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Two footnotes to the F. & M. Riesz theorem

OLE FREDRIK BREVIG

Abstract. We present a new proof of the F. & M. Riesz theorem on analytic measures of the
unit circle T that is based the following elementary inequality: If f is analytic in the unit disc D
and 0 <r < p <1, then

1fr = follr < 24/ 11follF = 1£+113,

where f,(e??) = f(re?) and where | - ||; denotes the norm of L'(T). The proof extends to the
infinite-dimensional torus T°°, where it clarifies the relationship between Hilbert’s criterion for
H'(T*°) and the F. & M. Riesz theorem.

Kaksi alaviitettid F. ja M. Rieszin lauseeseen

Tiivistelma. Tyossi esitetddn yksikkdympyrdn T analyyttisid mittoja koskevalle F. ja M.
Rieszin lauseelle uusi todistus, joka perustuu seuraavaan alkeelliseen epayhtéloon: Jos f on analyyt-
tinen yksikkokiekossa D ja 0 < r < p < 1, niin

1fr = felli < 24/ 11 fellf — 152113,

missi f-(e?) = f(re?) ja merkintd || - ||; tarkoittaa avaruuden L'(T) normia. Todistus yleistyy
ddretonulotteiseen rengaspintaan T, missi se selkeyttii avaruuden H'(T*) Hilbertin ehdon seki
F. ja M. Rieszin lauseen vélistd yhteytta.

1. Introduction

A finite complex Borel measure ;1 on the unit circle T is uniquely determined by
the Fourier coefficients

2
Alk) = / e du(e?),
0

for k in Z. This assertion is a consequence of the fact that trigonometric polynomials
are dense in C(T) and duality in form of the Riesz representation theorem. The
protagonist of the present note is the following well-known result due to F. & M. Riesz
(see e.g. [12, pp. 195-212]) on analytic measures of the unit circle.

Theorem 1. If u is a finite complex Borel measure on T that satisfies ji(k) =0
for k < 0, then p is absolutely continuous.

There are several proofs of Theorem 1 of rather distinct flavor. The original proof
of F. & M. Riesz relies on approximation (as does the short proof of @ksendal [11]),
while the modern proofs use either Hilbert space techniques or the Poisson kernel.
Should the reader desire a side-by-side comparison, we refer to the monograph of
Koosis [9] that contains all three variants.

Our first footnote concerns a simplification to the proof based on the Poisson
kernel, so let us recall the setup. The assumptions of Theorem 1 ensure that the
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Poisson extension

) = [ e

z) = ——du(e
T ) TP
is analytic (whence p is an “analytic” measure) in the unit disc D, since it can be
represented by an absolutely convergent power series at the origin. We also get from
Fubini’s theorem that

2m ) do
[ Butre] 52 <l

for every 0 < r < 1, where ||p|| denotes the total variation of p.

In combination, these two assertions show that the function f = Py is in the
Hardy space H'(D). Let us define f.(e?) = f(re?) for 0 < r < 1. The last step
in the proof of Theorem 1 is to show that there is a function f* in L'(T) such that
| f*—felli = 0asr — 17. It would follow from this that f* = p, since they have the
same Fourier coefficients. This is where our proof diverges from the standard proofs,
that first use Fatou’s theorem to define f* as the boundary value function of f and
then establish that f, converges in norm to f*. We will instead use the following
result, which in particular means that Fatou’s theorem is not required.

Lemma 2. If f is analytic in D and 0 <r < p < 1, then

/ " e = pleen)| L < 2\/ (/ " i ee)] %) -(/ T fren) %)

Theorem 1 now follows at once. Lemma 2 shows that if f is in H*(ID), then any
sequence of functions f, with 7 — 1~ forms a Cauchy sequence in L'(T). From this
point of view, Lemma 2 should be considered a quantitative version of the qualitative
assertion that || f* — f.]|1 = 0Oasr — 1.

The proof of Lemma 2 is elementary: it uses only finite Blaschke products, the
triangle inequality, the Cauchy—-Schwarz inequality, and orthogonality. It inspired by
a result of Kulikov [10, Lemma 2.1] that essentially corresponds to the case r = 0.

It would be interesting to know what the best constant C' in the estimate ap-
pearing Lemma 2 is. Our result is that C' < 2. Choosing f(z) = 1+ ¢z and r = 0,
then letting ¢ — 0% shows that C' > /2. It can be extracted from the proof of the
main result in [4] that C' = v/2 is the best constant for 7 = 0. A related problem of
interest is to establish versions of Lemma 2 where LP(T) takes the place of L'(T).

