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Matrix-weighted bounds in variable Lebesgue spaces

Zoe Nieraeth and Michael Penrod

Abstract. In this paper we prove boundedness of Calderón–Zygmund operators and the

Christ–Goldberg maximal operator in the matrix-weighted variable Lebesgue spaces recently in-

troduced by Cruz-Uribe and the second author. Our main tool to prove these bounds is through

bounding a Goldberg auxiliary maximal operator. As an application, we obtain a quantitative

extrapolation theorem for matrix-weighted variable Lebesgue spaces from the recent framework of

directional Banach function spaces of the first author.

Matriisipainoiset epäyhtälöt muuttuvaeksponenttisissa Lebesguen avaruuksissa

Tiivistelmä. Tässä työssä todistetaan Calderónin–Zygmundin operaattoreiden ja Christin–

Goldbergin maksimaalioperaattorin rajallisuus Cruz-Uriben ja toisen kirjoittajan määrittelemissä

matriisipainoisissa muuttuvaeksponenttisissa Lebesguen avaruuksissa. Todistuksen päätyökalu on

Goldbergin apumaksimaalifunktion rajoittaminen. Em. tulosten ja ensimmäisen kirjoittajan esitte-

lemän suunnattujen Banachin funktioavaruuksien teorian sovelluksena saadaan matriisipainoisten

muuttuvaeksponenttisten Lebesguen avaruuksien suuruusarviollinen jatkelause.

1. Introduction

In this paper, we prove that the Christ–Goldberg maximal operator and Calderón–
Zygmund operators are bounded on matrix-weighted variable Lebesgue spaces. In
doing so, we further develop the theories of variable Lebesgue spaces and matrix
weights. Before stating our results, we provide a brief summary of the history of
variable Lebesgue spaces, matrix weights, and the Christ–Goldberg maximal oper-
ator to motivate our results. We defer the necessary definitions and notations to
Section 2.

To merge the theory of matrix weights and the Christ–Goldberg maximal oper-
ator with variable Lebesgue spaces, we begin with the theory of scalar Ap weights.
The study of Ap weights dates back to the early 1970’s when Muckenhoupt [Muc72]
proved the Hardy–Littlewood maximal operator is bounded on Lp(v) if and only if
v ∈ Ap. Given 1 < p <∞, a weight v is a scalar Ap weight if

[v]Ap
:= sup

Q
−
ˆ

Q

v(x) dx

(
−
ˆ

Q

v(y)−
p′

p dy

) p

p′

<∞,

where the supremum is taken over all cubes Q ⊂ Rn. To generalize Ap weights to
the variable exponent setting, we need to define an alternative version of Ap, which
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we denote by Ap. Given 1 < p <∞, a weight w is a scalar Ap weight if

[w]Ap
:= sup

Q

(
−
ˆ

Q

w(x)p dx

) 1
p
(
−
ˆ

Q

w(y)−p′ dy

) 1
p′

<∞.

Notice that w ∈ Ap if and only if v = wp ∈ Ap with [w]Ap
= [v]

1
p

Ap
. The definition

of classical Ap weights is based on viewing the weight v as a measure in the Lp(v)
norm, i.e., defining

‖f‖Lp(v) =

(
ˆ

Rn

|f(x)|pv(x) dx
) 1

p

.

The definition of Ap is based on viewing the weight w = v
1
p as a multiplier, in which

case, we define Lp
w(R

n) as

‖f‖Lp
w(Rn) = ‖wf‖Lp(Rn) =

(
ˆ

Rn

|w(x)f(x)|p dx
) 1

p

.

This approach of using weights as multipliers was first adopted by Muckenhoupt
and Wheeden [MW74] to define the “off-diagonal” Ap,q weights used with fractional
integral operators.

We now summarize the history of variable Lebesgue spaces. The early develop-
ment of variable Lebesgue spaces is due to Orlicz, Nakano and Zhikov. See [CF13]
for a thorough history of their contributions. We focus on the modern history. In the
1990’s, interest in variable Lebesgue spaces grew due to their applications to multi-
ple kinds of engineering and modeling problems (see [AM02a, AM02b, AM05, Růž00,
Růž04]). Because of these applications, there was a need to extend the techniques
and results of harmonic analysis to variable Lebesgue spaces.

One important problem was determining what conditions on the exponent func-
tion p(·) ensure that the Hardy–Littlewood maximal operator is bounded on the
variable Lebesgue space Lp(·)(Rn). The first major result about this problem is due
to Diening [Die04], where he showed it is sufficient to assume p(·) is constant outside
some large ball and satisfies the local log-Hölder continuity condition (see inequality
(2) below). Diening’s result was generalized by Cruz-Uribe, Fiorenza and Neuge-
bauer [CFN03, CFN04], where they replaced the requirement that p(·) be constant
outside a ball with the assumption that p(·) is log-Hölder continuous at infinity (see
inequality (3) below). Later, Diening [Die05] gave necessary and sufficient conditions
for boundedness of the Hardy–Littlewood maximal operator that are hard to check,
but useful for theoretical purposes. The definition of Ap weights leads to a natural
generalization in the variable exponent setting. We can rewrite the definition of [w]Ap

using Lp norms, i.e.,

[w]Ap
= sup

Q
|Q|−1‖wχQ ‖Lp(Rn)‖w−1 χQ ‖Lp′ (Rn),

and then replace the Lp norms with variable exponent Lp(·) norms. Given an exponent
function p(·), a weight w is a scalar Ap(·) weight if

[w]Ap(·)
:= sup

Q
|Q|−1‖wχQ ‖Lp(·)(Rn)‖w−1 χQ ‖Lp′(·)(Rn) <∞.

