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The Stepanov theorem for Q-valued functions

Paolo De Donato

Abstract. In this work we prove the Stepanov differentiation theorem for multiple-valued

functions. This theorem is proved in the wide generality of metric-space-multiple-valued functions

without relying on a Lipschitz extension result. General definitions of differentiability and approx-

imate differentiability for functions between suitable metric spaces are also introduced.

Stepanovin lause Q-arvoisille funktioille

Tiivistelmä. Tässä työssä todistetaan Stepanovin derivoituvuuslause moniarvoisille funktioil-

le. Tämä lause todistetaan suuressa yleisyydessä metrisessä avaruudessa moniarvoisille funktioille

nojautumatta Lipschitzin jatke -tulokseen. Työssä annetaan yleiset määritelmät sopivien metristen

avaruuksien välisten funktioiden derivoituvuudelle ja likimääräiselle derivoituvuudelle.

1. Introduction

The theory of Q-valued functions has been developed by Almgren to study reg-
ularity properties of mass-minimizing currents. In particular, in [1] he generalized
the concepts of differential and Sobolev spaces for Q-valued functions, i.e. functions
with values in the space AQ (M) made by unordered Q-tuples of points in a metric
space M , to study regularity properties of “Dir-minimizing” functions, which are Q-
valued functions that minimize a suitable generalization of the Dirichlet energy for
Q-valued functions. His work about Dir-minimizing functions has been readapted
and simplified in [3].

When M = R
k, we say that a Q-valued function f : Ω ⊆ R

n → AQ

(

R
k
)

is
differentiable at x ∈ Ω with f(x) = JP1K+ JP2K+ · · ·+ JPQK if and only if there exist
M1,M2, . . . ,MQ (k × n)-matrices such that, setting

F (z) =

Q
∑

i=1

JPi +MizK ,

we have

lim
y→x

G [f(y), F (y − x)]

|y − x|
= 0

(where G [·, ·] is the canonical metric on AQ (M) as defined in Section 3) and if Pi = Pj

for some i, j, then Mi = Mj .
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In [3] the following version of the Rademacher theorem for Q-valued functions is
proved:

Theorem 1.1. If f : Rn → AQ

(

Rk
)

is a Lipschitz Q-valued function, then f is
a.e. differentiable on Rn.

To prove this, the authors used a Lipschitz extension result for Q-valued Lipschitz
functions from a closed subset of Rn to all Rn. However, we cannot expect a Lipschitz
extension result when we replace Rk with a generic metric space, because it is not
always possible to globally extend a continuous function defined on a closed subset
of Rn with values on a disconnected metric space.

However, an extension result for Q-valued Lipschitz functions is not strictly re-
quired, since it is possible to prove Theorem 1.1 without using the extension result
for Lipschitz Q-valued functions at the cost of introducing a slightly weaker notion
of differentiable function (which coincides with the classical one on interior points).

One goal of this work is to prove the Stepanov theorem for Q-valued functions:

Theorem 1.2. Let f : B → AQ

(

Rk
)

be a measurable function defined on a
measurable set B ⊆ Rn without isolated points. Let

|∇f |+ (x) = lim sup
B∋y→x

G [f(y), f(x)]

|y − x|
,

|∇f |L
n,+ (x) = ap lim sup

B∋y→x

G [f(y), f(x)]

|y − x|
,

Af =
{

x ∈ B
∣

∣ |∇f |+ (x) < +∞
}

,

ALn

f =
{

x ∈ B
∣

∣

∣
|∇f |L

n,+ (x) < +∞
}

.

Then f is a.e. differentiable on Af and a.e. approximately differentiable on ALn

f .

A proof of the a.e. differentiability on the set Af can be found in Corollary 2.8 of
[7] (see also the proof of Theorem 3.1.9 in [4]). In our work, we generalize this result
to functions defined on doubling metric measure spaces taking values in complete
metric spaces, without requiring the functions in question to be measurable in the
classical sense.

In Section 2 of this work we introduce a broad definition of “differential classes” for
functions defined between two metric spaces. A function f : Rn → Rk is differentiable
at some point x ∈ Rn if and only if there exists an affine function F (y) = Ay + z0,
where z0 ∈ Rk and A is a k × n matrix, such that |f(y)− F (y)| is infinitesimal
compared with |y − x|. When f is defined between Hilbert or Banach space we are
still able to define a similar notion of differentiability, which is well-known under the
name of Fréchet derivative.

Both these notions of differentiability rely on approximating our function f with
some affine function F near x. However, we can replace F with any Lipschitz func-
tion F̃ defined only in a neighborhood of x that behaves like F near x, that is

limy→x
|F (y)−F̃ (y)|

|y−x|
= 0. All these locally defined Lipschitz functions form a class of

equivalence [F ] which uniquely identify our initial affine function F , which we will
call in Section 2 differential germ induced by F , and the set of all these differential
germs is called distribution.

Notice that we can define the class of equivalence [F ] even if F is not an affine
function, we only need that F is Lipschitz on a neighborhood of x0. Moreover, we
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can take any set D containing some of these classes of equivalence and say f is D-

differentiable at x0 if and only if there exists
[

F̃
]

∈ D such that limx→x0

|f(x)−F̃ (x)|
|x−x0|

=

0. Each of these sets D, which are still called distributions, introduces a differentiation
structure for functions from R

n into R
k which can be richer or poorer than the one

induced by the “standard distribution” generated by affine functions.
When f is defined on a doubling metric measure space (X, J, µ) with values in

a complete metric space (M, d) we do not have a notion of affine function, but we
can still define generic distributions as explained before. Simply, we no longer have
a standard distribution as we do in Euclidean and Banach spaces. On the other
hand, this general notion of differentiation through distributions can be adapted to
single-valued functions defined between Euclidean spaces, Q-valued functions, and
real-valued functions defined on p-Poincaré metric measure spaces (see [2, 6, 5]).
We then say f : X → M is D-differentiable at x ∈ X if and only if there exists a

differential germ [F ] ∈ D such that limy→x
d(f(y),F (y))

J(y,x)
= 0.

