots, n$. Therefore,

$$\det F'(\zeta) = r_0^n \det f' \left(\alpha + \frac{r_0}{2} \zeta \right),$$

which implies that

$$|\det F'(\zeta)| = r_0^n |\det f'(\alpha)| = r_0^n (M(1 - r_0))^n = r_0^n \left(\frac{1}{r_0} \right)^n = 1.$$

A simple computation shows that

$$\begin{aligned} \|F'(\zeta)\|^2 &= \sum_{i,j} \left| \frac{\partial F_i}{\partial \zeta_j}(\zeta) \right|^2 = \sum_{i,j} r_0^2 \left| \frac{\partial f_i}{\partial z_j} \left(\alpha + \frac{r_0}{2} \zeta \right) \right|^2 \\ &= r_0^2 \sum_{i,j} \left| \frac{\partial f_i}{\partial z_j} \left(\alpha + \frac{r_0}{2} \zeta \right) \right|^2 = r_0^2 \|f' \left(\alpha + \frac{r_0}{2} \zeta \right)\|^2 \\ &\leq r_0^2 \left[K^2 \left| \det f' \left(\alpha + \frac{r_0}{2} \zeta \right) \right|^{2/n} + K' \right]. \end{aligned}$$

Since $|\alpha + \frac{r_0}{2} \zeta| \leq 1 - r_0/2$. By the definition of the function M , we obtain

$$\left| \det f' \left(\alpha + \frac{r_0}{2} \zeta \right) \right|^{2/n} \leq \left(M \left(1 - \frac{r_0}{2} \right) \right)^2.$$

From (2.1), it follows that

$$\begin{aligned} (2.2) \quad \|F'(\zeta)\|^2 &\leq r_0^2 \left(K^2 \left(M \left(1 - \frac{r_0}{2} \right) \right)^2 + K' \right) \leq r_0^2 \left(K^2 \frac{4}{r_0^2} + K' \right) \\ &= 4K^2 + r_0^2 K' \leq 4K^2 + K'. \end{aligned}$$

Further,

$$\begin{aligned}
 \|F'(0)\|^2 &= r_0^2 \sum_{i,j} \left| \frac{\partial f_i}{\partial z_j}(\alpha) \right|^2 = r_0^2 \|f'(\alpha)\|^2 \leq r_0^2 \left(K^2 |\det f'(\alpha)|^{2/n} + K' \right) \\
 (2.3) \quad &\leq r_0^2 \left(K^2 \cdot \frac{1}{r_0^2} + K' \right) \leq K^2 + K'.
 \end{aligned}$$

From (2.2) and (2.3), it is easy to see that

$$(2.4) \quad \|F'(\zeta) - F'(0)\| \leq \|F'(\zeta)\| + \|F'(0)\| \leq \sqrt{4K^2 + K'} + \sqrt{K^2 + K'}$$

for $|\zeta| \leq 1$.

By applying the Schwarz lemma for functions of several complex variables (see [5]) to (2.4), we obtain

$$(2.5) \quad \|F'(\zeta) - F'(0)\| \leq \left(\sqrt{4K^2 + K'} + \sqrt{K^2 + K'} \right) |\zeta|$$

for $|\zeta| \leq 1$. Since $|\det F'(0)| = 1 \neq 0$, the characteristic values $\lambda_1, \lambda_2, \dots, \lambda_n$ of $(F'(0))^* F'(0)$ are real and positive, so that $\min \{\lambda_1, \lambda_2, \dots, \lambda_n\} = \lambda > 0$, and the inequality (2.5) takes the following form

$$(2.6) \quad \|F'(\zeta) - F'(0)\|^2 \leq \lambda \quad \text{for } |\zeta| \leq \frac{\lambda^{1/2}}{\sqrt{4K^2 + K'} + \sqrt{K^2 + K'}}.$$

Since the product of eigenvalues is equal to determinant of the matrix, we have

$$\lambda^n \leq \lambda_1 \lambda_2 \cdots \lambda_n = |\det F'(0)|^2.$$

This implies

$$\lambda^{1/2} \leq |\det F'(0)|^{1/n} = 1$$

and hence

$$(2.7) \quad \frac{\lambda^{1/2}}{\sqrt{4K^2 + K'} + \sqrt{K^2 + K'}} \leq \frac{1}{\sqrt{4K^2 + K'} + \sqrt{K^2 + K'}} < 1.$$

