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Sharp Fourier decay estimates for measures
supported on the well-approximable numbers

ROBERT FRASER and THANH NGUYEN

Abstract. We construct a measure on the well-approximable numbers whose Fourier transform
decays at a nearly optimal rate. This gives a logarithmic improvement on a previous construction
of Kaufman.

Hyvin arvioitavien lukujen kantamien mittojen

Fourier’n muunnosten tarkka vaimeneminen

Tiivistelm&. Téssé tyossid rakennetaan hyvin arvioitavien lukujen kantama mitta, jonka Fou-
rier’n muunnos vaimenee lahes parasta mahdollista vauhtia. Tama tuottaa logaritmisen parannuksen

verrattuna aiempaan Kaufmanin esimerkkiin.

1. Introduction and Background

1.1. Harmonic analysis on fractal sets. An interesting class of problems
in harmonic analysis involves determining information about the Fourier transform
of a compactly supported measure i given information about the support supp p of
the measure p. A standard result in this area is Frostman’s lemma, which states
that if F/ is a set of Hausdorff dimension s, then for any ¢t < s, there exists a Borel
probability measure u; supported on E satisfying the condition that

) [ OR ) < oo

Frostman’s lemma states that, up to an e-loss in the exponent, the set E supports a
measure whose Fourier transform decays like [£|7*/2 in an L%-average sense.

This version of Frostman’s lemma motivates the definition of Fourier dimension.
The Fourier dimension of a set £ C R" is the supremum of those values 0 < s < n
such that E supports a Borel probability measure p, satisfying the pointwise condi-
tion

(2) s(€)] S (1 + le) ™.

Observe that the condition (2) for some value of s implies equation (1) for any ¢ < s.
However, there is no reason to expect a converse statement to hold; in fact, if £ is the
usual middle-thirds Cantor set, there is no Borel probability measure @ on E such
that |(£)] — 0 as |{| — co. A measure p such that |u(£)| — 0 as £ — oo is called
a Rajchman measure. On the opposite extreme, there are a number of examples of
sets E of Hausdorff dimension s supporting Borel probability measures satisfying (2)
for all ¢ < s. Such sets are called Salem sets.
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If s =n — 1, a simple stationary phase calculation shows that the usual surface
measure on the sphere satisfies the condition

(3) (O] < (L+ [~
This well-known computation can be found in the textbooks of Wolff [16] and Mattila
[12]. If n = 1 and 0 < s < 1, the first examples of Salem sets were given by Salem
[15] via a random Cantor set construction. A later random construction was given by
Kahane [8], who shows that if T": [0, 1] — R” is a Brownian motion and F C [0, 1] is
a set of Hausdorff dimension s, then I'(£) will almost surely have Fourier dimension
equal to 2s. Kahane [9] also constructed Salem sets using random Fourier series
whose coefficients are given by Gaussian random variables.

The first explicit, deterministic example of a Salem set of fractional dimension in
R was given by Kaufman [11|. For an exponent 7, the well-approximable numbers

E(q™7) are defined by
x — ]—9‘ < ¢ 7 for infinitely many pairs of integers (p, q)} .

E(qT) = {w: .

A classical result of Jarnik [7] and Besicovitch [1] states that the Hausdorff dimension

of E(q™7) is equal to % Kaufman shows that E(q¢~7) supports a Borel probability

measure 4 satisfying

OIS (1+ 16D~ o(log [¢])-
Bluhm [3] provides an exposition of Kaufman’s argument to prove a slightly weaker
result in which the o(log|¢|) term is replaced by O(log|£]). More generally, given
a function ¥: N — [0,00), it is of interest to consider the set of -approximable
numbers

BE(y) = {x;

Hambrook [5] obtains lower bounds on the Fourier dimension of such sets in terms
of the function ).

p
x__
q

< (q) for infinitely many pairs of integers (p, q)} .

1.2. Some problems in geometric measure theory. In this paper, we will
consider the question of locating sets F satisfying more precise estimates than (2)
under the constraint that E has finite Hausdorff measure. As a motivating example,
consider the (n—1)-dimensional sphere in R™. This set has positive and finite (n—1)-
dimensional Hausdorff measure and supports a measure g with Fourier transform
satisfying (3). Mitsis [13| posed the following problem.

Problem 1.1. (Mitsis’s problem) For which values of 0 < s < n does there exist
a measure g such that p simultaneously satisfies the ball condition

u(B(x,r)) ~r® forall z € suppp and all » >0
and the Fourier decay condition
() < lg|=*?

We will consider a related problem. Let 0 < s < n. Recall that a subset E of R™
is said to be an s-set if the Hausdorff measure H*(E) satisfies 0 < H*(E) < 0.

Problem 1.2. (Fourier transform on s-sets) For which values of 0 < s < n does
there exist an s-set E supporting a measure p such that p satisfies the Fourier decay
condition

A(E)] < [€]7/%?
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Of course, such a set E must be a Salem set of Hausdorff dimension s.

This problem can be extended to a question about generalized Hausdorff dimen-
sion. Recall that a positive, increasing function « is said to be a dimension function
if a(u) — 0 as u — 0. We will say that E is an a-set if 0 < H,(E) < oo, where
H,, is the generalized Hausdorff measure associated to a. The following question
generalizes the previous one:

Problem 1.3. (Fourier transform on a-sets) For which dimension functions «
does there exist an a-set E supporting a measure p such that p satisfies the Fourier
decay condition

(A < Va(l/€) for ¢ =17

We conjecture that the only such dimension functions « are integer powers o(u) =
u~* for integers 0 < s < n.

On the other hand, we also wish to pose the problem of determining the opti-
mal Fourier decay estimates for measures supported on the set of well-approximable

numbers E(1)).

Problem 1.4. (Fourier decay of measures supported on F(v)) Fix a function
1. For which functions © does there exist a measure p supported on F(¢) such that

)] < ©(8)?

Although we are unable to answer Problems 1.2, 1.3, and 1.4 in this work, we are
able to obtain “near"-answers to all three of these questions if the dimension function
« or the approximation function 1 decay at a polynomial rate.

1.3. Notation. In this paper, constants are always allowed to depend on the pa-
rameters 7, 0, and p. Any dependence on these parameters will always be suppressed
for simplicity of notation.

If A and B are any two quantities, we write A = O(B) or A < B to imply that
A < CB for some constant C' that does not depend on A or B (but may depend on
7,0, 0r p). We write B 2 A to mean the same thingas A < B. If A < Band B < A,
we write A ~ B. If the implicit constant in any of these inequalities is allowed to
depend on some other parameter such as €, we write A <. B, A >, B, or A ~. B.

If A(z) and B(z) are functions of a variable =, we write A(x) g B(z) if A(x) <.
x¢B(x) for every € > 0. So, for example, we write

2® exp(y/log z) log xloglog x < 2°.

If A(x) £ B(x) and B(z) g A(z), we write A(z) =~ B(x).
We write A < B to mean that A is much less than B. This should be viewed as
informal notation to help the reader keep in mind the sizes of the various parameters.

