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The Landau—Bloch type theorems for certain class
of holomorphic and pluriharmonic mappings in C"

VASUDEVARAO ALLU and ROHIT KUMAR

Abstract. In this paper, we define two classes of holomorphic mappings defined on the unit
ball B™ of n-dimensional complex space C™ and obtain the lower estimates for Bloch’s constant for
these classes. Also, we derive the Landau—Bloch type theorem for some subclasses of pluriharmonic
mappings defined on the unit ball B™.

Landaun—Blochin-tyyppiset lauseet avaruuden C™ holomorfisten
ja moniharmonisten kuvausten eriille luokalle

Tiivistelma. Téssé tyossd maaritellddn kaksi n-ulotteisen kompleksiavaruuden C™ yksikko-
kuulan B™ holomorfisten kuvausten luokkaa ja saadaan alarajoja nédiden luokkien Blochin vakiolle.
Lisédksi johdetaan Landaun—Blochin-tyyppinen lause yksikkékuulan B™ moniharmonisten kuvausten
erdille alaluokille.

1. Introduction

Let D = {z € C: |z| < 1} be the unit disc in the complex plane C. In the case
of one complex variable, the following theorem of Bloch is well known (see [3]).

Theorem A. [3] Let f be a holomorphic function on the D = {z: |z| < 1} and
satisfying | f'(0)| = 1. Then there exists a positive constant b such that f(ID) contains
a schlicht disc of radius b.

By a schlicht disc, we mean a disc which is the univalent image of some region
in the unit disc ID. Let 8 denote the least upper bound of the radii of all schlicht
discs that f carries and F denote the set of all holomorphic functions defined on
D = {z: |z| < 1} satisfying |f'(0)] = 1. Then the Bloch constant is the number
defined by

B(F) = inf{By: f € F}.

In 1929, Landau [21]| proved that if we replace the holomorphicity condition on
|z| <1 to |z| <1, then the corresponding constant is also the same. If one consider
the function f(z) = z, then clearly S(F) < 1. However, better estimates than these
are known. The exact value of B(F) is still unknown.

In 1937, Ahlfors and Grunsky [1] proved that

0.4330 ~ ﬁ < B(F) < 1 I(1/3)r{11/12)

4 T V1443 '(1/4)
It is conjectured that this upper bound is the precise value of the Bloch constant, a
conjecture known as the Ahlfors-Grunsky conjecture. In 1990, Bonk [6] obtained a

~ 0.4719.
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slight improvement to the lower bound as S(F) > v/3/4 + 1074, In 1996, Chen and
Gauthier 7] improved Bonk’s result and proved that S(F) > v/3/4 +2 x 107
Let

C"={z2=(21,20,---,2n): 21,22, .,2n € C}
be the complex space of dimension n. For any point z = (21, 29, -+ , 2,) € C",

2 2 2\ 1/2
2] = (2] + 22" + -+ ]zal”) 7

We denote a ball in C" with center at 2z, and radius r by
B" (z,r) ={2€C": |z — 2| <71}
and the unit ball in C™ by
B"={zeC": |z| < 1}.

For a mapping f = (f1, fa,- -+, fn) of a domain in C" into C", 0f/0z; denotes the
column vector formed by 0f;/0z, 0 fs/0zk, - -+ ,0fn /02, and we denote by

, _(O0f Of of

the matrix formed by these column vectors. For an n x n matrix A, we have the

matrix norm
1/2
2
|All = <Z|%‘| )
1,j

A
|A| = sup M
=0 |2

and the operator norm

In the case of several complex variables, the classical theorem of Bloch for holo-
morphic mappings in the disc fails to extend to general holomorphic mappings in
the ball of C". In 1967, Wu [30] pointed out that the Bloch theorem fails unless
some restrictive assumptions are made on holomorphic mappings. For example, for
positive integer n, setting f, (21, 22) = (nz1, 22/n), we see that f,, is an holomorphic
function on the unit ball of C? for each n and |det f,'(0)] = 1. But the image of f,
contains a schlicht ball of radius at most 1/n. So, the infimum of the radii of the
schlicht balls anywhere when all members of {f,} are taken into account is zero. In
order that there is a positive Bloch constant, it is necessary to restrict the class of
holomorphic mappings in higher dimensions. Earlier investigations for some subclass
of holomorphic mappings were conducted by Bochner [4], Hahn [19], Harris [20], Sak-
aguchi |27], Takahashi [28]|, and Wu [30]. Outside holomorphicity, there is no Bloch
theorem for quasiregular mappings of the ball, but Eremenko [17] has proved that a
Bloch theorem holds for entire quasiregular mappings.