Moreover, we say f is approximately differentiable at x if for every ε > 0 there

exists a µ-measurable set U ⊆ X which has density 1 at x such that d(f(y),F (y))
J(y,x)

< ε

for every y ∈ U \ {x}, or equivalently µ− limy→x
d(f(y),F (y))

J(y,x)
= 0 where we have used

the symbol µ− lim to denote a limit on the topology where every neighborhood of x
contains a µ-measurable set with density 1 at x.

Still in Section 2 we investigate the conditions which a distribution D must satisfy
to get a Stepanov-like result, for both differentiability and approximate differentia-
bility, on such metric spaces. Indeed, if D has too few differential germs, then some
Lipschitz functions would be not differentiable on a set with measure strictly greater
than zero. The main goal of this section is to prove the equivalence of the Stepanov
theorem for a generic distribution D with the a.e. differentiability (still for D) of any
Lipschitz function defined on closed subsets of X, as stated in Theorems 2.11 and
2.12.

Section 3 is instead entirely devoted to differentiability properties of metric Q-
valued functions, that is functions with values in AQ (M) instead of AQ

(

R
k
)

with
M any complete metric space. In this section we use the results provided in Section
2 to prove that if the Stepanov theorem holds for every function from X to M with
respect to some distribution D, then it should hold also for functions from X to
AQ (M) with respect to a suitable distribution DQ deduced from D.

We finally use the results proved in these two sections to get the following gener-
alized version of Stepanov’s theorem for Q-valued functions, which in turn generalizes
theorem 1.2:

Theorem 1.3. Let (X, J, µ) be a doubling metric measure space, (M, d) be a
complete metric space, and D a complete (approximate) X-distribution on M . Then
every Q-valued function f : X → AQ (M) is a.e. (approximately) DQ-differentiable
on Af (or Aµ

f ), where Af and Aµ
f are defined respectively in (2.2) and (2.3). In

particular, these properties hold whenever M = Rk and X is Rn or a p-Poincaré
doubling metric measure space (thanks to [2]).

2. Generalized differentiability

2.1. Differential germs. Let (X, J, µ) be a K-doubling metric measure space
(K > 0), that is, (X, J) is a complete separable metric space and µ : P(X) → [0,+∞]
is a Borel-regular outer measure on X such that for every x ∈ X and every r > 0 we
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have

0 < µ [B2r(x)] ≤ Kµ [Br(x)] < +∞.

Remark. It is simple to show that for every x, y ∈ X and r, s > 0

µ [Br(x)] ≤ L

(

K,
r + J(x, y)

s

)

µ [Bs(y)]

where L(α, β) > 0 is a suitable function. Indeed, we have

µ [Br(x)] ≤ µ
[

Br+J(x,y)(y)
]

≤ µ [B2P [(r+J(x,y))/s]s(y)] ≤ KP [(r+J(x,y))/s]µ [Bs(y)]

where P (t) = max {0, ⌈log2 t⌉}.

Proposition 2.1. Let E ⊆ X be a generic set, there exists a Borel set F ⊇ E
such that µ [F ′ ∩Br(x)] ≥ µ [F ∩ Br(x)] for every x ∈ X, r > 0 and every other
measurable set F ′ ⊇ E ∩Br(x).

Proof. Fix a point x0 ∈ X and set BR = BR (x0) for every R ∈ N. By hypothesis
we have 0 < µ (BR) < +∞ and there exists a Borel set FR such that E ∩BR ⊆ FR ⊆
BR and µ (FR) = µ (E ∩ BR) since µ is Borel-regular. Then for every Br(x) ⊆ BR

we have

µ (E ∩ BR) ≤ µ (E ∩Br(x)) + µ (E ∩ BR \Br(x))

≤ µ (FR ∩Br(x)) + µ (FR \Br(x))

= µ (FR) = µ (E ∩ BR) ,

which implies µ (E ∩ Br(x)) = µ (FR ∩ Br(x)) for every Br(x) ⊆ BR.
Now let F =

⋃∞
S=1

⋂∞
R=S FR, clearly E ⊆ F and F is a Borel set. For every ball

Br(x) ⊆ X there exists S̃ ∈ N such that Br(x) ⊆ BS̃ and so

µ (F ∩Br(x)) = lim
S→+∞

µ

(

+∞
⋂

R=S

(FR ∩Br(x))

)

≤ µ (E ∩Br(x)) .

Therefore µ (F ∩ Br(x)) = µ (E ∩Br(x)) ≤ µ (F ′ ∩Br(x)) for any other Borel set F ′

containing E ∩Br(x). �

A point x of E is said to be a µ-interior point (for E) if and only if there exists
B ⊆ E Borel set such that

lim
r→0+

µ [Br(x) \B]

µ [Br(x)]
= 0.

Let also E1 ⊆ E be the set of all the µ-interior points for E, and if x ∈ E1, then we
say that E is a µ-neighborhood for x.

Notice that E and E1 may not be µ-measurable sets, however if E is µ-measurable
then µ (E \ E1) = 0 by using the doubling property of µ (see for example [8]).
Moreover, if E and F are two µ-neighborhoods for x then E ∩ F is another µ-
neighborhood for x because

lim
r→0+

µ [Br(x) \ (E ∩ F )]

µ [Br(x)]
≤ lim

r→0+

µ [Br(x) \ E]

µ [Br(x)]
+ lim

r→0+

µ [Br(x) \ F ]

µ [Br(x)]
= 0.