2. Results

First, we describe a result in the direction of Problem 1.4.

Theorem 2.1. Let 1)(q) be an arbitrary nonnegative, decreasing function satis-
fying the conditions
log(¥(q))

(4) 2 < lim ————— =7 < 0.
q—+00 log q
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Suppose also that there exists o > 1 such that 1 satisfies the polynomial-type decay
condition

(5) ) > <@) for g > qy sufficiently large.
Y(q2) T
Suppose further that 1 < x(q) < logq is a nonnegative function that satisfies
> 1
(6) — = 00.
q; ax(q)
q prime

and also satisfies the subpolynomial-type growth condition for any ¢ > 0:

) X(q) _ (%

—) for ¢y, qo sufficiently large depending on €.
x(q1) 1

Then for any increasing function w with lime_,ow(§) = oo, there exists a Borel
probability measure j supported on a compact subset of the 1-well-approximable
numbers satisfying the estimate

8 ()] < w(l¢]) for all € € R.
¥ slOLS iy e
In order to simplify our notation, we define
1
9 () = .
) S VR NRIV)

Remark 2.2. If ¢(q) = ¢~ 7, Theorem 2.1 gives estimates that improve on those
of Kaufman [11]. In this case, the estimate (8) becomes

. 1y w([€])
(] S 16177 =2
* x(I€1V7)
Observe that, for example, the choice x(q) = loglogq satisfies (6). On the other
hand, w can be taken to be any function that increases to oo, so it is possible to
choose w(§) = logloglog&, for example. Hence there exists a measure p supported
on the well-approximable numbers satisfying

X 1/, logloglog [¢]
MO S YT
(] < €] log log €|

Our next result is in the direction of Problem 1.3.

< ¢

Theorem 2.3. Let o be a dimension function with
1
(10) O<limwzu<oo
z—0 logw
and for some p < 1 such that

(11) o) <ﬂ>p

a(zy) T

for sufficiently small x; < x9. Let w be an increasing function such that limg_,., w(§) =
oo. Then there exists a compact set F,, of zero a-Hausdorff measure such that there
exists a measure [i,,, supported on F, satisfying

()] S ve/Ighw (€]
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for all & # 0. Such a set is given by an appropriately chosen subset of the well-
approximable numbers E (1)) where

(12) U(g) =o' (¢7?).
Remark 2.4. Although this does not provide an answer to Problem 1.3, it comes

within an arbitrarily slowly growing function of answering this problem. In other

words, any improvement on the estimate of Theorem 2.3 will give an answer to
Problem 1.3.

Remark 2.5. Observe that the condition (10) on « implies the condition (4) on
Y for 7 = 2/v. A simple calculation also shows that the condition (11) implies the

condition (5) with ¢ = 2/p. This is the only way in which the assumptions (10) and
(11) will be used.

Finally, we show that, for any decreasing approximation function v, the set E(1))
supports a Rajchman measure. This improves a result of Bluhm [4] constructing a
Rajchman measure supported on the set of Liouville numbers.

Theorem 2.6. For an arbitrary nonnegative, decreasing function 1) there exists
a Rajchman measure, i, supported on a compact subset of the y-well-approximable
numbers.

In a recent work, Polasek and Rela [14] improve Bluhm’s result in a different way
by showing an explicit Fourier decay bound on the set of Liouville numbers. They
show that if f: RT — R" is any function such that

—

limsup—— =0 forall a >0,

=00 f(f)

then there exists a measure py supported on the set of Liouville numbers such that
(O] S f(1€]) for all &; on the other hand, if g: R — R is any function such that

lim inf _

=00 f(§)
then there does not exist a measure p, supported on the set of Liouville numbers
such that |,(&)| < g(|¢]) for all £ € R.

> (0 for some a > 0,

3. Convolution stability lemmas

The proofs of the main results of this paper rely on the construction of a sequence
of functions which will approximate the measures that satisfy the statements of the
theorem. The functions of the sequence are themselves a product of functions. In
the frequency space, these products become convolutions and a major component of
the proof is show that the Fourier decay estimates of these functions remain stable
as the number of convolutions tends to infinity. The following two lemmas will be
referred to when making an argument for stability by induction. This first lemma
will be applied to Theorem 2.1 and Theorem 2.3.

Lemma 3.1. (Convolution Stability Lemma) Let ¢ and x be as in Theorem 2.1,
and let 0(§) be as in (9). Let w: N — R* be a function that increases to infinity
such that w(t) < logt for t > 2. Suppose that Ny > 0 and suppose that that Ny is
sufficiently large depending on w and N;. Moreover, let G, H: Z — C be functions
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satisfying the following bounds for some large number N3 > Ns:

(13) |G(s)| <1 forallseZ,
(14) G(0) =1,
(15) G(s) =0, 0<]s| <N,
(16) |G(s)] < 0(|s|]) everywhere,
o+1
1| s | %
(17) ‘G(S)| g exp <—§ 2—]\[3 ) when |S| Z 2N3,
(18) |H| < 2,
) o1
S %
(19) |H(s)| < exp (—5 SN, ) when |s| > 8N7.
Then
(20) |H % G(s) — H(s)| < Ny* when 0 < |s| < Ny/4,
(21) |H  G(s)] S O(Is)w([s])  when [s] > Ny /4,
o+1
1 3
(22) |H + G(s)| <exp (—5 SLN;», ) when |s| > 8Nj.

A different version of this lemma will be applied to prove Theorem 2.6.
Lemma 3.2. (Convolution Stability Lemma 2) Let 1) be as in Theorem 2.6. Let
Ny > 0, and let § < % Suppose that Ny is some number that is sufficiently large

depending on w and N;. Moreover, let G, H: 7Z — C be functions satisfying the
following bounds for some N3 > Ns:

(23) |G(s)| <1 forallseZ,
(24) o) =1,
(25) Gls) =0, 0<[s) < N,
(26) G(s)] S 6, s#0,
1| s |1
27 G)| <exp|—=|— when |s| > 2Nj,
(27) G(9) £ p<22N3> 12 20
(28) |H| < 2,
. 3
(29) |H(s)| < exp (—5 SLN ) when |s| > 8NZ.
1
Then
—99
- >~ = 2/ %
(30) |H xG(s) — H(s)| < N, when 0 < |s| < Ny/4
(31) |H % G(s)| < 6Y3  when |s| > Ny/4,
1| s |1
(32) |H + G(s)| < exp (—5 A ) when |s| > 8Nj.

Before proving these lemmas, we need a preliminary estimate on 6. We will show
that the function 0(¢) decays like £~/7 up to an e-loss in the exponent.
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Lemma 3.3. Let ¢, x be as in Theorem 2.1, and let 0(§) be as in (9). Then
0(|€]) ~ |€| == for large |€].

