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A clustering theorem in fractional Sobolev spaces

Fatma Gamze Düzgün, Antonio Iannizzotto and Vincenzo Vespri

Abstract. We prove a general clustering result for the fractional Sobolev space W s,p: whenever

the positivity set of a function u in a cube has measure bounded from below by a multiple of the

cube’s volume, and the W s,p-seminorm of u is bounded from above by a convenient power of

the cube’s side, then u is positive in a universally reduced cube. Our result aims at applications

in regularity theory for fractional elliptic and parabolic equations. Also, by means of suitable

interpolation inequalities, we show that clustering results in W 1,p and BV , respectively, can be

deduced as special cases.

Murtoasteisten Sobolevin avaruuksien ryvästymislause

Tiivistelmä. Tässä työssä todistetaan yleinen ryvästymistulos murtoasteisissa Sobolevin ava-

ruuksissa W s,p: jos annetussa kuutiossa funktion u positiivisuusjoukon mitta on vähintään kuution

tilavuuden monikerta, ja saman funktion W s,p-puolinormi on korkeintaan kuution sivun sopiva po-

tenssi, niin u on positiivinen vakiokertoimella kutistetussa kuutiossa. Tulos tähtää murtoasteisten

elliptisten ja parabolisten yhtälöiden säännöllisyysteoriaa koskeviin sovelluksiin. Sopivien väliarvo-

epäyhtälöiden avulla osoitetaan lisäksi, että avaruuksien W 1,p ja BV ryvästymistulokset voidaan

johtaa erikoistapauksina.

1. Introduction and main result

Clustering (or local clustering) is a general property shared by the weak solutions
of several types of elliptic and parabolic equations, as well as functions in De Giorgi
classes. It can basically described as follows. Let u be a function defined in a cube
Qr (with side r > 0) and c > 0 be a given level, satisfying the following conditions:

(a) the measure of the level set Qr∩{u > c} is bounded from below by a multiple
of the measure of the cube;

(b) the seminorm of u in a certain function space with domain Qr is bounded
from above by a multiple of c times a convenient power of r.

Then, for any λ ∈ (0, 1) the region {u > λc} ’clusters’ at some point x1 ∈ Qr,
occupying a cube around x1, whose side is proportional to r by a constant independent
of u.

While condition (a) and the conclusion are basically measure-theoretical proper-
ties, not affected by the regularity of the function u, condition (b) may take different
forms according to the space where we pick u (which in turn depends on the differ-
ential or variational problem considered). Clustering results have been proved for
W 1,p(Qr) (p > 1) [13], W 1,1(Qr) [12], and BV (Qr) [27], each one with a different
(b)-type condition, mainly by means of one-dimensional Poincaré inequalities. Some
clustering theorems are stated on balls, rather than cubes, but essentially equivalent.

https://doi.org/10.54330/afm.161328
2020 Mathematics Subject Classification: Primary 35R11, 46E35, 35B65.
Key words: Clustering, fractional Sobolev spaces, regularity.
c© 2025 The Finnish Mathematical Society



244 Fatma Gamze Düzgün, Antonio Iannizzotto and Vincenzo Vespri

In this note we consider the fractional Sobolev space W s,p(Qr) with s ∈ (0, 1),
p > 1, thus specializing the (b)-condition by means of the Gagliardo seminorm (see
[1, 16, 23] for an introduction to this class of function spaces). Precisely, for any open
set Ω ⊂ R

N (N > 2) we define for all measurable u : Ω → R the Gagliardo seminorm

[u]s,p,Ω =

[
¨

Ω×Ω

|u(x)− u(y)|p
|x− y|N+ps

dx dy

]
1

p

.

We say that u ∈ W s,p(Ω), if u ∈ Lp(Ω) and [u]s,p,Ω <∞. In order to state our result,
for all x ∈ R

N and all r > 0 let

Qr(x) =

N
∏

i=1

(

xi − r

2
, xi +

r

2

)

be the N -dimensional open cube centered at x with side r, so |Qr(x)| = rN and

diag(Qr(x)) =
√
Nr (we denote Qr = Qr(0), while |A| always stands for the N -

dimensional Lebesgue measure of any set A ⊂ R
N). Our result is the following:

Theorem 1.1. Let s ∈ (0, 1), p > 1, x0 ∈ R
N , r > 0 be given, and let u ∈

W s,p(Qr(x0)), c > 0 satisfy

(a) |{x ∈ Qr(x0) : u(x) > c}| > αrN (α ∈ (0, 1));

(b) [u]s,p,Qr(x0) 6 γcr
N−ps

p (γ > 0).