Therefore the family of µ-neighborhoods defines a topology on X, that we will
call the µ-topology. This topology is stronger than the metric topology induced by
J on X (which we will also call J-topology).

Proposition 2.2. For every x ∈ X all the following statements are equivalent:
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• x is an isolated point (for X) with respect to the J-topology;
• x is a µ-isolated point;
• µ ({x}) > 0.

Proof. If x is an isolated point, then there exists r > 0 such that Br(x) = {x},
and since Br(x) is itself a µ-neighborhood for x, then this would automatically imply
that x is a µ-isolated point.

Next if x is µ-isolated, then {x} is a µ-neighborhood for x so

lim
r→0+

µ [Br(x) \ {x}]

µ [Br(x)]
= 0

which is possible only if µ({x}) > 0, otherwise µ [Br(x) \ {x}] = µ [Br(x)].
Finally, we only need to prove that if µ({x}) = δ > 0, then x is an isolated point,

that is Br(x) = {x} for some r > 0. First to all notice that, since µ [Br(x)] < +∞,
limr→0+ µ [Br(x) \ {x}] = 0. Therefore there exists r̃ > 0 such that µ [Br(x) \ {x}] <
δ/K for every 0 < r < r̃.

By contradiction x is not an isolated point in X, therefore fixed 0 < r < r̃ there
exist y 6= x and s > 0 such that

• Bs(y) ⊆ Br(x) \ {x};
• x ∈ B2s(y).

Then

µ [Bs(y)] ≤ µ [Br(x) \ {x}] <
δ

K
=

1

K
µ ({x}) ≤

1

K
µ [B2s(y)] ≤ µ [Bs(y)]

which is impossible, therefore {x} must be an isolated point. �

Proposition 2.3. Consider any nonempty set U ⊆ X. Then for every x ∈ U1

we can find a map rx : X → U such that rx(y) = y on U and

J [y, rx(y)] = o (J (y, x)) for J(y, x) → 0.

Proof. We can assume without loss of generality that x is an accumulation point
(that is, Br(x) 6= {x} for every r > 0 or equivalently µ({x}) = 0) and U is a Borel
set. For every N ∈ N we can find δN > 0 such that for every 0 < r < δN

µ [Br(x) \ U ]

µ [Br(x)]
≤

1

N
.

In order to prove our statement we need only to prove that for every ε > 0 there
exists δ > 0 so that for every y ∈ X with J (y, x) < δ there exists y′ ∈ U such that

(2.1) J (y, y′) < εJ (y, x) .

If (2.1) does not hold then there exists ε0 > 0 such that for every N ∈ N there exists
yN such that 0 < rN = J (yN , x) < δN/ (1 + ε0) but Bε0rN (yN) ∩ U = ∅. Therefore,
since we have (1 + ε0) rN < δN ,

µ [Bε0rN (yN)] ≤ µ
[

B(1+ε0)rN (x) \ U
]

≤
1

N
µ
[

B(1+ε0)rN (x)
]

≤
1

N
µ
[

B(2+ε0)rN (yN)
]

≤
Kε0

N
µ [Bε0rN (yN)]

where Kε0 is a constant that depends only on ε0 > 0 and µ but not on N . Therefore,
for N sufficiently large we will get a contradiction. �

Limits in the µ-topology coincide with the approximate limits with respect to
measure µ, that is let g : A → R be a function defined on a nonempty set A ⊆ X
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and let x ∈ X be a µ-accumulation point for A (that is, A ∩ U \ {x} 6= ∅ for every
µ-neighborhood U of x). Then we have µ− limA∋y→x g(y) = z ∈ R if and only if for
every ε > 0 there exists a µ-neighborhood U of x such that |g(y)− z| < ε for every
y ∈ A ∩ U \ {x}.

Moreover, for real-valued functions g : A → R and µ-accumulation point x for
A ⊆ X we set

µ− lim sup
A∋y→x

g(y) = inf
x∈U1

sup
y∈U∩A\{x}

g(y).

Proposition 2.4. Let f : B → [0,+∞) be a real-valued Lipschitz function de-
fined on a µ-neighborhood B of x with µ({x}) = 0 and f(x) = 0. Then

lim sup
B∋y→x

f(y)

J(y, x)
= µ− lim sup

B∋y→x

f(y)

J(y, x)
.

Proof. The inequality ≥ is trivial. To prove the opposite inequality take any
µ-neighborhood U of x and set C = U ∩ B \ {x}. Let rx : X \ {x} → C as in
Proposition 2.3, then for every ε > 0 there exists δ > 0 such that if y ∈ Bδ(x), then
J[rx(y), y] ≤ εJ(y, x). Therefore,

sup
y∈Bδ(x)∩B\{x}

f(y)

J(y, x)
≤ sup

y∈C

f(y)

J(y, x)
sup

y∈Bδ(x)\{x}

J [rx(y), x]

J(y, x)

+ sup
y∈Bδ(x)∩B\{x}

|f(y)− f [rx(y)]|

J(y, x)

≤ (1 + ε) sup
y∈C

f(y)

J(y, x)
+Kε

for some K > 0. Thus

lim sup
B∋y→x

f(y)

J(y, x)
≤ (1 + ε)µ− lim sup

B∋y→x

f(y)