Cruz-Uribe, Diening and Hästö [CDH11] proved the Hardy–Littlewood maxi-

mal operator is bounded on the weighted variable Lebesgue space L
p(·)
w (Rn), when

w ∈ Ap(·). Cruz-Uribe, Fiorenza and Neugebauer [CFN12] proved weighted strong
and weak-type norm inequalities for the Hardy–Littlewood maximal operators on
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L
p(·)
w (Rn) when p(·) is log-Hölder continuous and w ∈ Ap(·). Cruz-Uribe and Cum-

mings [CC22] extended this work to prove weighted norm inequalities for the Hardy–

Littlewood maximal operator on L
p(·)
w (Rn) over spaces of homogeneous type.

Cruz-Uribe, Fiorenza, Martell and Perez [CFMP06] showed many classical oper-
ators in harmonic analysis are bounded on Lp(·)(Rn) whenever the Hardy–Littlewood
maximal operator is bounded on Lp(·)(Rn). They did so by applying the theory of
Rubio de Francia extrapolation and weighted norm inequalities to variable Lebesgue
spaces. Cruz-Uribe and Wang [CW17] extended the theory of Rubio de Francia ex-

trapolation to weighted variable Lebesgue spaces L
p(·)
w (Rn), and applied this theory

to prove weighted norm inequalities for several classical operators on these spaces.
One underlying assumption in their results was p(·) and w are such that the Hardy–

Littlewood maximal operator is bounded on L
p(·)
w (Rn).

The study of matrix weights began with Nazarov, Treil and Volberg in the 1990’s.
Motivated by applications to Toeplitz operators and stationary processes, Treil and
Volberg [TV97b] developed the matrix A2 condition to prove bounds for the Hilbert
transform on matrix weighted L2. Nazarov and Treil [NT96] defined a matrix Ap

condition using a more complicated approach involving norm functions. They used
Bellman function techniques to prove their Ap condition is necessary and sufficient
for the boundedness of the Hilbert transform on matrix weighted Lp spaces. Their
work generalized the scalar results of Hunt, Muckenhoupt and Wheeden in [HMW73].

In [CG01], Christ and Goldberg introduced the Christ–Goldberg maximal oper-
ator to study singular integral operators on matrix weighted L2. Matrix weights are
symmetric, positive definite matrix functions. Given a matrix weight V , Christ and
Goldberg defined MV by

MV f(x) = sup
Q

−
ˆ

Q

|V 1
2 (x)V − 1

2 (y)f(y)| dy χQ(x),

and they proved if V ∈ A2, then there exists δ > 0 such that MV is bounded on Lp

when |p− 2| < δ.
Goldberg [Gol03] generalized this work to matrix weighted Lp for 1 < p < ∞.

He extended the definition of matrix A2 and the Christ–Goldberg maximal operator
to p 6= 2. Given a weight V , Goldberg defined MV,p by

MV,pf(x) = sup
Q

−
ˆ

Q

|V 1
p (x)V − 1

p (y)f(y)| dy χQ(x),(1)

for f ∈ L1
loc(R

n;Cd). Goldberg proved that if V ∈ Ap, then there exists δ > 0 such
that MV,p is bounded from Lq(Rn;Cd) to Lq(Rn) whenever |p− q| < δ.

Roundeko [Rou03] developed some aspects of Littlewood–Paley function space
theory by introducing matrix weighted Besov spaces and the following definition of
matrix Ap: given 1 < p <∞, V is a matrix Ap weight if

[V ]Ap
:= sup

Q
−
ˆ

Q

(
−
ˆ

Q

|V 1
p (x)V − 1

p (y)|p′op dy

) p

p′

dx <∞.

This definition is equivalent to the original definition given by Nazarov, Treil and
Volberg, and also reduces to the classical definition of Ap weights as measures when
the matrix weight is 1 × 1. As in the scalar case, we define an alternative class of
matrix weights that generalizes the view of weights as multipliers. Given 1 < p <∞,
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a matrix weight W is a matrix Ap weight if

[W ]Ap
:= sup

Q

(
−
ˆ

Q

(
−
ˆ

Q

|W (x)W−1(y)|p′op dy

) p

p′

dx

) 1
p

<∞.

When W is 1 × 1, this definition reduces to the scalar Ap definition. Moreover, the
relationship between Ap and Ap is the same as in the scalar case: W ∈ Ap if and

only if V = W p ∈ Ap with [W ]Ap
= [V ]

1
p

Ap
.

