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CMC hypersurfaces with polynomial volume growth
in warped products and the nonexistence of entire
solutions to the minimal hypersurface equation

HENRIQUE FERNANDES DE LiMA

Abstract. We investigate constant mean curvature (CMC) complete two-sided hypersurfaces
with polynomial volume growth in a class of warped products satisfying a suitable curvature con-
straint. In this setting, we establish the nonexistence of such a CMC hypersurface under mild hy-
potheses involving the mean curvature and the warping function. Applications to Einstein warped
product, pseudo-hyperbolic, Schwarzschild and Reissner—Nordstrom spaces are also given. Further-
more, we present a nonparametric version of our main result which, in particular, guarantees the
nonexistence of entire solutions with finite C? norm of the the minimal hypersurface equation on a

complete Riemannian manifold with polynomial volume growth.

Poimutulojen polynomitilavuuskasvuiset vakiokeskikaarevat hyperpinnat
ja minimihyperpintayhtilén kokonaisten ratkaisujen puuttuminen

Tiivistelm&. Tyossa tutkitaan sopivan kaarevuusehdon toteuttavien poimutulojen luokassa
taydellisia kaksipuolisia hyperpintoja, joiden keskikaarevuus on vakio ja tilavuus kasvaa polynomi-
vauhtia. Keskikaarevuutta ja poimufunktiota koskevilla maltillisilla lisdoletuksilla osoitetaan, etta
tallaisia hyperpintoja ei ole olemassa. Télle esitellddn Einsteinin poimutuloihin seké pseudohyperbo-
lisiin, Schwarzschildin ja Reissnerin—Nordstréomin avaruuksiin liittyvié sovelluksia. Lisdksi annetaan
paatuloksen parametriton muotoilu, joka erityisesti takaa, ettd polynomitilavuuskasvuisen Rieman-

nin moniston mimimihyperpintayhtalslld ei ole C2-normiltaan direllisis, kokonaisia ratkaisuita.

1. Introduction

The study of constant mean curvature (CMC) hypersurfaces immersed in a Rie-
mannian manifold constitutes a classical but still fruitful thematic in differential ge-
ometry. Into this branch, Montiel [15] investigated constant mean curvature compact
hypersurfaces immersed in warped products of the type I Xy M™, whose Ricci curva-
ture Ricy, of the fiber (M™, (,))s) and the (positive) warping function f: I CR — R
satisfy the following curvature constraint:

(1.1) Ricy > (n—1) Sl}p(f'2 =S

In this context, he obtained the analogous to the classical Jellett-Liebmann and
Alexandrov theorems for hypersurfaces in Euclidean space. It is also worth to point
out that Einstein warped product, pseudo-hyperbolic, Schwarzschild and Reissner—
Nordstrom spaces also constitute examples of warped product models satisfying cur-
vature constraint (1.1). For more details, see Section 4.
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Later on, Alfas and Dajczer [4] studies complete properly immersed surfaces
contained in a slab of a warped product R x ; M? where M? is complete with non-
negative Gaussian curvature. Under certain restrictions on the mean curvature of
the surface they showed that such an immersion does not exists or must be a slice,
that is, a leaf of the trivial totally umbilical foliation ¢ € R > {t} x M?. After-
wards, these same authors [5] reobtained Montiel’s results [15] considering complete,
not necessarily compact, hypersurfaces immersed in R x; M". A few years later,
the author named jointly with Aquino [6] and Caminha [10] obtained rigidity results
for complete vertical graphs with constant mean curvature in I x; M", assuming
appropriate restrictions on the values of the mean curvature and the norm of the
gradient of the height function h of these graphs. Next, supposing that the gradient
of h is Lebesgue integrable and that the mean curvature function takes values in the
interval (0, 1], the author named jointly with Camargo and Caminha [9] showed that
complete hypersurfaces lying in a slab of a pseudo-hyperbolic space R x . M™ must
be slices.