In view of (2.7) together with inequality (2.6) and applying Theorem B, we see that $F(\zeta)$ maps some subdomain of $|\zeta| \leq 1$ univalently onto a ball with center 0 and radius

$$\frac{\lambda^{1/2}}{2} \frac{\lambda^{1/2}}{\sqrt{4K^2 + K'} + \sqrt{K^2 + K'}} = \frac{\lambda}{2(\sqrt{4K^2 + K'} + \sqrt{K^2 + K'})}.$$

Using Lemma A, for $n \geq 2$ we obtain the following

$$\lambda > (n-1)^{n-1} |\det F'(0)|^2 \|F'(0)\|^{-2(n-1)} \geq |\det F'(0)|^2 \|F'(0)\|^{-2(n-1)}.$$

By (2.3), we have

$$\lambda > (K^2 + K')^{-(n-1)}.$$

Therefore, $F(\zeta)$ maps some sub-domain of the ball $|\zeta| \leq 1$ univalently onto a ball with center 0 and of radius at least

$$\frac{1}{2} \frac{(K^2 + K')^{-(n-1)}}{\sqrt{4K^2 + K'} + \sqrt{K^2 + K'}}.$$

Hence by the definition of $F(\zeta)$, $f(z)$ maps some sub-domain of the unit ball univalently onto a ball of radius at least

$$R(n, K, K') = \frac{1}{4(K^2 + K')^{n-1}} \left(\sqrt{4K^2 + K'} + \sqrt{K^2 + K'} \right)^{-1}.$$

This completes the proof. \square

Using Theorem 1, we obtain the following corollary.

Corollary 1. *Let $n \geq 2$ be any integer and $K \geq 1$ be any positive constant. Let $f(z)$ be Bochner K -mapping from \overline{B}^n to \mathbb{C}^n with $|\det f'(0)| = 1$, then f maps some subdomain of unit ball B^n univalently onto a ball of positive radius*

$$R(n, K) = \frac{1}{12K^{2n-1}}.$$

Proof. Let $f(z)$ be a Bochner K -mapping. Then we can easily see that $f(z)$ is a Bochner $(K, 0)$ -mapping. Therefore, the proof follows by substituting $K' = 0$ in the Theorem 1. \square

3. The Bloch theorem for (K, K') -quasiregular mappings

Following lemma is useful in proving our main result in this section.

Lemma B. [19] *Let $w = f(z)$ be a holomorphic mapping defined in a neighborhood of a point $t \in \mathbb{C}^n$ into \mathbb{C}^n with $J_f(t) \neq 0$. Suppose that $\lambda_f \equiv \lambda_f(t)$ is the positive square root of the smallest characteristic value of the matrix A^*A at t , where $A \equiv (df/dz)$. Then the following hold:*

- (1) *The mapping $w = f(z)$ is univalent in any open convex subset $K, t \in K$, of the set*

$$\Omega_f = \{z: |A(z) - A(t)| < \lambda_f\},$$

where $|A| = \sup_{|x|=1} |Ax|$ and $|x|$ denotes the euclidean norm of the n -vector x .

- (2) *If r_0 is the radius of the largest ball contained in Ω_f centered at t , then $f[B(t, r_0)]$ contains the ball of radius $r_0\lambda_f/2$ centered at $f(t)$, where $B(t, r_0) = \{z: |z - t| < r_0\}$.*

In this section we show that for each $K \geq 1$, $K' \geq 0$ and $n \geq 2$, there is a constant $\beta > 0$ such that, for each normalized (K, K') -quasiregular mapping f in the ball $\beta_f \geq \beta$.