As we did in the scalar case, we rewrite the definition of [W ]Ap
using norms to

get
[W ]Ap

= sup
Q

|Q|−1
∥∥∥∥|W (x)W−1(y)|op χQ(y)

∥∥
Lp′

y (Rn)
χQ(x)

∥∥
Lp
x(Rn)

.

By replacing the Lp norms with Lp(·) norms we get the definition of matrix Ap(·).
Given an exponent function p(·), a matrix weight W is a matrix Ap(·) weight if

[W ]Ap(·)
:= sup

Q
|Q|−1

∥∥∥∥|W (x)W−1(y)|op χQ(y)
∥∥
L
p′(·)
y (Rn)

χQ(x)
∥∥
L
p(·)
x (Rn)

<∞.

This definition was introduced in [CP24a], and is closely connected to the bounded-
ness of averaging operators on Lp(·)(W ). With this alternative definition of matrix
Ap(·) weights, we redefine the Christ–Goldberg maximal operator by

MW f(x) = sup
Q

−
ˆ

Q

|W (x)W−1(y)f(y)| dy χQ(x)

for f ∈ L1
loc(R

n;Fd), where F is either the field R or C.
In the constant exponent case, it was shown by Hunt, Muckenhoupt and Wheeden

in [HMW73] that the Ap condition of a scalar weight is equivalent to the boundedness
in Lp(w) of all Calderón–Zygmund operators. Setting ∆ := {(x, x) ∈ Rn × Rn : x ∈
Rn}, let

K : Rn × R
n\∆ → C

be a measurable mapping. We say that K is a Dini Calderón–Zygmund kernel if we
have the smoothness condition

|K(x, y)−K(z, y)| ≤ ω

( |x− z|
|x− y|

)
1

|x− y|n
for all x, y, z satisfying |x−y| ≥ 2|x−z| > 0, where ω : [0, 1] → [0,∞) is an increasing,
subadditive function satisfying ω(0) = 0 and the Dini condition

ˆ 1

0

ω(t)
dt

t
<∞.

We say that T is a Calderón–Zygmund operator associated to the kernel K if there
is a 1 < p <∞ for which T is a bounded linear operator

T : Lp(Rn) → Lp(Rn),

and if for all compactly supported functions f ∈ Lp(Rn) and a.e. x ∈ R
n\supp(f) we

have

Tf(x) =

ˆ

Rn

K(x, y)f(y) dy.

For a Calderón–Zygmund operator T and f = (f 1, . . . , f d) ∈ Lp(Rn;Fd), we define

T̃ f : Rn → Fd as
T̃ f(x) := (Tf 1(x), . . . , T f d(x)).
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The Hunt–Muckenhoupt–Wheeden theorem was extended to the matrix-weighted
setting in the constant exponent case by Nazarov, Treil and Volberg, see [Tre89,

NT96, TV97a, TV97b, Vol97], who proved that the boundedness of T̃ in Lp
W (Rn;Fd)

for all Calderón–Zygmund operators T is equivalent to the condition W ∈ Ap.
Our main result is a variable exponent version of the Hunt–Muckenhoupt–Whee-

den theorem for matrix weights.

Theorem A. Let p(·) ∈ P(Rn) ∩ LH(Rn) with 1 < p− ≤ p+ < ∞ and let

W : Rn → Sd be a matrix weight satisfying |W−1|op ∈ L
p′(·)
loc (Rn). Then the following

are equivalent:

(i) T̃ : L
p(·)
W (Rn;Fd) → L

p(·)
W (Rn;Fd) for all Calderón–Zygmund operators T ;

(ii) MW : Lp(·)(Rn;Fd) → Lp(·)(Rn);
(iii) W ∈ Ap(·).

For the lower bounds of the operators, we essentially adapt the work of Goldberg
in [Gol03] to the variable exponent setting. For the upper bounds, we follow the
strategy of Kakaroumpas and the first author in [KN24] to bound the convex body
sparse operator using a Goldberg auxiliary maximal operator. Parts of the theory
in [KN24] are proven in the general setting of directional Banach function spaces
introduced by the first author in [Nie24]. As matrix-weighted variable Lebesgue are
directional Banach function spaces (see [Nie24, Section 8.1]), these results are directly
applicable here.

We emphasize that the main novelty and difficulty in the proof of Theorem A
is in the implications (iii) ⇒ (i), (ii). Our strategy involves bounding the Goldberg
auxiliary operator

M ′
W,p(·) : L

p(·)(Rn;Fd) → Lp(·)(Rn),

where

M ′
W,p(·)f(x) = sup

Q

(
−
ˆ

Q

|Wp(·)
Q W (y)−1f(y)| dy

)
χQ(x).

This operator was introduced by Goldberg in the constant exponent case in [Gol03].
Our result is as follows.

Theorem B. Let p(·) ∈ P(Rn) ∩ LH(Rn) with 1 < p− ≤ p+ < ∞ and let W ∈
Ap(·). Then there is an increasing function φ : [1,∞) → (0,∞), depending only on n,

d, p−, p+, p∞, and the LH(Rn) constants of p(·), such that for all f ∈ Lp(·)(Rn;Fd)
we have

‖M ′
W,p(·)f‖Lp(·)(Rn) ≤ φ([W ]Ap(·)

)‖f‖Lp(·)(Rn;Fd).