In [3], the named author jointly with Alias and Colares proved uniqueness results
for entire graphs in a warped product space satisfying (1.1), under suitable restric-
tions on the higher order mean curvatures. In particular, they obtained applications
to the study of the rigidity of minimal and radial graphs in the Euclidean space.
Afterwards, Aledo and Rubio [1| provided uniqueness and nonexistence of entire so-
lutions to the minimal surface equation in warped products of the type R x; R?
and, as a consequence of their results, they extended the classical Bernstein’s The-
orem. Later, Romero, Rubio and Salamanca [17| proved several Moser—Bernstein
type results when the ambient space is a warped product I x; M™ whose fiber M"
is parabolic and such that log f is convex.

More recently, the named author jointly with Aratjo and Gomes [7] studied
complete two-sided hypersurfaces immersed in a warped product space I xy M".
Under appropriate restrictions on the warping function f, on the sectional curvature
of the fiber M™ and on the mean curvature of such a hypersurface X", they applied
some maximum principles to show that " must be a slice of I x; M". They also
obtained Moser—Bernstein type results concerning entire graphs constructed over M",
as well as applications to pseudo-hyperbolic spaces I x. M™.

Proceeding with this picture, here we investigate constant mean curvature (CMC)
complete two-sided hypersurfaces with polynomial volume growth in the class of
warped products satisfying the curvature constraint (1.1). In this setting, we estab-
lish the nonexistence of such a CMC hypersurface under mild hypotheses involving
the mean curvature and the warping function (see Theorem 3.2). Applications to
Einstein warped product, pseudo-hyperbolic, Schwarzschild and Reissner-Nordstrom
spaces are also given (see Section 4). Furthermore, we study the nonexistence of en-
tire solutions of the mean curvature equation (see Theorem 5.1). As a consequence
of this study, we obtain the following result concerning the nonexistence of entire
solutions to the minimal hypersurface equation on a complete Riemannian manifold
with polynomial volume growth:

Let (M™,(,)m) be a complete Riemannian manifold with polynomial volume
growth and let f: I — R be a smooth positive function defined on a open interval
I C R such that f'(t) > 0 and (log f)”(¢) > 0. If (1.1) is satisfied, then there is no
smooth function u: M™ — I with finite C? norm which is an entire solution to the
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nonlinear elliptic equation

vy ( Du ) LW (L),
F@)VFPw) +[Duly, )/ f2(u) + [Dul3, f2(u)
2. Basic setup

Let (M™,(,)n) be a connected, n-dimensional oriented Riemannian manifold,
I C R an open interval and f: I — R a positive smooth function. In the product
differentiable manifold I x M", let n; and m); denote the projections onto the [
and M™ factors, respectively. A particular class of Riemannian manifolds is the one
obtained by furnishing I x M™ with the metric

(2.1) (v, w)(p) = ((mr)wv, (mr)sw)r(mr(p) + (F (71 () ((war) v, (war)sw) ar (mar (p)).

for all p € M and all v,w € TpM. Indeed, according to [15, Proposition 1], the
smooth vector field

V = (f o} m)@t

is conformal and closed (in the sense that its dual 1-form is closed), with conformal
factor ¢ = f’, where the prime denotes differentiation with respect to t € I. Such a
space is called a warped product, and in what follows we will write M =1 x F M
to denote it.

Throughout this paper, we will study two-sided hypersurfaces 1: " — R x  M"
oriented by a globally defined unit vector field N. Let V and V denote the Levi-
Civita connections in R x ; M™ and X", respectively. Then the Gauss and Weingarten
formulas for such hypersurfaces are given by

(2.2) VxY =VxY + (AX|Y)N
and
(2.3) AX = —-VxN,

for every tangent vector fields X,Y € X(X). Here A: X(X) — X(X) stands for the
second fundamental form of ¥ with respect to the Gauss map N.

Remark 2.1. In the warped product M = Ix §M™ there exists a remarkable
family of two-sided hypersurfaces: its slices My, = {to} x M, with ¢, € I. The

second fundamental form and the mean curvature of M;, with respect to N = —0;
f'(to)
f(to)

are, respectively, Ay, =

%tr(Ato ) = J}((;;))) :

Now, let us consider two particular functions naturally attached to such hyper-
surfaces, namely, the (vertical) height function h = (7;)|s and the angle function
O = (N,0,).

