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A dual simple proof of the classical Bernstein
and Calabi—Bernstein theorems

DANIEL DE LA FUENTE, RAFAEL M. RUBIO
and JOSE TORRENTE-TERUEL

Abstract. In this note, we present a short and simple proof of both the Bernstein theorem
and the Calabi-Bernstein theorem, which allows us to visualize both the common features and
the remarkable differences between the two results. The proofs are based on the construction of
conformal metrics that ensure the parabolicity of the surfaces. Consequently, they do not rely on
complex analysis.

Klassisen Bernsteinin ja Calabin—Bernsteinin lauseiden yksinkertainen todistus

Tiivistelm3a. Téssd tyossé esitetdin sekd Bernsteinin ettd Calabin—Bernsteinin lauseelle lyhyt
ja yksinkertainen todistus, joka havainnollistaa sekd nédiden tulosten yhteisia piirteitd ettd niiden
merkittavid eroja. Todistukset perustuvat pintojen parabolisuuden takaavien konformimetriikoiden
rakentamiseen; ne eivit kiytd kompleksianalyysié.

1. Introduction

There are two historically significant examples of non-linear elliptic partial diffe-
rential equations whose origins lie in the Differential Geometry of surfaces. Let us
recall the minimal surface equation in the Euclidean space R3. Given a smooth
function u:  — R on a domain Q C R?, the problem is described by the following
non-linear differential equation in divergence form,

(1) div [ -2\ _q,
/T DF
where D and div denote the gradient and divergence operators in the Euclidean
plane, respectively.
The second case is the spacelike maximal surface equation in the Lorentz—Min-
kowski space, 3. With standard Cartesian coordinates (x,v,t), the metric is given
by g1 = dz* + dy? — dt?, and the problem is given in the graph t = u(z,y) by

D
(2) div [ ———2 ) =0, |Duf<1,

i
where D and div also denote the gradient and divergence operators in the Euclidean
plane, respectively. The inequality assumption |Du|? < 1 ensures that the graph of
each solution is spacelike. Moreover, this problem is elliptic due to this new condition.

In both cases, the previous equations come from the Euler-Lagrange equation
of a geometrical variational problem. For each u € C*°(Q), Q an open domain

in R?, the 2-form /1 + |Du|?>dA (resp. \/1 — |Du|?dA) on Q represents the area
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element of the induced metric from the Euclidean space R? (resp. IL?) on the graph
Y, = {(:U,y,u(:c,y)) (x,y) € Q} (resp. spacelike graph). Indeed, the stationary
points of the functional u — [ /1 + [Du|>dA (resp. u — [ /1 — |Du|?>dA) are
characterized by Eq. (1) (resp. Eq. (2)). Note that, in the second problem the graph
of u is stationary among the functions satisfying the mentioned spacelike condition.,

We are interested in entire solutions of Eq. (1) and Eq. (2), that is, solutions
defined on the whole Euclidean plane R?. In both cases, trivial solutions are given
by the affine functions (with the spacelike condition in the second case).

In a seminal result of Bernstein (1914) [4], amended by Hopf (1950) [13], it was
established that

Theorem A. The only entire solutions to Eq. (1) on the Euclidean plane are
the affine functions.

Geometrically this statement means that each entire minimal graph in the 3-
dimensional Euclidean space is a plane. The proof given by Bernstein is based on
the analytical theory of partial differential equations. This theorem is considered to
be a key result in the global theory of minimal surfaces. A more geometrical proof
making use of the Enneper—Weierstrass representation is exposed in the Osserman’s
book “A survey of minimal surfaces” [16]. A new simple proof was given by Chern
[8] in 1969, and it was the first that did not use complex function theory. The proof
of Chern is based on applications of isothermal coordinates on the surface and the
Liouville theorem.

Analogously, one of the most relevant results in the context of the global geometry
of spacelike surfaces in I is the Calabi-Bernstein theorem.

Theorem B. The only entire solutions to the maximal surface equation Eq. (2)
on the Euclidean plane R? are affine functions.