Goldberg’s interpolation argument of [Gol03] cannot be adapted to the variable
exponent setting. Thus, the proof of Theorem B is much harder and requires a
completely different argument. We adapt the argument from Cruz-Uribe, Diening
and Hästö in [CDH11], where they proved if 1/p(·) ∈ LH(Rn), then the Hardy–

Littlewood maximal operator is bounded on L
p(·)
w (Rn) if and only if w ∈ Ap(·). We

also use the recently proven reverse Hölder inequality for Ap(·) weights of Cruz-Uribe
and the second author in [CP24b].

As in [KN24], the boundedness of another, equivalent, auxiliary operator M ′′
W,p(·)

(defined in Section 5.2) can be used to prove the boundedness of the convex body
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operator of Nazarov, Petermichl, Treil and Volberg in [NPTV17]. In combina-
tion with [Nie24, Proposition 5.6], the boundedness of Calderón–Zygmund opera-
tors then follows from [Nie24, Corollary D], and that of the Goldberg maximal op-
erator from [Nie24, Theorem C] applied to the directional Banach function space

X = L
p(·)
W (Rn;Fd). To prove the implication (i) ⇒ (iii), we use a generalization of the

non-degeneracy condition of Stein [Ste93] which was used to prove this implication
for general directional Banach function spaces in [KN24, Theorem 6.16].

As a consequence of Theorem A and [Nie24, Theorem 8.1], we obtain the following
extrapolation theorem:

Theorem C. Let 1 ≤ p0 ≤ ∞, let V be a set, and let S : V → L0(Rn;Fd).
Suppose

T :
⋃

W∈Ap0

S−1(Lp0
W (Rn;Fd)) → L0(Rn;Fd)

is a map for which there is an increasing function φ : [1,∞) → (0,∞) such that for
all W ∈ Ap0 and all f ∈ V with Sf ∈ Lp0

W (Rn;Fd) we have

‖T f‖Lp0
W

(Rn;Fd) ≤ φ([W ]Ap0
)‖Sf‖Lp0

W
(Rn;Fd).

Let p(·) ∈ P(Rn) ∩ LH(Rn) with 1 < p− ≤ p+ < ∞ and let W ∈ Ap(·). Then

T f is well-defined for all f ∈ V with Sf ∈ L
p(·)
W (Rn;Fd), and there is an increasing

function ψ : [1,∞) → (0,∞), depending only on p0, n, d, p−, p+, p∞, and the LH(Rn)
constants of p(·), for which

‖T f‖
L
p(·)
W

(Rn;Fd)
≤ ψ([W ]Ap(·)

)‖Sf‖
L
p(·)
W

(Rn;Fd)
.

The remainder of this paper is organized as follows. In Section 2, we state the
relevant definitions and lemmas about variable Lebesgue spaces. In Section 3, we
state the lemmas needed for scalar and matrix Ap(·) weights. In Section 4, we prove
the necessary lemmas about maximal operators. We also prove that M ′

W,p(·)f is finite

almost everywhere. This is a consequence of the fact that Mp(·)|f | is finite almost
everywhere, a fact that seems well-known, but is not in the literature. In Section 5,
we prove Theorems A, B, and C.

Throughout this paper, we will use the following notation. We use n to denote
the dimension of the Euclidean space Rn, and d will denote the dimension of matrix
and vector-valued functions. We denote the coordinate basis in F

d by {ei}di=1. Given
a vector-valued function f : Rn → Fd, we denote its ith component f · ei by f i. When
we use cubes Q, we assume their sides are parallel to the coordinate axes. Given
two values A and B, we will write A . B if there exists a constant c such that
A ≤ cB. We write A ≈ B if A . B and B . A. We will often indicate the
parameters constants depend on by writing, for example, C(n, p(·)) or .n,p(·) By
a (scalar) weight w we mean a non-negative, locally integrable function such that
w(x) > 0 almost everywhere.

2. Preliminaries

We begin with the basic definitions and lemmas about variable Lebesgue spaces.
We refer the reader to [CF13] and [DHHR11] for a thorough treatment of the subject.

An exponent function is a Lebesgue measurable function p(·) : Rn → [1,∞].
Denote the collection of all exponent functions on Rn by P(Rn). Given a set E ⊆ Rn,
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define
p+(E) = ess sup

x∈E
p(x) and p−(E) = ess inf

x∈E
p(x).

Let p+ = p+(R
n) and p− = p−(R

n). If 0 < |E| < ∞, define the harmonic mean of
p(·) on E, denoted pE , by

1

pE
= −
ˆ

E

1

p(x)
dx.

Define the conjugate exponent to p(·), denoted p′(·), by

1

p(x)
+

1

p′(x)
= 1,

for all x ∈ Rn, where we use the convention that 1
∞

= 0.
Given p(·) ∈ P(Rn), define the modular associated with p(·) by

ρp(·)(f) =

ˆ

Rn\Ω∞

|f(x)|p(x) dx+ ‖f‖L∞(Ω∞),

where Ω∞ = {x ∈ Rn : p(x) = ∞}. Define Lp(·)(Rn) to be the collection of Lebesgue
measurable functions f : Rn → R such that

‖f‖Lp(·)(Rn) := inf{λ > 0: ρp(·)(f/λ) ≤ 1} <∞.