Let us denote by V and V the gradients with respect to the metrics of I x § M
and ", respectively. Then, a simple computation shows that the gradient of 7; on
I xy M™ is given by

(24) Vﬂ'[ = <V7T[, 8t>6t = @,
so that the gradient of A on X" is
(2.5) Vh= (V)" =09 =09, - ON,

I, where I denotes the identity operator, and H;, =
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where ()" denotes the tangential component of a vector field in %(Mnﬂ) along >".
Thus, we get

(2.6) |Vh]* =1 - 67

where | | denotes the norm of a vector field on X"
The following lemma can be found in [10, Propositions 3.1 and 3.2]. See also [13,
Proposition 1.1].

Lemma 2.2. Let¢: X" — Rx s M" be a two-sided hypersurface with orientation
N. Then,

Ah = (log f)'(h)(n — |Vh|?) + nH®,

where H = %tr(A) is the mean curvature of ¥ with respect to N. Moreover, if H is
constant,

A(f(h)©) = —f(h) {Ricar(N*, N*) + (n. — 1)(log f)"(R)|VA|* + |A[*} © — nH f'(h),

where Ricys denotes the Ricci curvature of the fibre M", N* = (mp).N and |A| is
the Hilbert—Schmidt norm of the second fundamental form A of Y.".

3. Main result

We start this section quoting the analytical tool that will be used to prove our
results. For this, let X" be a connected, oriented, complete noncompact Riemannian
manifold. We denote by B(p,r) the geodesic ball centered at p and with radius 7.
Given a polynomial function o: (0,4+00) — (0, 400), we say that 3" has polynomial
volume growth like o(r) if there exists p € X" such that

vol(B(p,r)) = O(o(r)),

as r — 400, where vol denotes the canonical Riemannian volume of ¥". As it was
already observed in the beginning of [2, Section 2|, if p, ¢ € X" are at distance d from
each other, we can verify that

vol(B(p,r)) S vol(B(q,r — d)) . o(r—d)
o(r) - o(r—d) o(r)

Consequently, the choice of p in the notion of volume growth is immaterial, and we
will just say that " has polynomial volume growth.

Keeping in mind the previous digression, we have the following lemma which
corresponds to a particular case of |2, Theorem 2.1| due to Alias, Caminha and do
Nascimento.

Lemma 3.1. Let X" be a connected, oriented, complete noncompact Riemann-
ian manifold, and let ( € C*(X) be nonnegative and such that A > a( on X",
for some positive constant o € R. If 3" has polynomial volume growth and |V(| is
bounded on X", then ( vanishes identically on »".

From now on, we will orient the two-sided hypersurfaces in such a way that
© < 0. In this setting, we obtain the following nonexistence result:

Theorem 3.2. Let M = I X M™ be a warped product satisfying (1.1).

There is no CMC complete two-sided hypersurface 1: 3" — M with polynomial
volume growth, bounded second fundamental form A, lying between two slices of
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M such that f'(h) >0, (log f)"(h) > 0 and whose mean curvature H satisfies

o f'(h)
(3.1) H < 1%f )

Proof. Let us assume, by contradiction, the existence of such a hypersurface
Y X" — M and let us define on it the function (: X" — R given by

¢=f(h)(1+0O).
By computing the Laplacian of ¢ with the aid of the formulas of Lemma 2.2, we
get

Ty
S — PN o
* ( 70 ) Vi

—nHf'(h) + (nH f'(h) — f(h)|A]*) ©.

f'(h)?

f(h)
On the other hand, taking into account the curvature constraint (1.1), a straightfor-
ward computation gives us

+n

(3.2) Ricy (N7, N¥) > % Slélo(f'(h)2 — f() " (W)IVA[.
Thus, since © < 0, from (3.2) and (3.2) we obtain that
f(h)f"(h) — f'(h)* y S0
¢z (FEE o7
—nHf'(h)+ (nHf'(h) — f(h)|A]?) ©.

