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Unique extremality of affine maps on plane domains

Qiliang Luo and Vladimir Marković

Abstract. We prove that affine maps are uniquely extremal quasiconformal maps on the com-

plement of a well distributed set in the complex plane answering a conjecture from Marković (2002).

We construct the required Reich sequence using Bergman projections, and meromorphic partitions

of unity.

Tasoalueiden affiinien kuvausten yksikäsitteinen ääriominaisuus

Tiivistelmä. Vastauksena Markovićin (2002) esittämään konjektuuriin todistetaan, että affii-

nit kuvaukset ovat kvasikonformisen homotopialuokkansa yksikäsitteisiä Beltramin kertoimen mi-

nimoijia. Tarvittava Reichin jono rakennetaan Bergmanin projektioiden ja meromorfisten yksikön

ositusten avulla.

1. Introduction

Let f : X → Y be a quasiconformal map between Riemann surfaces X and

Y . By Belt(f) = ∂f

∂f
we denote the Beltrami coefficient of f . Then Belt(f) is a

(−1, 1) complex form on X, while |Belt(f)| is a measurable function on X such that
‖Belt(f)‖∞ < 1. We say that f is extremal if f has the smallest Beltrami coefficient
in its homotopy class, that is, if ‖Belt(f)‖∞ ≤ ‖Belt(g)‖∞ for every quasiconformal
map g homotopic to f . We say that f is uniquely extremal if it is the only extremal
map in its homotopy class.

Every quasiconformal map is homotopic to an extremal quasiconformal map (see
[1]). The classical extremal problem, first studied by Grötzsch and Teichmüller, is
to describe extremal quasiconformal maps, and to decide when they are uniquely
extremal. Recall that a quasiconformal map f : X → Y is of Teichmüller type if

Belt(f) = k φ

φ
, where φ is an integrable holomorphic quadratic differential on X.

When X and Y are finite type Riemann surfaces then every extremal map is of
Teichmüller type, and it is uniquely extremal.

In general, extremal quasiconformal maps may not be of Teichmüller type, nor
they are necessarily uniquely extremal. In [9] Reich and Strebel proposed the follow-
ing special case of the extremal problem.

Definition 1. Let A : C → C denote an affine map, and let E ⊂ C be a discrete
set. We say that A is extremal, or uniquely extremal, on C \ E, if A : X → Y is
extremal, or uniquely extremal, as a quasiconformal map where X = C \ E, and
Y = C \ A(E).

Problem 1. Characterise discrete subsets E ⊂ C such that affine maps are
extremal, or uniquely extremal, as quasiconformal maps.
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Remark 1. It follows from [4], [8], and [2], that if µ is the Beltrami coefficient
of an extremal (uniquely extremal) quasiconformal map, then cµ is also the Beltrami
coefficient of an extremal (uniquely extremal) quasiconformal map for any constant
c ∈ C such that ‖cµ‖∞ < 1. Let A1, A2 : C → C be two affine maps neither of which
is the identity map. Then Belt(A1) and Belt(A2) are non-zero constant functions.
Therefore, A1 is extremal (uniquely extremal) on C \ E if and only A2 is extremal
(uniquely extremal) on C \ E. Thus, the above problem is well posed.

The methods used to study this problem are partly geometric, and partly ana-
lytic, and it is this interplay which makes them interesting. However, even in this
generality the problem is very hard. In [9] Reich and Strebel provided a somewhat
complicated characterisation of discrete sets E such that affine maps are extremal on
C \ E. On the other hand, they were not aware of a single example such that affine
maps are uniquely extremal on C \ E. The first such example was provided in [5]
where it was shown that affine maps are uniquely extremal on C \ (Z + iZ) (here
Z+ iZ denotes the integer lattice in the complex plane). This answered a conjecture
by Kra–Reich–Strebel.

Definition 2. Let c > 0. A discrete set E ⊂ C is called c-well distributed if E
intersects any disc of Euclidean radius c in the complex plane. We say that E is well
distributed if it is c-well distributed for some c > 0.

The following conjecture was posed in [5].

Conjecture 1. If E is a well distributed set then affine maps are uniquely ex-
tremal on C\E.

