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Sharp Fourier decay estimates for measures
supported on the well-approximable numbers

Robert Fraser and Thanh Nguyen

Abstract. We construct a measure on the well-approximable numbers whose Fourier transform

decays at a nearly optimal rate. This gives a logarithmic improvement on a previous construction

of Kaufman.

Hyvin arvioitavien lukujen kantamien mittojen

Fourier’n muunnosten tarkka vaimeneminen

Tiivistelmä. Tässä työssä rakennetaan hyvin arvioitavien lukujen kantama mitta, jonka Fou-

rier’n muunnos vaimenee lähes parasta mahdollista vauhtia. Tämä tuottaa logaritmisen parannuksen

verrattuna aiempaan Kaufmanin esimerkkiin.

1. Introduction and Background

1.1. Harmonic analysis on fractal sets. An interesting class of problems
in harmonic analysis involves determining information about the Fourier transform
of a compactly supported measure µ given information about the support suppµ of
the measure µ. A standard result in this area is Frostman’s lemma, which states
that if E is a set of Hausdorff dimension s, then for any t < s, there exists a Borel
probability measure µt supported on E satisfying the condition that

(1)

ˆ

ξ∈Rn

|µ̂t(ξ)|2(1 + |ξ|)−t <∞.

Frostman’s lemma states that, up to an ǫ-loss in the exponent, the set E supports a
measure whose Fourier transform decays like |ξ|−s/2 in an L2-average sense.

This version of Frostman’s lemma motivates the definition of Fourier dimension.
The Fourier dimension of a set E ⊂ Rn is the supremum of those values 0 ≤ s ≤ n
such that E supports a Borel probability measure µs satisfying the pointwise condi-
tion

(2) |µ̂s(ξ)| . (1 + |ξ|)−s/2.
Observe that the condition (2) for some value of s implies equation (1) for any t < s.
However, there is no reason to expect a converse statement to hold; in fact, if E is the
usual middle-thirds Cantor set, there is no Borel probability measure µ on E such
that |µ̂(ξ)| → 0 as |ξ| → ∞. A measure µ such that |µ̂(ξ)| → 0 as ξ → ∞ is called
a Rajchman measure. On the opposite extreme, there are a number of examples of
sets E of Hausdorff dimension s supporting Borel probability measures satisfying (2)
for all t < s. Such sets are called Salem sets.
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If s = n− 1, a simple stationary phase calculation shows that the usual surface
measure on the sphere satisfies the condition

(3) |µ̂(ξ)| ≤ (1 + |ξ|)−(n−1)/2.

This well-known computation can be found in the textbooks of Wolff [16] and Mattila
[12]. If n = 1 and 0 < s < 1, the first examples of Salem sets were given by Salem
[15] via a random Cantor set construction. A later random construction was given by
Kahane [8], who shows that if Γ: [0, 1] → Rn is a Brownian motion and E ⊂ [0, 1] is
a set of Hausdorff dimension s, then Γ(E) will almost surely have Fourier dimension
equal to 2s. Kahane [9] also constructed Salem sets using random Fourier series
whose coefficients are given by Gaussian random variables.

The first explicit, deterministic example of a Salem set of fractional dimension in
R was given by Kaufman [11]. For an exponent τ , the well-approximable numbers
E(q−τ) are defined by

E(q−τ ) =

{

x :

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

≤ q−τ for infinitely many pairs of integers (p, q)

}

.

A classical result of Jarník [7] and Besicovitch [1] states that the Hausdorff dimension
of E(q−τ ) is equal to 2

τ
. Kaufman shows that E(q−τ ) supports a Borel probability

measure µ satisfying
|µ̂(ξ)| . (1 + |ξ|)−1/τo(log |ξ|).

Bluhm [3] provides an exposition of Kaufman’s argument to prove a slightly weaker
result in which the o(log |ξ|) term is replaced by O(log |ξ|). More generally, given
a function ψ : N → [0,∞), it is of interest to consider the set of ψ-approximable
numbers

E(ψ) =

{

x :

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

≤ ψ(q) for infinitely many pairs of integers (p, q)

}

.

Hambrook [5] obtains lower bounds on the Fourier dimension of such sets in terms
of the function ψ.

1.2. Some problems in geometric measure theory. In this paper, we will
consider the question of locating sets E satisfying more precise estimates than (2)
under the constraint that E has finite Hausdorff measure. As a motivating example,
consider the (n−1)-dimensional sphere in Rn. This set has positive and finite (n−1)-
dimensional Hausdorff measure and supports a measure µ with Fourier transform
satisfying (3). Mitsis [13] posed the following problem.

Problem 1.1. (Mitsis’s problem) For which values of 0 < s < n does there exist
a measure µ such that µ simultaneously satisfies the ball condition

µ(B(x, r)) ∼ rs for all x ∈ supp µ and all r > 0

and the Fourier decay condition

|µ̂(ξ)| ≤ |ξ|−s/2?
We will consider a related problem. Let 0 ≤ s ≤ n. Recall that a subset E of Rn

is said to be an s-set if the Hausdorff measure Hs(E) satisfies 0 < Hs(E) <∞.

Problem 1.2. (Fourier transform on s-sets) For which values of 0 < s < n does
there exist an s-set E supporting a measure µ such that µ satisfies the Fourier decay
condition

|µ̂(ξ)| ≤ |ξ|−s/2?
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Of course, such a set E must be a Salem set of Hausdorff dimension s.
This problem can be extended to a question about generalized Hausdorff dimen-

sion. Recall that a positive, increasing function α is said to be a dimension function

if α(u) → 0 as u → 0. We will say that E is an α-set if 0 < Hα(E) < ∞, where
Hα is the generalized Hausdorff measure associated to α. The following question
generalizes the previous one:

Problem 1.3. (Fourier transform on α-sets) For which dimension functions α
does there exist an α-set E supporting a measure µ such that µ satisfies the Fourier
decay condition

|µ̂(ξ)| .
√

α(1/ξ) for |ξ| ≥ 1?

We conjecture that the only such dimension functions α are integer powers α(u) =
u−s for integers 0 ≤ s ≤ n.

On the other hand, we also wish to pose the problem of determining the opti-
mal Fourier decay estimates for measures supported on the set of well-approximable
numbers E(ψ).

Problem 1.4. (Fourier decay of measures supported on E(ψ)) Fix a function
ψ. For which functions Θ does there exist a measure µ supported on E(ψ) such that

|µ̂(ξ)| . Θ(ξ)?

Although we are unable to answer Problems 1.2, 1.3, and 1.4 in this work, we are
able to obtain “near"-answers to all three of these questions if the dimension function
α or the approximation function ψ decay at a polynomial rate.

1.3. Notation. In this paper, constants are always allowed to depend on the pa-
rameters τ, σ, and ρ. Any dependence on these parameters will always be suppressed
for simplicity of notation.

If A and B are any two quantities, we write A = O(B) or A . B to imply that
A ≤ CB for some constant C that does not depend on A or B (but may depend on
τ, σ, or ρ). We write B & A to mean the same thing as A . B. If A . B and B . A,
we write A ∼ B. If the implicit constant in any of these inequalities is allowed to
depend on some other parameter such as ǫ, we write A .ǫ B, A &ǫ B, or A ∼ǫ B.

If A(x) and B(x) are functions of a variable x, we write A(x) / B(x) if A(x) .ǫ

xǫB(x) for every ǫ > 0. So, for example, we write

x3 exp(
√

log x) log x log log x / x3.

If A(x) / B(x) and B(x) / A(x), we write A(x) ≈ B(x).
We write A≪ B to mean that A is much less than B. This should be viewed as

informal notation to help the reader keep in mind the sizes of the various parameters.

2. Results

First, we describe a result in the direction of Problem 1.4.

Theorem 2.1. Let ψ(q) be an arbitrary nonnegative, decreasing function satis-

fying the conditions

(4) 2 < lim
q→∞

− log(ψ(q))

log q
= τ <∞.
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Suppose also that there exists σ > 1 such that ψ satisfies the polynomial-type decay

condition

(5)
ψ(q1)

ψ(q2)
≥
(

q2
q1

)σ

for q2 > q1 sufficiently large.

Suppose further that 1 ≤ χ(q) ≤ log q is a nonnegative function that satisfies

(6)

∞
∑

q=1
q prime

1

qχ(q)
= ∞.

and also satisfies the subpolynomial-type growth condition for any ǫ > 0:

(7)
χ(q2)

χ(q1)
<

(

q2
q1

)ǫ

for q1, q2 sufficiently large depending on ǫ.

Then for any increasing function ω with limξ→∞ ω(ξ) = ∞, there exists a Borel

probability measure µ supported on a compact subset of the ψ-well-approximable

numbers satisfying the estimate

(8) |µ̂χ,ω(ξ)| .
ω(|ξ|)

ψ−1(1/|ξ|)χ(ψ−1(1/|ξ|)) for all ξ ∈ R.

In order to simplify our notation, we define

(9) θ(ξ) :=
1

ψ−1(1/ξ)χ(ψ−1(1/ξ))
.

