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Two footnotes to the F. & M. Riesz theorem

Ole Fredrik Brevig

Abstract. We present a new proof of the F. & M. Riesz theorem on analytic measures of the
unit circle T that is based the following elementary inequality: If f is analytic in the unit disc D

and 0 ≤ r ≤ ̺ < 1, then

‖fr − f̺‖1 ≤ 2
√
‖f̺‖21 − ‖fr‖21,

where fr(e
iθ) = f(reiθ) and where ‖ · ‖1 denotes the norm of L1(T). The proof extends to the

infinite-dimensional torus T∞, where it clarifies the relationship between Hilbert’s criterion for

H1(T∞) and the F. & M. Riesz theorem.

Kaksi alaviitettä F. ja M. Rieszin lauseeseen

Tiivistelmä. Työssä esitetään yksikköympyrän T analyyttisiä mittoja koskevalle F. ja M.
Rieszin lauseelle uusi todistus, joka perustuu seuraavaan alkeelliseen epäyhtälöön: Jos f on analyyt-
tinen yksikkökiekossa D ja 0 ≤ r ≤ ̺ < 1, niin

‖fr − f̺‖1 ≤ 2
√
‖f̺‖21 − ‖fr‖21,

missä fr(e
iθ) = f(reiθ) ja merkintä ‖ · ‖1 tarkoittaa avaruuden L1(T) normia. Todistus yleistyy

ääretönulotteiseen rengaspintaan T∞, missä se selkeyttää avaruuden H1(T∞) Hilbertin ehdon sekä

F. ja M. Rieszin lauseen välistä yhteyttä.

1. Introduction

A finite complex Borel measure µ on the unit circle T is uniquely determined by
the Fourier coefficients

µ̂(k) =

ˆ 2π

0

e−ikθ dµ(eiθ),

for k in Z. This assertion is a consequence of the fact that trigonometric polynomials
are dense in C(T) and duality in form of the Riesz representation theorem. The
protagonist of the present note is the following well-known result due to F. & M. Riesz
(see e.g. [12, pp. 195–212]) on analytic measures of the unit circle.

Theorem 1. If µ is a finite complex Borel measure on T that satisfies µ̂(k) = 0
for k < 0, then µ is absolutely continuous.

There are several proofs of Theorem 1 of rather distinct flavor. The original proof
of F. & M. Riesz relies on approximation (as does the short proof of Øksendal [11]),
while the modern proofs use either Hilbert space techniques or the Poisson kernel.
Should the reader desire a side-by-side comparison, we refer to the monograph of
Koosis [9] that contains all three variants.

Our first footnote concerns a simplification to the proof based on the Poisson
kernel, so let us recall the setup. The assumptions of Theorem 1 ensure that the
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Poisson extension

Pµ(z) =

ˆ 2π

0

1− |z|2
|eiθ − z|2 dµ(e

iθ)

is analytic (whence µ is an “analytic” measure) in the unit disc D, since it can be
represented by an absolutely convergent power series at the origin. We also get from
Fubini’s theorem that

ˆ 2π

0

∣∣Pµ(reiθ)
∣∣ dθ

2π
≤ ‖µ‖

for every 0 ≤ r < 1, where ‖µ‖ denotes the total variation of µ.
In combination, these two assertions show that the function f = Pµ is in the

Hardy space H1(D). Let us define fr(e
iθ) = f(reiθ) for 0 ≤ r < 1. The last step

in the proof of Theorem 1 is to show that there is a function f ∗ in L1(T) such that
‖f ∗−fr‖1 → 0 as r → 1−. It would follow from this that f ∗ = µ, since they have the
same Fourier coefficients. This is where our proof diverges from the standard proofs,
that first use Fatou’s theorem to define f ∗ as the boundary value function of f and
then establish that fr converges in norm to f ∗. We will instead use the following
result, which in particular means that Fatou’s theorem is not required.

Lemma 2. If f is analytic in D and 0 ≤ r ≤ ̺ < 1, then

ˆ 2π

0

∣∣f(reiθ)− f(̺eiθ)
∣∣ dθ
2π

≤ 2

√(
ˆ 2π

0

∣∣f(̺eiθ)
∣∣ dθ
2π

)2

−
(
ˆ 2π

0

∣∣f(reiθ)
∣∣ dθ
2π

)2

.