Lemma 2 also contains the fact that the radial means r — || f,.||; are increasing.
From an historical point of view, let us recall that this answers the question posed
by Bohr and Landau to Hardy [6], which led to the paper that is considered to mark
the starting point of the theory. Lemma 2 provides a simpler proof of this fact,
which is typically established using convexity. However, the standard proofs yield
the stronger assertion that logr — log || f,||1 is convex for 0 < r < 1.

Our second footnote concerns the (countably) infinite-dimensional torus

T*=TxTxTx---,

that forms a compact abelian group under multiplication. Its dual group is Z(>), the
collection of compactly supported integer-valued sequences, and its normalized Haar
measure my, coincides with the infinite product measure generated by the normalized
Lebesgue arc length measure on T.
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The spaces LP(T*) contain a natural chain of subspaces that can be identified
with LP(T?) for d = 1,2,3, ... and die Abschnitte 24 define bounded linear operators
on L?(T*) that satisfy |21 ], < 1% fll, < [ f]l, < -+ < |fll, for f in LP(T>).

It follows from this that if f is a function in LP(T>) and fq = Ay f, then (fi)a>1
is a bounded sequence in LP(T) that enjoys the chain property

ifarr = fa
ford =1,2,3,.... The following fundamental questions arise naturally.

(i) If f is a function in LP(T°), then how does 2(;f tend to f as d — oo?
(ii) Given a bounded sequence (fq)a>1 in LP(T*) that enjoys the chain property,
is there a function f in LP(T*) such that f; =A,f ford =1,2,3,...7

It is not difficult to prove that if 1 < p < oo, then answer to (i) is that the
sequence (2A;f)s>1 converges to f in norm (see Theorem 6 below). If 1 < p <
00, then a standard argument involving duality and the Banach—Alaoglu theorem
shows that the answer to (ii) is affirmative. The conclusion is that in the strictly
convex regime there is a one-to-one correspondence between functions in LP(T>) and
bounded sequences in LP(T*) that enjoy the chain property. We refer to this type
of result as Hilbert’s criterion, as the basic idea goes back to Hilbert [8].

It is well-known that Hilbert’s criterion does not hold for L!(T), although we
have not found this explicitly stated in the literature. Let z = (z1, 29, 23,...) be a
point in the infinite polydisc D> and consider the sequence (f;)4>1, where

1) 00 =11 %

J=1

for x on T*. It is not difficult to see that (f4)4>1 is bounded sequence in L!'(T*)
enjoying the chain property. However, a result of Cole and Gamelin [5, Theorem 3.1]
is equivalent to the assertion that there is a function f in L'(T) such that f; = Ay f
for d = 1,2,3,... if and only if z is in D> N ¢2. Choosing therefore a point z in
D>\ 2, we see that (ii) has a negative answer for p = 1.

Set Ng = {0, 1,2,...} and define the Hardy space H?(T) as the closed subspace
of LP(T*) consisting of the functions f whose Fourier coefficients

fo) = [ 100 dme)

are supported on N(()OO). It turns out that Hilbert’s criterion holds for H'(T*).
Theorem 3.

(i) If f is in H'(T*), then || f — Aqf|l1 = 0 as d — oco.
(ii) If (fa)a>1 is a bounded sequence in H'(T) that enjoys the chain property,
then there is a function f in H'(T*) such that f; = Aqf ford=1,2,3,....

Note that a more general version of Theorem 3 (ii) can be extracted from work of
Bourgain [3, Section 5|. In our context, Theorem 3 was first enunciated by Aleman,
Olsen and Saksman [1, Corollary 3|. To explain their approach, note that if z is in
D>\ ¢2] then it follows from the result of Cole and Gamelin that the sequence (fy)a>1
with f; as in (1) will converge weak-* to a finite Borel measure p on T* that is not
absolutely continuous (with respect to m«,). This leads us back to the F. & M. Riesz
theorem on analytic measures, which in this context can be formulated as follows.
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Theorem 4. If i1 is a finite complex Borel measure on T* whose Fourier coeffi-
cients

) = [ x o)

are supported on N(()OO), then pu is absolutely continuous.

In view of the discussion above, it is plain that Theorem 4 implies Theorem 3 (ii).
A stronger version of Theorem 4 goes back to Helson and Lowdenslager [7]. The
current version is as stated by Aleman, Olsen and Saksman [1, Corollary 1|, who
proved Theorem 4 after first establishing a version of Fatou’s theorem in the infinite
polydisc. The basic obstacle in this context is that the Poisson extension of y is in
general only defined on D> N ¢!, and the main effort in [1] is directed at obtaining a
version of Fatou’s theorem where T* is approached from D> N ¢*.

Our proof of the F. & M. Riesz theorem on T also leads to simpler proofs of The-
orem 3 and Theorem 4, since we can avoid Fatou’s theorem once we have established
suitable extensions of Lemma 2.