Then, for all δ, λ ∈ (0, 1) there exist x1 ∈ Qr(x0), η ∈ (0, 1) (with η independent of
u) s.t.

|{x ∈ Qηr(x1) : u(x) > λc}| > (1− δ)(ηr)N .

We display the proof in Section 2.
Clustering results find applications in regularity theory for both elliptic and par-

abolic PDE’s. To be more specific, in regularity theory one of the essential tools is
the so-called critical mass lemma which states that, under suitable conditions, there
exists an absolute constant ν ∈ (0, 1) s.t. whenever u is a weak solution of an el-
liptic or parabolic equation, µ is the infimum of u in a ball Br ⊂ R

N with radius
r > 0, and the measure of the set {u > µ + ε} is larger than νωNr

N (where ε > 0
and ωN > 0 denotes the volume of the N -dimensional unit ball), then u > µ + ε/2
a.e. in Br/2. Such information is extremely important, as it marks out a region of
positivity, which in turn plays a fundamental role in the proofs of Hölder continuity
and Harnack estimates for u. Now the clustering theorem ensures that, provided
u has enough regularity, there is some part of the domain where the hypotheses of
the critical mass lemma are satisfied. This method was introduced in [13] and then
applied to nonlinear PDE’s, both in the elliptic [18] and the parabolic case [19]. Also,
clustering is an essential tool for proving Harnack’s inequality without continuity in
anisotropic problems, see [11, p. 370].

The main motivation for our result is related to a reinterpretation of regular-
ity theory for nonlinear, nonlocal equations driven by the s-fractional p-Laplacian,
properly defined as the gradient of the functional

W s,p(RN ) ∋ u 7→
[u]p

s,p,RN

p
.

Such operator was introduced in [21] as an approximation of the p-Laplacian (for
s → 1) and in [25] as an approximation of the fractional infinity Laplacian (for
p → ∞), see also [3] for nonlinear fractional operators arising from game theory.
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When p > 2 and u is very smooth, the fractional p-Laplacian admits an alternative,
pointwise representation as

(−∆)spu(x) = 2 lim
ε→0+

ˆ

Bc
ε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy.

Hölder continuity and Harnack’s inequality have been established for the fractional
p-Laplacian in the elliptic case in [14, 15] through an adapted De Giorgi-Moser-Nash
approach (see also [10] for an alternative approach based on fractional De Giorgi
classes), and higher Hölder regularity is proved, for instance, in the recent paper
[4]. On the parabolic side, regularity results for the evolutive fractional p-Laplace
equation have been established in [24, 17, 28, 29].

An application of Theorem 1.1 has already appeared in [8], where local clustering
is employed, along with positivity expansion and a fractional critical mass lemma,
to give an alternative proof of Hölder regularity for the solutions of the fractional
p-Laplace equation. Also, we aim at proving classical Harnack inequalities for the
corresponding evolutive equation in the singular case (1 < p < 2). A secondary,
but hopefully interesting, motivation of the present note is that, in fact, previous
clustering theorems in classical Sobolev spaces W 1,p (see [13] for p > 1, [12] for p = 1)
and the bounded variation space BV (see [27]) can be deduced from Theorem 1.1,
through convenient interpolation and scaling inequalities. So, we design here a unified
approach to the problem of clustering. In this connection, we present a very simple
proof of known interpolation inequalities between W 1,p (resp., BV ) and W s,p with a
pure seminorm control (see Remark 3.3). Section 3 is devoted to this subject. We
mention that a similar clustering result for the linear fractional Laplacian, with a
more general kernel, has been proved independently from us in [9].