Remark 2.2. If ψ(q) = q−τ , Theorem 2.1 gives estimates that improve on those
of Kaufman [11]. In this case, the estimate (8) becomes

|µ̂χ,ω(ξ)| . |ξ|−1/τ ω(|ξ|)
χ(|ξ|1/τ) .

Observe that, for example, the choice χ(q) = log log q satisfies (6). On the other
hand, ω can be taken to be any function that increases to ∞, so it is possible to
choose ω(ξ) = log log log ξ, for example. Hence there exists a measure µ supported
on the well-approximable numbers satisfying

|µ̂(ξ)| . |ξ|−1/τ log log log |ξ|
log log |ξ| ≪ |ξ|−1/τ .

Our next result is in the direction of Problem 1.3.

Theorem 2.3. Let α be a dimension function with

(10) 0 < lim
x→0

logα(x)

log x
= ν <∞

and for some ρ < 1 such that

(11)
α(x1)

α(x2)
≥
(

x1
x2

)ρ

for sufficiently small x1 < x2. Let ω be an increasing function such that limξ→∞ ω(ξ) =
∞. Then there exists a compact set Fα of zero α-Hausdorff measure such that there

exists a measure µα,ω supported on Fα satisfying

|µ̂(ξ)| .
√

α(1/|ξ|)ω(|ξ|)
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for all ξ 6= 0. Such a set is given by an appropriately chosen subset of the well-

approximable numbers E(ψ) where

(12) ψ(q) = α−1
(

q−2
)

.

Remark 2.4. Although this does not provide an answer to Problem 1.3, it comes
within an arbitrarily slowly growing function of answering this problem. In other
words, any improvement on the estimate of Theorem 2.3 will give an answer to
Problem 1.3.

Remark 2.5. Observe that the condition (10) on α implies the condition (4) on
ψ for τ = 2/ν. A simple calculation also shows that the condition (11) implies the
condition (5) with σ = 2/ρ. This is the only way in which the assumptions (10) and
(11) will be used.

Finally, we show that, for any decreasing approximation function ψ, the set E(ψ)
supports a Rajchman measure. This improves a result of Bluhm [4] constructing a
Rajchman measure supported on the set of Liouville numbers.

Theorem 2.6. For an arbitrary nonnegative, decreasing function ψ there exists

a Rajchman measure, µ, supported on a compact subset of the ψ-well-approximable

numbers.

In a recent work, Polasek and Rela [14] improve Bluhm’s result in a different way
by showing an explicit Fourier decay bound on the set of Liouville numbers. They
show that if f : R+ → R+ is any function such that

lim sup
ξ→∞

ξ−α

f(ξ)
= 0 for all α > 0,

then there exists a measure µf supported on the set of Liouville numbers such that
|µ̂f(ξ)| . f(|ξ|) for all ξ; on the other hand, if g : R+ → R+ is any function such that

lim inf
ξ→∞

ξ−α

f(ξ)
> 0 for some α > 0,

then there does not exist a measure µg supported on the set of Liouville numbers
such that |µ̂g(ξ)| . g(|ξ|) for all ξ ∈ R.

3. Convolution stability lemmas

The proofs of the main results of this paper rely on the construction of a sequence
of functions which will approximate the measures that satisfy the statements of the
theorem. The functions of the sequence are themselves a product of functions. In
the frequency space, these products become convolutions and a major component of
the proof is show that the Fourier decay estimates of these functions remain stable
as the number of convolutions tends to infinity. The following two lemmas will be
referred to when making an argument for stability by induction. This first lemma
will be applied to Theorem 2.1 and Theorem 2.3.

Lemma 3.1. (Convolution Stability Lemma) Let ψ and χ be as in Theorem 2.1,

and let θ(ξ) be as in (9). Let ω : N → R+ be a function that increases to infinity

such that ω(t) ≤ log t for t ≥ 2. Suppose that N1 > 0 and suppose that that N2 is

sufficiently large depending on ω and N1. Moreover, let G,H : Z → C be functions
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satisfying the following bounds for some large number N3 > N2:

|G(s)| ≤ 1 for all s ∈ Z,(13)

G(0) = 1,(14)

G(s) = 0, 0 < |s| ≤ N2,(15)

|G(s)| . θ(|s|) everywhere,(16)

|G(s)| . exp

(

−1

2

∣

∣

∣

∣

s

2N3

∣

∣

∣

∣

σ+1
4σ

)

when |s| ≥ 2N3,(17)

|H| ≤ 2,(18)

|H(s)| ≤ exp

(

−1

2

∣

∣

∣

∣

s

8N1

∣

∣

∣

∣

σ+1
4σ

)

when |s| ≥ 8N2
1 .(19)

Then

|H ∗G(s)−H(s)| ≤ N−99
2 when 0 ≤ |s| < N2/4,(20)

|H ∗G(s)| . θ(|s|)ω(|s|) when |s| ≥ N2/4,(21)

|H ∗G(s)| ≤ exp

(

−1

2

∣

∣

∣

∣

s

8N3

∣

∣

∣

∣

σ+1
4σ

)

when |s| ≥ 8N2
3 .(22)

A different version of this lemma will be applied to prove Theorem 2.6.

Lemma 3.2. (Convolution Stability Lemma 2) Let ψ be as in Theorem 2.6. Let

N1 > 0, and let δ < 1
N3

1
. Suppose that N2 is some number that is sufficiently large

depending on ω and N1. Moreover, let G,H : Z → C be functions satisfying the

following bounds for some N3 > N2:

|G(s)| ≤ 1 for all s ∈ Z,(23)

G(0) = 1,(24)

G(s) = 0, 0 < |s| ≤ N2,(25)

|G(s)| . δ, s 6= 0,(26)

|G(s)| . exp

(

−1

2

∣

∣

∣

∣

s

2N3

∣

∣

∣

∣

3
4

)

when |s| ≥ 2N3,(27)

|H| ≤ 2,(28)

|H(s)| ≤ exp

(

−1

2

∣

∣

∣

∣

s

8N1

∣

∣

∣

∣

3
4

)

when |s| ≥ 8N2
1 .(29)

Then

|H ∗G(s)−H(s)| ≤ N−99
2 when 0 ≤ |s| < N2/4,(30)

|H ∗G(s)| . δ1/3 when |s| ≥ N2/4,(31)

|H ∗G(s)| ≤ exp

(

−1

2

∣

∣

∣

∣

s

8N3

∣

∣

∣

∣

3
4

)

when |s| ≥ 8N2
3 .(32)

Before proving these lemmas, we need a preliminary estimate on θ. We will show
that the function θ(ξ) decays like ξ−1/τ up to an ǫ-loss in the exponent.
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Lemma 3.3. Let ψ, χ be as in Theorem 2.1, and let θ(ξ) be as in (9). Then

θ(|ξ|) ≈ |ξ|− 1
τ for large |ξ|.

Proof. Since ψ(q) ≈ q−τ by assumption, we have that ψ−1(t) ≈ t−1/τ . A similar
argument shows that χ(t) ≈ 1. Hence χ(ψ−1(1/|ξ|)) ≈ 1. Thus

�(33)
1

ψ−1(1/|ξ|)χ(ψ−1(1/|ξ|)) ≈ |ξ|−1/τ .

3.1. Proof of Lemma 3.1.

Proof. First, we prove (20). Assume that 0 ≤ |s| ≤ N2/4. Rewrite the expression
as

|H ∗G(s)−H(s)| =
∣

∣

∣

∣

∣

∑

t∈Z

H(s− t)G(t)−H(s)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

H(s)G(0)−H(s) +
∑

t6=0

H(s− t)G(t)

∣

∣

∣

∣

∣

≤
∑

t6=0

|H(s− t)G(t)|.

Observe that we need only consider summands such that |t| ≥ N2 because G(t) =
0 for |t| < N2. The previous expression becomes

∑

|t|≥N2

|H(s− t)G(t)|.

Apply the bound (13) to |G(t)|. Notice that |s−t| ≥ |t|/2 ≫ N1 when |s| < N2/4.
We may apply (19) with |t|/2 in place of s to get an upper bound given that the
bounding function is decreasing. Hence

∑

|t|≥N2

|H(s− t)G(t)| ≤
∑

|t|≥N2

exp

(

−1

2

∣

∣

∣

∣

t

16N1

∣

∣

∣

∣

σ+1
4σ

)

≤ N−99
2 .

The last inequality holds provided that N2 is sufficiently large depending on N1.
The next task is to prove the estimate (21). Now assume that |s| ≥ N2/4. We

have the inequality

|H ∗G(s)| ≤ I + II,

where

I =
∑

|t|<8N2
1

|H(t)G(s− t)|,

and

II =
∑

|t|≥8N2
1

|H(t)G(s− t)|.

Beginning with the sum I, we apply (18) and observe that if N2 is sufficiently
large depending on N1, then |s − t| ≥ |s| − |t| ≥ |s|/2 when |s| ≥ N2/4. Then we
may apply (16) with |s|/2 in place of |s| to get

I . θ(|s|/2)
∑

|t|<8N2
1

1 . θ(|s|/2)ω(|s|),
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provided that N2 is sufficiently large depending on ω and N1 so that the final in-
equality holds. To complete the proof, we need to show that θ(|s|/2) . θ(|s|). This
will be shown in Lemma 4.2.