In 1946, Bochner [4] defined a subclass of the class of holomorphic functions from
B"(C C") to C". For a constant K > 1, a holomorphic mapping f from B" to C"
is said to be Bochner K-mapping in B™ if f satisfies the differential inequality

1)l < K |det f/(2)[""

for all z € B™. Bochner [4] proved that, for each K > 1 and n > 2, there is a constant
B > 0 such that, for each normalized Bochner K-mapping f in the unit ball, 5; > 3
holds. However, Bochner has not given an estimate for this Bloch constant.
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In 1951, Takahashi [28] defined a new class of normalized holomorphic mappings
f satisfying the weaker condition
(1.1) m‘ax I ()| < Kﬁix‘ det f'(2)|", for each 0 <7 < 1.
z|I<r Z|ST
The holomorphic functions which satisfy (1.1) are called Takahashi K-mappings. For
such normalized Takahashi K-mappings, Takahashi [28| has proved that

(’I’L _ 1)n72
> .
6 - 12K?2n-1
Later in 1956, Sakaguchi [27] improved Takahashi’s estimate to

(’I’L _ 1)n72
6 Z 8K2n—1
We now define a new class of holomorphic mappings from B™ into C" which
contains the Bochner K-mappings. We call them Bochner (K, K')-mappings.

Definition 1.1. For constants K > 1, K’ > 0, a holomorphic mapping f from
B™ into C" is said to be a Bochner (K, K')-mapping in B™ if f satisfies the differential
inequality
I7)I” < K* [det f/(2)" + K
for all z € B™.

We remark that the unit ball B™ in the Definition 1.1 can be replaced by any
general domain in C". In particular, if K’ = 0, then Bochner (K, K')-mappings
reduce to Bochner K-mappings. We see that every Bochner K-mapping is a Bochner
(K, K')-mapping for K’ = 0, but the converse need not be true. This can be seen
from the following example: Let

= (s (a-1) +(o3))

in B2. This function is clearly a holomorphic mapping on B?. One can easily see
that the mapping f(z1, 22) is not a Bochner K-mapping for any K > 1 but it is a
Bochner (1,20)-mapping.

The motivation for defining this type of mappings came from the paper of Niren-
berg (see [24]), where Nirenberg has defined this type of mappings in the plane. For
more details on this type of mappings, we refer to [2, 10, 11, 16, 18, 24].

Let A\7(z) and A%(z) denote the smallest and the largest eigenvalues of the Her-
mitian matrix A*A, where A = f’(z) and A* is the conjugate of A. A holomorphic
mapping f from the unit ball B" of C" into C" is K-quasiregular if

Ap(z) < KAp(2)

at every point z € B™. A mapping is said to be quasiregular if it is K-quasiregular
for some K > 1. From [23| we know that for n > 1, a quasiregular holomorphic
mappings are locally biholomorphic. In fact, Poletsky [25] also proved that quasireg-
ular holomorphic mappings (in any bounded domain) are rather rigid. In 2000, Chen
and Gauthier [8] proved that if f is a K-quasiregular holomorphic mapping with the
normalization det f'(0) = 1, then the image f(B") contains a schlicht ball of radius
at least 1/12K~1/",

Now, we define a new class of holomorphic mappings from B" into C" which
contains the K-quasiregular mappings. We call such mappings (K, K')-quasiregular
mappings.
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Definition 1.2. For constants K > 1, K’ > 0, a holomorphic mapping f from
B"™ into C" is said to be (K, K')-quasiregular mapping in B™ if

Ap(2) < K)Xp(2) + K’
at each 2z € B".

A continuous complex-valued function ¢ defined on a domain 2 C C” is called a
pluriharmonic mapping if, for each fixed 2’ € Q and § € 9B™, the function ¢ (2’ + 6()
is harmonic in {¢: [(| < dqa(2)}, where do(z) denotes the distance from z to the
boundary 02 of 2. A mapping f of 2 into C" is called a pluriharmonic mapping if
every component of f is pluriharmonic. A mapping f of B™ into C” is pluriharmonic
if, and only if, f has a representation f = ¢ + h, where g and h are holomorphic
mappings (see [26]).

For a continuously differentiable mapping w = f(z) = (fi1(2),... fm(2)) : B" —
C™, z = (z1,..., %), by f. and f; denote the matrices (0f;/0z) and (8]‘} /8zk)

respectively. Denote the maximum dilation A ¢ and minimum dilation A ¢ by

Kf(z:max}fz (2)0 + fs(2)0| and )\f( = min |f.(2)0 + f:(2)0

0coB" 0coB"

mxn mxn?

)

respectively, where 6 is regarded as a column vector. In particular, when n = 1, these
definitions coincide with the corresponding definitions for planar harmonic mappings.