Well distributed sets represent a geometric generalization of the integer lattice
Z+ iZ, and it is to be expected that the proof that affine maps are uniquely extremal
on C\(Z+iZ) should be utilised to prove Conjecture 1. However, the method of proof
in [5] strongly exploits the fact that C \ (Z+ iZ) is an amenable cover of the square
once punctured torus (compare with McMullen’s proof of the Kra conjecture [6]),
and it can not be extended to the case of well distributed sets. The purpose of this
paper is to develop a new approach and prove Conjecture 1. In particular, we provide
a new and much more conceptual proof of the the main result from [5] that affine
maps are uniquely extremal on the complement of the integer lattice (the old proof
relies heavily on the translation invariance of the integer lattice).

Theorem 1. If E is a well distributed set then affine maps are uniquely extremal

on C\E.

Remark 2. Every c-well distributed set can be mapped to a 1
8
-well distributed

set by a linear isomorphism of C. Since linear maps conjugate affine maps onto affine
maps, it suffices to prove Theorem 1 for 1

8
-well distributed sets.

1.1. Reich sequences. The following theorem due to Reich (see Theorem B
in [7]) gives a sufficient condition for an affine map on a plane domain M ⊂ C to be
uniquely extremal. Let QD1(M) be the Banach space of all integrable holomorphic
quadratic differentials with respect to the L1-norm.

Theorem 2. Let M be a plane domain. An affine map on M is uniquely extremal

if there exists a sequence Φn = φn dz
2 ∈ QD1(M) satisfying the following three

conditions:

• lim
n→∞

φn(z) = 1, ∀z ∈ M .
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• lim sup
n→∞

´

M

(
|φn| − Re(φn)

)
|dz|2 < +∞.

• If Sn,K = {z ∈ M : |φn(z)| ≥ K}, then

lim inf
K→∞

ˆ

SK,n

|φn(z)||dz|2 = 0,

uniformly in n ∈ N.

Such a sequence Φn ⊂ QD1(M) is called a Reich sequence (we also refer to the
corresponding sequence of functions φn as the Reich sequence). It is known to be
hard to construct such sequences because it is difficult to estimate the L1-norms of
meromorphic functions in terms of their coefficients. We construct Reich sequences
on the complements of well distributed sets.

Remark 3. It follows from [2] that the existence of a Reich sequence is equivalent
to the statement that affine maps are uniquely extremal on M .

1.2. Quasilattices. By L0 we denote the integer lattice in the complex plane
C. Points in L0 are enumerated by zk,l = k + li where k, l ∈ Z.

Definition 3. A countable subset L in C is called a quasilattice if its points can
be enumerated by wk,l, where k, l ∈ Z, and wk,l satisfies

∣∣zk,l − wk,l

∣∣ ≤ 1

8
.

It’s easy to observe that a quasilattice is a well distributed set. On the other
hand, it will be proved in the following lemma that any 1

8
-well distributed set E

will contains a quasilattice L as subset. Then a Reich sequence for C \ L is also
a Reich sequence for C \ E, since QD1(C \ L) ⊂ QD1(C \ E). Thus, it suffices to
construct a Reich sequence φn for every plane domain C \ L which is a complement
of a quasilattice.

Lemma 1. Every 1
8
-well distributed set E contains a quasilattice L ⊂ E.

Proof. By D 1
8
(z) we denote the Euclidean disk of radius 1

8
, centered at z. Each

disk D 1
8
(z) contains at least one point from E. Therefore, we can choose points

wk,l ∈ D 1
8
(zk,l) ∩ E.

Points wk,l are mutually different since they live in disjoint disks. Moreover, by
construction |wk,l − zk,l| < 1

8
. Therefore L = {wk,l : k, l ∈ Z} is a quasilattice. �

1.3. Meromorphic partition of unity. We let

(1) Ω =

{
z ∈ C : d(z, L0) >

1

4

}
.

Note that if L is a quasilattice then Ω ⊂ C \ L.

Definition 4. Let L be a quasilattice. Let {Pp,q}, p, q ∈ Z, be a double sequence
of meromorphic functions such that each Pp,q dz

2 ∈ QD1(C \ L). We say that Pp,q

is a meromorphic partition of unity if there exists a constant C such that for any
z ∈ Ω, and any p, q ∈ Z, we have

(2) |Pp,q(z)| ≤
C

exp
(

|z−zp,q|
C

) ,
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and if

(3)
∑

k,l

Pk,l(z) = 1, z ∈ C \ L.