J(y, x)
+Kε

which proves our statement. �

Analogously to the definitions of |∇f |+ (x) and Af stated in Theorem 1.2 for
Q-valued functions, we the following quantities for a generic function f defined on a
nonempty subset A of X with values in some metric space (M, d):

|∇f |+ (x) = lim sup
A∋y→x

d [f(y), f(x)]

J(x, y)
,

|∇f |µ,+ (x) = µ− lim sup
A∋y→x

d [f(y), f(x)]

J(x, y)
,

Af =
{

x ∈ A
∣

∣ x accumulation point, |∇f |+ (x) < +∞
}

,(2.2)

Aµ
f =

{

x ∈ A
∣

∣ x µ-accumulation point, |∇f |µ,+ (x) < +∞
}

.(2.3)

Clearly we have |∇f |µ,+ (x) ≤ |∇f |+ (x) and Af ⊆ Aµ
f ∪N where µ(N) = 0, because

Af \ A
µ
f may contain accumulation points for A that are µ-isolated. This set should

have measure zero since µ is Borel regular and so there exists Ã ⊇ A Borel set such

that µ
[

Br(x) ∩ Ã
]

= µ [Br(x) ∩A] for every x ∈ X, r > 0.

Even if f is a Lipschitz function defined on a closed set C ⊆ X we can have
Aµ

f 6= C, however if C only contains accumulation points for X, then µ
(

C \ Aµ
f

)

= 0.
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Now, consider a complete metric space (M, d). We want to define a notion of
differentiability for functions defined on X with values in M . For every topology τ
on X stronger than or equal to the J-topology (in particular, we set τ = J for the
J-topology and τ = µ for the µ-topology), every x ∈ X, P ∈ M let Lipτ

x,P (M,X) be
the set of all the equivalence classes [F ]∼, where F : B → M is a Lipschitz function
defined on a τ -neighborhood B ⊆ X of x such that F (x) = P , with respect to the
equivalence relation

F ∼ G ⇔ lim
y→x

d[F (y), G(y)]

J (y, x)
= 0 (with respect to τ topology).

For every (x, P ) ∈ X ×M the space
[

Lipτ
x,P (M,X) , dx,P , 0P , |·|x,P

]

is a pointed
metric space where

dx,P ([F ], [G]) = lim sup
y→x

d[F (y), G(y)]

J (y, x)
,

0P = [x ∈ X → P ∈ M ] ,

|[F ]|x,P = dx,P ([F ], 0P ) .

We also define

Lipτ (M,X) =
⊔

(x,P )∈X×M

Lipτ
x,P (M,X)

and we call the elements of Lipτ (M,X) the X-differential germs of M with respect
to the topology τ . In particular, if τ = J then the elements of LipJ (M,X) are just
called X-differential germs, whereas if τ = µ then elements of Lipµ (M,X) are called
approximate X-differential germs.

When τ is the topology induced by the metric J then arbitrary subsets D of
LipJ (M,X) are called X-distributions for M , and for every (x, P ) ∈ X × M we
set Dx,P = D ∩ LipJx,P (M,X). Analogously, when τ is the topology generated by
the measure µ as before then arbitrary subsets of Lipµ (M,X) are instead called
approximate X-distributions.

2.2. Differentiation and completeness.

Definition 2.5. Let A be a nonempty subset of X, D be an X-distribution, and
let f : A → M be an arbitrary function. For every x ∈ A accumulation point we say
that f is D-differentiable at x if and only if there exists [F : B → M ] ∈ Dx,f(x) such
that

(2.4) lim
A∋y→x

d [f(y), F (y)]

J (y, x)
= 0.

Moreover, the differential germ [F ] that satisfies (2.4) is a D-differential of f at x.
If D is an approximate X-distribution and x is a µ-accumulation point for A then

f is approximately D-differentiable at x if and only if

µ− lim
A∋y→x

d [f(y), F (y)]

J (y, x)
= 0

and in that case [F ] is an approximate D-differential for f at x.

Remark. If x is a µ-interior point for A then f admits at most one approximate
differential at x. However, if x is a boundary point then the differential may not be
unique and f could have infinitely many different differentials.
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Proposition 2.6. Let f : A → M be an arbitrary function that is D-differentia-
ble at some accumulation point x ∈ A. Then x ∈ Af and |∇f |+ (x) ≤ |F |x,f(x) where

[F ] ∈ Dx,f(x) is any differential for f . If, in addition, A is a µ-neighborhood for x,

then |∇f |+ (x) = |Txf |x,f(x) where Txf = [F ] ∈ Dx,f(x) is the unique differential of f
at x.

Proof. Let [F ] ∈ Dx,f(x) be a D-differential of f at x, then

|∇f |+ (x) = lim sup
A∋y→x

d [f(y), f(x)]

J (y, x)

≤ lim sup
A∋y→x

d [f(y), F (y)]

J (y, x)
+ lim sup

y→x

d [F (y), F (x)]

J (y, x)
= |F |x,f(x) .

Next, we prove that if x is a µ-interior point for A then f has exactly one D-
differential at x and equality holds in the last inequality. Let [G] ∈ Dx,f(x) be another
D-differential of f at x, then we immediately get

lim
A∋y→x

d [F (y), G(y)]

J(y, x)
= 0

but this does not yet imply that [F ] = [G]. Since A is a µ-neighborhood of x we
immediately get

µ− lim sup
y→x

d [F (y), G(y)]

J(y, x)
= µ− lim

A∋y→x

d [F (y), G(y)]

J(y, x)

≤ lim
A∋y→x

d [F (y), G(y)]

J(y, x)
= 0.