Wang et al. [29] generalized the notion of K-quasiregular mappings to plurihar-
monic mappings and established a lower bound estimate of Bloch constant for such
mappings.

A pluriharmonic mapping f of B" into C" is said to be K-quasiregular plurihar-
monic if

/N\f(z) < KXp(2)Y™ for z € B™.

Now, we define a new class of pluriharmonic mappings of B™ into C" which con-
tains K-quasiregular pluriharmonic mappings. We call such mappings (K, K')-
quasiregular pluriharmonic mappings.

Definition 1.3. Let f: B" — C" be a pluriharmonic mapping and K > 1,
K’ > 0. We say that f is a (K, K’)-quasiregular pluriharmonic mapping if

Ap(z) < KXp(2)" + K

for z € B™. In particular, if K’ = 0, then (K, K’)-quasiregular pluriharmonic map-
pings reduce to K-quasiregular pluriharmonic mappings.

In 2011, Chen and Gauthier [9] established Landau theorems and Bloch theorems
for pluriharmonic mappings f: B® — C". Chen, Ponnusamy and Wang have studied
Landau—Bloch constants for some specified spaces such as, pluriharmonic Bergman
space, a-Bloch space and hyperbolic-harmonic Bloch space (see [12, 13, 14, 15]). In
2020, Xu and Liu [31] obtained a new version of the Bloch theorem for pluriharmonic
v-Bloch-type mappings. In 2022, Liu and Ponnusamy [22] obtained three Bloch-type
theorems for pluriharmonic mappings in B™, which improve the corresponding results

of Chen and Gauthier [9].

2. The Bloch theorem for Bochner (K, K’')-mappings

The following result of Takahashi [28] is useful in proving our main result in this
section.
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Theorem B. (28] Let f(z) = (f1(2), f2(2), ..., fu(2)) be an analytic transforma-
tion defined by n functions f;(z) of n complex variables z, each analytic in a domain
D in n dimensional complex space of the variables z, and let its Jacobian J¢(z) does
not vanish at a point a in D. Let 0f;(a)/0zx = au; i,k = 1,--- ,n; A = (),
det A = Js(a) # 0, it follows that the characteristic values Ay, --- , A, of A*A are real
and positive, so that min{\;,--- ,\,} = A > 0. Next, let py be the upper limit of p
such that the inequality

2.

ik=1

afi ofi  \|”
— <
8Zk : 8Zk (CL) - A

is satisfied for Y _, |z — ag|* < p. Then f is univalent on a ball with center a and
radius py, i.e., B"(a, py). Further, f(B™(a,po)) contains a ball with center f(a) and
radius 27\2 po- Moreover, the value 271z po cannot be replaced by larger one for
certain analytic transformation and for some a.

The following lemma gives an estimate of the lower bound of the smallest singular
values of a non-singular matrix.

Lemma A. [32] If A is a non-singular n x n matrix. Then A*A is a positive
definite hermitian matrix, the characteristic values A1, Aa, . .., A, of A*A are therefore
real and positive, so that A = min{)\y, ..., A\, } > 0. Then the following inequality is
satisfied

A (n— 1) det AP A 2,
||Al| is the Euclidean norm of the matrix A.

In this section, we show that for each K > 1, K/ > 0 and n > 2, there is a
constant § > 0 such that, for each normalized Bochner (K, K')-mapping f in the

ball, 5y > 3.

Theorem 1. Let n > 2 be any integer and K > 1, K' > 0 be any constants.
Let f(z) be Bochner (K, K')-mapping from B to C* with |det f'(0)| = 1, then f
maps some subdomain of unit ball univalently onto a ball of positive radius

1
A(K2 1 K1
In other words, we say that Bloch Theorem holds for Bochner (K, K')-mappings.

Proof. Let f(z) = (f1(2), f2(2), ..., fa(2)) be Bochner (K, K’)-mapping from B"
to C™ with | det f’(0)| = 1. We introduce the functions

M(r) = max|det O

R(n,K,K') =

-1
(\/4K2 TR+ VKLY K’) .

and
o(r) =rM(1—r),
for0<r <1.
We see that
$(0)=0 and (1) = M(0) = |det f'(0)["/" = 1.

