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A counting formula for extreme contractions
on regular polygonal Banach spaces

Lakshmi Kanta Dey, Subhadip Pal and Saikat Roy

Abstract. A regular polygonal Banach space X is a two-dimensional real Banach space whose

unit sphere is a regular polygon. We prove that the number of extreme contractions on a regular

2n-gonal Banach space is 2n2+4n. A characterization of extreme contractions on X is also presented.

Tasakulmaisen Banachin avaruuden kutistuskuvausjoukon ääripisteiden määrä

Tiivistelmä. Tasakulmainen Banachin avaruus X on kaksiulotteinen reaalinen Banachin ava-

ruus, jonka yksikköpallo on säännöllinen monikulmio. Tässä työssä todistetaan, että 2n-tasakulmai-

sen Banachin avaruuden kutistuskuvausten joukolla on 2n2 + 4n ääripistettä. Lisäksi annetaan yh-

täpitävä ehto näille äärimmäisille kutistuskuvauksille.

1. Introduction

Let X be a finite-dimensional real Banach space. The space X is said to be
polyhedral if its closed unit ball BX has finitely many extreme points. In addition,
X is said to be regular polygonal, if dim X = 2 and its unit sphere SX is a regular
polygon. Let EX denote the collection of all extreme points of BX and L(X) denote
the algebra of all linear operators on X. The members of EL(X) are called extreme
contractions on X.

1.1. Motivation. A remarkable result due to Kadison [5] states that extreme
contractions on a Hilbert space H are the isometries or co-isometries on H, see also
[4, 8, 11]. However, the analogous result is not true in the Banach space setting.
In fact, it appears to be difficult to build a general theory of extreme contractions
[6, 7, 14, 15] on Banach spaces even in the two-dimensional case. The present article
aims to provide a counting formula for extreme contractions on a regular polygonal
Banach space. To be more precise, it is shown that if X is a regular 2n-gonal Banach
space for some natural number n, then

|EL(X)| = 2n2 + 4n.

In the process, we also characterize the extreme contractions on X.

1.2. Notation and terminologies. For n ∈ N, n ≥ 2, we denote

An = {z ∈ C : z2n = 1} = {ei(k−1)π
n : k = 1, 2, . . . , 2n}

= {xk : k = 1, 2, . . . , 2n} = {±xk : k = 1, 2, . . . , n}
= {xk : k = 1, 2, . . . , n+ 1} ∪ {xk : k = 2, . . . , n}.
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In what follows the symbol X will denote the normed space X = R
2 with BX = co(An),

the convex hull of An, and θ = π
n
. It is clear that EX = An. It is not difficult to see

that

BX =

{
(x, y) ∈ R

2 : sec

(
θ

2

)
max

∣∣∣∣x cos
(
(2k − 1)θ

2

)
+ y sin

(
(2k − 1)θ

2

)∣∣∣∣ ≤ 1,

1 ≤ k ≤ n

}
.

A face [16] of BX is of the form (BX ∩ δM), where M is a closed half space [1] in X

containing BX and δM is the boundary of M . Thus, if F is a face of BX, then F is of
the form {x ∈ SX : f(x) = 1}, for some norm one functional f ∈ X

∗. The dimension
of F is defined to be the dimension of the subspace generated by the differences
u − v of vectors in F and F is a facet if dimF = 1. It is not difficult to see that
corresponding to each facet F of BX, there exists a unique hyperplane H in X such
that (H ∩ BX) = F . Thus, for any facet F of BX, there exists a unique norm one
functional f on X that attains its norm precisely on F . For two consecutive extreme
points xk and xk+1 of BX, the line segment [xk, xk+1] := {txk+(1−t)xk+1 : t ∈ [0, 1]} is
a facet of BX, and the unique support functional corresponding to the facet [xk, xk+1]
is given by

f[xk,xk+1](x, y) = sec

(
θ

2

)[
x cos

(
(2k − 1)θ

2

)
+ y sin

(
(2k − 1)θ

2

)]
, ∀ (x, y) ∈ X,

=
1

sin θ
[x(sin kθ − sin (k − 1)θ)− y(cos kθ − cos (k − 1)θ)].

For more information regarding polyhedral spaces, readers are referred to [1, 2, 10,
17]. In the subsequent sections, all the suffixes of the extreme points have been
considered in modulo 2n. To reduce computations, we will often use the usual com-
plex multiplication in our results: for example, the product xy of any two vectors
x = (a, b) and y = (c, d) in X, is given by the ordered pair (ac− bd, ad+ bc).

1.3. Approach. We learn from the few recent works [3, 9, 13, 16] that the
study of the extreme contractions on a Banach space X has connections with the
extremal structure of BX. On the other hand, the norm attainment sets of extreme
contractions are certainly of special kinds whenever X is polyhedral [9, 12]. Given
any T ∈ L(X), the symbol MT signifies the norm attainment set of T , i.e., MT =
{x ∈ SX : ‖T (x)‖ = ‖T‖}. The basic step to prove the counting formula is to study
the following class of contractions

EX := {T ∈ SL(X) : span(MT ∩ EX) = X}.
The reason we consider this intermediate step is the following result proved in [12,
Theorem 2.2].

Theorem 1.1. Let X be an n-dimensional polygonal Banach space and let Y

be any normed linear space. Let T ∈ L(X,Y) be an extreme contraction. Then

span(MT ∩ EX) = X. Moreover, if (MT ∩ EX) contains exactly 2n elements then

T (MT ∩ EX) ⊂ EY.

The above result has been used to present a counting of extreme contractions in
a specific two-dimensional case.

Theorem 1.2. [9, Theorem 2.7] Let X be a two-dimensional real Banach space

whose unit sphere is a regular hexagon and let Y = ℓ2
∞

. Then |EL(X,Y)| = 36.
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Evidently, it follows from Theorem 1.1 that EX ⊇ EL(X). After finding the class
EX, we discard the irrelevant contractions (which are not extreme contractions) by
using elementary computation based on geometric and trigonometric formulations.
To serve our purpose, we further divide EX into three different classes based on the
image of the norm attainment sets of its members, namely, Type - I, Type - II and
Type - III:

Type - I: A linear operator T ∈ L(X) is said to be of Type - I if there exists
{x, y} ⊂ MT ∩ EX such that span{x, y} = X and

(1.1) T (x) = z, T (y) = w,

for some z, w ∈ EX.

Type - II: A linear operator T ∈ L(X) is said to be of Type - II if there exists
{x, y} ⊂ MT ∩ EX such that span{x, y} = X and

(1.2) T (x) = z, T (y) = λw + (1− λ)x2w, λ ∈]0, 1[,
for some z, w ∈ EX.