Theorem 2. *Let $f: B^n \rightarrow \mathbb{C}^n$ be a (K, K') -quasiregular mapping of the unit ball B^n into \mathbb{C}^n with $\lambda_f(0) \geq \alpha > 0$. Then*

$$\beta_f \geq \frac{\alpha^2}{4(2K\alpha + K' + \alpha)}.$$

Proof. Let $f: B^n \rightarrow \mathbb{C}^n$ be a (K, K') -quasiregular mapping of the unit ball B^n into \mathbb{C}^n with $\lambda_f(0) \geq \alpha > 0$. Without loss of generality, we assume that f is holomorphic on \overline{B}^n . We introduce the following functions

$$N(r) = \max_{|z| \leq r} \lambda_f(z)$$

and

$$\psi(r) = rN(1 - r)$$

for $0 \leq r \leq 1$. We see that

$$\psi(0) = 0 \text{ and } \psi(1) = N(0) = \lambda_f(0) = \alpha > 0.$$

Then there exists a number r_0 , $0 < r_0 \leq 1$ such that $\psi(r_0) = \alpha$ and $\psi(r) < \alpha$ for $0 \leq r < r_0$. This implies

$$N(1 - r_0) = \frac{\psi(r_0)}{r_0} = \frac{\alpha}{r_0},$$

and for any $0 < r < r_0$,

$$(3.1) \quad N(1-r) = \frac{\psi(r)}{r} < \frac{\alpha}{r}.$$

Let w_0 be any point inside the closed ball of radius $1 - r_0$ such that

$$\lambda_f(w_0) = N(1 - r_0) = \frac{\alpha}{r_0}.$$

Define $G: B^n \rightarrow \mathbb{C}^n$ by

$$(3.2) \quad G(\zeta) = \frac{r_0}{2} A^{-1} \left(f(w_0 + \frac{r_0}{2}\zeta) - f(w_0) \right)$$

for $|\zeta| \leq 1$ and $A = f'(w_0)$. It is easy to see that

$$|w_0 + \frac{r_0}{2}\zeta| \leq |w_0| + \frac{r_0}{2}|\zeta| \leq 1 - r_0 + \frac{r_0}{2} = 1 - \frac{r_0}{2} < 1.$$

Also, $[f'(w_0)]^{-1}$ exists because $|\det f'(w_0)| \geq \lambda_f^n(w_0) > 0$. Therefore, G is well defined.

We observe that

$$\frac{dG(\zeta)}{d\zeta} = \frac{r_0}{2} A^{-1} \frac{df}{d\zeta} \left(w_0 + \frac{r_0}{2}\zeta \right),$$

which implies

$$(3.3) \quad G'(\zeta) = A^{-1} f'(w_0 + \frac{r_0}{2}\zeta).$$

By using Cauchy–Schwarz inequality, we obtain

$$\Lambda_G(\zeta) = |G'(\zeta)| \leq |A^{-1}| \left| f' \left(w_0 + \frac{r_0}{2}\zeta \right) \right|.$$

Since $|A^{-1}| = \frac{1}{\lambda_f(w_0)}$, we have

$$\Lambda_G(\zeta) \leq \frac{\Lambda_f(w_0 + \frac{r_0}{2}\zeta)}{\lambda_f(w_0)}.$$

Since f is (K, K') -quasiregular mapping, we have

$$\Lambda_G(\zeta) \leq \frac{K\lambda_f(w_0 + \frac{r_0}{2}\zeta) + K'}{\lambda_f(w_0)}.$$

Since $|w_0 + \frac{r_0}{2}\zeta| \leq 1 - r_0/2$. By the definition of the function N , we obtain

$$\lambda_f(w_0 + \frac{r_0}{2}\zeta) \leq N \left(1 - \frac{r_0}{2} \right).$$

Using (3.1), we obtain

$$(3.4) \quad \begin{aligned} \Lambda_G(\zeta) &\leq \frac{KN \left(1 - \frac{r_0}{2} \right) + K'}{\lambda_f(w_0)} \\ &\leq \frac{2K\alpha/r_0 + K'}{\alpha/r_0} \leq \frac{1}{\alpha} (2K\alpha + K'). \end{aligned}$$

From (3.3), we have $G'(0) = I_n$ and hence, $\Lambda_G(0) = \lambda_G(0) = 1$. Thus,

$$(3.5) \quad |G'(\zeta) - G'(0)| \leq |G'(\zeta)| + |G'(0)| \leq \frac{1}{\alpha} (2K\alpha + K') + 1 = \frac{1}{\alpha} (2K\alpha + K' + \alpha)$$

for $|\zeta| \leq 1$. By the Schwarz lemma (see [5]), we obtain

$$(3.6) \quad |G'(\zeta) - G'(0)| \leq \frac{1}{\alpha} (2K\alpha + K' + \alpha) |\zeta|$$

for $|\zeta| \leq 1$. Clearly (3.6) shows that

$$|G'(\zeta) - I_n| \leq 1 \quad \text{for } |\zeta| \leq \frac{\alpha}{2K\alpha + K' + \alpha}.$$