If f depends on two variables, x and y, we specify which variable the norm is taken

with respect to with subscripts, e.g., L
p(·)
x and L

p(·)
y .

A weight is a non-negative function w ∈ L1
loc(R

n) with 0 < w(x) <∞ for almost

every x. Given a scalar weight w, define L
p(·)
w (Rn) to be the weighted space with

norm ‖f‖
L
p(·)
w (Rn)

= ‖wf‖Lp(·)(Rn).

We now state some important lemmas. The first lemma relates the norm to the
modular.

Lemma 2.1. [CF13, Proposition 2.12] Given p(·) ∈ P(Rn) with p+ < ∞, f ∈
Lp(·)(Rn) if and only if ρp(·)(f) <∞.

Lemma 2.2. [CF13, Proposition 2.21] Given p(·) ∈ P(Rn), if f ∈ Lp(·)(Rn) with
‖f‖Lp(·)(Rn) > 0, then ρp(·)(f/‖f‖Lp(·)(Rn)) ≤ 1. Furthermore, ρp(·)(f/‖f‖Lp(·)(Rn)) = 1

for all non-trivial f ∈ Lp(·)(Rn) if and only if p+(R
n\Ω∞) <∞.

Lemma 2.3. [CF13, Corollary 2.23] Let p(·) ∈ P(Rn) with p+ <∞. If ‖f‖Lp(·)(Rn)

> 1, then

ρp(·)(f)
1

p+ ≤ ‖f‖Lp(·)(Rn) ≤ ρp(·)(f)
1

p
− .

If 0 < ‖f‖Lp(·)(Rn) ≤ 1, then

ρp(·)(f)
1

p
− ≤ ‖f‖Lp(·)(Rn) ≤ ρp(·)(f)

1
p+ .

Hölder’s inequality is an important tool for proving inequalities in Lp spaces. An
analogous version of this inequality holds in variable Lebesgue spaces.

Lemma 2.4. Given p(·) ∈ P(Rn), for all f ∈ Lp(·)(Rn) and g ∈ Lp′(·)(Rn) we
have fg ∈ L1(Rn) and

ˆ

Rn

|f(x)g(x)| dx ≤ Kp(·)‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn).

where Kp(·) ≤ 4 is a constant depending only on p(·). If 1 < p− ≤ p+ < ∞, then
Kp(·) ≤ 2.
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Next, we provide the definition of log-Hölder continuity, which plays an important
role in many results involving variable Lebesgue spaces.

Definition 2.5. A function r(·) : Rn → R is locally log-Hölder continuous, de-
noted by r(·) ∈ LH0(R

n), if there exists a constant C0 such that for all x, y ∈ Rn,
|x− y| < 1/2,

|r(x)− r(y)| ≤ C0

− log(|x− y|) .(2)

We say that r(·) is log-Hölder continuous at infinity, denoted r(·) ∈ LH∞(Rn), if
there exist constants C∞ and r∞ such that for all x ∈ Rn,

|r(x)− r∞| ≤ C∞

log(e+ |x|) .(3)

If r(·) is log-Hölder continuous locally and at infinity, we will denote this by writing
r(·) ∈ LH(Rn).

Remark 2.6. In the literature, some authors state results with the assumption
that 1/p(·) ∈ LH(Rn), and others assume p(·) ∈ LH(Rn). By [CF13, Proposi-
tion 2.3], if p+ < ∞, then p(·) ∈ LH(Rn) if and only if 1/p(·) ∈ LH(Rn). When
using the log-Hölder constants for functions other than p(·), e.g. 1/p(·), we will use
the notation C0(1/p(·)) and C∞(1/p(·)).

In our proofs, we need to compare powers of different sized cubes. We do so with
the following lemmas.

Lemma 2.7. [CF13, Lemma 3.24], [DHHR11, Lemma 4.1.6] Let r(·) : Rn →
[0,∞) with r+ < ∞. If r(·) ∈ LH0(R

n), then there exists a constant CD such that
for all cubes Q ⊂ Rn,

|Q|r−(Q)−r+(Q) ≤ CD.

In fact, we may take CD = max{(2√n)n(r+−r−), exp(C0(1 + log2
√
n))}.

Remark 2.8. The constant CD above is found by tracking the constants in
[CF13, Lemma 3.24]. Since CD depends on the function r(·), when working with
multiple functions, we specify the dependence by CD(r(·)), for example.

We need the following lemma to track the constants in Lemma 3.2 below.

Lemma 2.9. Let u(·) : Rn → [0,∞) be such that u(·) ∈ LH∞(Rn) and 0 <
u∞ < ∞, and for t > 0, let Rt(x) = (e + |x|)−nt. Then for any set E with |E| < ∞,
and any function F with 0 ≤ F (y) ≤ 1 for y ∈ E,

ˆ

E

F (y)u(y) dx ≤ entC∞

ˆ

E

F (y)u∞ dx+

ˆ

E

Rt(y)
u− dx,

and
ˆ

E

F (y)u∞ dx ≤ entC∞

ˆ

E

F (y)u(y) dx+

ˆ

E

Rt(y)
u− dx.