Type - III: A linear operator T ∈ L(X) is said to be of Type - III if there exists
{x, y} ⊂ MT ∩ EX such that span{x, y} = X and

(1.3) T (x) = µz + (1− µ)x2z, T (y) = λw + (1− λ)x2w, µ, λ ∈]0, 1[,
for some z, w ∈ EX.

Theorem 1.3. Let T be in L(X). Then T is an isometry if, and only if, T is a

rank two Type - I operator.

Theorem 1.4. For each y ∈ EX and each z ∈ EX there exists a rank one Type

- I operator T ∈ L(X) such that T (y) = T (x2y) = z. Conversely, for each rank one

Type - I operator T , there exist y ∈ EX and z ∈ EX such that T (y) = T (x2y) = z.

Next, we characterize Type - II and Type - III operators.

Theorem 1.5. An operator T ∈ L(X) is a Type - II operator if, and only if, it

can be written as a convex combination of a rank one Type - I and a rank two Type

- I operator.

Theorem 1.6. An operator T ∈ L(X) is a Type - III operator if, and only if,

there exist x, y ∈ EX with [x, y] ⊆ SX such that one of the following holds:

(a) T (x) = µz + (1− µ)x2z,
T (y) = λz + (1− λ)x2z,
for any µ, λ ∈]0, 1[,

(b) T (x) = µz + (1− µ)x2z,
T (y) = λx2z + (1− λ)z,
for any µ, λ ∈]0, 1[ with µ ≥ λ,

(c) T (x) = µz + (1− µ)x2z,
T (y) = µw + (1− µ)x2w,

where µ ∈]0, 1[ and [z, w] ⊆ SX.

It turns out that if an operator T is of Type - II or Type - III, then it is not
an extreme contraction. Precisely, we have the following characterization of extreme
contractions on X.

Theorem 1.7. T ∈ EL(X) if, and only if, T is of Type - I.

Thus, the problem of counting extreme contraction on X reduces to the problem
of counting Type - I operators on X.
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The proofs of Theorems 1.3, 1.4, 1.5, 1.6 and 1.7 are included in section 3. In
the last section, we prove the counting formula.

2. Preparatory results

Lemma 2.1. Let Z,Y be normed spaces with EY 6= ∅, and T ∈ BL(Z,Y). Suppose

there exists A ⊆ BZ such that span(A) = Z and T (A) ⊆ EY. Then T is an extreme

contraction.

Proof. Let us suppose that there are α ∈]0, 1[ and T1, T2 ∈ BL(Z,Y) such that
T = αT1 + (1− α)T2. Then for all x ∈ A,

T (x) = αT1(x) + (1− α)T2(x).

Since T1(x), T2(x) ∈ BY and T (x) ∈ EY, we conclude that T (x) = T1(x) = T2(x) for

all x ∈ A and, because span(A) = Z, we get T = T1 = T2 as required. �

Proposition 2.2. Let Y be a finite-dimensional normed space such that EY is

finite and let T be an isomorphism on Y with T (EY) ⊆ EY. Then T is an isometry.

Proof. Since BY = co(EY) and T (EY) ⊆ EY, we get ‖T‖ ≤ 1. Because EY is a
finite set and T is injective, we have T (EY) = EY, thus T−1(EY) = EY. As before,
we conclude that ‖T−1‖ ≤ 1. Taking this into account, we obtain

‖x‖ = ‖T−1(T (x))‖ ≤ ‖T (x)‖ ≤ ‖x‖, ∀ x ∈ Y,

and the proof is now complete. �

Corollary 2.3. An operator T ∈ L(X) is an isometry if, and only if, there exists

z ∈ An such that either T (x) = zx for all x ∈ X or T (x) = zx for all x ∈ X.

Proof. If T (x) = zx for all x ∈ X for some z ∈ An, then T is an isomorphism on
X with T (EX) ⊆ EX and Proposition 2.2 gives the result. The same argument can
be used if T (x) = zx for all x ∈ X and for some z ∈ An.

Conversely, let T be an isometry on X, then T (1), T (x2) ∈ EX = An. It is clear
that [1, x2] ⊆ SX. Since T is an isometry, we get [T (1), T (x2)] ⊆ SX. There exist
two possibilities: either T (x2) = T (1)x2 or T (x2) = T (1)x2. In the former case,
the operator S(x) = T (1)x (x ∈ X) is a linear isometry by the first part of the
proof. Moreover, since S(1) = T (1) and S(x2) = T (x2), we have T = S and T is
an isometry. In the latter case, it can be proved that T coincides with the linear
isometry S defined by S(x) = T (1)x (x ∈ X). This completes the proof. �

Corollary 2.4. Let x, y be in EX. Then there exists an isometry, S, on X such

that S(x) = 1 and S(y) = xk for some k ∈ N with k ≤ n+ 1.

Proof. It is clear that xy ∈ EX, therefore xy = xk for some k = 1, 2, . . . , 2n.
Consider S(z) = xz if k ≤ n + 1 and S(z) = xz in case n + 2 ≤ k. Then S is as
required. �

We need a couple of technical lemmas which will be used in the sequel.

Lemma 2.5. Let k ∈ N with k ≤ n. Then

(1) For an even number k,

• ‖eikθ + 1‖ = 2 cos
(
kθ
2

)
and ‖eikθ − 1‖ = 2 sin

(
kθ
2

)
‖i‖.

(2) For an odd number k,

• ‖eikθ + 1‖ = 2 cos
(
kθ
2

)
sec

(
θ
2

)
and ‖eikθ − 1‖ = 2 sin

(
kθ
2

)
‖iei θ2‖.
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Proof. An easy calculation gives us

eikθ + 1 = 2 cos

(
kθ

2

)
ei

kθ
2 , eikθ − 1 = 2 sin

(
kθ

2

)
iei

kθ
2 .

If k is even, ‖ei kθ2 ‖ = 1 and ‖iei kθ2 ‖ = ‖i‖, by Corollary 2.3, and this finishes the

proof of (1). For (2), since [1, eiθ] ⊆ SX, we get from the first equality that ‖ei θ2‖ =

sec
(
θ
2

)
. If k is odd, again by Corollary 2.3, we have ‖ei kθ2 ‖ = ‖ei θ2‖ = sec

(
θ
2

)
and

‖iei kθ2 ‖ = ‖iei θ2‖, and this finishes the proof of (2). �

Lemma 2.6. Let k ∈ N, p ∈ N ∪ {0} and µ, λ ∈ ]0, 1[.
(I) Let

a =
sin(k − 1)θ

sin kθ
1 +

sin θ

sin kθ
eipθ, b =

sin(k − 1)θ

sin kθ
1 +

sin θ

sin kθ
ei(p+1)θ,

c =
sin(k − 1)θ

sin kθ
eiθ +

sin θ

sin kθ
eipθ, d =

sin(k − 1)θ

sin kθ
eiθ +

sin θ

sin kθ
ei(p+1)θ.