Theorem 1 now follows at once. Lemma 2 shows that if f is in H1(D), then any
sequence of functions fr with r → 1− forms a Cauchy sequence in L1(T). From this
point of view, Lemma 2 should be considered a quantitative version of the qualitative
assertion that ‖f ∗ − fr‖1 → 0 as r → 1−.

The proof of Lemma 2 is elementary: it uses only finite Blaschke products, the
triangle inequality, the Cauchy–Schwarz inequality, and orthogonality. It inspired by
a result of Kulikov [10, Lemma 2.1] that essentially corresponds to the case r = 0.

It would be interesting to know what the best constant C in the estimate ap-
pearing Lemma 2 is. Our result is that C ≤ 2. Choosing f(z) = 1 + εz and r = 0,
then letting ε → 0+ shows that C ≥

√
2. It can be extracted from the proof of the

main result in [4] that C =
√
2 is the best constant for r = 0. A related problem of

interest is to establish versions of Lemma 2 where Lp(T) takes the place of L1(T).
Lemma 2 also contains the fact that the radial means r 7→ ‖fr‖1 are increasing.

From an historical point of view, let us recall that this answers the question posed
by Bohr and Landau to Hardy [6], which led to the paper that is considered to mark
the starting point of the theory. Lemma 2 provides a simpler proof of this fact,
which is typically established using convexity. However, the standard proofs yield
the stronger assertion that log r 7→ log ‖fr‖1 is convex for 0 < r < 1.

Our second footnote concerns the (countably) infinite-dimensional torus

T
∞ = T× T× T× · · · ,

that forms a compact abelian group under multiplication. Its dual group is Z(∞), the
collection of compactly supported integer-valued sequences, and its normalized Haar
measure m∞ coincides with the infinite product measure generated by the normalized
Lebesgue arc length measure on T.
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The spaces Lp(T∞) contain a natural chain of subspaces that can be identified
with Lp(Td) for d = 1, 2, 3, . . . and die Abschnitte Ad define bounded linear operators
on Lp(T∞) that satisfy ‖A1f‖p ≤ ‖A2f‖p ≤ ‖A3f‖p ≤ · · · ≤ ‖f‖p for f in Lp(T∞).

It follows from this that if f is a function in Lp(T∞) and fd = Adf , then (fd)d≥1

is a bounded sequence in Lp(T∞) that enjoys the chain property

Adfd+1 = fd

for d = 1, 2, 3, . . .. The following fundamental questions arise naturally.

(i) If f is a function in Lp(T∞), then how does Adf tend to f as d → ∞?
(ii) Given a bounded sequence (fd)d≥1 in Lp(T∞) that enjoys the chain property,

is there a function f in Lp(T∞) such that fd = Adf for d = 1, 2, 3, . . .?

It is not difficult to prove that if 1 ≤ p < ∞, then answer to (i) is that the
sequence (Adf)d≥1 converges to f in norm (see Theorem 6 below). If 1 < p <
∞, then a standard argument involving duality and the Banach–Alaoglu theorem
shows that the answer to (ii) is affirmative. The conclusion is that in the strictly
convex regime there is a one-to-one correspondence between functions in Lp(T∞) and
bounded sequences in Lp(T∞) that enjoy the chain property. We refer to this type
of result as Hilbert’s criterion, as the basic idea goes back to Hilbert [8].

It is well-known that Hilbert’s criterion does not hold for L1(T∞), although we
have not found this explicitly stated in the literature. Let z = (z1, z2, z3, . . .) be a
point in the infinite polydisc D∞ and consider the sequence (fd)d≥1, where

(1) fd(χ) =
d∏

j=1

1− |zj|2
|χj − zj |2

for χ on T∞. It is not difficult to see that (fd)d≥1 is bounded sequence in L1(T∞)
enjoying the chain property. However, a result of Cole and Gamelin [5, Theorem 3.1]
is equivalent to the assertion that there is a function f in L1(T∞) such that fd = Adf
for d = 1, 2, 3, . . . if and only if z is in D∞ ∩ ℓ2. Choosing therefore a point z in
D∞ \ ℓ2, we see that (ii) has a negative answer for p = 1.

Set N0 = {0, 1, 2, . . .} and define the Hardy space Hp(T∞) as the closed subspace
of Lp(T∞) consisting of the functions f whose Fourier coefficients

f̂(κ) =

ˆ

T∞

f(χ)χκ dm∞(χ)

are supported on N
(∞)
0 . It turns out that Hilbert’s criterion holds for H1(T∞).

Theorem 3.