To bound the sum II, write

II = A + B,

where

A =
∑

|t|≥8N2
1

|s−t|≤|s|/2

|H(t)G(s− t)|,

and

B =
∑

|t|≥8N2
1

|s−t|>|s|/2

|H(t)G(s− t)|.

To estimate the sum A, we apply (13) and (19). Observe that |s − t| ≤ |s|/2
implies that |t| ≥ |s|/2. Thus, |t| > 8N2

1 when |s| ≥ N2/4. Therefore

A .
∑

|t|≥|s|/2

exp

(

−1

2

∣

∣

∣

∣

t

8N1

∣

∣

∣

∣

σ+1
4σ

)

.

By the integral test, we get the following upper bound for A:

A .

ˆ ∞

|s|/2

exp

(

−1

2

∣

∣

∣

∣

t

8N1

∣

∣

∣

∣

σ+1
4σ

)

dt.

Observe that the integrand is decaying nearly exponentially. From (33), we may
conclude

A . θ(|s|).
For the sum B, we apply (16) to G. Additionally, we may apply (19). Doing

this, we have that

B . θ(|s|)
∑

|t|≥8N2
1

exp

(

−1

2

∣

∣

∣

∣

t

8N1

∣

∣

∣

∣

σ+1
4σ

)

. θ(|s|)

where the last inequality is implied by

∑

|t|≥8N2
1

exp

(

−1

2

∣

∣

∣

∣

t

8N1

∣

∣

∣

∣

σ+1
4σ

)

≤ 1.

Combining the bounds for I and II completes the proof for (21). We turn now to
proving (22). Assume |s| ≥ 8N2

3 . We decompose the convolution as

|H ∗G(s)| ≤ I + II,

where

I =
∑

|t|<|s|/2

|H(s− t)G(t)|

and

II =
∑

|t|≥|s|/2

|H(s− t)G(t)|.
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Starting with I, we apply (13). Then use the fact that |s− t| ≥ |s|/2, and apply
(19) with s/2 in place of s. Then

I .
∑

|t|<|s|/2

exp

(

−1

2

∣

∣

∣

∣

s

16N1

∣

∣

∣

∣

σ+1
4σ

)

.

There are at most |s|+ 1 summands in the above sum. Therefore

I . |s| exp
(

−1

2

∣

∣

∣

∣

s

16N1

∣

∣

∣

∣

σ+1
4σ

)

.

We may absorb the linear factor and implicit constant by choosing a smaller negative
power. Hence, provided that N2 (and thus N3) are sufficiently large depending on
N1, we have that

I ≤ 1

2
exp

(

−1

2

∣

∣

∣

∣

s

8N3

∣

∣

∣

∣

σ+1
4σ

)

.

For the sum II, apply the bounds (17) and (18) to get

II .
∑

|t|>|s|/2

exp

(

−1

2

∣

∣

∣

∣

t

2N3

∣

∣

∣

∣

σ+1
4σ

)

.

To bound the above sum, we use the integral test. Thus

II .

ˆ

t>|s|/2

exp

(

−1

2

∣

∣

∣

∣

t

2N3

∣

∣

∣

∣

σ+1
4σ

)

dt.

To estimate this integral, we begin with a substitution. Let

u =
1

2

∣

∣

∣

∣

t

2N3

∣

∣

∣

∣

σ+1
4σ

.

Then

du =
σ + 1

16σN3

∣

∣

∣

∣

t

2N3

∣

∣

∣

∣

−3σ+1
4σ

dt.

The integral may be rewritten as

16σN3

σ + 1

ˆ ∞

t=|s|/2

exp (−u) (2u)
3σ−1
σ+1 du.

Integrating by parts yields
(

16σN3

σ + 1

)(

− exp(−u) (2u) 3σ−1
σ+1

∣

∣

∞

t=|s|/2
+

6σ − 2

σ + 1

ˆ ∞

t=|s|/2

exp (−u) (2u) 3σ−1
σ+1

−1 du

)

.

It is easy to see that expression above is dominated by the first term and the
integral is an error term. We consider only the first term in the estimate and evaluate
the endpoints to get

II . N3 exp

(

−1

2

∣

∣

∣

∣

s

4N3

∣

∣

∣

∣

σ+1
4σ

)

∣

∣

∣

∣

s

4N3

∣

∣

∣

∣

3σ−1
4σ

.
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Because |s| ≥ 8N2
3 and because N3 is large, We may absorb the power of s and

the implicit constant by choosing a smaller negative power. Hence, if N2 and thus
N3 is sufficiently large, then

II ≤ 1

2
exp

(

−1

2

∣

∣

∣

∣

s

8N3

∣

∣

∣

∣

σ+1
4σ

)

.

Combining the estimates on I and II completes the proof of the lemma. �

3.2. Proof of Lemma 3.2. The proof of Lemma 3.2 shares many similarities
with the proof of Lemma 3.1.

Proof. Beginning with (30), assume |s| ≤ N2/4 and write

|H ∗G(s)−H(s)| ≤
∑

|t|≥N2

|H(s− t)G(t)|.

If |s| ≤ N2/4 and |t| ≥ N2, then |s− t| ≥ |t|/2. So we can apply the estimate (29)
with |t|/2 in place of s and the estimate (26). Then

|H ∗G(s)−H(s)| . δ
∑

|t|≥N2

exp

(

−1

2

∣

∣

∣

∣

t

16N1

∣

∣

∣

∣

3
4

)

≤ N−99
2

provided that N2 is sufficiently large depending on N1. In order to prove the estimate
(31), we assume |s| ≥ N2/4. Write

|H ∗G(s)| ≤ I + II,

where
I =

∑

|t|<8N2
1

|H(t)G(s− t)|

and
II =

∑

|t|≥8N2
1

|H(t)G(s− t)|.

For the sum I, apply the estimates (28) and (26). Then

I . δ
∑

|t|<8N2
1

1 . δN2
1 < δ1/3,

where the final inequality follows from the fact that δ < 1
N3

1
.

For the sum II, consider the term where s = t separately from other summands.
Write

II =
∑

|t|≥8N2
1

s 6=t

|H(t)G(s− t)|+ |H(s)G(0)|.

Apply the estimates (29), (26) and (24). Then

II . δ
∑

|t|≥8N2
1

s 6=t

exp

(

−1

2

∣

∣

∣

∣

t

8N1

∣

∣

∣

∣

3
4

)

+ exp

(

−1

2

∣

∣

∣

∣

s

8N1

∣

∣

∣

∣

3
4

)

. δ1/3.

The last inequality is implied by the bounds

∑

|t|≥8N2
1

s 6=t

exp

(

−1

2

∣

∣

∣

∣

t

8N1

∣

∣

∣

∣

3
4

)

. 1
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and

exp

(

−1

2

∣

∣

∣

∣

s

8N1

∣

∣

∣

∣

3
4

)

. δ1/3.

For the final estimate (32), assume |s| ≥ 8N2
3 and write

|H ∗G(s)| ≤ I + II,

where

I =
∑

|t|<|s|/2

|H(s− t)G(t)|

and

II =
∑

|t|≥|s|/2

|H(s− t)G(t)|.

For the sum I, use the fact that |s− t| ≥ |s|/2 and apply (23) and (29) with |s|/2.
Then

I .
∑

|t|<|s|/2

exp

(

−1

2

∣

∣

∣

∣

s

16N1

∣

∣

∣

∣

3
4

)

. |s| exp
(

−1

2

∣

∣

∣

∣

s

16N1

∣

∣

∣

∣

3/4
)

.

Because s ≥ N2

4
≫ N2

1 , it follows that if N2 (and thus N3) are large enough depending
on N1, both the factor of |s| and the implicit constant can be absorbed by changing
the denominator in the exponent. Thus we have the estimate

I ≤ 1

2
exp

(

−1

2

∣

∣

∣

∣

s

8N3

∣

∣

∣

∣

3
4

)

.

For the sum II, apply (28) and (27) with |t| in place of s. Then

II .
∑

|t|>|s|/2

exp

(

−1

2

∣

∣

∣

∣

t

2N3

∣

∣

∣

∣

3
4

)

.

By a similar argument to the one appearing in the proof of Lemma 3.1, we therefore
have the estimate

II ≤ 1

2
exp

(

−1

2

∣

∣

∣

∣

s

8N3

∣

∣

∣

∣

3
4

)

.

Combining the estimates on I and II completes the proof of Lemma 3.2. �

4. Doubling functions

Definition 4.1. If f : R+ → R+ is a decreasing or eventually decreasing function,
we say that f is doubling if f(ξ/2) . f(ξ) for all sufficiently large ξ.

We will need a few basic facts about doubling functions.

Lemma 4.2. The function θ(ξ) is doubling.