Then there exists a number ry, 0 < ry < 1 such that ¢ (rg) = 1 and ¢(r) < 1 for
0 < r < rg. This implies

M(I—To):¢ = —,
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and for any 0 < r < ry,

¢(r) 1
2.1 M1—-r)=—%~<—.
(21) (1-n=""<,
Let a = (g, s, ..., ) be any point inside the closed ball of radius 1 — ¢ such that
1
det f() " = M (1 =) = —.
To
Define F: B" — C" by
r
F(Q) = F (G Gore s G) = (B, o)+ Fa(€) = 2 (£ (a+ <) = f(a)
for |(] < 1. Then clearly F(0) = 0.
It is easy to see that for |¢| <1,
To To 7o To
el < Del<1 - U
’a+2§’_|a|+2|§|_1 T0+2 1 2<1

Therefore, F' is well-defined.
A simple computation shows that

7 =25¢ (o 5 =g (2 5)

where z; = a; + 2¢;, j=1,2,...,n. Therefore,

det F'(¢) = ro" det [’ (Oz + %C) )

which implies that

1 n
|det F'(0)] = ro™ |det f(a)| = 1¢" (M (1 — 1)) = 1" <—> =1.
To
A simple computation shows that

IEQIP =3

2

o] =S| (e )

2
- T [ (e 5] -
i, J

det f’ (a + %Q) )Z/N + K’} .

(€)

Ofi
8Zj

2

ACEY

S 7,,02 [KZ
Since ‘a + %OC‘ <1 —19/2. By the definition of the function M, we obtain
2/n 2
‘det 7 (a n @Q < <M (1 — T—O)) .
2 2
From (2.1), it follows that
/ 2 2 2 7o\ ? / 2 2 4 /
IF' (O < ro? [ K <M(1—§>) +K) <r’ (K>S +K
To
(2.2) =4K* +1r’K' <4K*+ K.
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Further,

of,  |?
nme%w&;jéﬂw

= ro? |7/ (e)* < ro? (K2 fdet f'(e) " + K”)

1
(2.3) < ro? (K2 c—+ K’) <K+ K’
70
From (2.2) and (2.3), it is easy to see that
(2.4) 1E"(C) = F'O)| < (Ol + 1 F'0)| < VAK? + K' + VK2 + K'
for |¢] < 1.

By applying the Schwarz lemma for functions of several complex variables (see
[5]) to (2.4), we obtain

(2.5) 1F'(¢) — F'(0)|| < (\/4K2 TE + VK + K’) IC]

for |¢| < 1. Since |det F'(0)] = 1 # 0, the characteristic values Aj, Ag, ..., A, of
(F’(0))* F'(0) are real and positive, so that min {\;, Xg,..., A} = A > 0, and the
inequality (2.5) takes the following form

)\1/2
T VAK?+ K+ VK2 + K
Since the product of eigenvalues is equal to determinant of the matrix, we have
A< Mg+ A, = | det F'(0).

(2.6) IF'(¢) = F/(0)P <X for [¢] <

This implies
A2 < |det F/(0)]" =1
and hence
AL/2 1
< <1
VAK?+ K'+VEK*+ K' ~ VAK?+ K'+ VEK? + K’
In view of (2.7) together with inequality (2.6) and applying Theorem B, we see

that F'({) maps some subdomain of |¢| < 1 univalently onto a ball with center 0 and
radius

(2.7)

)\1/2 )\1/2 A
2 VIK? Y K' +VEK?’+ K 2(WAK>+ K +VEK*+ K')’
Using Lemma A, for n > 2 we obtain the following
A> (n—1)"" det F/(O) | F/(0)]| 7" > |det F/(0)[* | F"(0)] "7

By (2.3), we have

A > (K?+ K~
Therefore, F'({) maps some sub-domain of the ball || < 1 univalently onto a ball
with center 0 and of radius at least

| (K24 K)o
2VIKR? + K+ VK2 + K/
Hence by the definition of F'(¢), f(z) maps some sub-domain of the unit ball univa-
lently onto a ball of radius at least
1
4(K? 4 K"t
This completes the proof. O

-1

R(n, K, K') = (VIR + K + VE*+ 1)
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Using Theorem 1, we obtain the following corollary.

Corollary 1. Let n > 2 be any integer and K > 1 be any positive constant. Let
f(2) be Bochner K-mapping from B" to C" with |det f/(0)| = 1, then f maps some
subdomain of unit ball B™ univalently onto a ball of positive radius

1
K)y=————.
R<n’ ) 12 K2n—1
Proof. Let f(z) be a Bochner K-mapping. Then we can easily see that f(z) is a

Bochner (K, 0)- mapping. Therefore, the proof follows by substituting K’ = 0 in the
Theorem 1. 0J

3. The Bloch theorem for (K, K’)-quasiregular mappings

Following lemma is useful in proving our main result in this section.

Lemma B. [19] Let w = f(z) be a holomorphic mapping defined in a neigh-
borhood of a point t € C" into C* with J;(t) # 0. Suppose that Ay = A\¢(t) is the
positive square root of the smallest characteristic value of the matrix A*A at t, where

A = (df/dz). Then the following hold:

(1) The mapping w = f(z) is univalent in any open convex subset K,t € K, of

the set

Qp = {2z: [A(z) = A(O)] < As},
where |A| = sup,_; |Az| and |z| denotes the euclidean norm of the n-vector
x.