By Lemma B, $w = G(\zeta)$ maps the ball $B^n(0, \alpha/(2K\alpha + K' + \alpha))$ univalently onto a domain containing the ball $B^n(0, \alpha/(4K\alpha + 2K' + 2\alpha))$. Hence by (3.2), $w = f(z)$ maps the subdomain $B^n(w_0, r_0\alpha/(4K\alpha + 2K' + 2\alpha))$ of B^n univalently onto a ball center at $f(w_0)$ and radius

$$\frac{\alpha^2}{4(2K\alpha + K' + \alpha)}.$$

This completes the proof. \square

Corollary 2. *Let $f: B^n \rightarrow \mathbb{C}^n$ be a (K, K') -quasiregular mapping of the unit ball B^n into \mathbb{C}^n with $|\det f'(0)| = \alpha > 0$. Then*

$$\beta_f \geq \frac{\alpha^{2/n}}{4(2K\alpha^{1/n} + K' + \alpha^{1/n})}.$$

Proof. Since

$$\alpha = |\det f'(0)| \leq \lambda_f^n(0),$$

we have,

$$\lambda_f(0) \geq \alpha^{1/n}.$$

Now by replacing α by $\alpha^{1/n}$ in Theorem 2, we obtain the desired result. \square

4. The Landau–Bloch type theorem for pluriharmonic mappings

In 2011, Chen and Gauthier [9] proved the following Schwarz–Pick lemma for pluriharmonic mappings:

Lemma C. [9] *Let f be a pluriharmonic mapping of B^n into B^m . Then*

$$\tilde{\Lambda}_f(z) \leq \frac{4}{\pi} \frac{1}{1 - |z|^2} \quad \text{for } z \in B^n.$$

If $f(0) = 0$, then

$$|f(z)| \leq \frac{4}{\pi} \arctan |z| \leq \frac{4}{\pi} |z| \quad \text{for } z \in B^n.$$

The following Landau-type theorem for pluriharmonic mappings of B^n into \mathbb{C}^n with bounded dilation has been proved by Wang et al. [29].

Theorem C. [29] *Let f be a pluriharmonic mapping of B^n into \mathbb{C}^n such that $f(0) = 0$, $\tilde{\lambda}_f(0) = 1$ and $\tilde{\Lambda}_f(z) \leq \tilde{\Lambda}$ for $z \in B^n$. Then f is univalent on the ball $B^n(o, \rho)$ and the range $f(B^n(0, \rho))$ covers the ball $B^n(0, R)$, where*

$$\rho = \frac{\pi}{4(\tilde{\Lambda}_f(0) + \tilde{\Lambda})} \quad \text{and} \quad R = \frac{\pi}{8(\tilde{\Lambda}_f(0) + \tilde{\Lambda})}.$$

If, in addition, $\tilde{\Lambda}_f(0) = 1$, then f is univalent on the ball $B^n(0, \rho')$ and range $f(B^n(0, \rho'))$ covers the ball $B^n(0, R')$, where

$$\rho' = \frac{\pi}{4(1 + \tilde{\Lambda})} \quad \text{and} \quad R' = \frac{\pi}{8(1 + \tilde{\Lambda})}.$$

For (K, K') -quasiregular pluriharmonic mappings with bounded dilation, we prove the following Landau-type theorem.

Theorem 3. Let $f: B^n \rightarrow \mathbb{C}^n$ be a (K, K') -quasiregular pluriharmonic mapping, $n > 1$, such that $f(0) = 0$, $\tilde{\lambda}_f(0) = 1$ and $\tilde{\Lambda}_f(z) \leq \tilde{\Lambda}$ for $z \in B^n$. Then f is univalent on the ball $B^n(0, \rho)$ and $f(B^n(0, \rho))$ contains the ball $B^n(0, R)$, where

$$\rho = \frac{\pi}{4(K + K' + \tilde{\Lambda})} \quad \text{and} \quad R = \frac{\pi}{8(K + K' + \tilde{\Lambda})}.$$