Then

(I.A) ‖λa+ (1− λ)b‖ > 1, for p + 1 ≤ k ≤ n− 1,
(I.B) ‖µ(λa + (1 − λ)b) + (1 − µ)(λc+ (1 − λ)d)‖ > 1, for 2 ≤ k = p ≤ n− 1 and

µ < λ,

(I.C) ‖µ(λa+ (1− λ)b) + (1− µ)(λc+ (1− λ)d)‖ > 1, for 2 ≤ p+ 1 ≤ k ≤ n− 1.

(II) Let

a1 = − sin θ

sin kθ
1 +

sin(k + 1)θ

sin kθ
eipθ, b1 = − sin θ

sin kθ
1 +

sin(k + 1)θ

sin kθ
ei(p+1)θ,

c1 = − sin θ

sin kθ
eiθ +

sin(k + 1)θ

sin kθ
eipθ, d1 = − sin θ

sin kθ
eiθ +

sin(k + 1)θ

sin kθ
ei(p+1)θ.

Then

(II.A) ‖λa1 + (1− λ)b1‖ > 1, for 1 ≤ k = p ≤ n− 2 and 1 ≤ k < p ≤ n− 1,
(II.B) ‖µ(λa1 + (1 − λ)b1) + (1 − µ)(λc1 + (1 − λ)d1)‖ > 1, for 1 ≤ k = p ≤ n − 2

and µ > λ,

(II.C) ‖µ(λa1+(1−λ)b1)+(1−µ)(λc1+(1−λ)d1)‖ > 1, for 1 ≤ k ≤ p−1 ≤ n−2.

Proof. (I.A) Writing eipθ and ei(p+1)θ in terms of the basis {1, eiθ}, we get

a =
sin(k − 1)θ

sin kθ
1− sin(p− 1)θ

sin kθ
1 +

sin pθ

sin kθ
eiθ

and

b =
sin(k − 1)θ

sin kθ
1− sin pθ

sin kθ
1 +

sin (p+ 1)θ

sin kθ
eiθ.

It follows from f[1,eiθ](1) = 1 = f[1,eiθ](e
iθ) that

(2.1) f[1,eiθ](a) =
sin pθ − sin (p− 1)θ + sin (k − 1)θ

sin kθ
> 1,

since for p+ 1 ≤ k ≤ n− 1 we have

[sin pθ − sin (p− 1)θ] + [sin (k − 1)θ − sin kθ]

= 2 sin
θ

2

[
cos

(
(2p− 1)θ

2

)
− cos

(
(2k − 1)θ

2

)]
> 0.

Similarly, f[1,eiθ](b) ≥ 1, and consequently, ‖λa+(1−λ)b‖ ≥ f[1,eiθ](λa+(1−λ)b) > 1,
as λ ∈]0, 1[.
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(I.B) Writing eipθ and ei(p+1)θ in terms of the basis {eiθ, e2iθ}, we get

(2.2)

a =

[
sin (k−1)θ sin 2θ

sin kθ sin θ
− sin (p−2)θ

sin kθ

]
eiθ+

[
sin (p−1)θ

sin kθ
− sin (k−1)θ

sin kθ

]
e2iθ,

b =

[
sin (k − 1)θ sin 2θ

sin kθ sin θ
− sin (p− 1)θ

sin kθ

]
eiθ +

[
sin pθ

sin kθ
− sin (k − 1)θ

sin kθ

]
e2iθ,

c =

[
sin (k − 1)θ

sin kθ
− sin (p− 2)θ

sin kθ

]
eiθ +

sin (p− 1)θ

sin kθ
e2iθ,

d =

[
sin (k − 1)θ

sin kθ
− sin (p− 1)θ

sin kθ

]
eiθ +

sin pθ

sin kθ
e2iθ.

For p = k we get

a = eiθ, b =

[
sin (k − 1)θ

sin kθ
(2 cos θ − 1)

]
eiθ +

[
1− sin (k − 1)θ

sin kθ

]
e2iθ,

c =

[
sin (k − 1)θ

sin kθ
− sin (k − 2)θ

sin kθ

]
eiθ +

sin (k − 1)θ

sin kθ
e2iθ, d = e2iθ.

Now, f[eiθ,e2iθ](e
iθ) = 1 = f[eiθ,e2iθ](e

2iθ) gives

f[eiθ,e2iθ ](a) = 1, f[eiθ,e2iθ ](d) = 1,

f[eiθ,e2iθ](b+ c) =
2 sin (k − 1)θ cos θ + sin kθ − sin (k − 2)θ

sin kθ
= 2

and

f[eiθ,e2iθ](c) =
2 sin (k − 1)θ − sin (k − 2)θ

sin kθ
> 1,

since for 2 ≤ k ≤ n− 1,

[sin (k − 1)θ − sin kθ] + [sin (k − 1)θ − sin (k − 2)θ]

= 2 sin
θ

2

[
cos

(
(2k − 3)θ

2

)
− cos

(
(2k − 1)θ

2

)]
> 0.

Consequently, for µ, λ ∈]0, 1[ with µ < λ, we get

‖µ(λa+ (1− λ)b) + (1− µ)(λc+ (1− λ)d)‖
≥ f[eiθ,e2iθ](µ(λa+ (1− λ)b) + (1− µ)(λc+ (1− λ)d))

= 1 + (λ− µ)(f[eiθ,e2iθ](c)− 1) > 1.

(I.C) Whenever k = p+1 and 2 ≤ p+1 ≤ n−1, replacing the value of k in (2.2),
we get f[eiθ,e2iθ](b) = 1, f[eiθ,e2iθ](a) ≥ 1 and f[eiθ,e2iθ](w) > 1 for w ∈ {c, d}. Thus, for
µ, λ ∈]0, 1[ we get,

‖µ(λa+ (1− λ)b) + (1− µ)(λc+ (1− λ)d)‖
≥ f[eiθ,e2iθ](µ(λa+ (1− λ)b) + (1− µ)(λc+ (1− λ)d)) > 1.

Writing eipθ and ei(p+1)θ as linear combination of basis {1, eiθ}, we already have a and
b at the beginning of the proof and moreover,

c =

[
sin (k − 1)θ

sin kθ
− sin (p− 2)θ

sin kθ
+

sin (p− 1)θ sin 2θ

sin kθ sin θ

]
eiθ − sin (p− 1)θ

sin kθ
1,

d =

[
sin (k − 1)θ

sin kθ
− sin (p− 1)θ

sin kθ
+

sin pθ sin 2θ

sin kθ sin θ

]
eiθ − sin pθ

sin kθ
1.
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For 2 ≤ p+ 1 < k ≤ n− 1, we get

f[1,eiθ](a) = f[1,eiθ](c) =
sin pθ − sin (p− 1)θ + sin (k − 1)θ

sin kθ
> 1.