(i) If f is in H1(T∞), then ‖f − Adf‖1 → 0 as d → ∞.

(ii) If (fd)d≥1 is a bounded sequence in H1(T∞) that enjoys the chain property,

then there is a function f in H1(T∞) such that fd = Adf for d = 1, 2, 3, . . ..

Note that a more general version of Theorem 3 (ii) can be extracted from work of
Bourgain [3, Section 5]. In our context, Theorem 3 was first enunciated by Aleman,
Olsen and Saksman [1, Corollary 3]. To explain their approach, note that if z is in
D∞\ℓ2, then it follows from the result of Cole and Gamelin that the sequence (fd)d≥1

with fd as in (1) will converge weak-∗ to a finite Borel measure µ on T∞ that is not
absolutely continuous (with respect to m∞). This leads us back to the F. & M. Riesz
theorem on analytic measures, which in this context can be formulated as follows.



462 Ole Fredrik Brevig

Theorem 4. If µ is a finite complex Borel measure on T
∞ whose Fourier coeffi-

cients

µ̂(κ) =

ˆ

T∞

χ−κ dµ(χ)

are supported on N
(∞)
0 , then µ is absolutely continuous.

In view of the discussion above, it is plain that Theorem 4 implies Theorem 3 (ii).
A stronger version of Theorem 4 goes back to Helson and Lowdenslager [7]. The
current version is as stated by Aleman, Olsen and Saksman [1, Corollary 1], who
proved Theorem 4 after first establishing a version of Fatou’s theorem in the infinite
polydisc. The basic obstacle in this context is that the Poisson extension of µ is in
general only defined on D∞ ∩ ℓ1, and the main effort in [1] is directed at obtaining a
version of Fatou’s theorem where T∞ is approached from D∞ ∩ ℓ1.

Our proof of the F. & M. Riesz theorem on T also leads to simpler proofs of The-
orem 3 and Theorem 4, since we can avoid Fatou’s theorem once we have established
suitable extensions of Lemma 2.

This line of reasoning also reveals that Theorem 3 only uses the case r = 0 of
Lemma 2, while Theorem 4 requires the full result. Inspired by this and by the
philosophy behind Hilbert’s criterion, we find it natural to incorporate Theorem 3
in the proof of Theorem 4. Amusingly, this is the reverse direction to how the two
results were established in [1].

Organization. The present note is comprised of three sections. Section 2 is
devoted to the proof of Lemma 2, while Section 3 contains some expositional material
and the proofs of Theorem 3 and Theorem 4.

2. Proof of Lemma 2

By continuity, it is sufficient to consider only those 0 < ̺ < 1 such that f does
not vanish on the circle |z| = ̺. Since f is analytic in D it has only a finite number
of zeros in ̺D. Let (αn)

m
n=1 denote these zeros (counting multiplicities) and form the

finite Blaschke product

B(z) =

m∏

n=1

̺(αn − z)

̺2 − αnz
.

Note that |B(z)| = 1 if |z| = ̺. The function F = f/B is analytic and non-vanishing
when |z| < ̺+ε for some ε > 0, due to the assumption that f does not vanish on the
circle |z| = ̺. This means in particular that the functions g = BF 1/2 and h = F 1/2

are analytic for |z| < ̺+ ε and that f = gh. We write

fr(e
iθ) = f(reiθ), gr(e

iθ) = g(reiθ), and hr(e
iθ) = h(reiθ)

for 0 ≤ r ≤ ̺. The triangle inequality and the Cauchy–Schwarz inequality yield that

‖fr − f̺‖1 ≤ ‖grhr − g̺hr‖1 + ‖g̺hr − g̺h̺‖1 ≤ ‖gr − g̺‖2‖hr‖2 + ‖g̺‖2‖hr − h̺‖2.
Since g and h are analytic for |z| < ̺ + ε, their power series at the origin converge
absolutely for |z| ≤ ̺. We deduce from this, orthogonality, and the trivial estimate
(rk − ̺k)2 ≤ ̺2k − r2k that

‖gr − g̺‖2 ≤
√
‖g̺‖22 − ‖gr‖22 and ‖hr − h̺‖2 ≤

√
‖h̺‖22 − ‖hr‖22.