Proof. Since 1)(q) ~ ¢~7 by assumption, we have that ¢ ~'(t) ~ ¢t~1/7. A similar
argument shows that x(¢) ~ 1. Hence x(¢~(1/[£|)) ~ 1. Thus

1
= A/1€EDx (Y= (1/1€D)
3.1. Proof of Lemma 3.1.
Proof. First, we prove (20). Assume that 0 < |s| < Ny/4. Rewrite the expression

(33) ~ |7V O

as

|H % G(s) — H(s)| = |>_ H(s — t)G(t) — H(s)

teZ

= |H(s)G(0) — H(s)+ Y _H(s — t)G(1)
t£0

< 3 |H(s - 0G0,
40
Observe that we need only consider summands such that |t| > N, because G(t) =
0 for |t| < Ns. The previous expression becomes

> H(s=DG(®)].
[t|>N2
Apply the bound (13) to |G(t)|. Notice that |s—t| > [t|/2 > N; when |s| < Ny/4.
We may apply (19) with |¢|/2 in place of s to get an upper bound given that the
bounding function is decreasing. Hence
o+l
4o

1] t
> H(s =G < Y exp (—5 'IGM
[t|> N2 [t|>N2
The last inequality holds provided that N, is sufficiently large depending on Nj.
The next task is to prove the estimate (21). Now assume that |s| > Ny/4. We
have the inequality

|H « G(s)] <T+1I,

where

1= 3 [HOGE - 1)

[t|<8NZ

and

M= > |H(t)G(s—1).

18N

Beginning with the sum I, we apply (18) and observe that if N, is sufficiently
large depending on Ny, then |s —t| > |s| — [t| > |s|/2 when |s| > Ny/4. Then we
may apply (16) with |s|/2 in place of |s| to get

LS6(s/2) Y 15 6(Isl/2)w(ls),

|t|<8N?
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provided that Ny is sufficiently large depending on w and N; so that the final in-
equality holds. To complete the proof, we need to show that 6(|s|/2) < 6(|s|). This
will be shown in Lemma 4.2.

To bound the sum II, write

II=A+ B,
where
A= > [H@HG(s—1),
|t|>8N?
|s—t|<|s|/2
and

B= > [H{t)G(s—1)].
[t|>8 N2
ls—t]>]s|/2

To estimate the sum A, we apply (13) and (19). Observe that |s — t| < |s|/2
implies that [t| > |s|/2. Thus, |t| > 8N? when |s| > Ny/4. Therefore

o+1
11 ¢ |3
A< —— = .
S > eXp( 2‘8]\71 )
[tI>[s]/2
By the integral test, we get the following upper bound for A:

o+1
o0 1 t |4
AS/ exp ——’— dt.
12 2 |8y

Observe that the integrand is decaying nearly exponentially. From (33), we may
conclude

ASO(s)-

For the sum B, we apply (16) to G. Additionally, we may apply (19). Doing
this, we have that

o+1
1)t | %
BLs) Y e (—5]8—N1 )59<|s|>

|t|>8N?
o+1
4o
) < 1.

Combining the bounds for I and II completes the proof for (21). We turn now to
proving (22). Assume |s| > 8NZ. We decompose the convolution as

|H « G(s)] <IT+1I,

where the last inequality is implied by

3 ex it
PA 728V,

|t|>8N?

where

I= Y [H(s—1t)G(1)]

It|<|s]/2
and

I= Y [H(s—t)G(t).

[t]=>]s]/2
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Starting with I, we apply (13). Then use the fact that |s —t| > |s|/2, and apply
(19) with s/2 in place of s. Then
%1>

1| s
1< _z
< 3 (-
There are at most |s| + 1 summands in the above sum. Therefore
1 ' s

[t1<|s|/2
o41
< 4o
I —— .
NISIGXP( > [T6m, )

We may absorb the linear factor and implicit constant by choosing a smaller negative
power. Hence, provided that N, (and thus N3) are sufficiently large depending on

N1, we have that
o+1
I < 1 1 4o
—exp | —= )
=557

For the sum II, apply the bounds (17) and (18) to get

o+1

1 t 4o
11 < | .
~ Z eXp( 2‘2]\[3 )

[t]>[s]/2
To bound the above sum, we use the integral test. Thus

o+1
1] ¢ |4
HS/ exp ——‘— dt.
>]sl/2 ( 2 |2N;

To estimate this integral, we begin with a substitution. Let

5
8N

o+l
1|t |%
U=—|—
2 |21,
Then
o+1 t T
du = — dt.
T 160N, | 21;

The integral may be rewritten as

160 N o 3o-1
o / exp (—u) (2u)30+1 du.
o+ 1 Jizs2

Integrating by parts yields

160 N: . 6o 2 [ L
( 3 ) (‘exp<‘“> 205 |2t ot [ e () 20) % 1du).
t

0'"—1 0'"—1 :‘5|/2

It is easy to see that expression above is dominated by the first term and the
integral is an error term. We consider only the first term in the estimate and evaluate

the endpoints to get
of1 30—1
4o S 4o
) 4Ny '

1] s

11 5 NgeXp <—§ ‘W
3
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Because |s| > 8NZ and because Nj is large, We may absorb the power of s and
the implicit constant by choosing a smaller negative power. Hence, if Ny and thus
Nj is sufficiently large, then

1 1 £

S o
<= i .
—26Xp< 2‘8]\[3 )

Combining the estimates on I and II completes the proof of the lemma. O

3.2. Proof of Lemma 3.2. The proof of Lemma 3.2 shares many similarities
with the proof of Lemma 3.1.

Proof. Beginning with (30), assume |s| < Ny/4 and write
|H « G(s) \<Z|Hs—t (1)l
|t]>Ns

If |s| < Ny/4 and |t| > N, then |s —t| > |t|/2. So we can apply the estimate (29)
with |t|/2 in place of s and the estimate (26). Then
3

1] ¢t
H <4 -
12 Gls) ~ HE) £6 Y ep< ;o
|t)>No
provided that Ns is sufficiently large depending on N;. In order to prove the estimate
(31), we assume |s| > Ny/4. Write
|H « G(s)] <T+1I,

where

I= Y [H(H)G(s—t)
[t|<8NZ
and

M= > [H(t)G(s—1)|.
[t|>8N7
For the sum I, apply the estimates (28) and (26). Then

IS0 > 156Ny < o',

[t|<8NZ

where the final inequality follows from the fact that ¢ < 5z
For the sum II, consider the term where s =t separately from other summands.

Write
M= > |Ht)G(s—t)|+|H(s)G(0)].

|t|>8N?
s#t
3
4
) < 51/3.

Apply the estimates (29), (26) and (24). Then
3
1)t |* 1| s
<6 B I
Z eXp< 5 ’8]\[1 ) +6Xp< 5 ’8]\[1
|t|>8N?
The last inequality is implied by the bounds
3

s#£t
> S |
exp | —= |z
P\ 7913V,
[t >8N?
sF#£t
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S

3
]_ 1
—_ < 513
eXp( 2 I8V, )N

For the final estimate (32), assume |s| > 8 N3 and write

|H « G(s)] <T+1I,

where

I= ) [H(s—1t)G(1)]

It|<|s]/2
and

M= Y [H(s—t)G().