Proof. The fact that θ(ξ) ≈ ξ−1/τ implies that θ(ξ) is eventually decreasing. To
see that θ(ξ) is doubling, note that for sufficiently large q1 and q2 with q1 < q2, we
have the assumption (5), which is reproduced below for convenience.

ψ(q1)

ψ(q2)
≥
(

q2
q1

)σ

.
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Since ψ−1 is decreasing, we have that ψ−1(1/ξ) > ψ−1(2/ξ). If ξ is sufficiently large
that (5) applies with q1 = ψ−1(2/ξ) and q2 = ψ−1(1/ξ), then we have

ψ(q1)

ψ(q2)
=

2/ξ

1/ξ
≥
(

ψ−1(1/ξ)

ψ−1(2/ξ)

)σ

.

Hence

θ(ξ/2)

θ(ξ)
=
ψ−1(1/ξ)χ(ψ−1(1/ξ))

ψ−1(2/ξ)χ(ψ−1(2/ξ))
≤
(

ψ−1(1/ξ)

ψ−1(2/ξ)

)1+ǫ

≤ 2(1+ǫ)/σ.

Hence θ(ξ) is doubling. �

Next, we show under very general conditions that a function with limit 0 must
admit a decreasing, doubling majorant.

Lemma 4.3. Suppose that M : Z → C is any function such that |M(s)| → 0 as

|s| → ∞. Then there is a decreasing function N : R+ → R+ such that N(ξ) → 0 as

ξ → ∞ satisfying the doubling property such that |M(s)| ≤ N(|s|) for all s ∈ Z.

Proof. First, we replace M by a decreasing function M1 : R
+ → R+ as follows.

For s ∈ N, define

M1(s) = sup
|t|≥s

|M(t)|.

Then M1 is decreasing on [0,∞), |M(s)| ≤M1(|s|) for all s ∈ Z, and lims→∞M1(s) =
0.

We construct N by taking the average of M1. For ξ ∈ R+, define

N(ξ) =
1

⌊ξ⌋+ 1

∑

t∈N
t≤ξ

M1(t).

As N is an average of a decreasing function, it follows that N is decreasing; moreover,
since M1(t) → 0 as t → ∞, it follows that N(ξ) → 0 as ξ → ∞. Furthermore, it is
easy to see that M1(s) ≤ N(s) for s ∈ N:

N(s) =
1

s+ 1

s
∑

t=0

M1(t) ≥
1

s+ 1

s
∑

t=0

M1(s) =
1

s+ 1
(s+ 1)M1(s) =M1(s),

So |M(s)| ≤M1(|s|) ≤ N(|s|)) for all s ∈ Z.
It only remains to verify that N(s) has the doubling property (63). We have for

s 6= 0 that

N(s/2) =
1

⌊s/2⌋ + 1

∑

t≤s/2
t∈N

M1(t)

≤ 1

⌊s/2⌋+ 1

∑

t≤⌊s/2⌋
t∈N

M1(t) +
1

⌊s/2⌋ + 1

∑

⌊s/2⌋+1≤t≤2⌊s/2⌋+1
t∈N

M1(t)

≤ 1

⌊s/2⌋+ 1

∑

t≤⌊s/2⌋
t∈N

M1(t) +
1

⌊s/2⌋ + 1

∑

⌊s/2⌋+1≤t≤s+1
t∈N

M1(t)

≤ 2

2⌊s/2⌋+ 2

∑

t≤s+1
t∈N

M1(t) ≤
2

s

∑

t≤s+1
t∈N

M1(t)
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≤ 2

s

∑

t≤s
t∈N

M1(t) +
2

s
M1(s+ 1) ≤ 2

s

∑

t≤s
t∈N

M1(t) +
2

s

∑

t≤s
t∈N

M1(t)

≤ 4

s

∑

t≤s
t∈N

M1(t) ≤
8

s+ 1

∑

t≤s
t∈N

M1(t) = 8N(s),

as desired. �

5. Single-factor estimates

5.1. Single-factor estimates for Theorem 2.1 and Theorem 2.3. In this
section, we construct a function gk with its support contained in intervals centered
at rational numbers with denominator close to some number Mk. Let ψ(q) be a
function satisfying (4) and (5). Suppose χ(q) is a function satisfying (6). In the case
of Theorem 2.3, we take χ(q) ≡ 1.

Let Mk be a large positive integer. We choose an integer β(Mk) and a positive
real number Ck so that

1 ≤
∑

Mk≤q≤β(Mk)
q prime

1

qχ(q)
= Ck ≤ 2.

The support of gk will be contained in a family of intervals centered at rational
numbers whose denominator is a prime number between Mk and β(Mk).

We choose a nonnegative function φ ∈ C∞
c with support in the interval [−1/2, 0]

satisfying the conditions

(34) φ̂(0) = 1

and

(35) φ̂(s) . exp
(

−|s|σ+1
2σ

)

.

The existence of such a function is guaranteed by a result of Ingham [6].
Let

φp,q(x) =
1

q2χ(q)ψ(q)
φ

(

1

ψ(q)

(

x− p

q

))

.

Now define

gk(x) = C−1
k

∑

Mk≤q<β(Mk)
q prime

q
∑

p=1

φp,q(x).

Observe that the function gk is supported on the interval [0, 1].

Lemma 5.1. Suppose gk is defined as above. Then we have the following esti-

mates for s ∈ Z:

ĝk(0) = 1,(36)

ĝk(s) = 0 if 0 < |s| < Mk,(37)

|ĝk(s)| . θ(|s|) if s 6= 0,(38)

|ĝk(s)| . exp

(

−1

2
(ψ(β(Mk))

2|s|)σ+1
4σ

)

if |s| ≥ ψ(β(Mk))
−2.(39)
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Proof. A simple calculation gives us that

ĝk(s) = C−1
k

∑

Mk≤q<β(Mk)
q prime

1

q2χ(q)

q
∑

p=1

e

(

p

q
s

)

φ̂ (ψ(q)s)

where e(u) = e−2πiu. The sum in p has the value

q
∑

p=1

e

(

p

q
s

)

=

{

q if q | s,
0 if q ∤ s.

Therefore, if s = 0, then the above sum will be equal to 1, and if 0 < |s| < Mk,
then the above sum will vanish. This proves (36) and (37). Thus,

ĝk(s) = C−1
k

∑

Mk≤q<β(Mk)
q prime

q|s

φ̂ (ψ(q)s)

qχ(q)
.

For |s| ≥ Mk, we split the above sum into three pieces according to the size of q.
We write

ĝk(s) = C−1
k (I + II + III),

where

I =
∑

q≥ψ−1(1/|s|)
q prime

q|s

φ̂ (ψ(q)s)

qχ(q)
,

II =
∑

ψ−1(1/
√

|s|)≤q≤ψ−1(1/|s|)
q prime

q|s

φ̂ (ψ(q)s)

qχ(q)
,

III =
∑

q<ψ−1(1/
√

|s|)
q prime

q|s

φ̂ (ψ(q)s)

qχ(q)
.

Estimate for I. For the sum I, we observe that the number of summands is . 1.
This observation is a consequence of assumption (4) since it is implied that for a
large enough q depending on ǫ we have,

q−τ−ǫ ≤ ψ(q) ≤ q−τ+ǫ

which gives us

t−
1

τ+ǫ ≤ ψ−1(t) ≤ t−
1

τ−ǫ ,

since ψ is decreasing. Taking logarithms, we conclude

(40)
1

τ + ǫ
log |s| ≤ logψ−1

(

1

|s|

)

≤ 1

τ − ǫ
log |s|.

Hence, the number of summands in the sum I is at most log |s|
logψ−1(1/|s|)

. 1.
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Apply the bound φ̂ (ψ(q)s) ≤ 1 to each summand to get

∑

q≥ψ−1(1/|s|)
q prime
q|s

φ̂ (ψ(q)s)

qχ(q)
. θ(|s|).

Estimate for II. For the sum II, we observe that there are . 1 summands by
a similar argument as for the sum I. We apply the bound (35) to show that the
summand is bounded above by

exp(−|ψ(q)s|σ+1
2σ )

qχ(q)
.

If q = ψ−1(1/|s|), then

(41)
exp(−|ψ(q)s|σ+1

2σ )

qχ(q)
. θ(|s|).

It is enough to show for each q < ψ−1(1/|s|) that

(42)
exp(−|ψ(q + 1)s|σ+1

2σ )

(q + 1)χ(q + 1)
− exp(−|ψ(q)s|σ+1

2σ )

qχ(q)
> 0.

If the inequality (42) holds for all q < ψ−1
(

1
|s|

)

, then the summand is increasing in

this domain, and is therefore maximized when q = ψ−1
(

1
|s|

)

, establishing the bound

(41) for such q.
In order to establish (42), it is enough to verify that the numerator of the differ-

ence is positive. This numerator is

exp(−|ψ(q + 1)s|σ+1
2σ )qχ(q)− exp(−|ψ(q)s|σ+1

2σ )(q + 1)χ(q + 1).