Proof. Let $z_1, z_2 \in B^n(0, \rho)$ be two fixed distinct points and $z_1 - z_2 = |z_1 - z_2|\theta$ for some $\theta \in \partial B^n$. Define the plurihamomic mapping

$$\phi_\theta(z) = (f_z(z) - f_z(0))\theta + (f_{\bar{z}}(z) - f_{\bar{z}}(0))\bar{\theta}.$$

Then, the definition of $\tilde{\Lambda}_f(z)$ gives that

$$|\phi_\theta(z)| \leq \tilde{\Lambda}_f(z) + \tilde{\Lambda}_f(0) \leq \tilde{\Lambda} + K\tilde{\lambda}_f(0)^{1/n} + K' = \tilde{\Lambda} + K + K' \quad \text{for } z \in B^n.$$

Note that $\phi_\theta(0) = 0$. By Lemma C, we obtain

$$|\phi_\theta(z)| \leq \frac{4}{\pi} (\tilde{\Lambda} + K + K') |z| \quad \text{for } z \in B^n.$$

We have

$$\begin{aligned} |f(z_2) - f(z_1)| &= \left| \int_{[z_1, z_2]} f_z(z) dz + f_{\bar{z}}(z) d\bar{z} \right| \\ &\geq \left| \int_{[z_1, z_2]} f_z(0) dz + f_{\bar{z}}(0) d\bar{z} \right| - \left| \int_{[z_1, z_2]} (f_z(z) - f_z(0)) dz + (f_{\bar{z}}(z) - f_{\bar{z}}(0)) d\bar{z} \right| \\ &\geq |z_2 - z_1| \tilde{\lambda}_f(0) - \int_{[z_1, z_2]} |\phi_\theta(z)| ds \\ &> |z_2 - z_1| - \frac{4(\tilde{\Lambda} + K + K')\rho}{\pi} |z_2 - z_1| = 0. \end{aligned}$$

Thus $f(z_1) \neq f(z_2)$. This shows that f is univalent in $B^n(0, \rho)$.

Now, let $z' \in \partial B^n(0, \rho)$. As $f(0) = 0$, we have

$$\begin{aligned} |f(z')| &= \left| \int_{[0, z']} f_z(z) dz + f_{\bar{z}}(z) d\bar{z} \right| \\ &\geq \left| \int_{[0, z']} f_z(0) dz + f_{\bar{z}}(0) d\bar{z} \right| - \left| \int_{[0, z']} (f_z(z) - f_z(0)) dz + (f_{\bar{z}}(z) - f_{\bar{z}}(0)) d\bar{z} \right| \\ &\geq \tilde{\lambda}_f(0)\rho - \int_0^\rho \frac{4(K + K' + \tilde{\Lambda})r}{\pi} dr \\ &= \rho - \frac{2(K + K' + \tilde{\Lambda})\rho^2}{\pi} = \frac{\pi}{8(K + K' + \tilde{\Lambda})} = R. \end{aligned}$$

This shows that $f(B^n(0, \rho))$ contains the ball $B^n(0, R)$. This completes the proof of this theorem. \square

Next, we establish a Bloch-type theorem for (K, K') -quasiregular pluriharmonic mappings.

Theorem 4. Let $f: B^n \rightarrow \mathbb{C}^n$ be a (K, K') -quasiregular pluriharmonic mapping, $n > 1$, such that $\tilde{\lambda}_f(0) = 1$. Then $f(B^n)$ contains a schlicht ball of radius b_f , with

$$b_f \geq \frac{\pi}{16(3K + 2K')}.$$

Proof. Let $f: B^n \rightarrow \mathbb{C}^n$ be a (K, K') -quasiregular pluriharmonic mapping of the unit ball B^n into \mathbb{C}^n with $\tilde{\lambda}_f(0) = 1$. Without loss of generality, we assume that f is pluriharmonic on \overline{B}^n . We introduce the following functions

$$M_1(r) = \max_{|z| \leq r} \tilde{\lambda}_f(z)^{1/n},$$

and

$$\phi_1(r) = (1 - r)M_1(r)$$

for $0 \leq r \leq 1$. It is easy to see that $\phi_1(0) = M_1(0) = \tilde{\lambda}_f(0)^{1/n} = 1$ and $\phi_1(1) = 0$. Then there exist r_0 such that $\phi_1(r_0) = 1$ and $\phi_1(r) < 1$ for $r_0 < r \leq 1$.