This result was established by Calabi [5], inspired by the classical Bernstein the-
orem via a duality between solutions of Eq. (1) and Eq. (2). In 1983, Kobayashi [15]
gave a proof of the Calabi-Bernstein theorem through the corresponding Enneper—
Weierstrass parametrization for maximal surfaces. Another derivation making use
of Enneper—Weierstrass representation was given by Estudillo and Romero [12] via a
local estimation of the Gaussian curvature of the surface.

Without using complex analysis, Romero [18] gave a simple proof (1996) making
use of the Liouville theorem for harmonic functions on the Euclidean plane. Later,
in 2010, Romero and Rubio [19] gave a new proof through a local estimation of
the integral of a distinguished function defined on the annulus and the concept of
parabolicity. In addition, in 2015 another proof was given by Aledo, Romero and
Rubio [2] via the Bochner technique. In this work, we present two analogous simple
proofs of Bernstein and Calabi-Bernstein classical theorems. Both of them are totally
developed without complex analysis and are based on the use of suitable conformal
metrics and the parabolicity of certain Riemannian surfaces.

Our approach shows clearly the common point, as well as the notable differences
between both problems. We believe these simple proofs may be of interest and easily
understood by young researchers.

We finish this introduction by making a brief mention of several extension to
classical Bernstein and Calabi-Bernstein theorems.

On one hand, in the Calabi-Bernstein case, Cheng and Yau [7] extended the
theorem to arbitrary dimensions.
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On the other hand, the possible extension of the classical Bernstein theorem to
higher dimensions is known as the Bernstein conjecture. It has been an amusing
research topic for a long time and it has resulted in many advances on geometric
analysis (see [17]| for a detailed survey until 1984). In 1968, Simons [21] proved a
result which in combination with theorems of De Giorgi [11] and Fleming [10] yield
a proof of the Bernstein conjecture for n < 7. Moreover, there is a counterexample
u € C*°(R™) to the Bernstein conjecture for each n > 8.

Let us point out another related scenario to the Bernstein problem, this is the
Chern conjeture in affine geometry [9]|, namely that an affine maximal graph of a
smooth, locally uniformly convex function on two dimensional Euclidean space, R?
must be a paraboloid. The concept of maximal hypersurface in this setting, was
introduced by Calabi as a critical point of certain functional, called affine area func-
tional [6]. Trudinger and Wang 22| verified the Chern conjecture and they extended
the result to arbitrary dimension when a uniform strict convexity condition holds.

In the context of 3-dimensional Riemannian or Lorentzian product spaces R x
M?, where M? denotes a complete Riemannian surface with non-negative Gaussian
curvature, we will highlight three interesting results. In 2002, Rosenberg [20] showed
that an entire minimal graph in the Riemannian manifold R x M? must be totally
geodesic. In [3], Alias, Dajczer and Ripoll completed Rosenberg’s result showing
that an entire minimal graph in R x M?, with M? a complete Riemannian surface
with non-negative Gaussian curvature K, and K(py) > 0 at some point p, € M?,
must be a slice {fo} x M?, ty € R. For the Lorentzian product R x M?  Albujer and
Alias |1, Th. 4.1] showed an analogous result, that is, any entire maximal graph in
the Lorentzian product is totally geodesic. In additions, if K(pg) > 0 at some point
po € M?, must be a slice {tq} x M?, t, € R.

2. Preliminary formulae

Consider the Euclidean space (R?,g), where g = () is the usual inner product,
and (x,y,t) the standard Euclidean coordinates. Let S be a smooth surface in R?
endowed with the induced metric, i.e., (S,¢|s) is a Riemannian surface. Suppose
that S is orientable and let N be a unitary normal vector field on S. Consider
X,Y € X(5) two smooth vector fields on S. The Gauss formula is given by

VxY =VxY +1I(X,)Y),

where V,V denote the Levi-Civita connections of R? and S respectively, and I
is the second fundamental form of S. Let A: X(S) — X(S) be the Weingarten
operator defined by A(X) = —VxN. Given a point p € S, if x;(p), i = 1,2, denote
the principal curvatures, H(p) the mean curvature and K (p) the Gauss curvature at
p, then they are given by

H(p) = 3 Trace(Ay) = 5 (sa(p) + ma(p)), K (p) = det(Ay) = a(p). ma(p).