This line of reasoning also reveals that Theorem 3 only uses the case r = 0 of
Lemma 2, while Theorem 4 requires the full result. Inspired by this and by the
philosophy behind Hilbert’s criterion, we find it natural to incorporate Theorem 3
in the proof of Theorem 4. Amusingly, this is the reverse direction to how the two
results were established in [1].

Organization. The present note is comprised of three sections. Section 2 is
devoted to the proof of Lemma 2, while Section 3 contains some expositional material
and the proofs of Theorem 3 and Theorem 4.

2. Proof of Lemma 2

By continuity, it is sufficient to consider only those 0 < ¢ < 1 such that f does
not vanish on the circle |z| = g. Since f is analytic in D it has only a finite number
of zeros in pD. Let (o), denote these zeros (counting multiplicities) and form the
finite Blaschke product

Note that |B(z)| = 1 if |z] = 0. The functlon F = f/B is analytic and non-vanishing
when |z| < p+¢ for some ¢ > 0, due to the assumption that f does not vanish on the
circle |z| = o. This means in particular that the functions g = BF'/? and h = F1/?
are analytic for |z| < o+ € and that f = gh. We write

fole?) = f(re”),  gi(e”) = g(re”), and h.(e") = h(re”)
for 0 < r < p. The triangle inequality and the Cauchy-Schwarz inequality yield that

1Fr = Folli < Ngrhr = gohirll + lIgohr = goholls < llgr = goll2llfirll2 + [[gollo 72 = Frofo-

Since g and h are analytic for |z| < g+ ¢, their power series at the origin converge
absolutely for |z| < p. We deduce from this, orthogonality, and the trivial estimate
(Tk _ Qk‘)Q S QQk‘ _ 7,.2]4; that

lgr = ell2 < \/llgell3 = llgrlI3  and |2 = hylla < /Nl Aoll5 — I 7]f3.

Putting together what we have done so far, we find that

1 = Falle <\ 9ellB 13 = g 3R 13 + /Wl Zllgol3 — NgalZlA 13-
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Since plainly ||, [|3 < [|hl|5 and [|g,/l3 > [lg.]|3 by orthogonality, we get that

1fr = follr < 2\/HQQH%H%H§ = llgr 1317 13-

We use that |B(z)| = 1 for |z| = g to infer that ||g,||3 = || f.ll1 and ||h,||3 = || f.ll1,
and the Cauchy—Schwarz inequality to infer that || g, |32 |13 > || f-]|3- O

3. Hilbert’s criterion

We find it necessary to begin with some expository material in order to properly
set the stage for the proofs of Theorem 3 and Theorem 4.
If K is a finite subset of Z(*), then we say that the function

(2) T(x) =) axx"

rEK

is a trigonometric polynomial on T*. It follows from the definition of Z(>) that there
is for each trigonometric polynomial T" a positive integer d such that 7" only depends
on a subset of the variables x1, x2,- - -, Xa-

We let LP(T?) stand for the closed subspace of LP(T*) obtained as the closure
of the set of such trigonometric polynomials. If f is in LP(T%), then the Fourier
coefficients of f are plainly supported on sequences in Z(* of the form

(3) (K1, K2, ..., Kq,0,0,...).

Ford=1,2,3,..., die Abschnitte 20, f are formally defined as replacing the Fourier
coefficient f(x) by 0 whenever & is not of the form (3). The following result can be
obtained from density and the mean value property of trigonometric polynomials.
The proof is not difficult and we omit it.

Lemma 5. Let 1 < p < oco. Ford = 1,2,3,..., die Abschnitte 2; extend to
bounded linear operators from LP(T*) to LP(T?) satisfying
1Rl < R fllp < 12Asfllp < --- <[]l
for every f in LP(T).
We are now in a position to establish Hilbert’s criterion for LP(T*), which in

particular covers the assertion (i) of Theorem 3.
Theorem 6. Suppose that 1 < p < oo. If f is in LP(T>), then

i [[f = 2Aafll, = 0.

Proof. Fix ¢ > 0. By density, we can find a trigonometric polynomial 7" such that
|f =T, <e/2. Since T is a trigonometric polynomial, there is a positive integer dy
such that 7" is in LP(T%). It now follows from the triangle inequality and Lemma 5
that if d > dy, then

1f = RAafllp < (1 =Tllp + T =Aafllp = If = Tllp + [Aa(T = Hllp <& O

We will use a weaker and less attractive version of Lemma 2 in the proofs of
Theorem 3 (ii) and Theorem 4. We retain the notation f,(e?) = f(re) for analytic
functions f in D and 0 < r < 1, but write || - || 17 to distinguish the norm of L(T)
from the norm of L(T*).