(2) If ry is the radius of the largest ball contained in € centered at t, then
f[B(t,ro)] contains the ball of radius roAs/2 centered at f(t), where B (t, 1)
=[z: |z —t| < rg).

In this section we show that for each K > 1, K’ > 0 and n > 2, there is a

constant $ > 0 such that, for each normalized (K, K')-quasiregular mapping f in the
ball 3y > .

Theorem 2. Let f: B" — C" be a (K, K')-quasiregular mapping of the unit
ball B™ into C* with A;(0) > o > 0. Then

a2

2Ka+ K'+a)

Proof. Let f: B" — C" be a (K, K')-quasiregular mapping of the unit ball
B™ into C" with A\;(0) > o > 0. Without loss of generality, we assume that f is
holomorphic on B". We introduce the following functions

N(r) = max Af(2)

|z|<r

>
ﬁf_4

and
w(r)y=rN(1—r)
for 0 <r < 1. We see that
¥(0) =0 and (1) = N(0) = A\f(0) = a > 0.
Then there exists a number 19, 0 < 79 < 1 such that ¢(rg) = o and ¥(r) < « for
0 < r < rg. This implies
¥(ro) o

N(l—ro):r—ozr—o,



The Landau—Bloch type theorems for certain class of holomorphic and pluriharmonic. . .

and for any 0 < r < ry,

v(r) o
3.1 Nl—-r)=—<—.
(3.1) (1-n=""<0
Let wgy be any point inside the closed ball of radius 1 — rg such that

Ap(wo) = N(1 = rp) = %

Define G: B™ — C™ by

(3.2) G(Q) = 2A™ (flwo + 50 = f(wo))

for || <1 and A = f'(wp). It is easy to see that

T—Ozl—@<1

T T
\wo+§0C|§|wo\+§0|C\§1—7‘o+2 5

223

Also, [f'(wo)]™" exists because |det f'(wg)] > A}(wg) > 0. Therefore, G is well

defined.

We observe that
dG(¢) df

To _1 To
905 (o 3.
a2 g\t e
which implies

r
(3:3) G'(¢) = A7 ["(wo + 0).
By using Cauchy—-Schwarz inequality, we obtain

Ac(Q) = |G (O < [A7Y |/ (wo + %Q ) '

we have

Since |A7Y = m,

Ay(wo + 3C)
Ag(wo)
Since f is (K, K')-quasiregular mapping, we have
KXp(wo+ 22¢) + K’
A < 2
G’(g) — )\f('wO)
Since |wy + 2¢| <1 —ry/2. By the definition of the function N, we obtain

Af(w0+%°g) gN(l—%).

Ac(C) <

Using (3.1), we obtain
KN(1-%2)+K'

Asl0) < A (wo)
(3.4) < QKOZ# < é(zm + K.

From (3.3), we have G’(0) = I,, and hence, Ag(0) = A\g(0) = 1. Thus,

(3.5) |G'(¢) — G'(0)] < |G"(C)] + |G"(0)] < é(zm FEY 41 =L 2Ka+ K +a)

a
for || < 1. By the Schwarz lemma (see [5]), we obtain

(3.6) IG'(¢) — G'(0)] < é(QKOz—FK/—i—OJ)‘d
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for |(] < 1. Clearly (3.6) shows that

Q
"O)—-1,] <1 f < .

By Lemma B, w = G(¢) maps the ball B" (0,a/(2K«a + K’ + «)) univalently onto a
domain containing the ball B" (0,a/(4K«a + 2K’ 4 2a)). Hence by (3.2), w = f(z)
maps the subdomain B"™ (wy, roa/ (4K + 2K’ 4+ 2a)) of B™ univalently onto a ball
center at f(wp) and radius

042

42Ka+ K'+ «a)’
This completes the proof. O

Corollary 2. Let f: B" — C™ be a (K, K')-quasiregular mapping of the unit
ball B" into C" with |det f'(0)] = a > 0. Then

&2/n

2Kal/m + K' + al/n)’

5f24<

Proof. Since
a = [ det f(0)] < N}(0),
we have,
Ap(0) > '/,
Now by replacing a by /™ in Theorem 2, we obtain the desired result. O

4. The Landau—Bloch type theorem for pluriharmonic mappings

In 2011, Chen and Gauthier [9] proved the following Schwarz-Pick lemma for
pluriharmonic mappings:

Lemma C. [9] Let f be a pluriharmonic mapping of B™ into B™. Then

~ 4 1 "
Af(z)g?l—i\d? for z € B".
If f(0) =0, then
4 4
|f(2)| < —arctan |z| < —|z| for z € B".
T T

The following Landau-type theorem for pluriharmonic mappings of B™ into C"
with bounded dilation has been proved by Wang et al. [29].