Putting together what we have done so far, we find that

‖fr − f̺‖1 ≤
√
‖g̺‖22‖hr‖22 − ‖gr‖22‖hr‖22 +

√
‖h̺‖22‖g̺‖22 − ‖g̺‖22‖hr‖22.
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Since plainly ‖hr‖22 ≤ ‖h̺‖22 and ‖g̺‖22 ≥ ‖gr‖22 by orthogonality, we get that

‖fr − f̺‖1 ≤ 2
√

‖g̺‖22‖h̺‖22 − ‖gr‖22‖hr‖22.
We use that |B(z)| = 1 for |z| = ̺ to infer that ‖g̺‖22 = ‖f̺‖1 and ‖h̺‖22 = ‖f̺‖1,
and the Cauchy–Schwarz inequality to infer that ‖gr‖22‖hr‖22 ≥ ‖fr‖21. �

3. Hilbert’s criterion

We find it necessary to begin with some expository material in order to properly
set the stage for the proofs of Theorem 3 and Theorem 4.

If K is a finite subset of Z(∞), then we say that the function

(2) T (χ) =
∑

κ∈K

aκχ
κ

is a trigonometric polynomial on T
∞. It follows from the definition of Z(∞) that there

is for each trigonometric polynomial T a positive integer d such that T only depends
on a subset of the variables χ1, χ2, . . . , χd.

We let Lp(Td) stand for the closed subspace of Lp(T∞) obtained as the closure
of the set of such trigonometric polynomials. If f is in Lp(Td), then the Fourier
coefficients of f are plainly supported on sequences in Z

(∞) of the form

(3) (κ1, κ2, . . . , κd, 0, 0, . . .).

For d = 1, 2, 3, . . ., die Abschnitte Adf are formally defined as replacing the Fourier

coefficient f̂(κ) by 0 whenever κ is not of the form (3). The following result can be
obtained from density and the mean value property of trigonometric polynomials.
The proof is not difficult and we omit it.

Lemma 5. Let 1 ≤ p < ∞. For d = 1, 2, 3, . . ., die Abschnitte Ad extend to

bounded linear operators from Lp(T∞) to Lp(Td) satisfying

‖A1f‖p ≤ ‖A2f‖p ≤ ‖A3f‖p ≤ · · · ≤ ‖f‖p
for every f in Lp(T∞).

We are now in a position to establish Hilbert’s criterion for Lp(T∞), which in
particular covers the assertion (i) of Theorem 3.

Theorem 6. Suppose that 1 ≤ p < ∞. If f is in Lp(T∞), then

lim
d→∞

‖f − Adf‖p = 0.

Proof. Fix ε > 0. By density, we can find a trigonometric polynomial T such that
‖f − T‖p ≤ ε/2. Since T is a trigonometric polynomial, there is a positive integer d0
such that T is in Lp(Td0). It now follows from the triangle inequality and Lemma 5
that if d ≥ d0, then

‖f − Adf‖p ≤ ‖f − T‖p + ‖T − Adf‖p = ‖f − T‖p + ‖Ad(T − f)‖p ≤ ε. �

We will use a weaker and less attractive version of Lemma 2 in the proofs of
Theorem 3 (ii) and Theorem 4. We retain the notation fr(e

iθ) = f(reiθ) for analytic
functions f in D and 0 ≤ r < 1, but write ‖ · ‖L1(T) to distinguish the norm of L1(T)
from the norm of L1(T∞).

Lemma 7. If f is analytic in D and 0 ≤ r ≤ ̺ < 1, then

‖fr − f̺‖L1(T) ≤ 2
√
2
√

‖f̺‖L1(T)

√
‖f̺‖L1(T) − ‖fr‖L1(T).
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Proof. Use Lemma 2 and the fact that b2 − a2 ≤ 2b(b− a) for 0 ≤ a ≤ b. �

A polynomial P on T∞ is a trigonometric polynomial (2) where the index set K is

a subset of N
(∞)
0 . Polynomials on T∞ are nothing more than classical polynomials in,

say, d variables restricted to (χ1, χ2, . . . , χd). This means we can extend polynomials
on T

∞ to C
∞ in the obvious way. In particular, if d1 ≤ d, then

Ad1P (χ) = P (χ1, χ2, . . . , χd1 , 0, 0, . . . , 0).

For the proof of Theorem 3 (ii), we will use the following consequence of Lemma 7.
The basic idea to embed a slice of the disc in a polydisc is from Rudin [13, p. 44].