Since the logarithm is an increasing function, it is enough to show that

−|ψ(q + 1)s|σ+1
2σ + log q + logχ(q) > −|ψ(q)s|σ+1

2σ + log(q + 1) + logχ(q + 1).

This inequality is equivalent to

(43) log(q + 1)− log q + logχ(q + 1)− logχ(q) < |s|σ+1
2σ

(

ψ(q)
σ+1
2σ − ψ(q + 1)

σ+1
2σ

)

.

The Taylor series for the logarithm guarantees that log(q+1)− log q = 1
q
+O

(

1
q2

)

; the

subpolynomial growth condition (7) guarantees that logχ(q + 1)− logχ(q) = o
(

1
q

)

.

In total, the left side of inequality (43) is 1
q
+ o
(

1
q

)

. On the other hand, since we are

in the regime where q < ψ−1(1/|s|), the right side of (43) is bounded below by

|s|σ+1
2σ (ψ(q)

σ+1
2σ − ψ(q + 1)

σ+1
2σ ) ≥ 1−

(

ψ(q + 1)

ψ(q)

)
σ+1
2σ

.

By (5), we have
(

ψ(q + 1)

ψ(q)

)
σ+1
2σ

≤
(

q

q + 1

)
σ+1
2

.

Hence,

1−
(

ψ(q + 1)

ψ(q)

)
σ+1
2σ

≥ 1−
(

q

q + 1

)
σ+1
2

=

(

σ + 1

2

)

1

q
+O

(

1

q2

)

.
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Since σ+1
2

> 1, we see that the inequality (43) holds for ψ−1(1/
√

|s|) ≤ q ≤
ψ−1(1/|s|) provided that Mk (and hence |s|) is sufficiently large.

Hence we have the estimate

II . θ(|s|).
Estimate for III. For the final sum, we apply the estimate (35) to φ̂ to get

∑

q<ψ−1(1/
√

|s|)
q prime

q|s

φ̂ (ψ(q)s)

qχ(q)
.

∑

q<ψ−1(1/
√

|s|)
q prime

q|s

exp
(

− |ψ(q)s|σ+1
2σ

)

q

≤
∑

q<ψ−1(1/
√

|s|)
q prime

q|s

exp
(

− |s|σ+1
4σ

)

q

≤ exp
(

− |s|σ+1
4σ

)

log
(

ψ−1(1/
√

|s|)
)

. θ(|s|).

For the estimate (39), we observe that |s| is sufficiently large for the estimate

(35) to apply to φ̂ for every q ∈ [Mk, β(Mk)]. As such

|ĝk(s)| .
∑

Mk≤q≤β(Mk)
q prime

q|s

exp
(

−(ψ(q)|s|)σ+1
2σ

)

χ(q)q
≤

∑

Mk≤q≤β(Mk)
q prime

q|s

exp
(

−(ψ(β(Mk))|s|)
σ+1
2σ

)

χ(Mk)Mk
.

The inequality |s| ≥ ψ(β(Mk))
−2 gives us ψ(β(Mk)) ≥ 1√

|s|
. Therefore,

|ĝk(s)| .
∑

Mk≤q≤β(Mk)
q prime
q|s

exp
(

−|s|σ+1
4σ

)

χ(Mk)Mk

.

Observe that the number of summands is less than β(Mk). Moreover, we may
disregard the denominator, for large Mk, to derive an upper bound. Hence,

|ĝk(s)| . β(Mk) exp
(

−|s|σ+1
4σ

)

.

Now, we need to eliminate the β(Mk) term from the estimate, but this will be at
the cost of some decay from the exponent. Rewrite the above inequality as

|ĝk(s)| . β(Mk) exp

(

−1

2
|s|σ+1

4σ

)

exp

(

−1

2
|s|σ+1

4σ

)

≤ β(Mk) exp

(

−1

2
ψ(β(Mk))

−σ+1
2σ

)

exp

(

−1

2
|s|σ+1

4σ

)

(44)

when we apply |s| ≥ ψ(β(Mk))
−2. From the equation (4), when Mk is large enough

we have
1

2
τ ≤ − logψ(β(Mk))

log β(Mk)
≤ 2τ
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which may be rewritten as

−1

2
τ log β(Mk) ≥ logψ(β(Mk)) ≥ −2τ log β(Mk).

Exponentiating gives

(45) β(Mk)
− 1

2
τ ≥ ψ(β(Mk)) ≥ β(Mk)

−2τ .

Applying the upper bound from the equation (45) to (44), we get

|ĝk(s)| . β(Mk) exp

(

−1

2
β(Mk)

τ(σ+1)
4σ

)

exp

(

−1

2
|s|σ+1

4σ

)

.

For large Mk, we observe that the exponential term dependent on Mk is decaying
much faster than β(Mk). Hence,

|ĝk(s)| . exp

(

−1

2
|s|σ+1

4σ

)

. exp

(

−1

2
(ψ(β(Mk))

2|s|)σ+1
4σ

)

. �

5.2. Single-factor estimate for Theorem 2.6. In the case of Theorem 2.6,
it is more convenient to choose the function gk to be supported in a neighborhood
of rational numbers with different denominators at very different scales. Thus, only
one denominator will meaningfully contribute to the value of |ĝk(s)|.

As in Subsection 5.1, we begin by defining a smooth function φ with its support
in the interval [−1/2, 0] satisfying the conditions

(46) φ̂(0) = 1

and

(47) φ̂(s) . exp
(

−|s|3/4
)

.

Let nk be an increasing sequence of integers to be specified later. For a given k,
we choose prime numbers qk,1, . . . , qk,nk

as follows. First, we choose qk,1 to be a large
prime number. We choose the remaining qk,j so that qk,2 ≫ 1

ψ(qk,1)
, qk,3 ≫ 1

ψ(qk,2)
,. . .,

qk,nk
≫ 1

ψ(qk,nk−1
)
. Furthermore, we also assume that for each j, we have

(48) max

(

1

qk,j
, ψ(qk,j)

)

<
1

2
ψ(qk,j−1).

Define

gk(x) =
1

nk

nk
∑

j=1

1

qk,jψ(qk,j)

qk,j
∑

p=1

φ

(

1

ψ(qk,j)

(

x− p

qk,j

))

.

Then

ĝk(s) =
1

nk

nk
∑

j=1

1

qk,j

qk,j
∑

p=1

φ̂(ψ(qk,j)s) e

(

p

qk,j
s

)

.

Remove any terms for which qk,j does not divide s to get

(49) ĝk(s) =
1

nk

∑

1≤j≤nk

qk,j |s

φ̂(ψ(qk,j)s).
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Lemma 5.2. Suppose that gk is defined as above. Then we have the following

estimates for s ∈ Z:

ĝk(0) = 1,(50)

ĝk(s) = 0 if 0 < |s| < qk,1,(51)

|ĝk(s)| .
1

nk
, s 6= 0,(52)

|ĝk(s)| . exp

(

−1

2
|ψ(qk,nk

)s| 34
)

if |s| ≥ ψ(qk,nk
)−1.(53)

Proof. First, it is clear from (46) and (49) that ĝk(0) = 1, establishing (50).
Moreover, the sum (49) is seen to be empty if 0 < |s| < qk,1, establishing (51).

To prove (52), we split the sum (49) depending on the size of qk,j relative to s.
Suppose j0(s) is such that ψ(qk,j0)|s| > 1, but such that ψ(qk,j0+1)|s| ≤ 1, taking
j0(s) = 0 if ψ(qk,1)|s| < 1 or j0 = nk if ψ(qk,nk

)|s| > 1,

|ĝk(s)| ≤
1

nk

∑

j0(s)+1≤j≤nk

qk,j |s

∣

∣

∣
φ̂(ψ(qk,j)s)

∣

∣

∣
+

1

nk

∑

1≤j≤j0(s)
qk,j |s

∣

∣

∣
φ̂(ψ(qk,j)s)

∣

∣

∣
.

For the second sum, we may apply (47), the Schwartz tail for φ̂. Hence, using
the assumption (48),

1

nk

∑

1≤j≤j0(s)
qk,j|s

∣

∣

∣
φ̂(ψ(qk,j)s)

∣

∣

∣
.

1

nk

∑

1≤j≤j0(s)

exp
(

− |ψ(qk,j)s|
3
4

)

.
1

nk

∑

1≤j≤j0(s)

exp
(

−2
3(j0(s)−j)

4

)

.
1

nk
.

For the first sum, recall that j0 is chosen so that ψ(qk,j0+1)s < 1. Since qk,j ≥
1

ψ(qk,j0+1)
for any j ≥ j0 + 2, it follows that 1

qk,j
s < 1 for such j. This means that

it is impossible for qk,j to divide s for j > j0 + 1. Hence, the only term that can
contribute to the sum is the j = j0 + 1 term. To control the contribution of this
term, we simply apply the bound

∣

∣

∣
φ̂(ψ(qk,j)s)

∣

∣

∣
≤ 1

to bound the first sum by a constant times 1
nk

. Thus, for any integer s 6= 0, we have
the bound

|ĝk(s)| .
1

nk
.