[t|=]sl/2
For the sum [, use the fact that |s—t| > |s|/2 and apply (23) and (29) with |s|/2.

Then
3 3/4
1] s |* 1] s
1< - < —= .
<2 eXp( 2‘16N1 )N‘S‘eXp< 2‘16]\71 )

ltl<ls|/2
Because s > % > N, it follows that if N, (and thus N3) are large enough depending
on Nj, both the factor of |s| and the implicit constant can be absorbed by changing
the denominator in the exponent. Thus we have the estimate

I<1 L %
_Qexp 5 .

For the sum II, apply (28) and (27) with |¢| in place of s. Then

3
Lyt |*
I < B L A
~ Z eXp( 2‘2]\73 )

|t1>[s]/2
By a similar argument to the one appearing in the proof of Lemma 3.1, we therefore

have the estimate
3
1 1 4
IIS—exp(——‘ i )

2 2 |8N;
Combining the estimates on I and II completes the proof of Lemma 3.2. 0

S
8N,

4. Doubling functions

Definition 4.1. If f: Rt — R is a decreasing or eventually decreasing function,
we say that f is doubling if f(£/2) < f(€) for all sufficiently large €.

We will need a few basic facts about doubling functions.
Lemma 4.2. The function 0(¢) is doubling.

Proof. The fact that 6(¢) ~ £~V implies that 8(¢) is eventually decreasing. To
see that 6(§) is doubling, note that for sufficiently large ¢; and ¢ with ¢; < g9, we
have the assumption (5), which is reproduced below for convenience.

sz (2)
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Since ¢! is decreasing, we have that ¥ ~1(1/£) > ¢=1(2/€). If € is sufficiently large
that (5) applies with ¢ = ¥ 71(2/¢€) and ¢ = ¢~1(1/£), then we have

o) 2, (2019

) 1/& 7 \v71(2/8))

Hence

0(6) v R/OxW(2/) T
Hence 0(¢) is doubling. O

Next, we show under very general conditions that a function with limit 0 must
admit a decreasing, doubling majorant.

0(/2) _ o (L/OXWT(1/8) _ (m-l(%))”g < g+9/e

Lemma 4.3. Suppose that M : Z — C is any function such that |[M(s)| — 0 as
|s| — oo. Then there is a decreasing function N: R™ — R™ such that N(§) — 0 as
¢ — oo satisfying the doubling property such that |M(s)| < N(|s|) for all s € Z.

Proof. First, we replace M by a decreasing function M;: Rt — R™T as follows.
For s € N, define
M (s) = sup [M(t)|.
It|>s
Then M is decreasing on [0, 00), |[M(s)| < M;(|s|) for all s € Z, and lim,_,, M;(s) =
0.
We construct N by taking the average of M;. For £ € R, define

N(g) = @ > 60
t<¢

As N is an average of a decreasing function, it follows that N is decreasing; moreover,
since M;(t) — 0 as t — oo, it follows that N(§) — 0 as £ — oco. Furthermore, it is
easy to see that M;(s) < N(s) for s € N:

S S

Ns) = — LI — > ws) = (s M) = Mi(s),

So |[M(s)| < M(]s|) < N(]s|)) for all s € Z.
It only remains to verify that N(s) has the doubling property (63). We have for
s # 0 that

1
t<s/2
teN
1 1
S X MWt Y
LS/QJ +1 t<|s/2] LS/QJ +1 |s/2]+1<t<2[s/2|+1
teN teN
1 1
<o X M0t Y M0
[s/2] +1 2, /201 o) St
teN teN
2 2
S M(t) < - M (t
t<s+1 t<s+1

teN teN
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g%ZMl(t)—l—%Ml (s+1 ZMl %ZMl(t)

t<s t<s t<s
tEN tEN teN
4 8
< - M(t) < M (t) =8N(s),
< M0 S g DM = 8N()
teN teN
as desired. 0

5. Single-factor estimates

5.1. Single-factor estimates for Theorem 2.1 and Theorem 2.3. In this
section, we construct a function g with its support contained in intervals centered
at rational numbers with denominator close to some number M. Let 1(q) be a
function satisfying (4) and (5). Suppose x(¢) is a function satisfying (6). In the case
of Theorem 2.3, we take x(q) = 1.

Let M), be a large positive integer. We choose an integer S(My) and a positive
real number C}, so that

1
1< Y ——=0C<2
o< ax(a)
ke <q<pB(Mp)

q prime
The support of g, will be contained in a family of intervals centered at rational
numbers whose denominator is a prime number between M;, and B(M}).
We choose a nonnegative function ¢ € C° with support in the interval [—1/2, 0]
satisfying the conditions

(34) $(0) =1
and
(35) Os) S exp (—Is]5 ).

The existence of such a function is guaranteed by a result of Ingham [6].
Let

Ppal®) = q2x(q1)w(Q)¢ (@Z)(IQ) (x B g)) |

gi(z) = 0131 Z Z Pp,q(2)

My <q<p(My) p=1
q prime

Now define

Observe that the function g is supported on the interval [0, 1].

Lemma 5.1. Suppose g, is defined as above. Then we have the following esti-
mates for s € Z:

(36) 9r(0) =1,
(37) G(s) =0 if0 < |s| < My,
B

(38) |9k (s)| < O([s]) if s # 0,

(30) |gk<s>\sexp(—1<w</3<Mk>>2|s|>“4?) if s = w(B(M) .

2
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Proof. A simple calculation gives us that
~ —1 1 p n
g(s) = C Z P Ze 65 ¢ (¥(q)s)

2
My <q<p(My) x(a)

q prime

where e(u) = e 2™, The sum in p has the value
5 (p )_{q ifq|s,

el=s|= .
= \4 0 ifgts.

Therefore, if s = 0, then the above sum will be equal to 1, and if 0 < |s| < M,
then the above sum will vanish. This proves (36) and (37). Thus,

My <q<B(My) ax(a)
q prllme
q|s

For |s| > M, we split the above sum into three pieces according to the size of q.
We write

ge(s) = Co M (I + 11 + D),

where

[— Z q@(@b(q)s)

sy X
q prime
qls
I — Z ¢ (WQ)S) 7
ax(q)
Y1 (1/y/IsD<a<w= 1 (1/]s))
g prime
qls

111 — Z o (T/’(C])S).
a<v=1(1//Is])

qls

Estimate for 1. For the sum I, we observe that the number of summands is < 1.
This observation is a consequence of assumption (4) since it is implied that for a
large enough ¢ depending on € we have,

qufe S w<q) S quJre
which gives us
_ 1 -1 1
<y <
since 1 is decreasing. Taking logarithms, we conclude
1
log|s| < logy™ (—) <

5]

(40) log |s].

T+ € T —€

Hence, the number of summands in the sum I is at most l‘igfls‘ <1
logyp=1(1/]s]) ~
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Apply the bound gﬁ(w(q)s) < 1 to each summand to get

ax(q) "~ '
a=y~*(1/]s)
q prime
qls
Estimate for 1I. For the sum II, we observe that there are < 1 summands by
a similar argument as for the sum I. We apply the bound (35) to show that the
summand is bounded above by

exp(—|¥(q)s| %)
ax(q) '
If ¢ =~1(1/|s]), then
exp(—|v(q)s| )
(41) (0 < 0(]s)).