Consequently, since we are also supposing that (log f)”(h) > 0, from (3.3) we get

(3.3)

(3.4 AC> nff((};)) CnH () + (nH /() — f(h)|AP) ©.
Then, using that |A|> > nH? in (3.4), we arrive at
(3.5) AC>n (é((:)) _ H) (F(h) + Hf(R)O).

Hence, since we are assuming that X" lies between two slices and f'(h) > 0, from
(3.1) and (3.5) we obtain

(3.6) A¢ > aq,
where
P (P
=g <zf 7h) H)

is a positive constant.
Moreover, since
V(= (f'(h)Id=f(h)A)(Vh),
where Id stands for the identity operator on X(X), we infer that
IVCl < f'(h) + F(R)A].

So, using the hypotheses that X" lies in a slice and that |A| is bounded, we have that
|V (] is also bounded.
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When X" is noncompact, since we are also assuming that 3" has polynomial
volume growth and taking into account that ¢ is a nonnegative function, from (3.6)
we can apply Lemma 3.1 to conclude that ¢ vanishes identically on ", which implies
that © = —1 and, hence, ¥ must be a slice, contradicting hypothesis (3.1). Finally,
in the case that X" is compact, we can use divergence theorem in (3.6) to also get
that ( is identically zero on X", arriving that the same conclusion. 0

Remark 3.3. Taking into account Remark 2.1, we see that hypotheses f'(h) > 0
and (log f)”(h) > 0 in Theorem 3.2 just mean that the mean curvature (with respect

to —0;) of the slices which foliate the region of M where ¥ is contained constitutes
a strictly positive and nondecreasing function.

From Theorem 3.2 we derive the following consequence:

Corollary 3.4. Let M= X ¢ M™ be a warped product satisfying (1.1).

There is no complete minimal two-sided hypersurface 1: 3" — M with polyno-
mial volume growth, bounded second fundamental form and lying between two slices

oanH, such that (log f)"(h) > 0 and

ing (1)
2 f(h)

> 0.

4. Applications to some standard models

From [8, Corollary 9.107], it follows that the warped product space (Mnﬂ )
is Einstein with its Ricci curvature tensor satisfying Ric = ¢(, ), ¢ being a constant,
if and only if

i) the fiber M™ has constant Ricci curvature ¢, and
ii) the warping function f satisfies the following differential equations

f_”:_E and c(n—1) :c—(n—l)fa'

f n n f?
In particular, we have that ¢ = (n — 1)(f”? — ff") = constant and M satisfies
(1.1) with Ricpys = ¢{,)ar = (n = 1)(f? = ff"){,)m- So, in this context Corollary 3.4
reads as follows:

Corollary 4.1. Let Mt =T X ¢ M™ be an Finstein warped product. There is
no CMC complete two-sided hypersurface ¢: X" — M with polynomial volume

growth, bounded second fundamental form and lying between two slices of Mnﬂ,
such that f'(h) > 0, (log f)"(h) > 0 and whose mean curvature satisfies (3.1).

According to the terminology introduced by Tashiro in [18], when the warping
function is exponential the corresponding warped product I x. M™ is referred to as
a pseudo-hyperbolic space. Tashiro’s terminology is due to the fact that the (n + 1)-
dimensional hyperbolic space H" ! is isometric to the warped product R x .« R™, where
the slices constitute a family of horospheres sharing a fixed point in the asymptotic
boundary 9, H"*! and giving a complete foliation of H"!. For more details about
these spaces see, for instance, [4, 5, 14, 15].

We observe that a pseudo-hyperbolic space I x . M™, whose fiber M" has nonneg-
ative Ricci curvature satisfies (1.1). So, from Corollary 3.4 we obtain the following
consequence:
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Corollary 4.2. Let M= Xet M™ be a pseudo-hyperbolic space whose
fiber M"™ has nonnegative Ricci curvature. There is no CMC complete two-sided
hypersurface with polynomial volume growth, bounded second fundamental form,

lying between two slices of M"™ and whose mean curvature satisfies H < 1.