Now both F and G are defined on a neighborhood of x, by proposition 2.4 we finally
get

lim sup
y→x

d [F (y), G(y)]

J(y, x)
= µ− lim sup

y→x

d [F (y), G(y)]

J(y, x)
= 0,

thus [F ] = [G].
Assume again that A is a µ-neighborhood for x, and let Txf = [F ] be the unique

D-differential of f at x. Then

|Txf |x,f(x) = µ− lim sup
y→x

d[F (y), F (x)]

J(y, x)

= µ− lim sup
A∋y→x

d[F (y), F (x)]

J(y, x)
≤ |∇f |+ (x). �

Similarly, we can prove the following:

Proposition 2.7. Let f : A → M be an arbitrary function that is approxi-
mately D-differentiable at some x ∈ A. Then x ∈ Aµ

f and |∇f |µ,+ (x) ≤ |F |x,f(x)
where [F ] ∈ Dx,f(x) is any approximate differential for f . If, in addition, A is a
µ-neighborhood for x, then the approximate D-differential Txf = [F ] of f at x is
unique with |∇f |µ,+ (x) = |Txf |x,f(x).

We then say that a function f : A → M defined on a nonempty set A ⊆ X is a.e.
D-differentiable on Af if and only if on every µ-measurable subset B of Af we have
that f is D-differentiable for a.e. point of B. In the same way, we define functions
a.e. approximately D-differentiable on Aµ

f .
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Definition 2.8. An X-distribution/approximate X-distribution D of M is dif-
ferentiably complete if it satisfies the following “Rademacher’s condition”:

(RC): for every closed nonempty subset C ⊆ X (with respect to the J-topology)
and every Lipschitz function g : C → M we have that g is a.e. approximately
D-differentiable on Aµ

g .

Remark. For Lipschitz functions defined on closed subsets D-differentiability
and approximate D-differentiability are equivalent for a.e. point of C, where D is an
X-distribution. Moreover, both Ag and Aµ

g are Borel sets with µ
(

Ag∆Aµ
g

)

= 0.

Remark. In (RC) we cannot assume C = X since for a generic metric space M
we do not have a local Lipschitz extension result.

It is trivial to show that

(1) D = Lipµ (M,X) is differentiably complete;
(2) if D is differentiably complete then every C ⊇ D is also differentiably complete;
(3) if D1,D2,D3, . . . are all differentiably complete then D =

⋂∞
i=1D

i is differen-
tiably complete.

Of these statements, only (3) is not trivial, however its proof is quite simple
thanks to uniqueness results contained in propositions 2.6 and 2.7. Let then f : C →
M be a Lipschitz function defined on a closed subset C of X, then there exists a
measurable subset V = V 1 of C such that for every i ∈ N f is approximately Di-
differentiable at x with differential [Fi] ∈ Di. By uniqueness we have [Fi] = [F1] =
Txf for every i ∈ N, therefore Txf ∈

⋂∞
i=1D

i
x,f(x) = Dx,f(x).

Example 2.9. Let {Xα}α∈N be a disjoint Borel cover of (X, J, µ) and let Φα : Xα

→ R
Nα be a sequence of Lipschitz functions with Nα ∈ N.

We also assume that µ (Xα) > 0 and that Xα does not contain any µ-isolated
point (with respect to itself). Therefore for every k ∈ N, every x ∈ (Xα)

1 and every
p ∈ Rk we can set

Dx,p =
{

[y ∈ Xα → p + L [Φα(y)− Φα(x)]]
∣

∣ L : RNα → R
k linear

}

.

Clearly D =
⊔

(x,p)∈X×Rk Dx,p is an approximate X-distribution for Rk and an Xα-

distribution for Rk for every α.
A well-known result proven for the first time by Cheeger [2] states that under

some conditions on the base space X (in particular, the existence of a p-Poincaré type
inequality for some 1 ≤ p < +∞) then D is a complete distribution for every k ∈ N

and supNα < +∞, in other words the metric space X is “locally finite dimensional”.

In the last part of this section, we will prove the equivalence of (RC) with a
D-version of the classical Stepanov theorem for differentiability and approximate
differentiability. We first need to generalize Proposition 2.3.

Let δ, η > 0, we say a measurable set B ⊆ X containing y is (δ, η)-full at y if

sup
0<r<η

µ [Br(y) \B]

µ [Br(y)]
≤ δ.

Lemma 2.10. There exists δ = δ(K) > 0 such that the following statements
hold:

(1) If Bx and By are (δ, η)-full for some η > 0 at x and y respectively and
0 < t = J(x, y) < η/3, then µ [B3t(x) ∩ Bx ∩B3t(y) ∩By] > 0;



340 Paolo De Donato

(2) Let E ⊆ X be a nonempty set such that x ∈
(

E
)1

and for every y ∈ E let By

be a measurable set so that for every z ∈ E \ {x} sufficiently close to x there
exist s, η > 0 such that By is (δ, η)-full at y for every y ∈ Bs(z), then there
exist a µ-neighborhood U of x and a map rx : U → E such that y ∈ Brx(y) for
every y ∈ U \ {x}.