It is enough to show for each ¢ < ¢~1(1/|s|) that

exp(—|t(q+ 1)s| %) exp(—|t(q)s| 5 )
(g+1)x(g+1) ax(q)

If the inequality (42) holds for all ¢ < @Zfl(‘?ll), then the summand is increasing in
this domain, and is therefore maximized when ¢ = ¢! (LI)’ establishing the bound

|s
(41) for such q.
In order to establish (42), it is enough to verify that the numerator of the differ-
ence is positive. This numerator is

exp(—[t(q + 1)s]% Yax(q) — exp(—[e(q)s| 5 ) (g + 1)x(q + 1).

Since the logarithm is an increasing function, it is enough to show that

o+l o4l
—[p(q +1)s| 20 +logq+logx(q) > —[(q)s| 2 +1log(q+ 1) +logx(q+1).

This inequality is equivalent to

(42) > 0.

o+1

(43) log(q +1) —log g +log x(q+ 1) ~log x(a) < |s|™ (@) — (g +1)%).
The Taylor series for the logarithm guarantees that log(q+1) —logq = $+O (q%); the
subpolynomial growth condition (7) guarantees that log x(q + 1) — log x(q) = 0(%).
In total, the left side of inequality (43) is % + 0(%). On the other hand, since we are
in the regime where ¢ < 9)~1(1/|s|), the right side of (43) is bounded below by

S () — g+ DF) 21— (%)_
By (5), we have » N
(‘%”) = (q%) 2

Hence,

() () ) e)



498 Robert Fraser and Thanh Nguyen

Since 7 > 1, we see that the inequality (43) holds for ¥ ~1(1/4/|s]) < ¢ <
1~1(1/|s|) provided that M, (and hence |s|) is sufficiently large.
Hence we have the estimate

I < o(]s])-
Estimate for I11. For the final sum, we apply the estimate (35) to gzg to get

$ (1(g)s) exp (~ ()5l > )
Z 7q5 Z ;

ax(q)
a<$=1(1/+/Is)) g<$=1(1/+/Is])
q pr‘ime q pr|ime
q|s qls

sI%
eXp ( g )
<

a<=1(1/4/1s))

q prime
qls

< exp (= 15| ) og (v (1/V/JsD)) < 0.

For the estimate (39), we observe that |s| is sufficiently large for the estimate
(35) to apply to ¢ for every q € [My, B(My)]. As such
o1

exp (W@l )

exp (—(w(B(M)]s) %)

|96(s)] < 3
M <q<B(My) X(CZ)Q My, <q<B(Mj) X(Mk)Mk
q pr‘ime q pr‘ime
qls qls

The inequality |s| > ¥(8(M},)) 2 gives us (B(My)) > ﬁ Therefore,

o+1
exp <—\8\ . )
X(My)My

OIS

My <q<p(My)
q prime
qls

Observe that the number of summands is less than F(My). Moreover, we may
disregard the denominator, for large M., to derive an upper bound. Hence,

90(5)] < BOML) exp (=[] ).

Now, we need to eliminate the 3(Mj) term from the estimate, but this will be at
the cost of some decay from the exponent. Rewrite the above inequality as

N o 1, e
u(6) £ 508 exp (1% ) exp (511
]- 0’+1 1 o+1
(a4) < sy exp (~0(80) 5 ) exp (11 )
when we apply |s| > ¢(8(M;))~2. From the equation (4), when M, is large enough

we have
L logg(BOMY) _

2 = logB(My)
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which may be rewritten as

— 57 log B(M) > log w(B(My)) > ~2rlog B(My).

Exponentiating gives

(45) B(My) ™27 > (B(My)) > B(My) 2
Applying the upper bound from the equation (45) to (44), we get

31(5)] S A(M) exp ( ;5<Mk>“”:”) exp <__|S|z¢1) |

For large My, we observe that the exponential term dependent on M} is decaying
much faster than 3(My). Hence,

o+1

(5] S xp (31" ) $ exp (30321 ). 0

5.2. Single-factor estimate for Theorem 2.6. In the case of Theorem 2.6,
it is more convenient to choose the function gy to be supported in a neighborhood
of rational numbers with different denominators at very different scales. Thus, only
one denominator will meaningfully contribute to the value of |G (s)|.

As in Subsection 5.1, we begin by defining a smooth function ¢ with its support
in the interval [—1/2,0] satisfying the conditions

(46) ¢(0) =1
and
(47) B(s) S exp (—s[**).

Let nj be an increasing sequence of integers to be specified later. For a given k,
we choose prime numbers gy 1, . .., qkn, as follows. First, we choose ¢; 1 to be a large
prime number. We choose the remaining g, ; so that g o > w(qlk,l) Q3 > (qlk SRR
Qkeny, => W Furthermore, we also assume that for each j, we have

Np—1
1 1
(48) max { ——, ¥(qr;) | < 5¥(qr-1)-
k.5
Define

k,j

gk(w)znik;m;(b(m (x_q%,j))'

qk,j p
a2 g Lot ().
nk dk,j dk.j
Remove any terms for Wthh Qk.j does not divide s to get

(49) %(s):ik S OW(ans)s).
1<j<ng
Qk,j\s

Then
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Lemma 5.2. Suppose that g is defined as above. Then we have the following
estimates for s € 7Z:

(50) u(0) =
(51) Ggr(s) =0 if0 < |s| < qgn1,

(52) 36(5)] 5 ni s #0,

(53) 31 S exp (3 6ol ) iF1s] 2 bl

Proof. First, it is clear from (46) and (49) that g,(0) = 1, establishing (50).
Moreover, the sum (49) is seen to be empty if 0 < |s| < g1, establishing (51).

To prove (52), we split the sum (49) depending on the size of ¢ ; relative to s.
Suppose jo(s) is such that ¥(qj,)|s| > 1, but such that ¢(gx j,+1)|s| < 1, taking

Jo(s) = 0 if P(gr)[s| < 1 or jo = ng if (grn,)|s| > 1,

a6l < Y [pw@s)|+ - X

Jo(s)+1<j<ny, 1<5<j0(s)
qk,jls qk,jls

Ou(ar)s)|.
For the second sum, we may apply (47), the Schwartz tail for gzg Hence, using

the assumption (48),
n 1 3
o(@)s)| S — D exp (< lbla)sl?)