It remains to show the bound (53). For s ≥ ψ(qk,nk
)−1, we can in fact apply the

Schwartz bound (47) for φ to every summand in (49). Hence

|ĝk(s)| ≤
1

nk

∑

1≤j≤nk

qk,j |s

|φ̂(ψ(qk,j)s)| .
1

nk

∑

1≤j≤nk

exp
(

−|ψ(qk,j)s|
3
4

)

.
1

nk

∑

1≤j≤nk

exp
(

−|2nk−jψ(qk,nk
)s| 34

)

. exp
(

−|ψ(qk,nk
)s| 34

)

. �



Sharp Fourier decay estimates for measures supported on the well-approximable numbers 501

6. Stability and convergence of µ̂χ,ω

In order to prove Theorems 2.1, 2.3, and 2.6, we will piece together the functions
gk provided in Section 5 across multiple scales. Lemmas 3.1 and 3.2 are used to show
that the Fourier transforms ĝk of the functions gk do not exhibit much interference.
The construction proceeds slightly differently in the case of Theorem 2.6, as this
theorem does not prescribe a specific decay rate for µ̂.

6.1. Construction of µ for Theorem 2.1 and Theorem 2.3. Let ψ and
χ be functions satisfying the assumptions (4), (5), (6), and (7). Recall that in the
case of Theorem 2.3 that we take χ ≡ 1, and we showed in Remark 2.5 that ψ
satisfies assumptions (4) and (5). We begin by constructing a sequence of functions
(µχ,ω,k)k∈N where µχ,ω,k(x) is the product

µχ,ω,k(x) =

k
∏

i=1

gi(x).

For each gi we choose an associated Mi such that the estimates in Lemma 5.1 ap-
ply. We further assume that the Mi’s are spaced sufficiently far apart to satisfy the
conditions of Lemma 3.1. We also assume that for each i ≥ 1 we have

(54) Mi+1 ≥ 8ψ(β(Mi))
−4.

Taking the Fourier transform of this sequence, we get the sequence (µ̂χ,ω,k)k∈N
where

µ̂χ,ω,k(s) = ĝ1 ∗ · · · ∗ ĝk(s).
With this sequence of functions defined, the next objective is to show that the

sequence is uniformly convergent and that the functions µ̂χ,ω,i satisfy a similar decay
estimate (up to a constant) for all i. We begin with the latter:

Lemma 6.1. For the sequence of functions (µ̂χ,ω,k)k∈N defined above, we have

the following statements for any integers k, l with k > l:

|µ̂χ,ω,k(0)− 1| ≤ 1

2
,(55)

|µ̂χ,ω,l(s)− µ̂χ,ω,k(s)| .
k
∑

j=l+1

M−99
j when 0 ≤ |s| < Ml+1/4,(56)

|µ̂χ,ω,k(s)| . θ(|s|)ω(|s|) when |s| ≥Mk/4,(57)

|µ̂χ,ω,k(s)| . exp

(

−1

2
(
ψ(β(Mk))

2|s|
8

)
σ+1
4σ

)

if |s| ≥ 8ψ(β(Mk))
−4.(58)

Note that since µ is a positive measure, (55) implies that |µ̂χ,ω,k(s)| ≤ 3
2

for all s.

Proof. We prove Lemma 6.1 by induction and repeated application of Lemma 3.1.
We begin with the basis by letting k = 2. Then µ̂2 = ĝ1 ∗ ĝ2. Apply Lemma 3.1 with
H = ĝ1, G = ĝ2, N1 = ψ(β(M1))

−2, N2 =M2 and N3 = ψ(β(M2))
−2. Then the esti-

mates (56), (57) and (58) immediately follow from (20), (21) and (22), respectively.
The statement (55) can be shown by the following calculation:

|µ̂χ,ω,2(0)− 1| ≤ |ĝ1(0)− ĝ1 ∗ ĝ2(0)| ≤ O(M−99
2 ) ≤ 1

2
where the last inequality holds if M2 is chosen to be sufficiently large.

Now, assume (55), (56), (57), and (58) hold for µχ,ω,k. We seek to prove these
estimates for µχ,ω,k+1. We observe that gk+1 and µχ,ω,k satisfy the conditions on G and
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H in the statement of Lemma 6.1 with the choices N1 = ψ(β(Mk))
−2, N2 = Mk+1,

and N3 = ψ(β(Mk+1))
−2. Hence, Lemma 3.1 implies the estimates

|µ̂χ,ω,k+1(s)−µ̂χ,ω,k(s)| ≤M−99
k+1 if 0 ≤ |s| ≤Mk+1/4,(59)

|µ̂χ,ω,k+1(s)| . θ(|s|)ω(|s|) if |s| ≥Mk+1/4,(60)

|µ̂χ,ω,k+1(s)| . exp

(

−1

2

(

ψ(β(Mk))
2s

8

)
σ+1
4σ

)

if |s| ≥ 8ψ(β(Mk))
−4.(61)

The estimates (57) and (58) for µχ,ω,k+1 follow from (60) and (61).
We now show (56) for µχ,ω,k+1. If l = k, then (56) follows from (59). Now assume

l < k and |s| ≤ Ml+1. Then |s| ≤ Mk+1, so (59) applies. Also, we can apply the
inductive assumption (56) to conclude

|µ̂χ,ω,k+1(s)− µ̂χ,ω,l(s)| ≤ |µ̂χ,ω,k+1(s)− µ̂χ,ω,k(s)|+ |µ̂χ,ω,k(s)− µ̂χ,ω,l(s)|

. M−99
k+1 +

k
∑

j=l+1

M−99
j =

k+1
∑

j=l+1

M−99
j .

This shows (56) for µχ,ω,k+1.
Finally, we show that µχ,ω,k+1 satisfies (55). We apply (56) with l = 1 to conclude

|µ̂χ,ω,k+1(0)− 1| = |µ̂χ,ω,k+1(0)− µ̂χ,ω,1(0)| .
k+1
∑

j=2

M−99
j ≤ 1

2
,

provided that the Mj are chosen to be sufficiently large. �

Turning now to proving the uniform convergence of the sequence (µ̂χ,ω,k)k∈N, we
have the following lemma.

Lemma 6.2. The sequence (µ̂χ,ω,k)k∈N converges uniformly for all s ∈ Z to some

function M(s). This function M(s) has the property that

(62) |M(s)| . θ(|s|)ω(|s|); s ∈ Z.

Proof. Let ǫ > 0. There exists a k0, depending on ǫ and ω, sufficiently large such
that

θ(|s|)ω(|s|) < ǫ/2C1

when |s| ≥Mk0/4, and so that
∞
∑

j=k0

M−99
j < ǫ/2C2.

Here C1 is taken to be the implicit constant for estimate (57) and C2 is taken to be
the implicit constant for the estimate (56).

Suppose first that |s| ≥Mk0/4. Then there exists l ≥ k0 such that Ml/4 ≤ |s| ≤
Ml+1/4. If k0 ≤ k ≤ l, then we apply the estimate (57) to conclude that

|µ̂χ,ω,k(s)| ≤ C1θ(|s|)ω(|s|) ≤ ǫ.

If k > l, then we apply (57) and (56) to conclude that

|µ̂χ,ω,k(s)| ≤ |µ̂χ,ω,l(s)|+ |µ̂χ,ω,k(s)− µ̂χ,ω,l(s)| ≤ C1θ(|s|)ω(|s|) + C2

k
∑

j=l+1

M−99
j < ǫ.

Thus |µ̂χ,ω,k(s)| < ǫ whenever k ≥ k0 and |s| ≥Mk0/4.
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When 0 ≤ |s| ≤Mk0/4, applying the estimate (56) for any k0 < k < l gives

|µ̂χ,ω,k(s)− µ̂χ,ω,l(s)| ≤ C2

∞
∑

j=n

M−99
k+1 ,

and the choice of m0 guarantees that this sum is less than ǫ/2.
Hence the sequence µ̂χ,ω,k has a uniform limit M(s). An upper bound on |M(s)|

will follow from Lemma 6.1. Suppose |s| is such that Ml

4
≤ |s| ≤ Ml+1

4
.

Then the estimate (57) gives that

|µ̂χ,ω,l(s)| . θ(|s|)ω(|s|),
and (56) and the triangle inequality give

|M(s)| ≤ |µ̂χ,ω,l(s)|+ lim sup
k≥l

|µ̂χ,ω,k(s)− µ̂χ,ω,l(s)|

. θ(|s|)ω(|s|) +
∞
∑

j=l+1

M−99
j . θ(|s|)ω(|s|) + |s|−99 . θ(|s|)ω(|s|),

as desired. �

In order to show that the sequence µχ,ω,k converges to a weak limit µ using the
convergence of the µ̂χ,ω,k(s), it is normal to appeal to a theorem such as the Lévy
continuity theorem. However, this is slightly inconvenient as we only have estimates
for µ̂χ,ω,k(s) at integer values s. We will provide a proof of the weak convergence
below. First, we will need the following technical lemma relating the Fourier series
of a measure supported on the interval [0, 1] to its Fourier transform. A stronger
version of this lemma can be found as Lemma 1 of Chapter 17 in the book of Kahane
[10].