Remark 4. It follows from the the estimate (2) that the sequence in (3) abso-
lutely converges for each z ∈ C \ L.

Constructing such a meromorphic partition of unity is a key idea behind con-
structing a Reich sequence as illustrated by the following theorem.

Theorem 3. Assume L is a quasilattice equipped with a meromorphic partition

of unity Pp,q, p, q ∈ Z. Set

φn(z) =
∑

k,l

Pk,l(z)(
| zk,l

n
|+ 1

)4

for z ∈ C \ L. Then φn is a Reich sequence for C \ L.

1.4. Organization. In the next two section we construct a meromorphic par-
tition of unity Pp,q on C \ L. In Section 2 we recall the notion of the Bergman
projection. The main result of this section is the estimate in Lemma 2. In Section 3
we define the double sequence Pp,q using the Bergman projections of characteristic
functions of squares centred at the lattice points zp,q. Theorem 3 is proved in Section
4 by elementary computations.

2. The Bergman kernel

We recall the definition of the Bergman kernel for any hyperbolic Riemann surface
and state some of its well known properties (see Section 12 in [3] for example). The
Bergman kernel function on the unit disc D is given by

K(z, w) =
1

(1− zw)4
.

The Bergman kernel BD is the differential form given by

BD(z, w) = K(z, w) dz2 dw2.

By direct computation one finds that the Bergman kernel BD is Möbius transforma-
tion invariant, that is, for A ∈ Aut(D) we have

(4) K(Az,Aw)A′(z)2A′(w)
2
= K(z, w).

Another key property of this kernel is the following integral identity (also proved by
elementary computation). Namely, let W ⊂ D, and let w be the point such that
A(w) = 0. Then

(5) ρ2
D
(w)

ˆ

A(W )

|dz|2 =
ˆ

W

|K(z, w)||dz|2,

where

ρD(w) =
1

(1− |w|2)
is the density of the hyperbolic metric on D.

2.1. The Bergman projection. A word on notation first. Suppose ω is a
volume form on X ×X obtained as a product of two volume forms on X. Let (z, w)
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denote local coordinates in X ×X. If Y ⊂ X, then the integral
ˆ

Yz

ω

is a volume form on X (with local coordinate w), that is the notation Yz means that
we are integrating with respect to the z variable (and likewise for Yw). Also, if we
fix a point p ∈ X then ω(p, w) is a volume form with respect to w ∈ X (this is the
evaluation of ω at (p, w)) (and likewise for ω(z, p)).

To each measurable quadratic differential f on D, we associate the holomorphic
quadratic differential f ∗BD on D given by

(6) f ∗BD =
3

π

ˆ

Dw

f(w) dV −1
D

(w)BD(z, w),

where the tensor dV −1
D

is given by

dV −1
D

(w) =
1

ρ2
D
(w)|dw|2 .

This convolution formula is well defined (see Section 11.1 in [3]) when f has a finite
L1 norm in which case f ∗BD ∈ QD1(D), or if f has a finite Bers norm in which case
f ∗BD ∈ QD∞(D), where Φ = φ dw2 ∈ QD∞(D) if

sup
w∈D

ρ−2(w)|φ(w)| < ∞.

If f ∈ QD1(D), or f ∈ QD∞(D), then f ∗ BD ≡ f (this requirement explains the
normalisation factor 3

π
in (6)).

Let S be a hyperbolic Riemann surface given as the quotient S = D/Γ, where Γ
is a Fuchsian group. We use z and w to denote the local coordinates on both D and
S. The differential form BS, called the Bergman kernel on the surface S, is defined

as follows. Denote by B̃S the lift of BS to the unit disc. Then B̃S is defined by the
Poincare series

B̃S(z, w) =
∑

A∈Γ
K(Az, w)A′(z)2 dz2 dw2.

The Poincare series is absolutely convergent since for a fixed w ∈ D the integral of
|K| over z ∈ D is bounded. For any measurable quadratic differential f on S we
define the holomorphic quadratic differential called the Bergman projection by

(7) f ∗BS =
3

π

ˆ

Sw

f(w) dV −1
S (w)BS(z, w),

with the tensor

dV −1
S (w) =

1

dVS(w)
,

where dVS(w) = ρ2S(w)|dw|2 is the volume form of the hyperbolic metric on S (here
ρS is the density of the hyperbolic metric on S). This convolution formula is well
defined when f has a finite L1 norm in which case f ∗ BS ∈ QD1(S), or if f has a
finite Bers norm in which case f ∗BS ∈ QD∞(S). If f ∈ QD1(S), or f ∈ QD∞(S),
then f ∗ BS ≡ f . The following lemma is our main estimate about the Bergman
kernel.
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Lemma 2. Let S denote a hyperbolic Riemann surface. Given any subset U ⊂ S,

and p ∈ S, we have
ˆ

Uz

|BS(z, p)| ≤
4π

exp
(
dS(U, p)

) dVS(p),

where dS(U, p) denotes the hyperbolic distance between U and p.