The following results are stated in terms of the Ap(·) condition, given in Defini-
tion 3.7. We state the special case needed here. Given p(·) ∈ P(Rn), we say that
1 ∈ Ap(·) if

[1]Ap(·)
= sup

Q
|Q|−1‖χQ ‖Lp(·)(Rn)‖χQ ‖Lp′(·)(Rn) <∞.
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Remark 2.10. If p(·) ∈ P(Rn) ∩ LH(Rn) with p+ < ∞, then 1 ∈ Ap(·). How-
ever, this condition is strictly weaker than log-Hölder continuity. (See [CF13, Propo-
sition 4.57, Example 4.59].) Note that this condition is referred to there as the K0

condition.

Lemma 2.11. [DHHR11, Lemma 4.5.3] Given p(·) ∈ LH(Rn) with p+ <∞, for
any cube Q ⊂ Rn,

1

6
|Q|1/pQ ≤ ‖χQ ‖Lp(·)(Rn) ≤ 4Kp(·)[1]Ap(·)

|Q|1/pQ.
Remark 2.12. The hypotheses of Lemma 2.11 can be relaxed by replacing

LH(Rn) with the weaker K0 condition. See [CR24, Proposition 3.8] for details.

Lemma 2.13. Given p(·) ∈ P(Rn) ∩ LH(Rn) with p+ < ∞ and two cubes
Q1, Q2 ⊂ Rn with Q1 ⊂ Q2 and |Q2| ≤ C|Q1|, we have

|Q1|−1/pQ1 ≤ 24Kp(·)[1]Ap(·)
C|Q2|−1/pQ2 .

Proof. Fix Q1, Q2 ⊂ Rn with |Q2| ≤ C|Q1|. Since p(·) ∈ LH(Rn), we have
p′(·) ∈ LH(Rn). Thus, by Lemma 2.11, for any cube Q,

1

6
|Q|1/p′Q ≤ ‖χQ ‖Lp′(·)(Rn) ≤ 4Kp(·)[1]Ap(·)

|Q|1/p′Q .

Thus,

|Q1|−1/pQ1 = |Q1|−1|Q1|1/p
′

Q1 ≤ 6|Q1|−1‖χQ1
‖Lp′(·)(Rn)

≤ 6|Q1|−1‖χQ2
‖Lp′(·)(Rn)

≤ 6(4Kp(·)[1]Ap(·)
)|Q1|−1|Q2|1/p

′

Q2

≤ 24Kp(·)[1]Ap(·)
C|Q2|−1|Q2|1/p

′

Q2

= 24Kp(·)[1]Ap(·)
C|Q2|−1/pQ2 . �

In the proof of Theorem B, we will need the following lemma about scalar mul-
tiples and quotients of log-Hölder continuous functions.

Lemma 2.14. Let s ∈ R and p(·), u(·) ∈ P(Rn) ∩ LH(Rn) with p+ <∞. Then

sp(·), u(·)
p(·)

∈ LH(Rn).

Proof. Fix s ∈ R and fix x ∈ Rn. Then we immediately get

|sp(x)− sp∞| ≤ s
C∞

log(e+ |x|) ,

for all x ∈ Rn. Likewise,

|sp(x)− sp(y)| ≤ s
C0

− log |x− y|

for all x, y ∈ Rn with |x− y| < 1
2
. Hence sp(·) ∈ LH(Rn).
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Since p+ <∞, by Remark 2.6, 1/p(·) ∈ LH(Rn). Thus,
∣∣∣∣
u(x)

p(x)
− u∞
p∞

∣∣∣∣ ≤
∣∣∣∣
u(x)

p(x)
− u∞
p(x)

∣∣∣∣+
∣∣∣∣
u∞
p(x)

− u∞
p∞

∣∣∣∣

≤ 1

p−
|u(x)− u∞|+ u∞

∣∣∣∣
1

p(x)
− 1

p∞

∣∣∣∣

≤ 1

p−

C

log(e+ |x|) + u∞
C

log(e+ |x|)

≤ C(u(·), p(·))
log(e+ |x|) .

Similarly, for all x, y ∈ Rn with |x− y| < 1
2
,

∣∣∣∣
u(x)

p(x)
− u(y)

p(y)

∣∣∣∣ ≤
∣∣∣∣
u(x)

p(x)
− u(y)

p(x)

∣∣∣∣+
∣∣∣∣
u(y)

p(x)
− u(y)

p(y)

∣∣∣∣

≤ 1

p−

(
C

− log |x− y|

)
+ u+

(
C

− log |x− y|

)

≤ C(u(·), p(·))
− log |x− y|

Thus, u(·)
p(·)

∈ LH(Rn). �

3. Ap(·) weights

The properties and fine structure of both scalar and matrix Ap(·) weights have
been developed recently. We collect the relevant results in this section. In [CP24b],
the authors proved a reverse Hölder inequality for scalar Ap(·) weights.