Lemma 6.3. Suppose that µ is a measure supported on the interval [0, 1] satis-

fying an estimate of the form

|µ̂(s)| . N(|s|) for all s ∈ Z,

where N : R+ → R+ is a non-increasing function satisfying the doubling property

(63) N(ξ/2) . N(ξ) for all ξ ∈ R+.

Then |µ̂(ξ)| . N(|ξ|) for all ξ ∈ R.

We have already seen that θ(ξ)ω(ξ) is a doubling function for ξ > 0. Thus we
can apply Lemma 6.3.

Lemma 6.4. The sequence of measures µχ,ω,k has a nonzero weak limit µχ,ω.
This weak limit µχ,ω satisfies the estimate

(64) µ̂χ,ω(ξ) . θ(|ξ|)ω(|ξ|)
for all real numbers ξ.

Proof. Observe that each measure µχ,ω,k has total variation norm bounded by 2.
We claim that the measures µχ,ω,k have a weak limit. First, by the Banach–Alaoglu
theorem, there exists a subsequence µχ,ω,kj that has a weak limit µχ,ω. Since each
measure µχ,ω,kj is supported in [0, 1], the weak limit µχ,ω is supported in [0, 1].

In particular, since µχ,ω is supported in [0, 1], each Fourier coefficient µ̂χ,ω(s)
of µχ,ω is obtained by integrating against a continuous, compactly supported func-
tion. Hence, for each s ∈ Z, limj→∞ µ̂χ,ω,kj(s) = M(s), where M(s) is the limit in
Lemma 6.1.
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By the corollary to Theorem 25.10 of Billingsley [2], it is enough to check that
each weakly convergent subsequence of {µχ,ω,k} converges weakly to µχ,ω. Suppose
{νχ,ω,k} is a subsequence of the µχ,ω,k with some weak limit ν. Then ν is supported
on [0, 1], so by the same argument as in the previous paragraph, Lemma 6.1 implies
that ν̂(s) = M(s) for every s ∈ Z. Since a measure supported on [0, 1] is uniquely
determined by its Fourier–Stieltjes series, it follows that ν = µχ,ω as desired.

Notice that the weak limit µχ,ω satisfies the bound

µ̂χ,ω(0) = lim
k→∞

µ̂χ,ω,k(0) ≥
1

2

by (55). Therefore, it follows that µ̂χ,ω(0) > 0, and therefore the weak limit µχ,ω is
nonzero.

Finally, we verify that µ̂χ,ω(ξ) satisfies the estimate (64). This estimate holds
for integer values of s by the estimate (62). Hence, Lemma 6.3 shows that µ̂χ,ω(ξ)
satisfies the same estimate for ξ ∈ R. �

Hence the measures µχ,ω,k have a weak limit supported on [0, 1]. We now verify
that this weak limit is indeed supported on the set E(ψ).

Lemma 6.5. Let µχ,ω be as in Lemma 6.4. Then µχ,ω is supported on E(ψ).

Proof. It is easy to see that

supp φp,q ⊂
[

p

q
− 1

2
ψ(q),

p

q
+

1

2
ψ(q)

]

and therefore

supp gi ⊂
⋃

Mi≤q≤β(Mi)
q prime

q
⋃

p=1

[

p

q
− 1

2
ψ(q),

p

q
+

1

2
ψ(q)

]

.

Since each µχ,ω,k is the product of gi’s, its support is an intersection of these supports:

supp µχ,ω,k ⊂
k
⋂

i=1

⋃

Mi≤q≤β(Mi)
q prime

q
⋃

p=1

[

p

q
− 1

2
ψ(q),

p

q
+

1

2
ψ(q)

]

.

Because the measure µχ,ω is defined as the weak limit of the measures µχ,ω,k, we have
the containment

suppµχ,ω ⊂
∞
⋂

i=1

⋃

Mi≤q≤β(Mi)
q prime

q
⋃

p=1

[

p

q
− 1

2
ψ(q),

p

q
+

1

2
ψ(q)

]

.

Observe that if x ∈ supp µχ,ω and i ∈ N, then x must also lie in one of the intervals
[

p

q
− 1

2
ψ(q),

p

q
+

1

2
ψ(q)

]

for some Mi ≤ q ≤ β(Mi).
Therefore, there exists an infinite number of rational numbers p

q
which satisfy

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

≤ ψ(q)

and we may conclude that supp µχ,ω ⊂ E(ψ). �
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The measure µχ,ω satisfies all of the properties required to prove Theorem 2.1.
Hence, the proof of Theorem 2.1 is complete.

To show Theorem 2.3, it is also necessary to verify that the support of µ is
contained in a set of generalized α-Hausdorff measure equal to zero. This will be
shown in Section 7.

6.2. Construction of µ for Theorem 2.6. We now construct the measure µ
described in Theorem 2.6. The biggest difference between this construction and the
one in the previous subsection is that we do not state explicit quantitative estimates
describing the decay of the Fourier transform of the measures.

Choose a positive integer n1 and let M1 be a large integer. We will choose the
sequences {nj : j ≥ 2} and {Mj : j ≥ 2} to be rapidly increasing sequences of integers
satisfying a certain set of conditions below. For each j, we choose prime numbers
qj,1, . . . , qj,nj

with Mj ≤ qj,1 ≪ · · · ≪ qj,nj
. When we choose the Mj , we will impose

the condition that Mj+1 ≫ qj,nj
as well. Given qj,1, . . . , qj,nj

we define the function
gj as in Subsection 5.2.

We define the function µk to be the pointwise product

µk(x) =
k
∏

j=1

gj(x)

so µ̂1(s) = ĝ1(s) and so that for any k ≥ 2

µ̂k(s) = ĝk(s) ∗ µ̂k−1(s).

We are now ready to state the main estimate on µ̂k.

Lemma 6.6. (Main estimate for µ̂k) Suppose that the functions gk are chosen

as above. Then provided that the sequences nj and Mj are chosen appropriately,

the measures µ̂k satisfy the following estimates for all integers k ≥ l. All implicit

constants below are assumed to be independent of k and l.

|µ̂k(0)− 1| ≤ 1

2
,(65)

|µ̂k(s)− µ̂l(s)| ≤
k
∑

j=l+1

M−99
j if 0 ≤ |s| ≤Ml+1/4,(66)

|µ̂k(s)| . n
−1/3
k if |s| ≥Mk/4,(67)

|µ̂k(s)| . exp

(

−1

2

∣

∣

∣

∣

1

8
ψ(qk,nk

)s

∣

∣

∣

∣

3
4

)

if |s| ≥ 8ψ(qk,nk
)−2.(68)

Proof. Let n1 andM1 be positive integers, and choose prime numbers q1,1, . . . , q1,n1

such that 1 < q1,1 < q1,2 < · · · < q1,n1 satisfy the conditions of Lemma 5.2. Then
ĝ1 satisfies the estimates of Lemma 5.2 and in particular satisfies the estimates of
Lemma 6.6.

Given g1, . . . , gk such that µk satisfies the four conditions above, we will describe
how to choose the integers nk+1 and Mk+1 and how to choose the function gk+1 so
that µk+1 will satisfy the four conditions above. Let N1 = ψ(β(Mk))

−1. Lemma 3.2
requires that the quantity δ is chosen so that δ < 1

N3
1
; hence, we select nk+1 = 100N3

1 .

Choose Mk+1 = N2 ≫ nk+1 to be a prime number that is sufficiently large to satisfy
the conditions of Lemma 3.2. Take N2 = qk+1,1 < · · · < qk+1,nk+1

sufficiently well-
spaced to satisfy the conditions of Lemma 5.2. Then, choose N3 = 1

ψ(qk+1,nk+1
)
≫
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qk+1,1. With these choices, we define gk+1 as in Subsection 5.2. Hence Lemma
5.2 implies that ĝk+1 satisfies the estimates required to serve as the function G in
Lemma 3.2.

Hence, we can apply Lemma 3.2 with H = µ̂k, G = ĝk+1, N1 = ψ(qk,nk
)−1,

N2 = qk+1,1, and N3 = ψ(qk+1,nk+1
)−1, and δ = 1

nk+1
.

This implies the estimates

|µ̂k+1(s)− µ̂k(s)| ≤M−99
k+1 if 0 ≤ |s| ≤ Mk+1

4
,(69)

|µ̂k+1(s)| . n
−1/3
k+1 if |s| ≥ Mk+1

4
,(70)

|µ̂k+1(s)| . exp

(

−1

2

∣

∣

∣

∣

1

8
ψ(qk+1,nk+1

)s

∣

∣

∣

∣

3
4

)

if |s| ≥ 8ψ(qk+1,nk+1
)−2.(71)

Hence µ̂k+1 satisfies the estimates (67) and (68). In order to check (66), assume
l < k + 1 and |s| ≤ Ml

4
. If l = k, then the inequality follows from (69). If l < k,

then applying the inductive assumption (66) to estimate the difference µ̂k − µ̂l and
applying (69) to estimate the difference µ̂k+1 − µ̂k gives

|µ̂k+1(s)− µ̂l(s)| ≤ |µ̂k+1(s)− µ̂k(s)|+ |µ̂k(s)− µ̂l(s)|

≤M−99
k+1 +

k
∑

j=l+1

M−99
j =

k+1
∑

j=l+1

M−99
j .