Proof. Fix δ > 0 and assume by contradiction that (1) does not hold. Thus
µ (Bx ∩ Bt(x)) ≤ µ (B3t(y) \By) with 3t < η and then

(1− δ)µ (Bt(x)) ≤ µ (Bt(x) ∩Bx) ≤ µ (B3t(y) \By)

≤ δµ (B3t(y)) ≤ δL(K, 4)µ (Bt(x))

which is impossible when δ < 1/ [1 + L(K, 4)].
To prove (2) we can assume without loss of generality that x is a µ-accumulation

point, that is µ({x}) = 0. Notice also that we can find a sequence yn ∈ E such that

E = {yn | n ∈ N}. Then we need only to prove that

µ

[

E ∩ Bξ(x) \

(

{x} ∪
⋃

n∈N

Byn

)]

= 0

for ξ > 0 sufficiently small.
Otherwise we can find Z ⊆ E sufficiently near to x such that Z ∩Byn = ∅ and

sup
0<r<η0

µ [Br(z) ∩ Z]

µ [Br(z)]
≥ 1− δ

for some z ∈ Z \{x} and 0 < η0, in particular Z is (δ, η0)-full at z. By assumption we
can find s > 0 and 0 < η < η0 such that Byn is (δ, η)-full at yn for every yn ∈ Bs(z).
Moreover, for n large we also have J (yn, z) < η/3 therefore by (1) we would have
Z ∩Byn 6= ∅, a contradiction. �

Theorem 2.11. Let D be a differentiably complete approximate X-distribution
for M , then every function f : A → M is a.e. approximately D-differentiable on
Aµ

f . Conversely let D be an approximate X-distribution such that every function

f : X → M is a.e. approximately D-differentiable on Aµ
f , then D is differentiably

complete.

Proof. We first prove that if D is complete then f : A → M is a.e. approximately
D-differentiable on every measurable subset B of Aµ

f . Fix a point P ∈ M and for
every i, j ∈ N let Eij ⊆ Aµ

f be such that x ∈ Eij if and only if

(1) d[f(x), P ] < i
2j

;

(2) there exists a (δ, 3/j)-full set Bx ⊆ A at x such that d[f(y), f(x)] ≤ iJ(y, x)
for every y ∈ Bx.

The main difficulty here is that the sets Eij are not in general measurable. By
definition Aµ

f =
⋃

ij Eij , we now prove that fij : x ∈ Eij → f(x) ∈ M is 6i-Lipschitz.

Take any y, z ∈ Eij , if J (y, z) ≥ 1/j, then

d[f(y), f(z)] ≤ d[f(y), P ] + d[P, f(z)] ≤
i

j
≤ iJ (y, z) .

If instead 0 < t = J(y, z) < 1/j, then by Lemma 2.10 there exists s ∈ Bz ∩ By ∩
B3t(z) ∩ B3t(y) such that

d[f(y), f(z)] ≤ d[f(y), f(s)] + d[f(s), f(z)] ≤ iJ(y, s) + iJ(s, z) < 6iJ(y, z).
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Since M is complete we can uniquely extend fij to a Lipschitz function on Eij ,

and since D is complete there exists a measurable subset G̃ij of Aµ
fij

⊆ Eij such that

µ
(

Aµ
fij

\G̃ij

)

= 0 and fij is approximately D-differentiable on each point of G̃ij . Since

Eij ⊆ Aµ
f , every point of Eij is an accumulation point for X, thus µ

(

Eij \A
µ
fij

)

= 0.

Let Bij = Eij ∩ B and Gij =
(

G̃ij ∩ B
)1

, then we immediately get

µ (Bij \Gij) ≤ µ
(

Eij \ G̃ij

)

+ µ
(

G̃ij \ G̃
1
ij

)

= 0

and fij is approximately D-differentiable on every point of Gij . Let then x ∈ Gij

and [Fij ] ∈ Dx,f(x) be the differential of fij in x, then for every ε > 0 there exists
a measurable µ-neighborhood Ux ⊆ X of x such that d [fij(y), Fij(y)] < εJ(y, x) for

every y ∈ Ux ∩ Eij.
Let s : U → Eij be any function defined on a µ-neighborhood U of x such that

J [s(y), x] ≤ LJ(y, x) near x and J [s(y), y] = o (J(y, x)) for J(y, x) → 0. Therefore,

d [f(y), Fij(y)] ≤ d [f(y), f [s(y)]] + d [fij [s(y)] , Fij [s(y)]] + d [Fij (y) , Fij [s(y)]]

≤ d [f(y), f [s(y)]] + o (J [s(y), x]) +KJ (s(y), y)

= d [f(y), f [s(y)]] + o (J (y, x)) .

We now use lemma 2.10 to find an appropriate function s. Let for every y ∈
Eij ∩B1/j(x)

R(y) = min

{

1

3
, J(y, x)

}

,

B̃y = By ∩ BR(y)J(y,x)(y).

Clearly each B̃y is [δ, R(y)J(y, x)]-full at y (since J(y, x) < 1/j) and R(y) depends
only on J(y, x), therefore assumptions at point (2) in lemma 2.10 are satisfied and
there exists s : U → Eij such that y ∈ B̃s(y) for y near x.

In particular, y ∈ Bs(y) and J(y, s(y)) ≤ R (s(y))J(y, x) < 1
2
J(y, x) which leads to

J(s(y), x) < 3
2
J(y, x). Moreover, J(y, s(y)) ≤ J(y, x)2 = o (J(y, x)) when J(y, x) → 0,

therefore

d[f(y), f [s(y)]] ≤ iJ [y, s(y)] = o(J(y, x))

because s(y) ∈ Eij and y ∈ Bs(y), thus f is approximately D-differentiable at x.
The converse is trivial. Indeed if every function f : X → M is approximately D-

differentiable a.e. on Aµ
f then to prove that D is complete we need only to accordingly

extend any Lipschitz function g : C → M on all X with C closed. If g̃ is any extension
of g on all X then we always have

C1 ∩Aµ
g ⊆ Aµ

g̃ ,

therefore g is automatically a.e. approximately D-differentiable, then D is complete.
�

Theorem 2.12. Let D be a differentiably complete X-distribution for M , then
every function f : A → M is a.e. D-differentiable on Af . Conversely let D be an
X-distribution such that every function f : X → M is a.e. D-differentiable on Af ,
then D is differentiably complete.