1
e ;

1<5<g0(s) 1<5<g0(s)

Qk,j|5
1 3(jn(s)—9) 1
< — E exp <—2 I ) S —.
2" — g
1<5<50(s)

For the first sum, recall that j, is chosen s0 that ¥(qk jo+1)s < 1. Since gqx; >

m for any 7 > jo + 2, it follows that s < 1 for such j. This means that
Jo

it is impossible for ¢ ; to divide s for j > jo —|— 1. Hence, the only term that can
contribute to the sum is the 7 = jo + 1 term. To control the contribution of this
term, we simply apply the bound

~

aﬁ(@b(qk,j)s)) <1

to bound the first sum by a constant times n—lk Thus, for any integer s # 0, we have

the bound

) 1
|9r(s)] S —-

ng

It remains to show the bound (53). For s > ¢(gxn, )", we can in fact apply the
Schwartz bound (47) for ¢ to every summand in (49). Hence

Z U(qr)s Sni > exp (_‘w<Qk,j>S|%)

Fi<i<nmg k1<i<mg
ij‘s
1 _ 3 3
S 2 e (~2 Ian)slt) S e (lolaa)slt) O

1<j<ng
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6. Stability and convergence of fi,

In order to prove Theorems 2.1, 2.3, and 2.6, we will piece together the functions
gi provided in Section 5 across multiple scales. Lemmas 3.1 and 3.2 are used to show
that the Fourier transforms g of the functions g do not exhibit much interference.
The construction proceeds slightly differently in the case of Theorem 2.6, as this
theorem does not prescribe a specific decay rate for fi.

6.1. Construction of p for Theorem 2.1 and Theorem 2.3. Let ¢ and
X be functions satisfying the assumptions (4), (5), (6), and (7). Recall that in the
case of Theorem 2.3 that we take y = 1, and we showed in Remark 2.5 that v
satisfies assumptions (4) and (5). We begin by constructing a sequence of functions
(Hyw k) ken Where fiy o, () is the product

k
pres@) = [L o).

For each g; we choose an associated M; such that the estimates in Lemma 5.1 ap-
ply. We further assume that the M;’s are spaced sufficiently far apart to satisfy the
conditions of Lemma 3.1. We also assume that for each 7 > 1 we have

(54) M1 = 89(B(M;)) ™.
Taking the Fourier transform of this sequence, we get the sequence (fiy . k)ken
where
fixawn(8) = Gu* - % Gr(s).
With this sequence of functions defined, the next objective is to show that the
sequence is uniformly convergent and that the functions fi, ., ; satisfy a similar decay
estimate (up to a constant) for all i. We begin with the latter:

Lemma 6.1. For the sequence of functions (fiy . x)ken defined above, we have
the following statements for any integers k,l with k > [:

55)  linesl0) ~ 1< 5,
k
(56) 1irat(s) — () S 30 M when 0 < [s] < My /4,
j=lt1
(57 ineos(5)] S O01sDiolsl)  when [s] > My/4,
(58 sl S exp (—5 (LRI it > sugaan)

Note that since p is a positive measure, (55) implies that |fiy.x(s)| < 3 for all s.

Proof. We prove Lemma 6.1 by induction and repeated application of Lemma 3.1.
We begin with the basis by letting £ = 2. Then jis = §1 * 2. Apply Lemma 3.1 with
H = gl, G = gz, N1 = ’l/)(B(Ml))_Q, N2 = M2 and N3 = ’l/)(ﬁ(Mz))_Q Then the esti-
mates (56), (57) and (58) immediately follow from (20), (21) and (22), respectively.
The statement (55) can be shown by the following calculation:

. N . . B 1
| w2(0) = 1] < 1G1(0) — g1 * G2(0)] < O(M5™) < 2

where the last inequality holds if Ms is chosen to be sufficiently large.
Now, assume (55), (56), (57), and (58) hold for fi, .. We seek to prove these
estimates for pt, ., x+1. We observe that g1 and p, ., satisfy the conditions on G and
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H in the statement of Lemma 6.1 with the choices Ny = (B3(My))™2, Ny = M4,
and N3 = ¥(8(Myy1))"% Hence, Lemma 3.1 implies the estimates

(59) |fixawir1(8) = iywi(s)] < My 3 0 < [s] < Myia /4,

(60) v (9] S O0IsDlsl) I Is| > Moy /4,
(61) reorn(5)] S exp <—§ (P T ) i 5] > S6(3(04)

The estimates (57) and (58) for fiy . k41 follow from (60) and (61).

We now show (56) for pt, o, k1. If I =k, then (56) follows from (59). Now assume
[ < kand |s| < M;yy. Then |s| < M1, so (59) applies. Also, we can apply the
inductive assumption (56) to conclude

|ﬂx,w,k+1(5) - ﬂx7w7l(3)| < mxw k+1(5) - ﬂxwk(5)| + mx,w,k(s) - ﬂx,w,l(5)|

k+1
Mkf§+§jM99 S oM.
j=Il+1 j=Il+1

This shows (56) for fiy ¢ kt1-
Finally, we show that 1, ,+1 satisfies (55). We apply (56) with = 1 to conclude

k+1

. . 1
| er1(0) = 1] = [fix o pr1(0) = fiy w1 (0)] S ZM 57

provided that the M; are chosen to be sufficiently large. O

Turning now to proving the uniform convergence of the sequence (fiy o k)ken, We
have the following lemma.

Lemma 6.2. The sequence (fi, . 1)ren converges uniformly for all s € Z to some
function M(s). This function M(s) has the property that

(62) [M(s)| S O(ls]w([s]); s € Z.
Proof. Let € > 0. There exists a kg, depending on € and w, sufficiently large such

that
0(|s))w(]s]) < €/2C
when |s| > My, /4, and so that

> M < €/2C,.
J=ko
Here (1 is taken to be the implicit constant for estimate (57) and C is taken to be
the implicit constant for the estimate (56).
Suppose first that |s| > My, /4. Then there exists [ > ko such that M;/4 < |s| <
M1 /4. If kg < k <, then we apply the estimate (57) to conclude that
|k (8)] < CL([s[)w(]s]) < e

If k£ > [, then we apply (57) and (56) to conclude that

k
e (8)] < Vit (8)] + () = fixwa (8)] < CLb(IsDw(ls]) +Co Y M < e

j=l+1
Thus |fiywk(s)| < € whenever k > ky and |s| > My, /4.
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When 0 < |s| < Mg, /4, applying the estimate (56) for any ko < k < [ gives

o0

‘ﬂx,w,k<5> - ﬂx,w,l(S)‘ S C(2 Z M];_E,?,

j=n
and the choice of my guarantees that this sum is less than €/2.
Hence the sequence fi, ., has a uniform limit M (s). An upper bound on |M(s)|

will follow from Lemma 6.1. Suppose |s| is such that &t < [s| <
Then the estimate (57) gives that

| (s)] S O(Is)w(]s]),
and (56) and the triangle inequality give

M (s)| < |fiywi(s)| + lirrkl sup |fiy w6 (8) = fywi(8)]

M
-

S O(shw(ls)) + > M7 S 6(Is)w(ls]) + 1517 < 0(Is)w(]s)),
j=l+1
as desired. 0

In order to show that the sequence p, ., converges to a weak limit p using the
convergence of the fi, ., (), it is normal to appeal to a theorem such as the Lévy
continuity theorem. However, this is slightly inconvenient as we only have estimates
for fi, . x(s) at integer values s. We will provide a proof of the weak convergence
below. First, we will need the following technical lemma relating the Fourier series
of a measure supported on the interval [0,1] to its Fourier transform. A stronger
version of this lemma can be found as Lemma 1 of Chapter 17 in the book of Kahane
[10].