Also, since the set $\{z: |z| \leq r_0\}$ is compact, there exist z_0 such that $|z_0| \leq r_0$ and $M_1(r_0) = \tilde{\lambda}_f(z_0)^{1/n}$, which implies

$$\phi_1(r_0) = (1 - r_0)M_1(r_0) = (1 - r_0)\tilde{\lambda}_f(z_0)^{1/n}.$$

Therefore,

$$(4.1) \quad (1 - r_0)\tilde{\lambda}_f(z_0)^{1/n} = 1.$$

Let $z \in B^n$ with $|z| = r \geq r_0$, then

$$(4.2) \quad (1 - |z|)\tilde{\lambda}_f(z)^{1/n} \leq (1 - r)M_1(r) \leq 1.$$

In particular, we have

$$(4.3) \quad \tilde{\lambda}_f(z) \leq \tilde{\lambda}_f(z_0) \quad \text{for } |z| = r_0.$$

We consider the following two cases.

Case 1. $r_0 > 0$: Fix a point w_0 with $0 < |w_0| \leq r_0$ and assume that $\tilde{\Lambda}_f(w_0) = |f_z(w_0)\theta + f_{\bar{z}}(w_0)\bar{\theta}|$ with $\theta \in \partial B^n$. Define the function φ by

$$\varphi(\zeta) = f_z(\zeta w_0/|w_0|)\theta + f_{\bar{z}}(\zeta w_0/|w_0|)\bar{\theta} \quad \text{for } \zeta \in \mathbb{D}.$$

Since φ is harmonic, by the maximum modulus principle, there exists a point ζ' with $|\zeta'| = r_0$, such that

$$\tilde{\Lambda}_f(w_0) = |\varphi(|w_0|)| \leq |f_z(\zeta' w_0/|w_0|)\theta + f_{\bar{z}}(\zeta' w_0/|w_0|)\bar{\theta}|.$$

Let $z_1 = \zeta' w_0/|w_0|$. Since $|z_1| = r_0$, by the definition of (K, K') -quasiregular pluriharmonic mappings and (4.3), we have

$$\tilde{\Lambda}_f(w_0) \leq |f_z(z_1)\theta + f_{\bar{z}}(z_1)\bar{\theta}| \leq \tilde{\Lambda}_f(z_1) \leq K\tilde{\lambda}_f(z_1)^{1/n} + K' \leq K\tilde{\lambda}_f(z_0)^{1/n} + K'.$$

On the other hand, by the definition of (K, K') -quasiregular pluriharmonic mappings and (4.1) with $\tilde{\lambda}_f(0) = 1$, we have

$$\tilde{\Lambda}_f(0) \leq K\tilde{\lambda}_f(0)^{1/n} + K' = K + K' = K(1 - r_0)\tilde{\lambda}_f(z_0)^{1/n} + K'.$$

This shows that

$$(4.4) \quad \tilde{\Lambda}_f(z) \leq K\tilde{\lambda}_f(z_0)^{1/n} + K' \quad \text{for } |z| \leq r_0.$$

For $\xi \in B^n$, define

$$(4.5) \quad g(\xi) = z_0 + \frac{(1 - r_0)^n}{2}\xi \quad \text{and} \quad F(\xi) = 2(f(g(\xi)) - f(z_0)).$$

Then, it is easy to see that

$$F(0) = 0 \quad \text{and} \quad \tilde{\lambda}_F(0) = (1 - r_0)^n\tilde{\lambda}_f(z_0) = 1.$$