Proof. The first part of this result can be proved as in the previous theorem by
setting By = B3/j(y) when y ∈ Eij . Moreover, in the last passage we do not need
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lemma 2.10 to find s but we can use directly Proposition 2.3 such that s is now
defined in a neighborhood of x instead of a µ-neighborhood.

Now assume that every function f : X → M is a.e. D-differentiable on Af , we will
prove that D is complete or equivalently that every Lipschitz function g : C → M
defined on any closed subset C ⊆ X is a.e. D-differentiable on C. We will find an
extension g̃ of g to whole X, and even though we cannot expect that such extension is
Lipschitz it has still some useful properties. More precisely, for every map g : C → M
defined on a closed set C ⊆ X we can always find an extension g̃ : X → M such that
Ag ⊆ Ag̃.

We define g̃ in the following way: if x ∈ C then we set g̃(x) = g(x), instead if
x /∈ C then we set g̃(x) = g(y) where y ∈ C is any point that satisfies

J (x, y) < 2 dist(x, C).

Let x ∈ Ag ∩ ∂C, therefore there exist K, δ > 0 such that if y ∈ C ∩ Bδ(x),
then d [g̃(x), g̃(y)] = d [g(x), g(y)] ≤ KJ (x, y). Let z ∈ Bδ/3(x) \C, we can then find
y ∈ C ∩Bδ(x) such that J (y, z) < 2 dist(z, C) and g̃(z) = g(y). Therefore,

d[g̃(x), g̃(z)] = d[g(x), g(y)] ≤ KJ (x, y) ≤ K (J (x, z) + 2 dist(z, C)) ≤ 3KJ (x, z)

which implies x ∈ Ag̃ with |∇g̃|+ (x) ≤ 3 |∇g|+ (x). Since Ag ∩
◦

C = Ag̃ ∩
◦

C, where
◦

C is the set of interior points of C, we have proved that Ag ⊆ Ag̃.
Now assume g : C → M is Lipschitz, then Ag is a measurable subset of C which

is contained in Ag̃ where g̃ : X → M is the extension found before. By assumption
g̃ is a.e. D-differentiable on Ag̃, then g is a.e. D-differentiable on Ag and so D is
complete. �

3. Q-valued functions

On a generic metric space (M, d) we can define the space of Q-points AQ (M),
where Q is a positive integer, as the set of all measures P on M that can be rep-
resented as the sum of Q Dirac measures JP1K + JP2K + · · · + JPQK not necessarily
distinct. Then a Q-valued function from a set A to M is just a function defined on
A with values on AQ (M). Clearly, 1-valued functions from A to M are equivalent
to classical (single-valued) functions from A to M .

Moreover, Q single valued functions f1, f2, . . . , fQ can be used to compose a single
Q-valued function f(x) = Jf1(x)K+Jf2(x)K+ · · ·+JfQ(x)K, conversely every Q-valued
function f can be globally decomposed into Q single valued functions by choosing a
total ordering on M . However, such decomposition is never useful except when M
is a really good space (usually M = R) because many useful properties of f will not
be inherited by such general decompositions.

On AQ (M) we define the following Wassenstein metric:

G [A,B] = G

[

Q
∑

i=1

JAiK ,
Q
∑

i=1

JBiK
]

= min
σ∈SQ

√

√

√

√

Q
∑

i=1

d
(

Ai, Bσ(i)

)2

where SQ is the set of all the permutations on {1, 2, . . . , Q}. Therefore a Q-valued
function f from a topological/metric/measurable space Ω to M is continuous/Lips-
chitz/measurable if and only if f : Ω → AQ (M) is continuous/Lipschitz/measurable.
Every measurable Q-valued function can be globally decomposed into Q measur-
able single-valued functions (see [3]), however continuous Q-valued functions cannot
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usually be decomposed into Q continuous single-valued functions, for example the
following function

z ∈ C →
q
z3/2

y
+

q
−z3/2

y
∈ A2 (C)

cannot be decomposed into two continuous functions in any neighborhood of the
origin.

If D is an X-distribution for a complete metric space M then we are able to
derive another X-distribution DQ but on AQ (M): for every P =

∑Q
i=1 JPiK we say

[F] ∈ DQ
x0,P

if and only if there exist [Fi] ∈ Dx0,Pi
for every i = 1, 2, . . . , Q such that

F(x) =

Q
∑

i=1

JFi(x)K ∀x in a Borel neighborhood of x0,(3.1)

if Pi = Pj , then [Fi] = [Fj] .(3.2)

Notice that AQ (M) is always a complete metric space whenever M is complete,
and can be proved by induction on Q. This is trivial for Q = 1, thus assume both M
and AQ (M) are complete. Let Pl ∈ AQ+1 (M) be a Cauchy sequence, by induction
on l we can easily find a subsequence in the form Phl

= JPlK + P′
l, where both

Pl ∈ M and P′
l ∈ AQ (M) are Cauchy sequences that converge to some P ∈ M

and P′ ∈ AQ (M) respectively. Therefore Phl
→ JP K + P′ which in turn implies

Pl → JP K +P′ because Pl is Cauchy.
Many authors (see for example [3]) impose condition (3.2) in their definition of

differentiable Q-valued functions since it makes it easier to work componentwise. For
example if M = Rn and [F] ∈ DQ is a differential germ for f =

∑Q
i=1 JfiK at some

x ∈ Rk with fi continuous at x then we can always take the i-th component Fi ∈ D
of F so that [Fi] is a D-differential for fi at x.