Given a mass parameter m > 0, the Schwarzschild space is defined to be the
product M= (ro(m), +00) x S™ furnished with the metric § = Vy(r) " tdr? +r?ggn,
where gs» is the standard metric of S”,

Vi(r) =1 —2mr!™"
stands for its potential function and

ro(m) = (2m)!/

is the unique positive root of V(r) = 0. Its importance lies in the fact that the

manifold R x 3" equipped with the Lorentzian static metric —Vy(r)dt> + g is a
solution of the Einstein field equation in vacuum with zero cosmological constant
(see, for instance, [11, Section 4.7] and [16, Chapter 13| for more details concerning
Schwarzschild geometry).

As it was observed in [12, Example 1.3], M can be reduced in the form
(0,400) X S™ with metric (2.1) via the following change of variables:

" d

(4.1) t = / ~ 7 f(#) =r(t), te (0, +00).
ro(m) Vm(a)

As it was noted in [12, Example 4.1], since Vi, (r) is strictly increasing on (ro(m), +00),

it follows from (5.5) that the warping function f satisfies:

d 1dVy
(4.2) () = d_;; =/ Valr(t)) >0 and f'(t)= §d—(r(t)) > 0.
r
Hence, from (5.5) and (4.2) it is not difficult to verify that (log f)"(¢t) > 0 and (1.1)
is satisfied if only if f(t) < (m(n + 1))Y/®=1).
Taking into account this previous digression, from Theorem 3.2 we obtain the
following application:

+1

Corollary 4.3. Let M= T x ¢ S™ be the Schwarzschild space with mass
—mn+1

parameter m > 0. There is no CMC complete two-sided hypersurface y: ¥" — M
with polynomial volume growth, bounded second fundamental form, lying between
two slices of M"*" such that f(h) < (m(n+ 1))=Y and whose mean curvature H

satisfies (3.1).

Given a mass parameter m > 0 and an electric charge q € R, with |q| < m, the

Reissner—Nordstrom space is defined to be the product M= (ro(m,q), +00) x S"
endowed with the metric § = Vi 4(r)~'dr? 4+ r2gsn, where gs» is the standard metric
of S”,

Ving(r) = 1 —2mp' ™" 4 g2 2"

stands for its potential function and

q2 1/(n—1)
TO(m7 q) = ( )

m —/m? — g2

is the largest positive zero of V;, 4(r). The importance of this model lies in the fact that
the manifold R x M""" equipped with the Lorentzian static metric —Vi 4(r)dt* + g
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is a charged black-hole solution of the Einstein field equation in vacuum with zero
cosmological constant (see, for instance, [11, Remark 4.5] and [19, Section 12.3]).

As in the Schwarzschild space, M can be reduced in the form (0,400) X7
S™ with metric (2.1) via the same change of variables as in (5.5). Furthermore,
following the same previous steps, the warping function f has positive first and
second derivatives. Moreover, we can verify that (log f)”(t) > 0 and (1.1) is satisfied

if only if |q| < “‘(2"—\;1 and xl/(l "< f(t) < 2/ where z, < .. are the two

positive real roots of the polynomial function P(z) given by
(4.3) P(z) = ¢*na® —m(n + 1)z + 1.

Keeping in mind our previous discussion, from Theorem 3.2 we obtain the fol-
lowing application:

Corollary 4.4. Let M= 1 x ¢ S™ be the Reissner—Nordstrom space with

mass parameter m > 0 and an electric charge q € R, with |q| < mé%l). There is

no CMC complete two-sided hypersurface v: ¥" — M with polynomial volume

growth, bounded second fundamental form, lying between two slices of M such
that 20 < f(h) < :ci/(lfn), where z, < x., are the two positive real roots of
the polynomial function P(x) defined in (4.3), and whose mean curvature H satisfies

(3.1).