Similarly, it can be shown that f[1,eiθ](b) = f[1,eiθ](d) > 1, and therefore,

‖µ(λa+ (1− λ)b) + (1− µ)(λc+ (1− λ)d)‖
≥ f[1,eiθ](µ(λa+ (1− λ)b) + (1− µ)(λc+ (1− λ)d)) > 1 ∀ µ, λ ∈ ]0, 1[ .

(II) We only sketch the proof as it is similar to (I). In case of (A), whenever
1 ≤ k = p ≤ n − 2, writing a1, b1 in terms of the basis {ei(p+1)θ, ei(p+2)θ}, and
considering the support functional f[ei(p+1)θ,ei(p+2)θ], we get f[ei(p+1)θ,ei(p+2)θ](a1) = 1
and f[ei(p+1)θ,ei(p+2)θ](b1) > 1, which proves the inequality. Whenever, 1 ≤ k < p ≤
n− 1, by considering the support functional f[eipθ,ei(p+1)θ] and writing a1, b1 in terms

of the basis vectors {eipθ, ei(p+1)θ} we get f[eipθ,ei(p+1)θ](a1) = f[eipθ,ei(p+1)θ](b1) > 1,
and the inequality follows. In case of (B), we again write a1, b1, c1, d1 in terms of
the basis {ei(p+1)θ, ei(p+2)θ} and choose the support functional f[ei(p+1)θ,ei(p+2)θ] to get
f[ei(p+1)θ,ei(p+2)θ](a1) = 1 = f[ei(p+1)θ,ei(p+2)θ](d1), f[ei(p+1)θ,ei(p+2)θ](b1) > 1, f[ei(p+1)θ,ei(p+2)θ]

(b1 + c1) = 2, and the inequality follows. In case of (C), we choose the basis
{eipθ, ei(p+1)θ} and the functional f[eipθ,ei(p+1)θ], then by the given hypothesis we get
f[eipθ,ei(p+1)θ](a1) = f[eipθ,ei(p+1)θ](b1) > 1, f[eipθ,ei(p+1)θ](c1) = f[eipθ,ei(p+1)θ](d1) ≥ 1. Thus,
the inequality is proved and the proof of the lemma is now complete. �

Lemma 2.7. Let T be in L(X) and x, y, z ∈ EX such that x 6= y and T (x) =
T (y) = z. Then ‖T‖ = 1 if, and only if, [x, y] ⊆ SX.

Proof. From the hypotheses, we have that x 6= ±y and, by Corollary 2.4, we can
suppose that there exists 1 ≤ k ≤ n such that T (1) = T (eikθ) = 1. It is easy to check
that

T (α, β) = sec

(
kθ

2

)(
α cos

(
kθ

2

)
+ β sin

(
kθ

2

))
, for every (α, β) ∈ X.

Let us suppose that ‖T‖ = 1. Then, ‖T (eikθ + 1)‖ = 2 ≤ ‖eikθ + 1‖. If k is even,
Lemma 2.5 gives 2 ≤ 2 cos(kθ

2
), which is a contradiction. If k is odd, Lemma 2.5

gives 2 ≤ 2 cos(kθ
2
) sec

(
θ
2

)
, that is, cos( θ

2
) ≤ cos(kθ

2
), which implies that k = 1. As a

result, [1, eikθ] = [1, eiθ] ⊆ SX.
Conversely, let [1, eikθ] ⊆ SX, i.e., k = 1. Then, T (eipθ) = cos[(p− 1

2
)θ] sec( θ

2
) and

consequently, ‖T (eipθ)‖ < 1 for every p = 2, 3, . . . , n−1. Therefore, ‖T (eipθ)‖ ≤ 1 for
every p = 0, 1, . . . , 2n− 1 and consequently, ‖T‖ = 1. This completes the proof. �

We prove the following proposition as the main ingredient of Theorem 1.5.

Proposition 2.8. Let x, y, z, w ∈ EX with span{x, y} = X and T ∈ L(X) be

such that

T (x) = z, T (y) = λw + (1− λ)x2w,

for some λ ∈ ]0, 1[. Let T1, T2 ∈ L(X) be such that T1(x) = T2(x) = z, T1(y) = w
and T2(y) = x2w. Then ‖T‖ = 1 if, and only if, one of the following holds.

(a) T1 is a rank one Type - I and T2 is a rank two Type - I operator.

(b) T2 is a rank one Type - I and T1 is a rank two Type - I operator.

Proof. We first prove the sufficiency. Evidently, ‖T‖ ≥ 1. However, since
T = λT1 + (1− λ)T2 and ‖T1‖ = ‖T2‖ = 1, we get ‖T‖ = 1.



396 Lakshmi Kanta Dey, Subhadip Pal and Saikat Roy

We now prove the necessity. By using Corollary 2.3, composing suitable isome-
tries, without loss of generality, we can assume that

T (1) = 1, T (eikθ) = λeipθ + (1− λ)ei(p+1)θ,

for some 0 ≤ p ≤ n− 1 and 1 ≤ k ≤ n− 1. By the given hypothesis,

T1(1) = 1, T1(e
ikθ) = eipθ and T2(1) = 1, T2(e

ikθ) = ei(p+1)θ.

It now follows from Lemma 2.7 and Theorem 1.3 that (a) holds if, and only if, k = 1
and p = 0. Similarly, (b) holds if, and only if, k = n−1 and p = n−1, by considering
T1(−1) = T2(−1) = −1.

Suppose on the contrary that neither condition (a) nor condition (b) holds, i.e.,
(k, p) /∈ {(1, 0), (n− 1, n− 1)}. Let us now consider the following cases.

Case-I: Suppose that k ≥ p+ 1 and 0 ≤ p ≤ n− 2 with (k, p) 6= (1, 0). A simple
computation provides us T (eiθ) = λa+(1−λ)b, where a, b are given by (I) of Lemma
2.6. Thus, applying (I.A) of Lemma 2.6, for k ≥ p+1, we have ‖T (eiθ)‖ > 1, proving
‖T‖ > 1.

Case-II: Suppose k ≤ p and 1 ≤ p ≤ n−1 with (k, p) 6= (n−1, n−1). Evidently,
T (ei(k+1)θ) = λa1+(1−λ)b1, where a1, b1 are defined in (II) of Lemma 2.6. Therefore,
for k ≤ p, applying (II.A) of Lemma 2.6, we have ‖T (ei(k+1)θ)‖ > 1, i.e., ‖T‖ > 1.

In all the above cases, we get ‖T‖ > 1, a contradiction. Therefore, (k, p) ∈
{(1, 0), (n− 1, n− 1)}. This completes the proof. �

Fact 2.9. Without loss of generality, we meet with the following two possibilities
for an operator T mentioned in the above proposition.