2. Proof of Theorem 1.1

First we assume that u ∈ C(Qr(x0)). For any k ∈ N, we partition Qr(x0) into a
family Fk of cubes with side r/k, so that for all Q ∈ Fk we have

|Q| =
( r

k

)N

, diag(Q) =

√
Nr

k
=

√
N |Q| 1

N .

Clearly #Fk = kN . Let α ∈ (0, 1) be as in (a) and set for all Q ∈ Fk

{

Q ∈ F+
k if |Q ∩ {u > c}| > α

2
|Q|,

Q ∈ F−
k otherwise.

By hypothesis (a), for all Q ∈ F+
k we have

αkN |Q| = α|Qr(x0)| < |Qr(x0) ∩ {u > c}|
=

∑

Q∈F+

k

|Q ∩ {u > c}|+
∑

Q∈F−

k

|Q ∩ {u > c}| .

By definition of F±
k , then,

αkN <
∑

Q∈F+

k

|Q ∩ {u > c}|
|Q| +

∑

Q∈F−

k

|Q ∩ {u > c}|
|Q|

6 #F+
k +

α

2
#F−

k =
α

2
kN +

(

1− α

2

)

#F+
k ,
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which rephrases as

(2.1) #F+
k >

α

2− α
kN .

Now fix δ, λ ∈ (0, 1). Two cases may occur:
(i) There exist k > 2, Q ∈ F+

k s.t.

|Q ∩ {u > λc}| > (1− δ)|Q|.
Then, let x1 ∈ Qr(x0) be the center of Q, η = 1/k ∈ (0, 1), and the conclusion
follows.

(ii) For all k > 2 and all Q ∈ F+
k we have

|Q ∩ {u > λc}| 6 (1− δ)|Q|,
which is equivalent to

(2.2) |Q ∩ {u 6 λc}| > δ|Q|.
Also, since λ ∈ (0, 1) and Q ∈ F+

k , we have

(2.3)

∣

∣

∣

∣

Q ∩
{

u >
λ+ 1

2
c

}
∣

∣

∣

∣

>
α

2
|Q|.

Fix now x, y ∈ Q s.t.

u(x) 6 λc, u(y) >
λ+ 1

2
c,

hence

u(y)− u(x) >
1− λ

2
c.

By continuity of u, we have |x − y| > µ for some µ > 0 independent of x, y (which
makes all of the following integrals nonsingular). Now we start from (2.3) and inte-
grate with respect to y, then we use Hölder’s inequality:

α(1− λ)

4
c|Q| 6 1− λ

2
c

∣

∣

∣

∣

Q ∩
{

u >
λ+ 1

2
c

}
∣

∣

∣

∣

=

ˆ

Q∩{u>λ+1

2
c}

1− λ

2
c dy

6

ˆ

Q∩{u>λ+1

2
c}

|u(x)− u(y)| dy

6 diag(Q)
N+ps

p

ˆ

Q∩{u>λ+1

2
c}

|u(x)− u(y)|
|x− y|

N+ps

p

dy

6 N
N+ps

2p |Q|
N+ps

Np

[

ˆ

Q∩{u>λ+1

2
c}

|u(x)− u(y)|p
|x− y|N+ps

dy

]
1

p

·
∣

∣

∣

∣

Q ∩
{

u >
λ + 1

2
c

}
∣

∣

∣

∣

p−1

p

6 N
N+ps

2p |Q|N+s
N

[

ˆ

Q∩{u>λ+1

2
c}

|u(x)− u(y)|p
|x− y|N+ps

dy

]
1

p

,
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hence for all x ∈ Q ∩ {u 6 λc} we have

(2.4)

[

α(1− λ)c

4N
N+ps

2p

]p

|Q|− ps

N 6

ˆ

Q∩{u>λ+1

2
c}

|u(x)− u(y)|p
|x− y|N+ps

dy.

Next we begin with (2.2), use (2.4) and integrate with respect to x:

[

α(1− λ)c

4N
N+ps

2p

]p

δ|Q|N−ps

N 6 |Q ∩ {u 6 λc}|
ˆ

Q∩{u>λ+1

2
c}

|u(x)− u(y)|p
|x− y|N+ps

dy

6

ˆ

Q∩{u6λc}

ˆ

Q∩{u>λ+1

2
c}

|u(x)− u(y)|p
|x− y|N+ps

dy dx

6

¨

Q×Q

|u(x)− u(y)|p
|x− y|N+ps

dx dy.