5. Entire graphs

Let us consider 2 a domain in M™. A function u € C*°(2) such that u(Q) C R

defines a vertical graph in the product space M =T x M. Tn such a case, X(u)
will denote the graph over €2 determined by wu, that is,

S(u) = {(u(p),p): pe Q} c M

The graph Y(u) is said to be entire if & = M". Observe that h(u(p),p) = u(p),
p € Q. Hence, h and u can be identified in a natural way. The metric induced on €2
from the Riemannian metric of the ambient space via ¥(u) is

(5.1) gu = du® + f(u)*(,)ar-
The unit vector field
(52)  N(p)=— 1 (f (D] — Dulp) . D€,

(w)/f(w)? + [Du(p) 3

1
where Du stands for the gradient of w in M™ and |Du|ym = (Du, Du) 3., gives an
orientation of ¥(u) with respect to which we have © < 0. The corresponding second
fundamental form is given by

AX — ( <D2XDu,Du>M2 - f/(u)(Du,X;Aéﬂ) Du
(5.3) f(w) (f*(u) + | Dul3,) (f*(u) + [Dul3,)
1 T
)/ 2 (u) + [Dul3, VP + IDul,

for any vector field X tangent to €2, where D is the Levi-Civita connection in M™.
Consequently, if ¥ (u) is a vertical graph over a domain 2 C M"™ and denoting by
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divym the divergence operator computed in the metric (,)pm, it is not difficult to
verify from (5.3) that the mean curvature function H(u) of ¥(u) is given by:

. Du f'(u) ( |DU|?\4)
4) H(u) =—d — .
We recall that v € C*(M) has finite C? norm when

”U”C?(M) := sup |D7U|L°°(M) < +o00.
lv|<2
In this context, we close our paper establishing a nonparametric version of Theo-
rem 3.2:

Theorem 5.1. Let M =1 x ¢ M™ be a warped product satisfying curvature
constraint (1.1) and whose fiber M™ is complete with polynomial volume growth.
There is no CMC' entire graph ¥(u) determined by a function uw € C*(M) with
finite C* norm such that f'(u) > 0, (log f)"(u) > 0 and whose mean curvature H(u)
satisties

o (W)
H(u) < 1]r\14f )

Proof. By contradiction, let us assume the existence of such a entire graph (u).
Since we are assuming that u has finite C?, it follows from (5.3) that the second
fundamental form of ¥(u) is bounded. Moreover, we note that the finiteness of the
C? norm of u also implies, in particular, that u is bounded, which, in turn, guarantees
that infy; f(u) > 0. So, since M™ is complete, from (5.1) we infer that 3(u) furnished
with the metric g, is also complete.

On the other hand, from (5.1) we have that d% = /|G[dM, where dM and dY.
stand for the Riemannian volume elements of (M™, (,)s) and (X(u), g.), respectively,
and G = det(g;;) with

9i; = 9u(Ei, E;) = E;j(u)Ej(u) + f(u)*d;.

Here, {E,..., E"} denotes a local orthonormal frame with respect to the metric
(,)a. Consequently, we obtain that

|Gl = fw)*™ D (f(u)? + | Dul3).

Thus, we arrive at the following relation

(5.5) 4% = f(u)" ™/ f(u)? + [ Duf},dM.

Hence, since we are assuming that (M", (,),s) has polynomial volume growth and
that u € C°°(M) has finite C? norm, from (5.5) we conclude that (X(u),g,) also
has polynomial volume growth. Therefore, by applying Theorem 3.2, we reach a
contradiction. O

It follows from Theorem 5.1 jointly with the mean curvature equation (5.4) the
following nonexistence result:

Corollary 5.2. Let (M™,(,)n) be a complete Riemannian manifold with poly-
nomial volume growth and let f: I — R be a smooth positive function defined on
a open interval I C R such that f'(t) > 0 and (log f)"(t) > 0. If (1.1) is satisfied,
then there is no smooth function u: M™ — I with finite C* norm which is an entire
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solution to the nonlinear elliptic equation

Du B 1 (u) (n B |Du|?\/1)
Flu)/F2(u) + [Duff, )/ F2(u) + [Dulf, f2lu) )
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