This establishes (66) for µ̂k+1. Applying (66) with l = 1 and s = 0, we see that

|µ̂k+1(0)− 1| = |µ̂k+1(0)− µ̂1(0)| ≤
k+1
∑

j=2

M−99
j ≤ 1

2

assuming the Mj grow sufficiently rapidly. �

Lemma 6.7. The sequence µ̂k converges uniformly for all s ∈ Z to a function

M(s). This function M(s) has the property that |M(s)| → 0 as |s| → ∞.

Proof. The proof is similar to that of Lemma 6.2. Let ǫ > 0. Because nk → ∞,

there is an index k0 such that n
−1/3
k0

+
∑∞

j=k0+1M
−99
j < ǫ/2C, where C is the implicit

constant from (67).

Suppose |s| > Mk0

4
, and choose l ≥ k0 such that Ml

4
≤ |s| < Ml+1

4
. Suppose first

that k0 ≤ k ≤ l. For such k, We have that |µ̂k(s)| . n
−1/3
l ≤ n

−1/3
k0

< ǫ
2

by (67). If,
instead, k > l, then we have

|µ̂k(s)| ≤ |µ̂l(s)|+ |µ̂k(s)− µ̂l(s)| ≤
ǫ

2
+

k
∑

j=l+1

M−99
j ≤ ǫ

2
+

∞
∑

j=k0+1

M−99
j ≤ ǫ.

Hence |µ̂k(s)| ≤ ǫ for all |s| ≥ Mk0

4
and all k ≥ k0.

If |s| ≤ Mk0

4
and k0 ≤ l ≤ k, then we have

|µ̂k(s)− µ̂l(s)| ≤
k
∑

j=l+1

M−99
j ≤

∞
∑

j=k0+1

M−99
j < ǫ/2.

This proves that the sequence µ̂k(s) is uniformly Cauchy and hence uniformly con-
vergent. Let M(s) denote the uniform limit of this sequence.
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Finally, we verify that M(s) → 0 as |s| → ∞. Suppose |s| is such that Mk

4
≤

|s| ≤ Mk+1

4
. Then we have from Lemma 6.6 that |µ̂k(s)| . n

−1/3
k , and

M(s) . |µ̂k(s)|+ lim sup
l→∞

|µ̂l(s)− µ̂k(s)| . n
−1/3
k +

∞
∑

j=k+1

M−99
j . n

−1/3
k ,

since Mk+1 ≫ nk. Since the sequence nk → ∞, this shows that M(s) → 0 as
|s| → ∞, as desired. �

The rest of this proof is similar to the proof of Theorem 2.1. In order to apply
Lemma 6.3, we use the fact from Lemma 4.3 that M is majorized by N(|s|), where
N is a doubling function. This will allow us to apply Lemma 6.3.

We are now ready to show that the measures µk converge to a weak limit.

Lemma 6.8. The sequence of measures µk has a nonzero weak limit µ. This

weak limit µ satisfies the estimate

|µ̂(ξ)| → 0 as |ξ| → ∞ in R.

Hence µ is a Rajchman measure.

Proof. This proof is almost exactly the same as the proof of Lemma 6.4, but
when we apply Lemma 6.3, we use N(|s|) as the bound on M(s), where N(s) is the
function constructed in Lemma 4.3. �

Lemma 6.9. Let µ be the weak limit in Lemma 6.8. Then the support of µ is

contained in E(ψ).

Proof. This lemma can be shown in a similar manner to Lemma 6.5; we see that
if x ∈ supp(µ) then for each k, there exists a denominator qk,jk and a numerator pk,jk
such that

∣

∣x− pk,jk
qk,jk

∣

∣ ≤ ψ(qk,jk); hence, x is ψ-well-approximable. �

Therefore, the measure µ satisfies all of the properties promised in the statement
of Theorem 2.6. Thus the proof of Theorem 2.6 is complete.

7. A bound on the generalized Hausdorff measure

To complete the proof of Theorem 2.3, we must show that Fα, which is taken to
be the support of µk,ω, has zero α-Hausdorff measure.

Lemma 7.1. Let Fα be a closed subset of
{

x :

∣

∣

∣

∣

x− r

q

∣

∣

∣

∣

< ψ(q) for some integers 0 ≤ r ≤ q − 1, Mk ≤ q ≤ β(Mk),

q prime, k ∈ N

}

.

Let ǫ > 0. Then there exists a cover U of Fα by open intervals U such that
∑

U∈U

α(diam(U)) < ǫ.

Proof. The set Fα satisfies the following containment:

Fα ⊂
∞
⋂

k=1

⋃

Mk≤q≤β(Mk)
q prime

q
⋃

p=1

[

p

q
− ψ(q),

p

q
+ ψ(q)

]

.
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For any k the following collection of closed intervals is a cover for Fα:
{[

p

q
− ψ(q),

p

q
+ ψ(q)

]

: Mk ≤ q ≤ β(Mk), q prime, 1 ≤ p ≤ q

}

.

Denote this collection as Ik. The following collection U is also a cover of Fα:

U =

{

J
⋂

[

p

q
− ψ(q),

p

q
+ ψ(q)

]

: Mk ≤ q ≤ β(Mk), q prime, 1 ≤ p ≤ q; J ∈ Ik−1

}

.

Fix a prime number q with Mk ≤ q ≤ β(Mk) and let J ∈ Ik−1. Observe that the
intersection of J with the interval

[

p
q
− ψ(q), p

q
+ ψ(q)

]

is either empty or is a closed

interval of length at most 2ψ(q). We claim that the number of such intervals that
intersect J satisfies

#

{

p :

[

p

q
− ψ(q),

p

q
+ ψ(q)

]

∩ J 6= ∅
}

∼ |J |q,

where |J | denotes the length of the interval J .
The interval J belongs to Ik−1. Therefore, |J | ≥ ψ(β(Mk−1))

−4. By the assump-
tion (54), we know that |J | ≫ 1

Mk
, and therefore, |J | ≫ 1

q
.

The interval [p/q−ψ(q), p/q+ψ(q)] intersects J if and only if p/q lies in a ψ(q)-
neighborhood of J . Since ψ(q) ≈ q−τ by (4) and τ > 2, we have that ψ(q) ≪ 1/q if
k is sufficiently large. Hence, [p/q − ψ(q), p/q + ψ(q)] intersects J if and only if p/q
lies in an interval J ′ of length |J ′| = |J |+ 2ψ(q) ∼ |J |.

Write J ′ = [a, b]. Then the smallest multiple of 1/q contained in J ′ is ⌈qa⌉
q

, and

the largest multiple of 1/q contained in J ′ is ⌊qb⌋
q

. So the total number of multiples

of 1/q contained in J ′ is

⌊qb⌋ − ⌈qa⌉ + 1 = qb− qa+O(1) = q|J ′|+O(1) ∼ q|J |+O(1).

Since |J | ≫ 1/q, we have q|J | ≫ 1. Therefore,

#

{

p :

[

p

q
− ψ(q),

p

q
+ ψ(q)

]

∩ J 6= ∅
}

∼ |J |q,

as claimed.
Then

∑

U∈U

α(diam(U)) ≤
∑

J∈Ik−1

∑

Mk≤q≤β(Mk)
q prime

∑

1≤p≤q

α

(

diam

(

J
⋂

[

p

q
− ψ(q),

p

q
+ ψ(q)

]))

∼
∑

J∈Ik−1

|J |
∑

Mk≤q≤β(Mk)
q prime

qα(ψ(q)).

From assumption (12), α(ψ(q)) = q−2. Therefore,
∑

J∈Ik−1

|J |
∑

Mk≤q≤β(Mk)
q prime

qα(ψ(q)) =
∑

J∈Ik−1

|J |
∑

Mk≤q≤β(Mk)
q prime

q−1.

Recall that we chose β(Mk) so that

1 ≤
∑

Mk≤q≤β(Mk)
q prime

q−1 ≤ 2.
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Consequently,
∑

J∈Ik−1

|J |
∑

Mk≤q≤β(Mk)
q prime

q−1 ∼
∑

J∈Ik

|J | .
∑

Mk−1≤q≤β(Mk−1)
q prime

∑

1≤p≤q

ψ(q)

=
∑

Mk−1≤q≤β(Mk−1)
q prime

qψ(q).

Recall that ψ(q) ≈ q−τ , so
∑

Mk−1≤q≤β(Mk−1)
q prime

qψ(q) ≈
∑

Mk−1≤q≤β(Mk−1)
q prime

q−τ+1 . M−τ+2
k−1 .

The exponent −τ + 2 < 0. Hence, if k is chosen to be sufficiently large, we have
∑

U∈U

α(U) < ǫ,

as desired. �
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