If $|g(\xi)| \leq r_0$, from (4.4) and (4.1) we have

$$\begin{aligned}\tilde{\Lambda}_F(\xi) &= (1-r_0)^n \tilde{\Lambda}_F(g(\xi)) \leq K(1-r_0)^n \tilde{\lambda}_f(z_0)^{1/n} + (1-r_0)^n K' \\ &\leq K(1-r_0) \tilde{\lambda}_f(z_0)^{1/n} + K' = K + K',\end{aligned}$$

and if $|g(\xi)| \geq r_0$, from (4.2), we obtain

$$\begin{aligned}\tilde{\Lambda}_F(\xi) &= (1-r_0)^n \tilde{\Lambda}_F(g(\xi)) \leq K(1-r_0)^n \tilde{\lambda}_f(g(\xi))^{1/n} + (1-r_0)^n K' \\ &\leq K(1-r_0) \tilde{\lambda}_f((g(\xi))^{1/n}) + K' \\ &= K \left(\frac{1-r_0}{1-|g(\xi)|} \right) (1-|g(\xi)|) \tilde{\lambda}_f((g(\xi))^{1/n}) + K' \\ &\leq K \left(\frac{1-r_0}{1-|g(\xi)|} \right) + K' \leq \frac{K(1-r_0)}{1-r_0-(1-r_0)^n |\xi|/2} + K' \\ (4.6) \quad &\leq \frac{K(1-r_0)}{1-r_0-(1-r_0)|\xi|/2} + K' = \frac{2K}{2-|\xi|} + K'.\end{aligned}$$

Case 2. $r_0 = 0$: Consider the functions g and F defined by (4.5) with $r_0 = 0$. Then $|g(\xi)| \geq r_0 = 0$ and it follows from (4.6) that

$$\tilde{\Lambda}_F(\xi) = \frac{2K}{2-|\xi|} + K' \quad \text{for } \xi \in B^n.$$

Therefore, we conclude that

$$\tilde{\Lambda}_F(\xi) < 2K + K' \quad \text{for } \xi \in B^n.$$

In particular, $\tilde{\Lambda}_F(0) \leq K + K'$.

Now, applying Theorem C to the mapping F , we see that $F(B^n)$ contains a schlicht ball with the center 0 and radius

$$R' = \frac{\pi}{8(3K + 2K')}.$$

Consequently, $f(B^n)$ contains a schlicht ball of radius

$$R = \frac{\pi}{16(3K + 2K')}.$$

This completes the proof. \square

Acknowledgements. The first named author thanks SERB-CRG and the second named author thanks CSIR for their support.

References

- [1] AHLFORS, L. V., and H. GRUNSKY: Über die Blochsche Konstante. - Math. Z. 42:1, 1937, 671–673.
- [2] ALLU, V., and R. KUMAR: Landau–Bloch type theorem for elliptic and quasiregular harmonic mappings. - J. Math. Anal. Appl. 535:2, 2024, 128215.
- [3] BLOCH, A.: Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation. - Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys. 17, 1925, 1–22.
- [4] BOCHNER, S.: Bloch's theorem for real variables. - Bull. Amer. Math. Soc. 52, 1946, 715–719.
- [5] BOCHNER, S., and W. T. MARTIN: Several complex variables. - Princeton Math. Ser. 10, Princeton Univ. Press, Princeton, NJ, 1948.
- [6] BONK, M.: On Bloch's constant. - Proc. Amer. Math. Soc. 110:4, 1990, 889–894.
- [7] CHEN, H. H., and P. M. GAUTHIER: On Bloch's constant. - J. Anal. Math. 69, 1996, 275–291.