Under our current assumptions, the inequality above holds for all Q ∈ F+
k . Further,

we sum over Q ∈ F+
k and use (2.1) along with hypothesis (b):

α

2− α
kN

[

α(1− λ)c

4N
N+ps

2p

]p

δ|Q|N−ps

N 6
∑

Q∈F+

k

¨

Q×Q

|u(x)− u(y)|p
|x− y|N+ps

dx dy

6

¨

Qr(x0)×Qr(x0)

|u(x)− u(y)|p
|x− y|N+ps

dx dy

6 γpcprN−ps.

Recalling that |Q| = (r/k)N , we get for all k > 2

αp+1(1− λ)pδ

4p(2− α)N
N+ps

2

rN−ps kps 6 γprN−ps,

hence

kps 6
4p(2− α)N

N+ps

2 γp

αp+1(1− λ)pδ
.

Letting k → ∞ we find a contradiction.
Thus, case (i) must occur for some k > 2, which proves the assertion for contin-

uous functions.
Now let u ∈ W s,p(Qr(x0)) be arbitrary. By [16, Theorems 2.4, 5.4] we can find

a sequence (un) in C∞(Qr(x0)) s.t. un → u in W s,p(Qr(x0)). In particular we have
un(x) → u(x) for a.e. x ∈ Qr(x0) and

lim
n
[un]s,p,Qr(x0) = [u]s,p,Qr(x0).

Fix an arbitrary γ̃ > γ, then by (b) and the previous convergence we have for all
n ∈ N big enough

(2.5) [un]s,p,Qr(x0) < γ̃cr
N−ps

p .

For a.e. x ∈ Qr(x0) ∩ {u > c} we have

χQr(x0)∩{un>c}(x) → 1
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(henceforth, χA denotes the characteristic function of any set A ⊂ R
N ). By Fatou’s

lemma, then,

|Qr(x0) ∩ {u > c}| =
ˆ

Qr(x0)∩{u>c}

1 dx 6 lim inf
n

ˆ

Qr(x0)∩{u>c}

χQr(x0)∩{un>c}(x) dx

6 lim inf
n

∣

∣

∣
Qr(x0) ∩ {un > c}

∣

∣

∣
.

By (a), for all n ∈ N big enough we have

(2.6) |Qr(x0) ∩ {un > c}| > αrN .

Fix now δ, λ ∈ (0, 1), and pick any δ̃ ∈ (0, δ), λ̃ ∈ (λ, 1). As in the previous case,
for all n ∈ N big enough by (2.5) and (2.6) there exist xn ∈ Qr(x0) and a number
η ∈ (0, 1) (independent of n) s.t.

∣

∣

∣
Qηr(xn) ∩ {un > λ̃c}

∣

∣

∣
> (1− δ̃)(ηr)N .

In fact, as seen before η = 1/k, and Qηr(xn) is one of the fixed kN cubes of the family
Fk. Passing if necessary to a subsequence, we may assume that xn is the same for
all n ∈ N. Let us denote it x1, and set Q = Qηr(x1), so for all n ∈ N

(2.7)
∣

∣

∣
Q ∩ {un < λ̃c}

∣

∣

∣
< δ̃(ηr)N .

As above we have χQ∩{un<λ̃c} → 1 a.e. in Q∩{u < λ̃c}, hence by Fatou’s lemma and

(2.7) we have
∣

∣

∣
Q ∩ {u < λ̃c}

∣

∣

∣
6 lim inf

n

∣

∣

∣
Q ∩ {un < λ̃c}

∣

∣

∣
6 δ̃(ηr)N .

Reversing the inequality we get
∣

∣

∣
Q ∩ {u > λ̃c}

∣

∣

∣
> (1− δ̃)(ηr)N ,

so recalling that λ̃ > λ and δ̃ < δ, we have

|Q ∩ {u > λc}| > (1− δ)(ηr)N ,

which concludes the proof. �

3. Special cases

In this section we consider two special cases, respectively, u ∈ W 1,p(Qr(x0))
(p > 1) and u ∈ BV (Qr(x0)), previously studied in the literature. Such cases can
be reduced to our framework by means of convenient interpolation inequalities (see
[5, 26]), for which we present direct proofs.