Theorem 3.1. [CP24b, Theorem 1.1 and Corollary 4.3] Let p(·) ∈ P(Rn) ∩
LH(Rn) with p+ <∞ and let w be a scalar Ap(·) weight. Then there exist constants
Cp(·) and r > 1 such that for all cubes Q ⊂ Rn,

|Q|−
1

rpQ ‖wχQ ‖Lrp(·)(Rn) ≤ Cp(·)|Q|
− 1

pQ ‖wχQ ‖Lp(·)(Rn).(4)

In particular, we may take

Cp(·) = C∗[w]

C∞p+

p2
−

(p++1)

Ap(·)
,

where C∗ depends on n, p−, p+ and the log-Hölder constants of p(·), and

r = 1 +
1

C∗[w]

(
1+2

C∞p+
p∞p

−

)
p+

Ap(·)

,

where C∗ = C(n, p(·), C∞). Moreover, if s ∈ (1, r), then

|Q|−
1

spQ ‖wχQ ‖Lsp(·)(Rn) ≤ 32[1]Av(·)
Cp(·)|Q|

− 1
pQ ‖wχQ ‖Lp(·)(Rn)(5)

for all cubes Q, where v(·) is defined by

1

sp(·) =
1

rp(·) +
1

v(·) .
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Notice that in inequality (5), the constant [1]Av(·)
implicitly depends on s, r, and

p(·). The following lemmas allow us to remove the dependence on s and r, which is
important for the proof of Theorem B.

The first lemma combines multiple results to obtain quantitative estimates for
[1]Ap(·)

.

Lemma 3.2. Let p(·) ∈ P(Rn) with 1/p(·) ∈ LH(Rn). Then 1 ∈ Ap(·). In fact,

[1]Ap(·)
≤ 8CD(1/p(·)).

Proof. Fix p(·) ∈ P(Rn) with 1/p(·) ∈ LH(Rn). By [DHHR11, Theorem 4.4.8],
if 1/p(·) ∈ LH(Rn), then for all pairwise disjoint collections Q of cubes,

‖AQf‖Lp(·)(Rn) ≤ 2CD(1/p(·))‖f‖Lp(·)(Rn),

where AQf =
∑

Q∈Q
−
´

Q
f(y) dy χQ. By [CP24a, Theorem 4.1] applied to the scalar

weight 1,

[1]Ap(·)
≤ 4 sup

Q
‖AQ‖Lp(·)(Rn)→Lp(·)(Rn),

where AQf = −
´

Q
f(y) dy χQ. Thus,

[1]Ap(·)
≤ 8CD(1/p(·)). �

Corollary 3.3. Let p(·) ∈ P(Rn) with 1/p(·) ∈ LH(Rn). Let r > 1 and s ∈
(1, r). Define v(·) by

1

sp(·) =
1

rp(·) +
1

v(·) .

Then [1]Av(·)
≤ 8CD(1/p(·)).

Proof. We will show

C0

(
1

v(·)

)
≤ C0

(
1

p(·)

)
,(6)

since this implies CD(1/v(·)) ≤ CD(1/p(·)). Observe that
(

1

v(·)

)

+

−
(

1

v(·)

)

−

≤ 1− 0 = 1.

Also, C0

(
1

v(·)

)
≤ C0

(
1

p(·)

)
. To see this, observe that for all x, y ∈ Rn with |x−y| < 1

2
,

we have ∣∣∣∣
1

v(x)
− 1

v(y)

∣∣∣∣ =
(
1

s
− 1

r

) ∣∣∣∣
1

p(x)
− 1

p(y)

∣∣∣∣ ≤
(
1

s
− 1

r

)
C0(1/p(·))
− log |x− y| .

Thus, we have C0

(
1

v(·)

)
≤
(
1
s
− 1

r

)
C0

(
1

p(·)

)
. Since s ∈ (1, r), we have

1

s
− 1

r
≤ 1− 1

r
=

1

r′
< 1.

Hence, C0

(
1

v(·)

)
≤ C0

(
1

p(·)

)
. �

Next, we define matrix weights and provide some important lemmas about them.
Recall that the operator norm of a matrix W is given by

|W |op = sup
u∈Fd

|u|=1

|Wu|.
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Let Sd denote the collection of d × d matrices with entries in F that are Hermitian
and positive definite. Then a matrix weight is a measurable mapping W : Rn → Sd

such that |W |op is a locally integrable function. A matrix weight is invertible as it is
positive definite almost everywhere.

The following lemmas play a useful role when working with vectors and matrices.

Lemma 3.4. [Rou03, Lemma 3.2] If {e1, . . . , ed} is any orthonormal basis in Fd,
then for any d× d matrix V , we have

1

d

d∑

i=1

|V ei| ≤ |V |op ≤
d∑

i=1

|V ei|.

Lemma 3.5. Let U and V be Hermitian d×d matrices. Then |UV |op = |V U |op.
We now define matrix weighted, variable Lebesgue spaces. These spaces were

introduced in [CP24a].

Definition 3.6. Define L0(Rn;Fd) to be the collection of vector-valued, Lebesgue
measurable functions f : Rn → Fd. Given p(·) ∈ P(Rn), define Lp(·)(Rn;Fd) to be the
collection of functions f ∈ L0(Rn;Fd) such that

‖f‖Lp(·)(Rn;Fd) = ‖|f |‖Lp(·)(Rn) <∞.