Remark 5. The left hand side in the above inequality is a volume form on S (in
the coordinate p). Thus, the inequality represents a pointwise comparison between
two volume forms on S.

Proof. Let V ⊂ D be a fundamental domain for U ⊂ S. Let wp ∈ D denote a lift
of p. Then

ˆ

Uz

|BS(z, p)| =
(
ˆ

V

∣∣∣∣
∑

A∈Γ
K(Az, wp)A

′(z)2
∣∣∣∣|dz|

2

)
|dw|2

≤
(
∑

A∈Γ

ˆ

A(V )

|K(z, wp)| |dz|2
)
|dw|2(8)

=

(
ˆ

Γ(V )

|K(z, wp)||dz|2
)
|dw|2.

Let T ∈ Aut(D) be a Möbius transformation which maps wp to 0. By replacing
W = Γ(V ) in the invariance formula (5), we obtain

(9)

ˆ

Γ(V )

|K(z, wp)||dz|2 = ρ2
D
(wp)

ˆ

T (Γ(V ))

|dz|2.

Now, we have dS(U, p) = dD(Γ(V ), w) = dD(T
(
Γ(V )), 0

)
. Thus, T

(
Γ(V )

)
is

contained in the set {
ξ ∈ D : |ξ| ≥ tanh

(
dS(U, p)

2

)}
.

We find
ˆ

T (Γ(V ))

|dz|2 ≤
ˆ

|ξ|≥tanh
(

dS(U,p)

2

) |dξ|2 =
4π

cosh2
(
dS(U,p)

2

) ≤ 4π

exp
(
dS(U, p)

) .

Combining this with the equations (8) and (9) completes the proof. �

3. The Bergman projection and the meromorphic partition of unity

In this section we construct an explicit meromorphic partition of unity for any
quasilattice L. By BL we denote the Bergman kernel for the Riemann surface C \L.
To each measurable quadratic differential f on C \ L, we associate the Bergman
projection defined by

f ∗BL =
3

π

ˆ

(C\L)w
f(w) dV −1

L (w)BL(z, w).

In the next subsection we prove:

Lemma 3. There exists a constant C with the following properties. Set W =
[−1

2
, 1
2
)× [−1

2
, 1
2
), and consider the measurable quadratic differential f(z) = χ(z) dz2,
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where χ is the characteristic function of W . Then for any quasilattice L, and any

z0 ∈ Ω = {z ∈ C : d(z, L0) >
1
4
}, we have

∣∣∣∣
(f ∗BL)

|dz|2
∣∣∣∣ (z0) ≤

C

exp
( |z0|

C

) .

Remark 6. Note that |(f ∗ BL)| is a volume form on C \ L since f ∗ BL is a
quadratic differential. The right hand side in the above inequality is a function on
C\L. Thus, the lemma gives a pointwise comparison between two functions on C\L.

The construction of a meromorphic partition of unity is as follows. Let Wk,l =
zk,l + W where zk,l = l + il for k, l ∈ Z. The complex plane C is a disjoint union
of the sets Wk,l. By χk,l(z) we denote the characteristic function of Wk,l, and fk,l =
χk,l dz

2. For any quasilattice L, we can project the integrable quadratic differentials
fk,l to the integrable holomorphic quadratic differentials fk,l ∗BL ∈ QD1(C \L). Set
Pk,l dz

2 = fk,l ∗ BL. Note that each Pk,l is a meromorphic function on C with at
most first order poles at the points wk,l. We claim that the double sequence Pk,l is a
meromorphic partition of unity.

Since ∑

k,l

χk,l ≡ 1,

by the reproducing property of the Bergman projection (see Section 11.1 in [3]) we
have ∑

k,l

Pk,l ≡ 1.