- [8] CHEN, H. H., and P. M. GAUTHIER: Bloch constants in several variables. - *Trans. Amer. Math. Soc.* 353:4, 2000, 1371–1386.
- [9] CHEN, H. H., and P. M. GAUTHIER: The Landau and Bloch theorem for planer harmonic and pluriharmonic mappings. - *Proc. Amer. Math. Soc.* 139:2, 2011, 583–595.
- [10] CHEN, J., P. LI, S. K. SAHOO, and X. WANG: On the Lipschitz continuity of certain quasiregular mappings between smooth Jordan domains. - *Israel J. Math.* 220:1, 2017, 453–478.
- [11] CHEN, S., and S. PONNUSAMY: On certain quasiconformal and elliptic mappings. - *J. Math. Anal. Appl.* 486:2, 2020, 123920.
- [12] CHEN, S., S. PONNUSAMY, and X. WANG: Equivalent moduli of continuity, Bloch's theorem for pluriharmonic mappings in \mathbb{B}^n . - *Proc. Indian Acad. Sci. Math. Sci.* 122:4, 2012, 583–595.
- [13] CHEN, S., S. PONNUSAMY, and X. WANG: Landau–Bloch constants for functions in α -Bloch spaces and Hardy spaces. - *Complex Anal. Oper. Theory* 6:5, 2012, 1025–1036.
- [14] CHEN, S., S. PONNUSAMY, and X. WANG: Weighted Lipschitz continuity, Schwarz–Pick's lemma and Landau–Bloch's theorem for hyperbolic-harmonic mappings in \mathbb{C}^n . - *Math. Model. Anal.* 18:1, 2013, 66–79.
- [15] CHEN, S., S. PONNUSAMY, and X. WANG: Stable geometric properties of pluriharmonic and biholomorphic mappings, and Landau–Bloch's theorem. - *Monatsh. Math.* 177:1, 2015, 33–51.
- [16] CHEN, S., S. PONNUSAMY, and X. WANG: Remarks on ‘Norm estimates of the partial derivatives for harmonic mappings and harmonic quasiregular mappings’. - *J. Geom. Anal.* 31:11, 2021, 11051–11060.
- [17] EREMENKO, A.: Bloch radius, normal families and quasiregular mappings. - *Proc. Amer. Math. Soc.* 128:2, 2000, 557–560.
- [18] FINN, R., and J. SERRIN: On the Hölder continuity of quasiconformal and elliptic mappings. - *Trans. Amer. Math. Soc.* 89, 1958, 1–15.
- [19] HAHN, K. T.: Higher dimensional generalizations of the Bloch constant and their lower bounds. - *Trans. Amer. Math. Soc.* 179, 1973, 263–274.
- [20] HARRIS, L. A.: On the size of balls covered by analytic transformations. - *Monatsh. Math.* 83, 1977, 9–23.
- [21] LANDAU, E.: Über die Blochsche Konstante und zwei verwandte Weltkonstanten. - *Math. Z.* 30:1, 1929, 608–634.
- [22] LIU, M. S., and S. PONNUSAMY: Bloch and Landau type theorems for pluriharmonic mappings. - *Internat. J. Math.* 33:7, 2022, 2250053.
- [23] MARDEN, A., and S. RICKMAN: Holomorphic mappings of bounded distortion. - *Proc. Amer. Math. Soc.* 46, 1974, 225–228.
- [24] NIRENBERG, L.: On nonlinear elliptic partial differential equations and Hölder continuity. - *Commun. Pure. Appl. Math.* 6, 1953, 103–156.
- [25] POLETSKY, E. A.: Holomorphic quasiregular mappings. - *Proc. Amer. Math. Soc.* 92, 1985, 235–241.
- [26] RUDIN, W.: Function theory in the unit ball of \mathbb{C}^n . - Springer-Verlag, New York, Heidelberg, Berlin, 1980.
- [27] SAKAGUCHI, K.: On Bloch's theorem for several complex variables. - *Sci. Rep. Tokyo Kyoiku Daigaku Sect. 5*, 1956, 149–154.
- [28] TAKAHASHI, S.: Univalent mappings in several complex variables. - *Ann. of Math.* 53, 1951, 464–471.
- [29] WANG, X., Y. YANG, and M. S. LIU: The Landau–Bloch type theorems for K -quasiregular pluriharmonic mappings. - *Monatsh. Math.* 198:1, 2022, 189–209.
- [30] WU, H.: Normal families of holomorphic mappings. - *Acta Math.* 119, 1967, 193–233.

- [31] XU, Z. F., and M. S. LIU: On pluriharmonic ν -Bloch-type mappings and hyperbolic-harmonic mappings. - *Monatsh. Math.* 192, 2020, 965–978.
- [32] YU, Y.-S., and D.-H. GU: A note on a lower bound for the smallest singular value. - *Linear Algebra Appl.* 253, 1997, 25–38.

Received 12 July 2024 • Revision received 21 March 2025 • Accepted 26 March 2025

Published online 10 April 2025

Vasudevarao Allu

Indian Institute of Technology Bhubaneswar
School of Basic Science
Department of Mathematics
Bhubaneswar-752050, Odisha, India
avrao@iitbbs.ac.in

Rohit Kumar

Indian Institute of Technology Bhubaneswar
School of Basic Science
Department of Mathematics
Bhubaneswar-752050, Odisha, India
rohitk12798@gmail.com