Theorem C. [29] Let f be a pluriharmonic mapping of B"™ into C" such that
f(0) = 0,Af(0) = 1 and Af(2) < A for = € B*. Then f is univalent on the ball
B™(0, p) and the range f(B"(0, p)) covers the ball B"(0, R), where

P = % and R = %
4(Ap(0) + A) 8(Af(0) +A)
If, in addition, /~\f(0) = 1, then f is univalent on the ball B"(0,p') and range
f(B™(0,p")) covers the ball B"(0, R'), where

p = ———=_ and R = =
A1+ A) 8(1+A)

For (K, K')-quasiregular pluriharmonic mappings with bounded dilation, we prove
the following Landau-type theorem.

/ ™ o d
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Theorem 3. Let f: B" — C" be a (K, K')-quasiregular pluriharmonic mapping,
n > 1, such that f(0) = 0,Af(0) =1 and Af(z) < A for z € B". Then f is univalent
on the ball B™(0, p) and f(B™(0, p)) contains the ball B™(0, R), where

i s
p= — and R = —.
4K+ K'+A) 8(K + K'+A)
Proof. Let z1,2z9 € B™(0, p) be two fixed distinct points and z; — 2o = |21 — 25|60
for some 6 € 0B™. Define the plurihamomic mapping

o(2) = (f2(2) — £:(0)) 0 + (fz(2) — f:(0)) 0.
Then, the definition of /N\f(z) gives that
0o(2)] < Ap(2) + Ap(0) < A+ KX ()" + K' = A+ K+ K' for z € B".
Note that ¢»(0) = 0. By Lemma C, we obtain

I%@HS%(K+K+KQp|fmzeB¢
We have
‘f<22) - f(Zl)‘ =

/ ful2) dz+ fo(z) dz
[21,22]

>

/[ ]fz(O)dZJrfz(O)di—’ /[ () = L0 =+ () = :0)

> o= a0 - [l ds

[21,22]
AA+K+K')p
™

Thus f(z1) # f(22). This shows that f is univalent in B™(0, p).
Now, let 2/ € 9B™(0,p). As f(0) =0, we have

|ZQ —Zl| =0.

> |2’2—Zl| —

If ()] = [ ]fz(z)d2+fz(2)d5
0,2/
>[50z g0y = | [ ()= £ s+ (00— 0 5
0,2/ 0,2’
~ P 4K + K + A
>3- [ A
0 7r
2(K + K’ + A)p?
:p_(+ —l—)p: T _p
m 8(K + K+ A)
This shows that f(B"(0,p)) contains the ball B™(0, R). This completes the proof of
this theorem. O

Next, we establish a Bloch-type theorem for (K, K')-quasuregular pluriharmonic
mappings.
Theorem 4. Let f: B" — C" be a (K, K')-quasiregular pluriharmonic mapping,
n > 1, such that Xf(O) = 1. Then f(B") contains a schlicht ball of radius by, with
by >
7= 16(3K + 2K')’
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Proof. Let f: B® — C" be a (K, K')-quasiregular pluriharmonic mapping of the
unit ball B™ into C" with Af(0) = 1. Without loss of generality, we assume that f is
pluriharmonic on B". We introduce the following functions

My(r) = max Ay ()",
z|<r
and
¢1(r) = (1 —r)M(r)
for 0 < r < 1. It is easy to see that ¢1(0) = M;(0) = Xf(())l/" =1 and ¢4(1) = 0.
Then there exist ¢ such that ¢;(rg) =1 and ¢1(r) < 1 for ro <7 < 1.
Also, since the set {z: |z| < 1o} is compact, there exist zg such that |z < ry and

Mi(ro) = As(20)Y/", which implies
1(ro) = (1 — o) My (ro) = (1 — o)Ay (20)"/™

Therefore,

(4.1) (1—ro) Ap(z0)V/™ = 1.

Let z € B" with |z| = r > r¢, then

(4.2) (1= DA ()" < (1 =) My(r) < 1.
In particular, we have

(4.3) X(2) < Xj(z0) for |2 = 7o

We consider the following two cases.

Case 1. 1o > 0: Fix a point wy with 0 < |wg| < 79 and assume that Kf(wo) =
| f-(w0)0 + f>(wp)l| with 8 € OB™. Define the function ¢ by

©(¢) = fo(Cwo/|wo| )0 + fz(Cwo/|woD§ for ( € D.