Now, assume that S is minimal, i.e., its mean curvature vanishes identically, H = 0.
Then, the Gaussian curvature of S can be expressed as K = —1 Trace(A4?).
Let us define the smooth function on S,

cos(#) := g(N, ).
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The following two formulas will be crucial for the proof of Bernstein’s result in the
next section, as long as S is minimal:

(3) |V cos(0)]* = %Trace(AQ) sin?(#),
(4) A cos(f) = — Trace(A?) cos().

In order to prove (3), we compute Vcos(). For all tangent vector field to S,
X € X(9),
(Vcos(0), X) = (VxN,d) + (N,Vx0;) = —(A(X),0]') = (-A(9,), X),

where we have taken into account that 0, is parallel and the Weingarten operator is
self-adjoint.

Now, let { £y, E»} be a local orthonormal vector field basis in S such that A(E;) =
kiE;, 1 =1,2. Then

IV eos(0)* = > (Veos(6), E)* = Y (A(0]), E)* = (0], A(E))>.

i=1,2 i=1,2 i=1,2
If we assume that S is minimal, then k1 = —ky = K, and
1= |8t‘2 = COS2<9> + Z <8t, Ei>27
i=1,2

proving formula (3).
To prove formula (4), we recall that the Codazzi equation in R® (and L?) is
expressed as

(VxA)(Y) = (VyA)(X), VXY eX(9).
Hence,
Acos(#) = — Trace{X — Vx (A(9}))} = — Z (Ve (AQ])), E;).
i=1,2
Making use of the above expression for Vcos(6), we get
Vi (A@F)) = (Ve A + A(V i, (07)) = (Vi A)(IF) + cos(0) AX(Ey).

Finally, Codazzi’s formula allow us to compute,

2

Acos(f) = — Z«VatTA)(Ei)a E;) — cos(6) Trace( A?)
i=1

= Trace (VBtTA) — cos(0) Trace(A?).

Since Trace(A) = 0 and the covariant derivative commutes with the contractions,
the term Trace (VatTA) identically vanishes, and formula (4) is proved.

In the 3-dimensional Lorentz—Minkowski space, L? = {(z,y,t) /x,y,t € R},
endowed with the product g;, = dz? + dy? — dt?, analogous formulas to (3) and (4)
may be obtained. Consider S a smooth surface in 3. We say that S is spacelike if,
endowed with the induced metric from L3, (S, g;|s) is a Riemannian surface. Note
that in this case S must be non compact and orientable.

Let us take the unit timelike normal vector field N on S such that

cosh(f) := gr(N,0) > 1.

The tangential component of d; on S is given at any point by 97 = 9, + cosh(f)N.
We also denote the Weingarten operator associated to N by A, it is easy to see that

V cosh(f) = —A(9}),



A dual simple proof of the classical Bernstein and Calabi—Bernstein theorems 515

where V is again the Levi—Civita connection of gr|s. From now on, we will identify
gr, and gp|s for short.

On the other hand, when the mean curvature function of S vanishes identically,
the surface is called maximal. In this case, computations similar to the Euclidean
setting provide the following two formulae

(5) |V cosh(0)|* = % Trace(A?) sinh(6)?,

(6) A cosh(f) = Trace(A?) cosh(h),
being A the Laplacian operator relative to (.5, gr).