We begin with the case W 1,p, setting for all open Ω and all u ∈ W 1,p(Ω)

‖∇u‖p,Ω =

[
ˆ

Ω

|∇u(x)|p dx
]

1

p

.

The following result is equivalent to [13, Proposition A.1] (p > 1) and [12] (p = 1):

Corollary 3.1. Let p > 1, x0 ∈ R
N , r > 0 be given, and let u ∈ W 1,p(Qr(x0)),

c > 0 satisfy (a) and

(b’) ‖∇u‖p,Qr(x0) 6 γ′cr
N−p

p (γ′ > 0).

Then, the conclusion of Theorem 1.1 holds.
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Proof. In view of Theorem 1.1, we only need to show that u ∈ W s,p(Qr(x0))
satisfies (b), with a possibly different γ > 0 independent of u. Without loss of
generality we may assume x0 = 0.

First we prove that for all s ∈ (0, 1) there exists C = C(N, s, p) > 0 s.t. for all
v ∈ W 1,p(Q1)

(3.1) [v]s,p,Q1
6 C‖∇v‖p,Q1

.

First assume v ∈ C1(Q1) and set σ = N + ps− p < N . Integrating on segments we
have

¨

Q1×Q1

|v(x)− v(y)|p
|x− y|N+ps

dx dy

=

¨

Q1×Q1

∣

∣

∣

∣

ˆ 1

0

∇v(x+ t(y − x)) · (y − x) dt

∣

∣

∣

∣

p
dx dy

|x− y|N+ps

6

¨

Q1×Q1

ˆ 1

0

|∇v(x+ t(y − x))|p dt
[
ˆ 1

0

|y − x|p′ dt
]p−1

dx dy

|x− y|N+ps

=

¨

Q1×Q1

ˆ 1

0

|∇v(x+ t(y − x))|p dt dx dy

|x− y|σ

=

ˆ 1

0

¨

RN×RN

|∇v(x+ t(y − x))|p
|x− y|σ χQ1×Q1

(x, y) dx dy dt.

Fix t ∈ [0, 1] and set z = y − x, w = x+ t(y − x). By convexity of Q1 we have
{

x = w − tz ∈ Q1

y = w + z − tz ∈ Q1

=⇒
{

w = (1− t)(w − tz) + t(w + z − tz) ∈ Q1

z = (w + z − tz)− (w − tz) ∈ Q2.

So for all t ∈ [0, 1] we have
¨

RN×RN

|∇v(x+ t(y − x))|p
|x− y|σ χQ1×Q1

(x, y) dx dy

=

¨

RN×RN

|∇v(w)|p
|z|σ χQ1×Q1

(w − tz, w + z − tz) dw dz

6

ˆ

Q2

dz

|z|σ
ˆ

Q1

|∇v(w)|p dw = C‖∇v‖pp,Q1
,

with C > 0 only depending on N, s, p. We next integrate with respect to t and find
¨

Q1×Q1

|v(x)− v(y)|p
|x− y|N+ps

dx dy 6 C‖∇v‖pp,Q1
,

which proves (3.1). If v ∈ W 1,p(Q1) is arbitrary, then we can find a sequence (vn) in
C∞(Q1) s.t. vn → v in both W 1,p(Q1) and W s,p(Q1). For all n ∈ N we have

[vn]s,p,Q1
6 C‖∇vn‖p,Q1

,

so passing to the limit we get (3.1).
Now we recall some useful scaling formulas. Let u ∈ W 1,p(Qr) be as in the

assumption. Setting v(x) = u(rx) for all x ∈ Q1, we have v ∈ W 1,p(Q1) and

‖∇u‖p,Qr
= r

N−p

p ‖∇v‖p,Q1
,(3.2)

[u]s,p,Qr
= r

N−ps

p [v]s,p,Q1
.(3.3)
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Concatenating (3.3), (3.1), (3.2), and hypothesis (b’) we get

[u]s,p,Qr
= r

N−ps

p [v]s,p,Q1
6 Cr

N−ps

p ‖∇v‖p,Q1
= Cr1−s‖∇u‖p,Qr

6 (Cγ′)cr
N−ps

p .