Lemma 8. If f is in H1(T∞) and if d1 ≤ d2 are positive integers, then

‖Ad1f − Ad2f‖1 ≤ 2
√
2
√

‖Ad2f‖1
√

‖Ad2f‖1 − ‖Ad1f‖1.
Proof. By density and Lemma 5, it is sufficient to establish the stated estimate

for polynomials P in Lp(Td2). In this case, we define

F (χ, z) = P (χ1, χ2, . . . , χd1, χd1+1z, χd1+2z, . . . , χd2z)

for χ on T∞ and z in C. If χ is fixed, then f(z) = F (χ, z) is a polynomial and it is
permissible to use Lemma 7 with r = 0 and ̺ = 1. We next integrate over χ on T∞,
then finally use the Cauchy–Schwarz inequality to infer that
ˆ

T∞

‖F (χ, ·)− F (χ, 0)‖L1(T) dm∞(χ)

≤ 2
√
2

√
ˆ

T∞

‖F (χ, ·)‖L1(T) dm∞(χ)

√
ˆ

T∞

(
‖F (χ, ·)‖L1(T) − |F (χ, 0)|

)
dm∞(χ).

The stated estimate follows from this after using that F (χ, 0) = Ad1P (χ) twice, then
using Fubini’s theorem with the rotational invariance of m∞ thrice. �

Lemma 8 is the key ingredient in our proof of Theorem 3 (ii). The idea to
establish Hilbert’s criterion via a result such as Lemma 8 is from [2, Section 2.2].

Proof of Theorem 3 (ii). If (fd)d≥1 is a bounded sequence in H1(T∞) that enjoys
the chain property, then it follows from Lemma 8 that (fd)d≥1 is a Cauchy sequence in
H1(T∞). Hence it must converge to some function f in H1(T∞). Fourier coefficients
are preserved under convergence in L1(T∞), so that Adf = fd for d = 1, 2, 3, . . .. �

In preparation for the proof of Theorem 4, we recall that a result of Cole and
Gamelin [5, Theorem 4.1] asserts that the infinite product

∞∏

j=1

1− |zj |2
|χj − zj |2

converges to a bounded function on T∞ if and only if z is in D∞ ∩ ℓ1. This means
that the Poisson extension

Pµ(z) =

ˆ

T∞

∞∏

j=1

1− |zj |2
|χj − zj|2

dµ(χ)

of a finite complex Borel measure µ on T∞ can in general only be defined in D∞∩ ℓ1.
Our final preparation for the proof of Theorem 4 is to recall that finite complex

Borel measures on T∞ are uniquely determined by their Fourier coefficients. As in
the classical setting, this is a direct consequence of the Riesz representation theorem
and the fact that trigonometric polynomials are dense in C(T∞).
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Proof of Theorem 4. If χ is on T
∞, z is in D, and d is a positive integer, then

the point (χ1z, χ2z, . . . , χdz, 0, 0, . . .) is plainly in D∞ ∩ ℓ1. We can therefore define

F (χ, z, d) = Pµ(χ1z, χ2z, . . . , χdz, 0, 0, . . .).

Using Fubini’s theorem as in the classical setting discussed in the introduction, we
get that ‖F (·, ̺, d)‖1 ≤ ‖µ‖. If χ and d are fixed, then this and the assumption on
the support of the Fourier coefficients of µ ensure that F (·, z, d) is in

H1(Td) = H1(T∞) ∩ L1(Td).

This assumption also ensures that if χ and d are fixed, then f(z) = F (χ, z, d) is
analytic in D. Arguing as in the proof of Lemma 8, we infer from Lemma 7 that

‖F (·, r, d)− F (·, ̺, d)‖1 ≤ 2
√
2
√

‖F (·, ̺, d)‖1
√

‖F (·, ̺, d)‖1 − ‖F (·, r, d)‖1
for 0 ≤ r ≤ ̺ < 1. We infer from this that there is a function fd in H1(Td) with
‖fd‖1 ≤ ‖µ‖ such that

lim
r→1−

‖fd − F (·, r, d)‖1 = 0.

It follows that (fd)d≥1 is a bounded sequence in H1(T∞) that enjoys the chain prop-
erty, so by Theorem 3 (ii) there is a function f in H1(T∞) such that fd = Adf for
d = 1, 2, 3, . . . and so f = µ by Theorem 3 (i). �

It is possible to give a slightly different proof of Theorem 4 that does not use
Hilbert’s criterion. The idea (from [1]) is to consider the Poisson extensions of µ to
the points (χ1z, χ2z

2, χ3z
3, . . .), which are in D∞ ∩ ℓ1 for χ on T∞ and z in D, and

then use Lemma 7 as above.
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