Lemma 6.3. Suppose that u is a measure supported on the interval [0, 1] satis-
fying an estimate of the form

li(s)] < N(|s|) for all s € Z,
where N: RT™ — R™ is a non-increasing function satisfying the doubling property
(63) N(£/2) SN(&) forall € € RT.
Then ()| < N(|€|) for all £ € R.

We have already seen that 0(£)w(€) is a doubling function for £ > 0. Thus we
can apply Lemma 6.3.

Lemma 6.4. The sequence of measures [, has a nonzero weak limit i, .
This weak limit p, ., satisfies the estimate

(64) fixw(€) S O(IEDw ()

for all real numbers &.

Proof. Observe that each measure p, ., has total variation norm bounded by 2.
We claim that the measures ji, 4, have a weak limit. First, by the Banach-Alaoglu
theorem, there exists a subsequence fiy %, that has a weak limit yu, . Since each
measure [y .k, is supported in [0, 1], the weak limit s, is supported in [0, 1].

In particular, since p,,, is supported in [0, 1], each Fourier coefficient fi, ,(s)
of ., is obtained by integrating against a continuous, compactly supported func-
tion. Hence, for each s € Z, lim;_,o0 flywk;(s) = M(s), where M(s) is the limit in
Lemma 6.1.
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By the corollary to Theorem 25.10 of Billingsley [2], it is enough to check that
each weakly convergent subsequence of {ji, ., 1} converges weakly to fi, .. Suppose
{Vywi} is a subsequence of the p, , , with some weak limit . Then v is supported
on [0, 1], so by the same argument as in the previous paragraph, Lemma 6.1 implies
that ©(s) = M(s) for every s € Z. Since a measure supported on [0, 1] is uniquely
determined by its Fourier—Stieltjes series, it follows that v = p, ., as desired.

Notice that the weak limit p, ,, satisfies the bound

1

ﬂx,w(o) = kh_{go ﬂx,w,k(o) > 2

by (55). Therefore, it follows that /i, ,,(0) > 0, and therefore the weak limit s, ,, is
nonzero.

Finally, we verify that [, (&) satisfies the estimate (64). This estimate holds
for integer values of s by the estimate (62). Hence, Lemma 6.3 shows that f, . (&)
satisfies the same estimate for £ € R. O

Hence the measures p, ,,, have a weak limit supported on [0, 1]. We now verify
that this weak limit is indeed supported on the set E(1)).

Lemma 6.5. Let j,, be as in Lemma 6.4. Then pu,,, is supported on E(1)).
Proof. 1t is easy to see that

1

p 1
5000 2+ 3000

p
supp ¢p.q C {5 ~ 3

and therefore

suppgi € | J U [— - —w 1/1( )]

M;<q<B(M,
g prime

Since each i, is the product of g,’s, its support is an intersection of these supports:

wppier () U U[———w 243000

1=1 M; <q<ﬁ
q prime

Because the measure fi, , is defined as the weak limit of the measures i, ., x, we have
the containment

i (] U U[———@D Ly 3u00)|.

1= 1M<q<ﬁM)p 1
q prime

Observe that if € supp 1, and ¢ € N, then  must also lie in one of the intervals

2 So. 2+ o)

q 4q
for some M; < q < B(M;).
Therefore, there exists an infinite number of rational numbers % which satisfy

x—]ﬂ <¥(q)

and we may conclude that supp p, ., C E(¢). O
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The measure p,,, satisfies all of the properties required to prove Theorem 2.1.
Hence, the proof of Theorem 2.1 is complete.

To show Theorem 2.3, it is also necessary to verify that the support of u is
contained in a set of generalized a-Hausdorff measure equal to zero. This will be
shown in Section 7.

6.2. Construction of p for Theorem 2.6. We now construct the measure p
described in Theorem 2.6. The biggest difference between this construction and the
one in the previous subsection is that we do not state explicit quantitative estimates
describing the decay of the Fourier transform of the measures.

Choose a positive integer n; and let M; be a large integer. We will choose the
sequences {n;: j > 2} and {M;: j > 2} to be rapidly increasing sequences of integers
satisfying a certain set of conditions below. For each j, we choose prime numbers
Q1y -5 Ay With My < g < -+ K gjn;- When we choose the M;, we will impose
the condition that M1 > g;,, as well. Given gj1,...,qjn; We define the function
g; as in Subsection 5.2.

We define the function py to be the pointwise product

k() = ng(ﬂf)

so f11(s) = g1(s) and so that for any k > 2
fir(s) = Gi(s) * fi-1(s)-
We are now ready to state the main estimate on ji.

Lemma 6.6. (Main estimate for ji) Suppose that the functions gy are chosen
as above. Then provided that the sequences n; and M; are chosen appropriately,
the measures ji;, satisfy the following estimates for all integers k > [. All implicit
constants below are assumed to be independent of k and [.

. 1

(65) ORSES]

k
(66) [(s) = fu(s)] < D M;P i 0 < |s| < My /4,

j=l+1
(67) () Sy if s > M/4,
11 i
(68) |fu(s)] S exp (—5 ’§¢(qk7nk)8 ) if [s] > 8¢(qr.n,) >
Proof. Let n; and M be positive integers, and choose prime numbers ¢ 1, . .., q1.n,

such that 1 < ¢11 < 12 < -+ < q1n, satisfy the conditions of Lemma 5.2. Then
gy satisfies the estimates of Lemma 5.2 and in particular satisfies the estimates of
Lemma 6.6.

Given gy, ..., gi such that uy satisfies the four conditions above, we will describe
how to choose the integers ny,; and My, and how to choose the function g, so
that p,; will satisfy the four conditions above. Let Ny = ¢(8(My))~!. Lemma 3.2
requires that the quantity d is chosen so that § < N%“'; hence, we select ng; = 100N3.
Choose My,1 = Ny > ngyq to be a prime number that is sufficiently large to satisfy
the conditions of Lemma 3.2. Take Ny = qrq11 < -+ < Qry1n,,, sufficiently well-
spaced to satisfy the conditions of Lemma 5.2. Then, choose N3 = % >

Y(qh+1,n44 1
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Gk+1,1- With these choices, we define gy as in Subsection 5.2. Hence Lemma
5.2 implies that g5, satisfies the estimates required to serve as the function G in
Lemma 3.2.
Hence, we can apply Lemma 3.2 with H = [i,G = Gxr1, N1 = U(@rn,) ",
Ny = Giy1,1, and N3 = (@rs1,p,,) "5 and 6 =
This implies the estimates

nk+1

A A . M
(69)  iusa(s) — fmn(s)] <MD 0 < s < =22,

R , M,
(70) ()] S meyr” i Js) > =2,
11 i
(71) ‘ﬂkJrl(S)‘ SJ €xp <_§ '§w<Qk+1,nk+1)8 ) if ‘3‘ Z 8w<qk+1,nk+1>72

Hence jix.; satisfies the estimates (67) and (68). In order to check (66), assume
| <k+1and|s| <& If | = k, then the inequality follows from (69). If I < k,
then applying the inductive assumption (66) to estimate the difference fix — fi; and
applying (69) to estimate the difference i1 — fix gives

|kr1(s) = fu(s)] < |fra(s) — fn(s)] + [fin(s) — fu(s)|

k k+1
SMZY+ Y M= M
j=l+1 j=l+1
This establishes (66) for fix4+1. Applying (66) with [ =1 and s = 0, we see that
k+1 1
|k11(0) = 1] = [f12(0) 0)] <ZM 5
assuming the M; grow sufficiently rapidly. O

Lemma 6.7. The sequence fi;, converges uniformly for all s € 7 to a function
M (s). This function M (s) has the property that |M(s)| — 0 as |s| — oo.