Since ¢ is harmonic, by the maximum modulus principle, there exists a point ¢’ with
I¢’"| = 79, such that

Ag(wo) = le(|wol)| < | £-(¢'wo/|wo|)0 + f2(¢'wo/wo|)0).

Let z; = ("wo/|wo|. Since |z1| = 1o, by the definition of (K, K')-quasiregular pluri-
harmonic mappings and (4.3), we have

Kf<w0> < ‘fz(zl)e‘F fg(zl)é} < Kf<2;1) < Kxf(21)1/" + K’ < KXf(ZO)l/n + K/.

On the other hand, by the definition of (K, K’)-quasiregular pluriharmonic mappings
and (4.1) with A¢(0) = 1, we have

Kf(o) < K}V\f(o)l/n +K' =K+ K =K(1- ro)xf(zo)l/" + K.
This shows that
(4.4) Ap(z) < KXp(z0)" + K" for |2| < ro.
For £ € B", define

(4.5) 9(&) = 20 +

Then, it is easy to see that
F0)=0 and Ap(0) = (1—1r0)"As(z) = 1.

wg and  F(€) =2(f(9(6)) — f(z0))-
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If |g(&)] < ro, from (4.4) and (4.1) we have
Ap(€) = (1= 70)"Re(9(€)) < K (1= r0)"As(20)/" + (1 = ro)"K’
<K —ro)r(z)/" + K = K + K',
and if |g(&)| > 7o, from (4.2), we obtain
Ap(€) = (1 =r0)"Ar(9()) < K (1= 7r0)"Ap(9(E))"" + (1 = 10)"K’
< K(1—ro)A\((9()"" + K’

:Kcii%au—m@m&w@WM+K

1—g(¢&
1—7’0 ’ K(l—To) y
K| ——— K K
= <1wmm)+ ST —rEe
K(l—'f’o) o 2K y
0 STn-a—wEe "t Tt

Case 2. ry = 0: Consider the functions g and F' defined by (4.5) with ry = 0.
Then |g(&)| > 9 = 0 and it follows from (4.6) that

~ 2K
Ar(§) =
rO =5y
Therefore, we conclude that

Ap(€) < 2K + K' for & € B™.

In particular, Ap(0) < K + K.
Now, applying Theorem C to the mapping F, we see that F(B") contains a
schlicht ball with the center 0 and radius

+ K' for £ € B,

, T
- 83K +2K')
Consequently, f(B™) contains a schlicht ball of radius
s
R = 166K + 210)
This completes the proof. 0

Acknowledgements. The first named author thanks SERB-CRG and the second
named author thanks CSIR for their support.

References

[1] Auvrors, L. V., and H. GRUNSKY: Uber die Blochsche Konstante. - Math. Z. 42:1, 1937,
671-673.

[2] ALLu, V., and R. KuMAR: Landau-Bloch type theorem for elliptic and quasiregular harmonic
mappings. - J. Math. Anal. Appl. 535:2, 2024, 128215.

[3] BLocH, A.: Les théorémes de M. Valiron sur les fonctions entiéres et la théorie de
I'uniformisation. - Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys. 17, 1925, 1-22.

[4] BOCHNER, S.: Bloch’s theorem for real variables. - Bull. Amer. Math. Soc. 52, 1946, 715-719.

[5] BOCHNER, S., and W.T. MARTIN: Several complex variables. - Princeton Math. Ser. 10,
Princeton Univ. Press, Princeton, NJ, 1948.

[6] BoNK, M.: On Bloch’s constant. - Proc. Amer. Math. Soc. 110:4, 1990, 889-894.
[7] CuEN, H.H., and P. M. GAUTHIER: On Bloch’s constant. - J. Anal. Math. 69, 1996, 275-291.



228 Vasudevarao Allu and Rohit Kumar

[8] CuEN, H.H., and P. M. GAUTHIER: Bloch constants in several variables. - Trans. Amer.
Math. Soc. 353:4, 2000, 1371-1386.

[9] CHEN, H.H., and P. M. GAUTHIER: The Landau and Bloch theorem for planer harmonic and
pluriharmonic mappings. - Proc. Amer. Math. Soc. 139:2, 2011, 583-595.

[10] CHEN, J., P. L1, S. K. SAHOO, and X. WANG: On the Lipschitz continuity of certain quasireg-
ular mappings between smooth Jordan domains. - Israel J. Math. 220:1, 2017, 453-478.

[11] CHEN, S., and S. PONNUSAMY: On certain quasiconformal and elliptic mappings. - J. Math.
Anal. Appl. 486:2, 2020, 123920.