Thus Pk,l satisfies the second condition from Definition 4. It follows from Lemma 3
that Pk,l satisfies the first condition. To complete the construction of the mero-
morphic partition of unity, it remains to prove Lemma 3. This is done in the next
section.

3.1. Proof of Lemma 3. In the remainder of the proof we let

h =
f ∗BL

dz2
.

Then h is a holomorphic function on C \ L. To prove the lemma we need to show

(10) |h(z0)| ≤
C

exp
( |z0|

C

) ,

for every z0 ∈ Ω.
By the construction of Ω, there exists a constant t0 > 0 such that the injectivity

radius (with respect to the hyperbolic metric on C\L) is greater than t0 at all points
in Ω. Let ξ ∈ Ω, and choose a uniformizing map π : D → C \ L such that π(0) = ξ.
Then the restriction of π to the disc Dr0(0) is univalent where r0 is a function of t0.

Applying the Koebe 1/4 Theorem to the restriction of π to Dr0(0) implies that
the disc Dr1(ξ) ⊂ C \ L, where

r1 =
r0
4
|π′(0)|.

By construction we know that r1 < 2. This yields the estimate

|π′(0)| < 8

r0
,
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which in turn implies

s0 <
dsL
|dz|(ξ),

for every ξ ∈ Ω, where s0 =
r0
8
. By dsL we denote the hyperbolic length element on

C \L, and by dL the hyperbolic distance on C \L. This yields the distance estimate:

Proposition 1. Let z, w ∈ C \ L. Then

(11) dL(z, w) ≥
s0
2
|z − w| − 2s0.

Proof. Let α ⊂ C \ L be a smooth arc connecting z and w, and set β = α ∩ Ω.
Then the Euclidean length of β is greater than (1/2)|z − w| − 2. This implies

dL(z, w) ≥ s0(
1

2
|z − w| − 2) >

s0
2
|z − w| − 2s0. �

The proof of Lemma 3 is based on Proposition 1, and Lemma 2. Let z0 ∈ Ω, and
let D denote the disc of radius 1

8
centred at z0. Then D ⊂ C \ L. From the Mean

Value Theorem we derive

h(z0) =
32

π

ˆ

D

h(ξ)|dξ|2.

Then

(12)

|h(z0)| ≤
32

π

ˆ

Dz

ˆ

Cw

∣∣f(w) dV −1
L (w)BL(z, w)

∣∣

=
32

π

ˆ

Ww

(
|dw|2 dV −1

L (w)

ˆ

Dz

|BL(z, w)|
)
.

On the other hand, applying Lemma 2 yields

(13)

ˆ

Dz

|BL(z, w)| ≤
4π

exp(dL(D,w))
dVL(w).

Replacing this in (12) we get

|h(z0)| ≤
32

π

ˆ

Ww

(
4π

exp(dL(D,w))

)
|dw|2

≤ 128

exp(dL(D,W ))
≤ 128

exp
(
s0
2
|z0| − 2s0 − 2

) ,

where in the last inequality we used (11). Letting

C = max

{
128 exp(2s0 + 2),

2

s0

}

proves (10) and the lemma.

4. The Reich sequence φn

Let α(n) = {αp,q(n)} be the double sequence of complex numbers given by

αp,q(n) =
1

(
|zp,q|
n

+ 1
)4 .

Consider a quasilattice L equipped with a fixed meromorphic partition of unity Pp,q,
p, q ∈ Z. Set

φn =
∑

k,l

αk,l(n)Pk,l.
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It follows from the first condition in Definition 4 that the L1-norms of the quadratic
differentials Pk,l are uniformly bounded (uniform in k, l). Since

∑
k,l αk,l(n) < ∞ for

every n, it is clear that φn(z) ⊂ QD1(C\L). In this section, we prove the Theorem 3
which states that φn is a Reich sequence.

4.1. Properties of φn. In this subsection we prove two preliminary lemmas
providing preliminary information about φn. For any p, q, k, l, n, we have

|αp,q(n)− αk,l(n)| = αp,q(n)αk,l(n)

∣∣∣∣∣

( |zp,q|
n

+ 1

)4

−
( |zk,l|

n
+ 1

)4
∣∣∣∣∣ .