Instead other authors (for example [9]) do not use (3.2) in their definition of
differentiable Q-valued functions, since with (3.2) we could have a sequence of C1 Q-
valued functions fn such that both fn and ∇fn uniformly converge to some functions
f and F respectively but f is not differentiable everywhere. Therefore when one
needs to work with sequences of C1 Q-valued functions it may be useful to require
only (3.1) without (3.2).

However, if one needs only a.e. differentiability for functions from Rn into AQ

(

Rk
)

with respect to the Lebesgue measure on Rn (for example when dealing with Sobolev
functions) then (3.2) is unimportant because the set of differentiability points for
which (3.2) is not satisfied has zero measure. In this place we will always assume
that germs in DQ satisfy both (3.1) and (3.2).

Theorem 3.1. For every P ∈ AQ (M)\{Q JP K | P ∈ M} there exist 1 ≤ R < Q,
an open neighborhood U of P and two continuous maps πP

1 : U → AR (M), πP

2 : U →
AQ−R (M) such that

• Q = πP

1 (Q) + πP

2 (Q) for every Q ∈ U ;

• G [Q,R]2 = G
[

πP

1 (Q), πP

1 (R)
]2

+ G
[

πP

2 (Q), πP

2 (R)
]2

for every Q,R ∈ U .

Proof. Clearly there exist 1 ≤ R < Q, P , PR+1, PR+2, . . . , PQ ∈ M , and ε > 0

such that P = R JP K +
∑Q

i=R+1 JPiK and d (P, Pj) ≥ ε for every R + 1 ≤ j ≤ Q.
Therefore, the subset U ⊆ AQ (M) defined so that A ∈ U if and only if there exists
σ ∈ SQ such that d

(

P,Aσ(i)

)

< ε/3 for every i = 1, 2, . . . , R and d
(

Pi, Aσ(i)

)

< ε/3
for every i = R + 1, R+ 2, . . . , Q is open and contains P.
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If A ∈ U we can assume without loss of generality that σ(i) = i, then we always
have

A1, A2, . . . , AR ∈ Bε/3(P ),

AR+1, AR+2, . . . , AQ /∈ B2ε/3(P ),

G [P,A]2 =

R
∑

i=1

d (P,Ai)
2 +

Q
∑

i=R+1

d
(

Pi, Aη(i)

)2
,

where η ∈ SQ with η(i) = i for every 1 ≤ i ≤ R. We will prove only the last assertion.
First of all, assume that

G [P,A]2 =
R
∑

i=1

d
(

P,Aη(i)

)2
+

Q
∑

i=R+1

d
(

Pi, Aη(i)

)2

and set

E = {i = 1, 2, . . . , R | η(i) ≥ R + 1} ,

F = {i = R + 1, R + 2, . . . , Q | η(i) ≤ R} .

Set Pi = P for i = 1, . . . , R we clearly have d
(

Pi, Aη(i)

)

≥ 2ε/3 if i ∈ E∪F . Moreover,
both E and F must have the same cardinality, thus if E is not empty, then we can
find another η′ ∈ SQ such that η′(i) = η(i) if i /∈ E ∪ F and d

(

Pi, Aη′(i)

)

< ε/3 for
every i. But this is impossible by our assumption on η.

Therefore we can set

πP

1 : A ∈ U →
R
∑

i=1

JAiK ∈ AR (M),

πP

2 : A ∈ U →

Q
∑

i=R+1

JAiK ∈ AQ−R (M). �

Corollary 3.2. Let Ω ⊆ X be open nonempty and f : Ω → AQ (M) be contin-
uous at x ∈ Ω \ Λ where

Λ = {x ∈ Ω | f(x) = Q JP K for some P ∈ M} .

Then there exist an open neighborhood U of x and g : U → AR (M), h : U → AS (M)
with Q = R + S, f |U = JgK + JhK and

|∇g|+ (x), |∇h|+ (x) ≤ |∇f |+ (x).

Theorem 3.3. If an approximate X-distribution D for M is complete then the
X-distribution DQ for AQ (M) satisfying both (3.1) and (3.2) is complete too.

Proof. We use induction on Q. If Q = 1 then we can use assumption (RC) on
M , thus we can assume that theorem 3.3 holds for any 1 ≤ Q′ < Q in order to prove
it for Q. Let f : C → AQ (M) be a Lipschitz function defined on a closed subset C
of X and let x ∈ C.

If x /∈ Λ then by corollary 3.2 we have f |V = JgK+ JhK with x ∈ Ag ∩Ah = V for
some open neighborhood V of x, thus we can use induction on g and h to prove that
f is a.e. differentiable on V . Since C is separable we can cover C \ Λ by countably
many of such V , thus we immediately get that f is a.e. differentiable on C \ Λ.

On Λ we have instead f(x) = Q Jfa(x)K with fa : Λ → M Lipschitz, therefore by
induction hypothesis fa is a.e. approximately D-differentiable on Aµ

fa
. If L ⊆ Aµ

fa
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is the set of points on which fa is approximately D-differentiable with differential
[F ] ∈ Dx,fa(x) then we can assume that L ⊆ Λ1 ∩Aµ

f . In this way f is approximately

DQ-differentiable on every point of L because

G [f(y), Q JF (y)K] =
√

Q d [fa(y), F (y)]

for every y ∈ Λ. �

With this result we are finally able to prove theorem 1.3.

Proof of theorem 1.3. Let D be a complete X-distribution for (M, d), then by
theorem 3.3 the X-distribution DQ for (AQ (M) ,G) is complete for every Q ≥ 1.
Then by theorem 2.12 we immediately get that every function f : X → AQ (M) is
a.e. DQ-differentiable on Af . �
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