So u satisfies (b) with γ = Cγ′ > 0 (independent of u). The conclusion now follows
from Theorem 1.1. �

Finally we consider the case BV . We recall that u ∈ BV (Ω) if u ∈ L1(Ω) and
the quantity

[u]BV (Ω) = sup

{
ˆ

Ω

u div φ dx : φ ∈ C∞
c (Ω,RN), |φ(x)| 6 1 for all x ∈ Ω

}

is finite. The following result is equivalent to [27, Lemma 1.1]:

Corollary 3.2. Let x0 ∈ R
N , r > 0 be given, and let u ∈ BV (Qr(x0)), c > 0

satisfy (a) and

(b”) [u]BV (Qr(x0)) 6 γ′′crN−1 (γ′′ > 0).

Then, the conclusion of Theorem 1.1 holds.

Proof. As in the previous case, we assume x0 = 0 and fix s ∈ (0, 1). First we see
that there exists C = C(N, s) > 0 s.t. for all v ∈ BV (Q1)

(3.4) [v]s,1,Q1
6 C[v]BV (Q1).

Indeed, by classical density results (see for instance [20, Theorem 1.17]), there exists
a sequence (vn) in C∞(Q1) s.t. vn → v in L1(Q1) and

lim
n

‖∇vn‖1,Q1
= [v]BV (Q1).

By (3.1) we have for all n ∈ N and some C > 0 independent of n

[vn]s,1,Q1
6 C‖∇vn‖1,Q1

.

Also, up to a subsequence vn → v in W s,1(Q1). So we can pass to the limit as n→ ∞
and find (3.4). In particular, then, for all s ∈ (0, 1) we see that BV (Q1) ⊆W s,1(Q1)
with continuous embedding.

Let u ∈ BV (Qr) be as in the assumption. Setting v(x) = u(rx) for all x ∈ Q1,
we have v ∈ L1(Q1) and the scaling formula

(3.5) [u]BV (Qr) = rN−1[v]BV (Q1).

Indeed, fix φ ∈ C∞
c (Qr,R

N) s.t. |φ| 6 1 in ∈ Qr and set ψ(y) = φ(ry) for all y ∈ Q1,
then ψ ∈ C∞

c (Q1,R
N) and |ψ| 6 1 in Q1. Moreover,

ˆ

Qr

u(x) div φ(x) dx = rN
ˆ

Q1

u(ry) divφ(ry) dy = rN−1

ˆ

Q1

v(y) divψ(y) dy.

Taking the suprema over φ, ψ, respectively, we have (3.5). Now, using (3.3) (with
p = 1), (3.4), (3.5), and hypothesis (b”) we have

[u]s,1,Qr
= rN−s[v]s,1,Q1

6 CrN−s[v]BV (Q1) = Cr1−s[u]BV (Qr) 6 (Cγ′′)crN−s.

Therefore, u satisfies (b) with p = 1 and γ = Cγ′′ > 0 (independent of u). The
conclusion now follows from Theorem 1.1. �

Remark 3.3. A brief discussion about inequalities (3.1), (3.4) is in order. Note
that in both inequalities we control a seminorm by means of another seminorm,
which is a sharper result than usual embedding theorems involving full norms (which
incorporate a Lp-norm as well). Inequality (3.1) is essentially contained in the proof
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of [5, Theorem 1], where it is obtained, for a ’smooth’ domain, via a seminorm-
preserving extension operator W 1,p(Ω) → W 1,p(RN). Extension operators of this
type have been detected for connected, Lipschitz domains in [6, 7] (see also [22] for
a more general class of Lipschitz domains). Besides, an extension operator for our
cubic domain Q1 can also be obtained by reflection. Nevertheless, we included our
proof of (3.1) because it is very simple and does not involve any extension procedure,
in addition it is easily adapted to any bounded, convex domain. A similar discussion
applies to (3.4) (see also [2] for the relation between bounded variation and fractional
Sobolev functions in dimension one).
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