We apply the Lagrange Theorem to obtain
∣∣∣∣∣

( |zp,q|
n

+ 1

)4

−
( |zk,l|

n
+ 1

)4
∣∣∣∣∣ ≤

4|zp,q − zk,l|
n

∣∣∣∣
max{|zk,l|, |zp,q|}

n
+ 1

∣∣∣∣
3

.

Since

αk,l(n)

∣∣∣∣
max{|zk,l|, |zp,q|}

n
+ 1

∣∣∣∣
3

=
1

|zk,l|
n

+ 1

(
max{|zk,l|, |zp,q|}+ n

|zk,l|+ n

)3

≤
( |zk,l|+ |zp,q|+ 1

|zk,l|+ 1

)3

=

(
2 +

|zp,q| − |zk,l| − 1

|zk,l|+ 1

)3

≤ (2 + |zk,l − zp,q|)3 ,
we derive the estimate

(14) |αp,q(n)− αk,l(n)| ≤
4αp,q(n)

n
(2 + |zk,l − zp,q|)4.

Lemma 4. There exists a constant C such that for any n, p, q, and any z ∈
Wp,q ∩ Ω, we have

|φn(z)− αp,q(n)| ≤ C
αp,q(n)

n
.

Proof. Let C1 be the constant from the first property in Definition 4. Using the
second property in Definition 4, we have

(15)

|φn(z)− αp,q(n)| =
∣∣∣∣∣
∑

k,l

αk,l(n)Pk,l(z)− αp,q(n)
∑

k,l

Pk,l(z)

∣∣∣∣∣

≤
∑

k,l

|αk,l(n)− αp,q(n)| |Pk,l(z)|

≤ C1

∑

k,l

|αk,l(n)− αp,q(n)|
exp(|z − zk,l|/C1)

for every n, p, q, and z ∈ Wp,q ∩ Ω. Since z ∈ Wp,q, we have

|z − zk,l| ≥ |zp,q − zk,l| −
√
2

2
,

so

1

exp(|z − zk,l|/C1)
≤ exp

(√
2

2C1

)
1

exp(|zk,l − zp,q|/C1)
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Combining this with the equations (14) and (15), we obtain

|φn(z)− αp,q(n)| ≤


C1

∑

k,l

4(2 + |zk,l − zp,q|)4 exp
( √

2
2C1

)

exp
(

|zk,l−zp,q|
C1

)


 αp,q(n)

n
.

This proves the lemma by letting

C = C1

∑

k,l

4(2 + |zk,l − zp,q|)4 exp
( √

2
2C1

)

exp
(

|zk,l−zp,q|
C1

)

(note that C does not depend on p and q). �

Lemma 5. For every z ∈ Wp,q ∩ Ω, the inequality

|φn(z)| − Re(φn(z)) ≤
C2

n2
αp,q(n),

holds for n large enough, where C is the constant from Lemma 4.

Proof. Note that if a complex number λ satisfies |λ− 1| ≤ ǫ ≤ 1
2

then

(16) |λ| − Re(λ) =
Im(λ)2

|λ|+ Re(λ)
≤ ǫ2.

On the other hand, from Lemma 4 we derive the inequality

∣∣ φn(z)

αp,q(n)
− 1
∣∣ ≤ C

n
.

Set λ = φn(z)
αp,q(n)

, and ǫ = C
n
. Then for n large enough we have ǫ < 1

2
. The lemma now

follows from (16). �

4.2. Proof of the Theorem 3. In this subsection we prove that φn is a Reich
sequence. We show that φn has the three properties from Theorem 2.

The complex plane C is decomposed into the domain Ω, and the radius 1
4

disks
centred at the points zk,l. Lemma 4 and Lemma 5 hold for points in Ω which enables
us to prove the above three properties when φn is restricted to Ω. That this is
sufficient follows from the following lemma proved in Proposition 3.1 and Lemma 4.1
in [5]. By D 1

2
we denote the disk of radius 1

2
centred at 0.

Lemma 6. There exist a constant C with the following properties. Suppose f
is a meromorphic function on D 1

2
, which is holomorphic on D 1

2
\{0}, and has a first

order pole at 0. Assume that for every z ∈ ∂D 1
2
, we have

|f(z)− 1| ≤ ǫ ≤ 1

2
.

Then

(17)

ˆ

D 1
2

(
|f | − Re(f)

)
|dz|2 ≤ Cǫ2.