Proof. The proof is similar to that of Lemma 6.2. Let ¢ > 0. Because n, — oo,
there is an index kg such that n, By > ko Mj % < ¢/2C, where C is the implicit
constant from (67)

Suppose |s| > 0, and choose | > ky such that 4t < [s| < =Lt Suppose first

that ko < k < [. For such k, We have that |f;(s)| < n, 1< nko P < s by (67). If,
instead, k > [, then we have

N . . R € B € B
()] < (o) + () — () < 5+ 30 MR <S4 3 M0 <e

Hence |fi(s )| < e for all |s| > '“0 and all k > k.
If |s| < '“0 and ko <1 <k, thenwehave

)~ < 3 M S0 M < e

j=I+1 j=ko+1

This proves that the sequence fix(s) is uniformly Cauchy and hence uniformly con-
vergent. Let M (s) denote the uniform limit of this sequence.
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Finally, we verify that M(s) — 0 as |s| — oco. Suppose [s| is such that % <
Is| < %. Then we have from Lemma 6.6 that |ix(s)| < n;1/3’ and

M(s) S limn(s)| + Timsup |ju(s) = fu(s)] S " + Z M <,
— 00 j o1

since My, > ny. Since the sequence ny — oo, this shows that M(s) — 0 as
|s| — oo, as desired. O

The rest of this proof is similar to the proof of Theorem 2.1. In order to apply
Lemma 6.3, we use the fact from Lemma 4.3 that M is majorized by N(|s|), where
N is a doubling function. This will allow us to apply Lemma 6.3.

We are now ready to show that the measures p; converge to a weak limit.

Lemma 6.8. The sequence of measures p; has a nonzero weak limit p. This
weak limit 1 satisfies the estimate

11(€)] = 0 as |£] — oo in R.

Hence 1 is a Rajchman measure.

Proof. This proof is almost exactly the same as the proof of Lemma 6.4, but
when we apply Lemma 6.3, we use N(|s|) as the bound on M(s), where N(s) is the
function constructed in Lemma 4.3. U

Lemma 6.9. Let i1 be the weak limit in Lemma 6.8. Then the support of y is
contained in E(1)).

Proof. This lemma can be shown in a similar manner to Lemma 6.5; we see that

if z € supp(p) then for each k, there exists a denominator ¢ ;, and a numerator py j,

such that ‘:c — Z:#‘ < 9(qx,;, ); hence, x is -well-approximable. O
sJk

Therefore, the measure p satisfies all of the properties promised in the statement
of Theorem 2.6. Thus the proof of Theorem 2.6 is complete.

7. A bound on the generalized Hausdorff measure

To complete the proof of Theorem 2.3, we must show that F,, which is taken to
be the support of ju ., has zero a-Hausdorff measure.

Lemma 7.1. Let F,, be a closed subset of

Let € > 0. Then there exists a cover U of F, by open intervals U such that

Z a(diam(U)) < e.

veu
Proof. The set F,, satisfies the following containment:

Fcﬂ U U[——w P v

k=1 Mk<q<ﬁ
q prime

x — C‘ < (q) for some integers 0 <r < q—1, My < q < (M),
q

q prime, k € N}.
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For any k the following collection of closed intervals is a cover for F,:

{12 0@ 2+ vi@] s M <0 < 008). g prime, 1<p <0}

Denote this collection as Z,. The following collection i is also a cover of F:

U= {Jn [g —@/}(q),g+@/}(q)] : My < q < B(My), ¢ prime, 1 <p<gq; J GIk_l}.

Fix a prime number ¢ with My < ¢ < (M) and let J € Zj_;. Observe that the
intersection of J with the interval [g —(q), % + w(q)} is either empty or is a closed
interval of length at most 2¢(q). We claim that the number of such intervals that
intersect J satisfies

#{o [P v 2 v] na 20}~ 1

where |.J| denotes the length of the interval J.

The interval J belongs to Z,_;. Therefore, |J| > (B8(M;_1))~*. By the assump-
tion (54), we know that |J| > Mik, and therefore, |J| > %.

The interval [p/q —¥(q), p/q+ 1¥(q)] intersects J if and only if p/q lies in a ¥ (q)-
neighborhood of J. Since ¥(q) ~ ¢~ 7 by (4) and 7 > 2, we have that ¥(q) < 1/q if
k is sufficiently large. Hence, [p/q — ¥(q),p/q + ¥ (q)] intersects J if and only if p/q
lies in an interval J’ of length |J'| = |J| + 2¢(q) ~ |J|.

Write J' = [a,b]. Then the smallest multiple of 1/¢g contained in J’ is [thﬂ’ and

Lab]

the largest multiple of 1/¢ contained in J' is b So the total number of multiples

of 1/q contained in J' is
lgb] = [qa]l +1 =gb—qa+O(1) = q|lJ'| + O(1) ~ q|lJ| + O(1).
Since |J| > 1/q, we have ¢|J| > 1. Therefore,

#{o |2 v 2+ vtw] na 20}~ 1

as claimed.
Then
Z a(diam(U)) < Z Z Z a (diam <Jm {]—) —¥(q), Py W‘J)}))
Ucu JE€Li—1 Mp<q<p(My) 1<p<q q q

q prime

~ DY qa(w(a),

JETy—1 My <q<p(Mg)
q prime

From assumption (12), a(v(q)) = ¢2. Therefore,

SUY wb@)= X K>

JET,_1 M}, <q<B(My) JETk 1 M <q<B(My)
q prime q prime

Recall that we chose 5(M}) so that

1< ) gl<2

My <q<p(My)
q prime
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Consequently,
DR/ DR D P/ PR W W ()
JET—y  My<q<B(My) JET, Mj,—1<q<B(Mj,_1) 1<p<g
q prime q prime

= > )

My 1<q<B(My—1)
q prime

Recall that ¥(q) = ¢~7, so

S o wx Y TS MT

My_1<q<B(My_1) M1 <q<p(Mp-1)
q prime q prime

The exponent —7 + 2 < 0. Hence, if £k is chosen to be sufficiently large, we have

> aU) <«

veud

as desired. O
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