3. Proof of the Bernstein theorem

Let u € C*(R?) be a smooth function defined on R?, and consider the regular
surface 3, = {(x,y,u(w,y)), z,y € R} given by the graph of u on R? endowed
with the induced metric, which will be denoted by ¢g. Take N, to be the unitary
normal vector field on 3, such that cos(6,) := g|,(Nu(p),d|,) = 0 for all p € 3,.
Assume ¥, is minimal, i.e., its mean curvature function vanishes identically, H = 0.
Then, as a direct consequence, the Gaussian curvature of ¥, may be expressed as
K, = —1 Trace(A?).

Since the entire graph ¥, is closed in R3, the Hopf-Rinow theorem guarantees
that (X, ¢g) is complete.

Now, consider the following conformal metric to (3,, g),

(7) g = (1+-cos(0))g.

Firstly, note that (X,,9) is also a complete Riemannian surface, since g > g. On the
other hand, making use of the well-known relation between the Gaussian curvatures
of conformal metrics, we have

(1+ cos(8))?K = K — A(log(1 + cos(8)),

where K denotes the Gaussian curvature of (X,,3). Now, from equations (3) and
(4), it is easy to check that K > 0.

Thus, (X4,9) is a complete Riemannian surface with non-negative Gaussian cur-
vature. We may call an Ahlfors and Blanc-Fiala-Huber result (see, for instance,
[14]) which ensures that (X,,g) is parabolic. Furthermore, using the relation be-
tween the Laplacian operators of the conformal Riemannian metrics, the function
cos(f) satisfies the relation

A cos(6) = mA cos(f) < 0.

As a consequence, we have cos(f) is a constant function, and then ¥, is an affine
plane in R3.
4. Calabi—Bernstein theorem
Let v € C°°(R?) be a smooth function. The entire graph of v,
Y = {(xayav($ay))a T,y € R}

is spacelike in IL? if and only if |Dv| < 1, where D denotes the gradient in the
Euclidean plane (R?, (,)).
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Assume (X,,¢gr) is a spacelike entire graph. Then, through the application
¢: R? — ¥, C L3 &(z,y) = (z,y,v(z,y)), an isometry is established between
(3,, gz) and the Riemannian surface (R?, g,), where g, := ®*gr, that is,

go = —dv® + dz* + dy’.

Remark 4.1. Observe that, in opposite way to the Riemannian case, an en-
tire graph in L3 is not necessarily complete. For example, consider a real function
f: R — R, defined as

||

V1—esds if|z| > 1,
flz) =9 Jo
a(z) if |z < 1,

where o € C°°(R) is a smooth function satisfying o/ 2 < 1, for all z € (—1,1) and such
that f is differentiable in R. Then, the entire graph G = {(z,y, f(z)), (z,y) € R*} is
a spacelike surface in L3 which is not complete. In order to see this, we may consider
the curve v: R — G, v(s) = (s,0, f(s)), which is clearly divergent, and its length

L(y):/oo| |ds—/ \/ﬁderZ/ e*ds < 2(1+e),

o0

is finite.

Now, suppose that the graph (3,,97) = (R? g,) is maximal and consider the
conformal metric

o= (1+cosh(6))’ g
On the one hand, using the relation between the Gaussian curvatures of the conformal
metrics, it is immediate to see that the Gaussian curvature K, of the surface (R?, g,)

vanishes identically.
On the other hand, let w be a tangent vector in R?. We have

go(w,w) = —(Dv,w)* + [[w|* > (1 — [Dv[*) |lw]*,

where (,) denotes the Euclidean inner product in R? and D its associate gradient
operator.

Taking into account that cosh(f) = L

\/1—|Dv|?

go(w, w) = (1+ cosh(0))*gu(w, w) > [[w]*.

Consequently, the Riemannian metric g, is complete and the surface (R?g,) is par-
abolic.
Finally, consider the positive function A(0) :=

with respect to the graph (3, gr),

we get

m From formulas (5) and (6),

we may compute the Laplacian of A:
Trace(A?)

AA =
cosh(6)

(tanh(g) — 1) < 0.
Thus AA < 0 and cosh(f) is a constant function, then the entire graph (3, g;,) must
be a spacelike plane in 3.
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