Let SK = {z ∈ D 1
2
: |f(z)| ≥ K}. Then for any K ≥ 100 we have

(18)

ˆ

SK

|f ||dz|2 ≤ Cǫ2

K
.
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Now, consider z ∈ Ω. Then Lemma 4 enables us to compute the limit

lim
n→∞

φn(z) = 1.

From (17) in Lemma 6, and the Mean Value Theorem for holomorphic functions, one
easily concludes that the same holds for every z ∈ C \ L. Thus, we have verified the
first property of the sequence φn. It remains to do the same with the second and the
third property.

Let C1 be the constant from Lemma 4, and C2 the constant from Lemma 6. We
apply Lemma 4 to the function

fn,k,l(z) =
φn(z + wk,l)

αk,l(n)
,

and conclude that for any n, k, l, and any z ∈ ∂D 1
2
, we have

|fn,k,l(z)− 1| ≤ C1

n
.

Thus, fn,k,l satisfies assumption from Lemma 6 for sufficiently large n. This implies

(19)

ˆ

D 1
2
(wk,l)

(
|φn| −Re(φn)

)
|dz|2 ≤ C2C

2
1

n2
αk,l(n),

and

(20)

ˆ

Sn,k,l,K

|φn||dz|2 ≤
C2C

2
1

n2K
α2
k,l(n),

where Sn,k,l,K = {z ∈ D 1
2
(wk,l) : |φn(z)| ≥ K}.

Now we prove the second property of φn. Combining the pointwise estimate on
Wp,q ∩ Ω from Lemma 5, with (19), we obtain

ˆ

Wk,l

(
|φn| − Re(φn)

)
|dz|2 ≤

ˆ

Wk,l∩Ω

(
|φn| − Re(φn)

)
|dz|2

+

ˆ

D 1
2
(wk,l)

(
|φn| − Re(φn)

)
|dz|2(21)

≤ (1 + C2)C
2
1

n2
αk,l(n),

and therefore applying (21) on each Wk,l, we get

limn→∞

ˆ

C

(
|φn| − Re(φn)

)
|dz|2 = limn→∞

∑

k,l

ˆ

Wk,l

(
|φn| − Re(φn)

)
|dz|2

≤ (1 + C2)C
2
1 limn→∞

∑

k,l

1

n2

1
(∣∣zk,l

n

∣∣+ 1
)4

= (1 + C2)C
2
1

ˆ

C

1

(|z|+ 1)4
|dz|2 < ∞

confirming that φn has the second property. Here we used the following lemma.

Lemma 7. Let r ≥ 3. Then

lim
n→∞

∑

k,l

1

n2

1(∣∣zk,l
n

∣∣+ 1
)r =

ˆ

C

1

(|z|+ 1)r
|dz|2 < +∞.
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Proof. Note that for some constant C = C(r), the following holds
∣∣∣∣∣
1

n2

1(∣∣zk,l
n

∣∣+ 1
)r −

ˆ

Wk,l

1

(| z
n
|+ 1)r

|dz|2
n2

∣∣∣∣∣ ≤
C

n3

1(∣∣zk,l
n

∣∣ + 1
)r .

This yields

lim
n→∞

∣∣∣∣∣
∑

k,l

1

n2

1(∣∣zk,l
n

∣∣+ 1
)r −

ˆ

C

1

(| z
n
|+ 1)r

|dz|2
n2

∣∣∣∣∣ = 0.

Combining this with
ˆ

C

1

(| z
n
|+ 1)r

|dz|2
n2

=

ˆ

C

1

(|z|+ 1)r
|dz|2,

proves the lemma. �

Finally we prove that φn satisfies the third condition. Let Sn,K = {z ∈ C : |φn(z)|
≥ K}. If K ≥ 1 + C1 then from Lemma 4 we conclude that Sn,K is disjoint from Ω,
and thus

Sn,K =
⋃

k,l

Sn,k,l,K.

We apply (18) from Lemma 6 to obtain

limn→∞

ˆ

Sn,K

|φn||dz|2 ≤ limn→∞
∑

k,l

ˆ

Sn,k,l,K

|φn||dz|2

≤ C2C
2
1

K
limn→∞

∑

k,l

1

n2

1
(∣∣ zk,l

n

∣∣ + 1
)8

=
C2C

2
1

K

ˆ

C

1

(|z|+ 1)8
|dz|2 = O

(
1

K

)
.

Here we used Lemma 7 again. This completes the proof of Theorem 3.
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