(A) T (x) = z,
T (y) = λz + (1− λ)x2z,

(B) T (x) = z,
T (y) = λx2z + (1− λ)z,

for some λ ∈ ]0, 1[ and x, y, z ∈ EX with [x, y] ⊆ SX. Moreover, T is of type (A)
if, and only if, ST is of type (B) for the isometry S(x) = z2x for all x ∈ X. As a
consequence, every operator of type (B) is an operator of type (A) up to an isometry.

We now establish several preparatory results to prove Theorem 1.6. According
to the Definition 1.3, a Type - III operator involves parameters µ, λ ∈ ]0, 1[. The
following result provides a characterization of Type - III operators with µ = λ.

Lemma 2.10. Let x, y, z, w ∈ EX with span{x, y} = X. Let T ∈ L(X) be such

that

T (x) = λz + (1− λ)x2z, T (y) = λw + (1− λ)x2w,

for some λ ∈]0, 1[. Let T̃ , T̂ ∈ L(X) be such that T̃ (x) = z, T̃ (y) = w and T̂ (x) =

x2z, T̂ (y) = x2w. Then

(i) T is of rank one and unit normed if, and only if, T̃ , T̂ both are of rank one

and unit normed.

(ii) T is of rank two and unit normed if, and only if, T̃ , T̂ both are of rank two

and unit normed.

Proof. We first prove the sufficiency for both (i) and (ii). Observe that T =

λT̃ + (1 − λ)T̂ and it follows from the definition of T̃ and T̂ that if T̃ and T̂ are of
rank one or rank two, then, T is also of rank one or rank two, respectively. Moreover,

‖T‖ = 1, since ‖T̃‖ = ‖T̂‖ = 1.
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Necessity of (i): Suppose that T is a rank one unit normed operator of the stated
form. Since T is of rank one and ‖T (x)‖ = ‖T (y)‖ = 1, we have T (x) = ±T (y).
We first consider the case T (x) = T (y). By using Corollary 2.3, composing suitable
isometries, without loss of generality, we can assume that

T (1) = λ1 + (1− λ)eiθ, T (eikθ) = λ1 + (1− λ)eiθ,

for some 1 ≤ k ≤ n− 1.
By the hypothesis, T̃ (1) = T̃ (eikθ) = 1 and T̂ (1) = T̂ (eikθ) = eiθ. Suppose on the

contrary that none of the operators T̃ , T̂ is of rank one and unit normed. Then it
follows from Lemma 2.7 that k 6= 1. By writing eiθ in terms of the basis {1, eikθ} we
get

‖T (eiθ)‖ =
sin (k − 1)θ + sin θ

sin kθ
> 1.

Note that {x,−y} remains linearly independent, as {x, y} was so. Then the case
T (x) = −T (y) eventually reduces to the case T (x) = T (y) for some extreme points

x and y. This contradicts the fact that ‖T‖ = 1. Thus, T̃ and T̂ both are rank one
unit normed operator.

Necessity of (ii): By using Corollary 2.3 and Corollary 2.4, composing suitable
isometries, without loss of generality, we can assume that

T (1) = λ1 + (1− λ)eiθ, T (eikθ) = λeipθ + (1− λ)ei(p+1)θ,

for some 0 ≤ p ≤ n− 1 and 1 ≤ k ≤ n− 1.
Then T̃ and T̂ become

T̃ (1) = 1, T̃ (eikθ) = eipθ and T̂ (1) = eiθ, T̂ (eikθ) = ei(p+1)θ.

By the hypothesis, p 6= 0, i.e., 1 ≤ p ≤ n − 1. Suppose on the contrary that

none of the operators T̃ and T̂ is rank two and unit normed. Then it follows from
Theorem 1.3 that k 6= p. It is not difficult to see that

T (eiθ) = λ(λa+ (1− λ)b) + (1− λ)(λc+ (1− λ)d),

T (ei(k+1)θ) = λ(λa1 + (1− λ)b1) + (1− λ)(λc1 + (1− λ)d1),

where a, b, c, d, a1, b1, c1, d1 are given by Lemma 2.6. By putting µ = λ in Lemma 2.6,
we obtain from (I.C) and (II.C) that ‖T (eiθ)‖ > 1 for k > p and ‖T (ei(k+1)θ)‖ > 1 for
k < p, respectively. As a result, if k 6= p then ‖T‖ > 1, a contradiction. Therefore,
if T is a rank two unit normed operator then k = p and consequently, the proof
follows. �

We next establish a few intermediate results to characterize the Type - III oper-
ators with µ 6= λ.

Proposition 2.11. Let x, y, z, w ∈ EX with span{x, y} = X and T ∈ L(X) be

such that

T (x) = µz + (1− µ)x2z, T (y) = λw + (1− λ)x2w,

for some µ, λ ∈]0, 1[ with µ 6= λ. If ‖T‖ = 1 then at least one of the following sets

{z, w}, {z, x2w}, {x2z, w}, {x2z, x2w} is linearly dependent.

Proof. The proof is evident for n = 2, 3. Thus, we prove this result for n ≥ 4. By
using Corollary 2.3 and Corollary 2.4, composing suitable isometries, without loss of
generality, we can assume that

(2.3) T (1) = µ1 + (1− µ)eiθ, T (eikθ) = λeipθ + (1− λ)ei(p+1)θ,
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for some 0 ≤ p ≤ n − 1 and 1 ≤ k ≤ n − 1. Suppose on the contrary that all
the sets {1, eipθ}, {1, ei(p+1)θ}, {eiθ, eipθ}, {eiθ, ei(p+1)θ} are linearly independent, i.e.,
2 ≤ p ≤ n− 2. We consider the following cases.

Case-I: Suppose that k ≤ p−1. Observe that T (xk+2) = µ(λa1+(1−λ)b1)+(1−
µ)(λc1 + (1 − λ)d1), where a1, b1, c1, d1 are given by (II) of Lemma 2.6. Therefore,
by (II.C) of Lemma 2.6, for 1 ≤ k ≤ p− 1 ≤ n− 3, we have ‖T (xk+2)‖ > 1, proving
‖T‖ > 1.

Case-II: Let k = p. We claim that ‖T (x2)‖ > 1 if µ < λ and ‖T (xk+2)‖ > 1 if
µ > λ. Evidently, T (x2) = µ(λa+ (1− λ)b) + (1− µ)(λc+ (1− λ)d), where a, b, c, d
are given by (I) of Lemma 2.6. Therefore, by (I.B) of Lemma 2.6, for 2 ≤ p ≤ n− 2,
k = p and µ < λ, we have ‖T (x2)‖ > 1. Thus, ‖T‖ > 1.

Again, observe that T (xk+2) = µ(λa1+(1−λ)b1)+(1−µ)(λc1+(1−λ)d1), where
a1, b1, c1, d1 are given by (II) of Lemma 2.6. Therefore, by (II.B) of the same lemma,
for 2 ≤ p ≤ n− 2, k = p and µ > λ, we have ‖T (xk+2)‖ > 1, proving ‖T‖ > 1.