[12] CHEN, S., S. PoNNUSAMY, and X. WANG: Equivalent moduli of continuity, Bloch’s theorem
for pluriharmonic mappings in B™. - Proc. Indian Acad. Sci. Math. Sci. 122:4, 2012, 583-595.

[13] CHEN, S., S. PoNNUSAMY, and X. WANG: Landau—Bloch constants for functions in a-Bloch
spaces and Hardy spaces. - Complex Anal. Oper. Theory 6:5, 2012, 1025-1036.

[14] CHEN, S., S. PonNusaMmy, and X. WANG: Weighted Lipschitz continuity, Schwarz—Pick’s
lemma and Landau-Bloch’s theorem for hyperbolic-harmonic mappings in C". - Math. Model.
Anal. 18:1, 2013, 66-79.

[15] CHEN, S., S. PONNUSAMY, and X. WANG: Stable geometric properties of pluriharmonic and
biholomorphic mappings, and Landau—Bloch’s theorem. - Monatsh. Math. 177:1, 2015, 33-51.

[16] CHEN, S., S. PONNUSAMY, and X. WANG: Remarks on ‘Norm estimates of the partial deriva-
tives for harmonic mappings and harmonic quasiregular mappings’. - J. Geom. Anal. 31:11,
2021, 11051-11060.

[17] EREMENKO, A.: Bloch radius, normal families and quasiregular mappings. - Proc. Amer. Math.
Soc. 128:2, 2000, 557-560.

[18] FINN, R., and J. SERRIN: On the Holder continuity of quasiconformal and elliptic mappings.
- Trans. Amer. Math. Soc. 89, 1958, 1-15.

[19] HaHN, K. T.: Higher dimensional generalizations of the Bloch constant and their lower bounds.
- Trans. Amer. Math. Soc. 179, 1973, 263-274.

[20] HARRIS, L. A.: On the size of balls covered by analytic transformations. - Monatsh. Math. 83,
1977, 9-23.

[21] LanDAU, E.: Uber die Blochsche Konstante und zwei verwandte Weltkonstanten. - Math. Z.
30:1, 1929, 608 634.

[22] Liu, M. S., and S. PONNUSAMY: Bloch and Landau type theorems for pluriharmonic mappings.
- Internat. J. Math. 33:7, 2022, 2250053.

[23] MARDEN, A., and S. RICKMAN: Holomorphic mappings of bounded distortion. - Proc. Amer.
Math. Soc. 46, 1974, 225-228.

[24] NIRENBERG, L.: On nonlinear elliptic partial differential equations and Hélder continuity. -
Commun. Pure. Appl. Math. 6, 1953, 103—-156.

[25] POLETSKY, E. A.: Holomorphic quasiregular mappings. - Proc. Amer. Math. Soc. 92, 1985,
235-241.

[26] RupIN, W.: Function theory in the unit ball of C™. - Springer-Verlag, New York, Heidelberg,
Berlin, 1980.

[27] SakAaGuUcHI, K.: On Bloch’s theorem for several complex variables. - Sci. Rep. Tokyo Kyoiku
Daigaku Sect. 5, 1956, 149-154.

[28] TAKAHASHI, S.: Univalent mappings in several complex varibles. - Ann. of Math. 53, 1951,
464-471.

[29] WANG, X., Y. YANG, and M. S. Liu: The Landau-Bloch type theorems for K-quasiregular
pluriharmonic mappings. - Monatsh. Math. 198:1, 2022, 189-209.

[30] Wu, H.: Normal families of holomorphic mappings. - Acta Math. 119, 1967, 193-233.



The Landau—Bloch type theorems for certain class of holomorphic and pluriharmonic. . . 229
[31] Xu, Z.F., and M. S. Liu: On pluriharmonic v-Bloch-type mappings and hyperbolic-harmonic
mappings. - Monatsh. Math. 192, 2020, 965-978.

[32] Yu, Y.-S., and D.-H. GU: A note on a lower bound for the smallest singular value. - Linear
Algebra Appl. 253, 1997, 25-38.

Received 12 July 2024 e Revision received 21 March 2025 e Accepted 26 March 2025
Published online 10 April 2025

Vasudevarao Allu Rohit Kumar

Indian Institute of Technology Bhubaneswar Indian Institute of Technology Bhubaneswar
School of Basic Science School of Basic Science

Department of Mathematics Department of Mathematics
Bhubaneswar-752050, Odisha, India Bhubaneswar-752050, Odisha, India

avrao@iitbbs.ac.in rohitk12798@gmail.com



	1. Introduction
	2. The Bloch theorem for Bochner (K,K')-mappings
	3. The Bloch theorem for (K,K')-quasiregular mappings
	4. The Landau–Bloch type theorem for pluriharmonic mappings
	References