Lemma 7. If f is analytic in D and 0 <r < p < 1, then

1 = Follirery < 2V2 I fallremyy /I follacey = 1ol ooy
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Proof. Use Lemma 2 and the fact that b* — a? < 2b(b — a) for 0 < a < b. O

A polynomial P on T* is a trigonometric polynomial (2) where the index set K is

a subset of N((fo). Polynomials on T* are nothing more than classical polynomials in,
say, d variables restricted to (x1, X2, ---,Xa4). This means we can extend polynomials
on T* to C* in the obvious way. In particular, if d; < d, then

mCllp(X) :P(X17X27"'7Xd170707'"70)-

For the proof of Theorem 3 (ii), we will use the following consequence of Lemma 7.
The basic idea to embed a slice of the disc in a polydisc is from Rudin [13, p. 44].

Lemma 8. If f is in H'(T*) and if d; < dy are positive integers, then

1, f — Aa, fll1 < 2V2/[[ ™y Il V11 Rao f 11 — 1a, £

Proof. By density and Lemma 5, it is sufficient to establish the stated estimate
for polynomials P in LP(T?). In this case, we define

F<X7 Z) = P<X17 X255 Xdiy Xdi+1%5 Xdi1+2%5 - - - 7Xd2z)
for x on T* and z in C. If y is fixed, then f(z) = F(x, z) is a polynomial and it is
permissible to use Lemma 7 with » = 0 and o = 1. We next integrate over x on T,
then finally use the Cauchy—Schwarz inequality to infer that

/ IF(x. ) = FOu 01 my dmeo(x)

<2V2 \// 1F(xs )| ey dimise (X \// (IF O ey = F (G 0)]) dmeo(x)-

The stated estimate follows from this after using that F'(y,0) = 204, P(x) twice, then
using Fubini’s theorem with the rotational invariance of m., thrice. O

Lemma 8 is the key ingredient in our proof of Theorem 3 (ii). The idea to
establish Hilbert’s criterion via a result such as Lemma 8 is from [2, Section 2.2].

Proof of Theorem 3 (ii). If (f4)a>1 is a bounded sequence in H'(T) that enjoys
the chain property, then it follows from Lemma 8 that (f;)s>1 is a Cauchy sequence in
H(T*>). Hence it must converge to some function f in H!(T*). Fourier coefficients
are preserved under convergence in L'(T*), so that Ayf = fy ford =1,2,3,.... O

In preparation for the proof of Theorem 4, we recall that a result of Cole and
Gamelin [5, Theorem 4.1] asserts that the infinite product
1— 1z
i x5 — 22

converges to a bounded function on T if and only if z is in D> N ¢!. This means

that the Poisson extension
- |Zj|
1(x)
/ H |XJ - zJP

of a finite complex Borel measure p on T* can in general only be defined in D> N ¢

Our final preparation for the proof of Theorem 4 is to recall that finite complex
Borel measures on T* are uniquely determined by their Fourier coefficients. As in
the classical setting, this is a direct consequence of the Riesz representation theorem
and the fact that trigonometric polynomials are dense in C'(T).
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Proof of Theorem 4. If y is on T*°, z is in D, and d is a positive integer, then
the point (x12, X272, - .., Xa2,0,0,...) is plainly in D> N ¢1. We can therefore define
F(x, z,d) = Bu(x1z, x22, - - -, Xaz,0,0,...).

Using Fubini’s theorem as in the classical setting discussed in the introduction, we
get that ||F(-, 0,d)||1 < ||p||- If x and d are fixed, then this and the assumption on
the support of the Fourier coefficients of p ensure that F(-, z,d) is in
HY(T?Y) = HY(T>) N LY(T%).
This assumption also ensures that if y and d are fixed, then f(z) = F(x,z,d) is
analytic in ID. Arguing as in the proof of Lemma 8, we infer from Lemma 7 that
IFC,rd) = F( 0. d) | < 2V2VIFC 0, d)[WIIEC, 0, d) [l — [[F (o d)

for 0 < r < o < 1. We infer from this that there is a function f; in H'(T%) with
| falli < ||p]] such that

lim || fq — F(-, 7, d)|l1 = 0.
r—1

It follows that (fz)a>1 is a bounded sequence in H'(T>) that enjoys the chain prop-
erty, so by Theorem 3 (ii) there is a function f in H'(T*) such that f; = 2f for
d=1,2,3,...and so f =y by Theorem 3 (i). O

It is possible to give a slightly different proof of Theorem 4 that does not use
Hilbert’s criterion. The idea (from [1]) is to consider the Poisson extensions of u to
the points (x12, X222, x32°, . ..), which are in D* N ¢! for x on T* and z in D, and
then use Lemma 7 as above.
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