Case-III: Suppose that k ≥ p + 1. It is easy to see that T (x2) = µ(λa + (1 −
λ)b) + (1− µ)(λc+ (1− λ)d), where a, b, c, d are defined in (I) of Lemma 2.6. Under
the condition 3 ≤ p+ 1 ≤ k ≤ n− 1, (I.C) of Lemma 2.6 ensures that ‖T (x2)‖ > 1,
consequently, ‖T‖ > 1.

From the discussion of all the above cases, we arrive at a contradiction to the fact
that ‖T‖ = 1. Thus, p ∈ {0, 1, n− 1} and equivalently, at least one of the following
sets {1, eipθ}, {1, ei(p+1)θ}, {eiθ, eipθ}, {eiθ, ei(p+1)θ} has to be a linearly dependent set.
This completes the proof. �

Fact 2.12. Let x, y, z ∈ EX with span{x, y} = X. Without loss of generality,
we meet with the following three possibilities for such operators T mentioned in the
above proposition.

(A) T (x) = µz + (1− µ)x2z, (B) T (x) = µz + (1− µ)x2z,
T (y) = λz + (1− λ)x2z, T (y) = λx2z + (1− λ)z,

(C) T (x) = µz + (1− µ)x2z,
T (y) = λx2z + (1− λ)x3z,

for some µ, λ ∈ ]0, 1[ with µ 6= λ. Moreover, T is of type (B) if, and only if, ST
is of type (C) for the isometry S(x) = x2x for all x ∈ X. As a consequence, every
operator of type (C) is an operator of type (B) up to an isometry. Therefore, we
only characterize the operators of types (A) and (B).

Lemma 2.13. Let x, y, z ∈ EX with span{x, y} = X and T ∈ L(X) be such that

T (x) = µz + (1− µ)x2z, T (y) = λz + (1− λ)x2z,

for some µ, λ ∈]0, 1[. Then ‖T‖ = 1 if, and only if, [x, y] ⊆ SX.

Proof. The proof is evident for n = 2. Thus, we prove the result for n ≥ 3. By
using Corollary 2.3, composing suitable isometries, without loss of generality, we can
assume that

T (1) = µ1 + (1− µ)eiθ, T (eikθ) = λ1 + (1− λ)eiθ,

for some 1 ≤ k ≤ n− 1. We first prove the necessary part. By the given hypothesis,
1 = ‖T (1

2
(1 + eikθ))‖ ≤ ‖1

2
(1 + eikθ)‖. However, ‖1

2
(1 + eikθ)‖ < 1 for k 6= 1, see

Lemma 2.5. Therefore, we must have k = 1 and consequently, [1, eikθ] ⊆ SX.
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Conversely, let [1, eikθ] ⊆ SX. Therefore, k = 1. Define

T1(1) = 1, T1(e
iθ) = λ1 + (1− λ)eiθ

and
T2(1) = eiθ, T2(e

iθ) = λ1 + (1− λ)eiθ.

Clearly, T = µT1+(1−µ)T2. Now, Proposition 2.8 implies that ‖T1‖ = ‖T2‖ = 1.
Therefore, ‖T‖ = 1. This completes the proof. �

Remark 2.14. It is worth mentioning that the conclusion of Lemma 2.13 for
operators with µ = λ also follows directly from Lemma 2.10.

Lemma 2.15. Let x, y, z ∈ EX with span{x, y} = X and T ∈ L(X) be such that

T (x) = µz + (1− µ)x2z, T (y) = λx2z + (1− λ)z,

for some µ, λ ∈ ]0, 1[. Then:

(a) ‖T‖ = 1 implies [x, y] ⊆ SX.

(b) If [x, y] ⊆ SX, then ‖T‖ = 1 if and only if, µ ≥ λ.

Proof. The proof is evident for n = 2. Thus, we prove this result for n ≥ 3. By
using Corollary 2.3, composing suitable isometries, without loss of generality, we can
assume that

T (1) = λ1 + (1− λ)eiθ, T (eikθ) = µeiθ + (1− µ)e2iθ,

for some 1 ≤ k ≤ n− 1. Following a rearrangement, we get

T (1 + eikθ) = eiθ + e2iθ + λ(1− eiθ) + µ(eiθ − e2iθ).

(a) We choose the support functional f[eiθ,e2iθ]. Observe that f[eiθ,e2iθ](1 − eiθ) =

2(cos θ − 1) and f[eiθ,e2iθ](e
iθ − e2iθ) = 0, f[eiθ,e2iθ](e

iθ + e2iθ) = 2. Therefore, by using
Lemma 2.5, we have

2 cos

(
kθ

2

)
sec

(
θ

2

)
≥ ‖1 + eikθ‖ ≥ ‖T (1 + eikθ)‖ ≥ f[eiθ,e2iθ](T (1 + eikθ))

= 2 + 2λ(cos θ − 1).

(2.4)

Consequently,

(2.5) 2 cos

(
kθ

2

)
sec

(
θ

2

)
− 2 cos θ > 2 cos

(
kθ

2

)
sec

(
θ

2

)
+ 2λ(1− cos θ)− 2 ≥ 0.

Also, cos
( (k−1)θ

2

)
cos

(
θ
2

)
≥ cos

(
kθ
2

)
> cos θ cos

(
θ
2

)
, by (2.5). It follows that

cos
( (k−1)θ

2

)
> cos θ and consequently, k < 3. However, by (2.5), 2 cos θ + 2λ(1 −

cos θ) < 2. Thus, for k = 2, it follows from (2.4) that ‖T (1 + e2iθ)‖ ≥ 2 + 2λ(cos θ−
1) > 2 cos θ = ‖1 + e2iθ‖, by Lemma 2.5. Therefore, we have ‖T‖ > 1. As a result,
k = 1 and consequently, [1, eikθ] ⊆ SX.

(b) By the given hypothesis, we have the following types:

(i) T (1) = µeiθ + (1− µ)e2iθ,
T (eiθ) = λ1 + (1− λ)eiθ,

(ii) T (1) = λ1 + (1− λ)eiθ,
T (eiθ) = µeiθ + (1− µ)e2iθ.

T is of type (ii) if, and only if, TS1S2 is of type (i) for the isometries S1(x) = x
and S2(x) = xe−iθ, for all x ∈ X. As a consequence, every operator of type (i) is an
operator of type (ii) up to an isometry. Therefore, it is enough to discuss the result
for the type (ii) operator only.
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We first prove the necessity. Suppose on the contrary that µ < λ. In that case,
we show that ‖T (e2iθ)‖ > 1. Observe that T (e2iθ) = λ(µa1+(1−µ)b1)+(1−λ)(µc1+
(1 − µ)d1), where a1, b1, c1, d1 are given by (II) of Lemma 2.6, putting k = p = 1.
Therefore, by (II.B) of Lemma 2.6, it is clear that ‖T (e2iθ)‖ > 1. Consequently, we
arrive at a contradiction to the fact that ‖T‖ = 1. Thus, we must have µ ≥ λ.

We now prove the sufficiency. Suppose that µ ≥ λ. We show that for an arbitrary
extreme point eikθ (k ∈ {2, . . . , n− 1}), ‖T (eikθ)‖ ≤ 1. Consider the operator

T1(1) = λ1 + (1− λ)eiθ, T1(e
iθ) = eiθ.

By writing eikθ in terms of the basis {1, eiθ}, we get

T1(e
ikθ) = λ

[
sin (1− k)θ

sin θ
1 +

sin kθ

sin θ
eiθ

]
+ (1− λ)

[
sin (1− k)θ + sin kθ

sin θ

]
eiθ

= y′2(say) = λeikθ + (1− λ)

[
sin (1− k)θ + sin kθ

sin θ

]
eiθ.

Since ∣∣∣∣
sin (1− k)θ + sin kθ

sin θ

∣∣∣∣ ≤ 1,

it is clear that ‖y′2‖ < 1. Now, if µ = λ, then it is not difficult to see that

T (eikθ) = λ

[
sin (1− k)θ

sin θ
1 +

sin kθ

sin θ
eiθ

]
+ (1− λ)

[
sin (1− k)θ

sin θ
eiθ +

sin kθ

sin θ
e2iθ

]

= y2(say) = λeikθ + (1− λ)ei(k+1)θ.

If µ > λ, let µ = λ+ ε, where ε > 0, then

(2.6)
T (eikθ) =

sin (1− k)θ

sin θ
[λ1 + (1− λ)eiθ]

+
sin kθ

sin θ
[(λ+ ε)eiθ + (1− (λ+ ε))e2iθ].

A straightforward computation reveals that

(2.7) T (eikθ) =
1− (λ+ ε)

(1− λ)
y2 +

[
1− 1− (λ+ ε)

(1− λ)

]
y′2.

As 1 > λ + ε > λ > 0 then 1−(λ+ε)
(1−λ)

∈ ]0, 1[. Also, since eikθ is an arbitrary extreme

point, it follows from the expression (2.7) that ‖T‖ ≤ 1 and consequently, ‖T‖ = 1.
Thus, the proof is complete. �

Remark 2.16. Note that the conclusion of Lemma 2.15(a) for operators with
µ = λ also follows directly from Lemma 2.10.

3. Proofs

Proof of Theorem 1.3. Let T be an isometry on X. Then T is of rank two. Also,
it follows from Corollary 2.3 that T (EX) = EX. Therefore, T is of Type-I. Conversely,
let T be a rank two Type-I operator on X. By using Corollary 2.3, we can compose
T with suitable isometries on X and without loss of generality we can assume that
there are 1 ≤ k,m ≤ n − 1 such that T (1) = 1 and T (eikθ) = eimθ. We claim that
k = m and so, T (x) = x for all x ∈ X, and consequently, the result follows. Since
‖T‖ = 1, we obtain ‖T (eikθ ± 1)‖ = ‖eimθ ± 1‖ ≤ ‖eikθ ± 1‖. If k,m are either both
even or both odd, from Lemma 2.5 we get cos(mθ

2
) ≤ cos(kθ

2
) and sin(mθ

2
) ≤ sin(kθ

2
).
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These two inequalities imply that k = m. If m is even and k is odd, we consider the
following two cases.

Case-I: If n is even, then i ∈ An = EX. We have ‖i‖ = 1 and, by Corollary 2.3

and Lemma 2.5, ‖iei θ2‖ = ‖ei θ2‖ = sec
(
θ
2

)
. Also from Lemma 2.5 we get

cos

(
mθ

2

)
≤ cos

(
kθ

2

)
sec

(
θ

2

)
,(3.1)

sin

(
mθ

2

)
≤ sin

(
kθ

2

)
sec

(
θ

2

)
.(3.2)

The inequality (3.1) is equivalent to

0 ≤ cos

(
kθ

2

)
− cos

(
mθ

2

)
cos

(
θ

2

)

= cos

(
mθ

2

)[
cos

(
(k −m)θ

2

)
− cos

(
θ

2

)]
− sin

(
(k −m)θ

2

)
sin

(
mθ

2

)
.

If k > m, the two summands appearing in the last equality are negative, and we
conclude that k ≤ m. In a similar way, the inequality (3.2) is equivalent to

0 ≤ sin

(
kθ

2

)
− sin

(
mθ

2

)
cos

(
θ

2

)

= sin

(
mθ

2

)[
cos

(
(k −m)θ

2

)
− cos

(
θ

2

)]
+ sin

(
(k −m)θ

2

)
cos

(
mθ

2

)
.

If m > k, the two summands appearing in the last equality are negative, and we
conclude that k = m. This is a contradiction because m is even and k is odd.

Case-II: If n is odd, then i = ei
θ
2 ei

(n−1)θ
2 and iei

θ
2 = ei

(n+1)θ
2 . Then, by Corol-

lary 2.3 and Lemma 2.5, we have ‖i‖ = ‖ei θ2‖ = sec
(
θ
2

)
and ‖iei θ2‖ = 1. Again from

Lemma 2.5 we get

cos

(
mθ

2

)
≤ cos

(
kθ

2

)
sec

(
θ

2

)
,(3.3)

sin

(
mθ

2

)
sec

(
θ

2

)
≤ sin

(
kθ

2

)
.(3.4)

As before, from (3.3) we get k ≤ m. Then from (3.4), we have sin
(
mθ
2

)
≤

sin
(
mθ
2

)
sec

(
θ
2

)
≤ sin

(
kθ
2

)
. Hence m ≤ k, and we get a contradiction. Similar

arguments finish the proof if m is odd and k is even. �

Proof of Theorem 1.4. Let y ∈ EX and z ∈ EX be arbitrary. Define T : X → X

by
T (y) = T (x2y) = z.

Evidently, span{y, x2y} = X. Also, rank(T ) = 1. Consequently, it follows from
Lemma 2.7 that ‖T‖ = 1. On the other hand, it follows from Definition 1.1 that
T is of Type - I. Conversely, let T be a rank one Type - I operator. Since T is of
Type - I, there exist x, u, z, w ∈ EX such that span{x, u} = X and T (x) = z and
T (u) = w. Since rank(T ) = 1, either z = ±w. If z = w, then the proof follows from
Lemma 2.7. Otherwise, we have T (x) = −T (u) = z. Since span{x,−u} = X, again
by Lemma 2.7, we have [x,−u] ⊆ SX. Consequently, for some y ∈ EX, we choose
x = y or x = x2y, accordingly for u = −x2y or u = −y, respectively. This completes
the proof. �
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Proof of Theorem 1.5. The result follows from Proposition 2.8. �

Proof of Theorem 1.6. The result follows from Lemma 2.10, Fact 2.12, Lem-
ma 2.13, 2.15. �

Next, we prove Theorem 1.7. Before that we prove the following assertions.

Proposition 3.1. No Type - II operator is an extreme contraction.

Proof. The result follows directly from Theorem 1.5. �

Proposition 3.2. No Type - III operator is an extreme contraction.

Proof. All the Type - III operators are mentioned in Theorem 1.6. We now show
that those are not extreme contractions.

(a) Consider T = µT1 + (1− µ)T2. Here

T1(x) = z, T1(y) = λz + (1− λ)x2z,

and

T2(x) = x2z, T2(y) = λz + (1− λ)x2z,

for some x, y, z ∈ EX with [x, y] ⊆ SX and µ, λ ∈]0, 1[. By Proposition 2.8, we have
‖T1‖ = ‖T2‖ = 1. Thus, T is not an extreme contraction.

(b) Let ε > 0 be chosen arbitrarily such that µ − ε, µ + ε, λ − ε, λ + ε ∈]0, 1[.
Take T = µT1 + (1− µ)T2 where

T1(x) = (µ+ ε)z + (1− (µ+ ε))x2z,

T1(y) = (λ+ ε)x2z + (1− (λ+ ε))z,

T2(x) = (µ− ε)z + (1− (µ− ε))x2z,

T2(y) = (λ− ε)x2z + (1− (λ− ε))z,

for some x, y, z ∈ EX with [x, y] ⊆ SX and µ, λ ∈]0, 1[ with µ ≥ λ. Evidently, by
Lemma 2.15 we have ‖T1‖ = ‖T2‖ = 1. Therefore, T is not an extreme contraction.

(c) It follows directly from Lemma 2.10 that T is not an extreme contraction.

Thus, none of the Type - III operators is an extreme contraction. This completes
the proof. �

We obtain the following result as an immediate corollary of Lemma 2.1.

Corollary 3.3. Every Type - I operator is an extreme contraction.

Proof of Theorem 1.7. The result follows from Proposition 3.1, Proposition 3.2
and Corollary 3.3. �

Remark 3.4. Let X = ℓ2
∞

i.e., SX is a regular 4-gon or a square. Then by
Corollary 3.3 one only has to deal with Type - I operators. Since, for any Type - I
operator T ∈ L(X), |(MT ∩EX)| = 4. Thus, by Theorem 1.1 we have T (MT ∩EX) ⊆
EX.

4. Counting of extreme contractions

The purpose of this section is to prove the counting formula for the extreme
contractions on X, as mentioned earlier.

4.1.Counting formula.

Theorem 4.1. Let X be a regular 2n-gonal space. Then |EL(X)| = 2n2 + 4n.

Proof. It follows from Theorem 1.7 that extreme contractions are nothing but
the Type - I operators. Firstly, the number of rank two Type - I operators are 4n.
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To see this we consider the collection

(4.1) τ1 = {T ∈ SL(X) : T (x1), T (x2) ∈ EX, [T (x1), T (x2)] ⊆ SX}.

For any T ∈ τ1, T is of Type - I and thus, T ∈ EL(X). Also, for any rank two
Type - I operator A, we have [A(x1), A(x2)] ⊆ SX, by virtue of Theorem 1.3. Thus,
A ∈ τ1. So, τ1 is precisely the collection of all rank two extreme contractions on X.
Let T ∈ τ1. Then T (x1) has 2n - many choices. Also, since [T (x1), T (x2)] ⊆ SX,
T (x2) can be xr+1 or xr−1 whenever T (x1) = xr, by Theorem 1.3. Thus, there are
only two choices for T (x2). Consequently, there are 2× 2n possibilities for T and we
have |τ1| = 4n.

Secondly, the number of rank one Type - I operators are 2n2. To see this we
consider the collection

τ2 = {T ∈ SL(X) : T (xm), T (xm+1) ∈ EX, T (xm) = T (xm+1) for some m ∈ {1, . . . , n}}.

For any T ∈ τ2, T is of Type - I and thus, T ∈ EL(X). Also, for any rank one Type
- I operator A, we have A(xm) = A(xm+1) for some m ∈ {1, . . . , 2n} by virtue of
Theorem 1.4. If m > n then m + n ∈ {1, . . . , n}. Also, A(xm+n) = A(xm+n+1).
Thus, A ∈ τ2. So, τ2 is precisely the collection of all rank one extreme contractions
on X. Fixed any m ∈ {1, . . . , n}, the operator T defined by T (xm) = T (xm+1) = xr

for any xr ∈ EX is a member of τ2. In fact, we get 2n-such members of τ2 for this
particular m, since r varies over the set {1, . . . , 2n}. Now, varying m over {1, . . . , n},
we get 2n2 members of τ2. Also, it follows from the definition of τ2 that for any
member A of τ2, A must be among these 2n2 operators. These members are distinct,
since for any T ∈ τ2 satisfying T (xm) = T (xm+1) = xr for some m ∈ {1, . . . , n} and
xr ∈ EX, we have xm, xm+1 ∈ MT and T (EX \ (MT ∩ EX)) ∈ int(BX) (see the proof
of the sufficient part of Lemma 2.7). Therefore, |τ2| = 2n2. Now, the total number
of extreme contractions is given by

|τ1|+ |τ2| = 4n+ 2n2,

and this completes the proof. �

We end this article by explicitly finding extreme contractions on regular hexag-
onal Banach space with the following example.

Example 4.2. Let X be a regular polygonal Banach space whose unit sphere is
a regular hexagon (i.e., 6-gonal space). The matrix representations of the rank two
extreme contractions with respect to the standard ordered basis are given by

T1 = ±




1 0

0 −1


, T2 = ±




−1

2

√
3

2
√
3

2

1

2


, T3 = ±




−1

2
−
√
3

2

−
√
3

2

1

2


,

T4 = ±




−1

2
−
√
3

2
√
3

2
−1

2


, T5 = ±




−1 0

0 −1


, T6 = ±




1

2
−
√
3

2
√
3

2

1

2


.
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The matrix representations of the rank one extreme contractions with respect to the
standard ordered basis are given by

T1 = ±




1
1√
3

0 0


, T2 = ±




1

2

1

2
√
3

√
3

2

1

2


, T3 = ±




−1

2
− 1

2
√
3

√
3

2

1

2


,

T4 = ±



0 − 2√

3

0 0


, T5 = ±



0

1√
3

0 1


, T6 = ±



0 − 1√

3

0 1


,

T7 = ±



−1

1√
3

0 0


, T8 = ±




−1

2

1

2
√
3

−
√
3

2

1

2


, T9 = ±




1

2
− 1

2
√
3

−
√
3

2

1

2


.
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