Given a matrix weight W : Rn → Sd, define L
p(·)
W (Rn;Fd) to be the collection of

Lebesgue measurable functions f : Rn → F
d such that

‖f‖
L
p(·)
W

(Rn;Fd)
:= ‖W f‖Lp(·)(Rn;Fd) <∞.

Before stating the relevant lemmas about matrix Ap(·) weights, we restate the
definition for the reader’s convenience.

Definition 3.7. Given p(·) ∈ P(Rn) and a matrix weight W : Rn → Sd, we say
that W ∈ Ap(·) if

[W ]Ap(·)
:= sup

Q
|Q|−1

∥∥∥
∥∥|W (x)W−1(y)|op χQ(y)

∥∥
L
p′(·)
y (Rn)

χQ(x)
∥∥∥
L
p(·)
x (Rn)

<∞.

In [Gol03, Corollary 2.2], Goldberg proves that given any matrix weight V ∈ Ap,
[|V (·)1/pu|p]Ap

≤ [V ]Ap
for all nonzero u ∈ Cd. The same holds for matrix Ap(·)

weights.

Lemma 3.8. [CP24b, Lemma 5.10] Let p(·) ∈ P(Rn) and W : Rn → Sd be a
matrix weight. If W ∈ Ap(·), then for all nonzero u ∈ Fd, |Wu| is a scalar Ap(·)

weight with
[|Wu|]Ap(·)

≤ 4[W ]Ap(·)
.

The following proposition is extremely useful and plays a key role in the theory
of matrix weights.

Proposition 3.9. [Gol03, Proposition 1.2], [BC23, Theorem 4.11], [DKPS24,
Proposition A.8] Let d < ∞. Given any measurable Banach space norm function
r : Rn × F

d → [0,∞), there exists a positive-definite, measurable matrix function
W : Rn → Sd such that

r(x,u) ≤ |W (x)u| ≤
√
dr(x,u).

Remark 3.10. Proposition 3.9 was first proved in [Gol03, Proposition 1.2]. How-
ever, this paper did not consider the question of the measurability of W . This was
justified by Bownik and Cruz-Uribe in [BC23, Theorem 4.11] for real-valued norms
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and matrix functions. The extension of measurability to complex-valued norms and
matrix functions was achieved in [DKPS24, Proposition A.8].

In [CP24a], the authors prove characterizations of matrix Ap(·) weights in terms
of averaging operators and reducing operators. We define the reducing operators
needed in our results and state the relevant characterization. Given a matrix weight
W : Rn → Sd, define the norm function r(·, ·) : Rn × Fd → [0,∞) by r(x,u) =
|W (x)u|. Given a cube Q ⊂ Rn, define the norm 〈r〉p(·),Q : Fd → [0,∞) by

〈r〉p(·),Q(u) := |Q|−1/pQ‖r(·,u)χQ(·)‖Lp(·)(Rn) = |Q|−1/pQ‖uχQ ‖
L
p(·)
W

(Rn;Fd)
.

By Proposition 3.9, there exists a positive-definite, self-adjoint, (constant) matrix

Wp(·)
Q such that 〈r〉p(·),Q(u) ≈ |Wp(·)

Q u| for all u ∈ Fd. We call Wp(·)
Q the reducing

operator associated to r on Q.
Let r∗ be the dual norm to r, given by r∗(x,u) = |W−1(x)u|. Define the norm

〈r∗〉p′(·),Q : Fd → [0,∞) by

〈r∗〉p′(·),Q(u) := |Q|−1/p′
Q‖r∗(·,u)χQ(·)‖Lp′(·)(Rn) = |Q|−1/p′

Q‖uχQ ‖
L
p′(·)
W

(Rn;Fd)
.

Using Proposition 3.9, there is a positive-definite, self-adjoint, (constant) matrix

Wp′(·)

Q such that 〈r∗〉p′(·),Q(u) ≈ |Wp′(·)

Q u| for all u ∈ Fd. We call Wp′(·)

Q the reducing
operator associated to r∗ on Q.

We now use reducing operators to state an equivalent characterization of Ap(·).

Lemma 3.11. [CP24a, Proposition 4.7] Let p(·) ∈ P(Rn) and W : Rn → Sd be
a matrix weight. Then W ∈ Ap(·) if and only if

[W ]RAp(·)
= sup

Q
|Wp(·)

Q Wp′(·)

Q |op <∞.

Moreover, [W ]RAp(·)
≈ [W ]Ap(·)

, with implicit constants depending only on d.

As a consequence of Lemma 3.11 and the fact that [W ]RAp(·)
= [W−1]RAp′(·)

, we get

the following corollary.

Corollary 3.12. Given p(·) ∈ P(Rn) and a matrix weight W , W ∈ Ap(·) if
and only if W−1 ∈ Ap′(·). Moreover, [W ]Ap(·)

≈ [W−1]Ap′(·)
≈ [W ]RAp(·)

with implicit

constants depending only on d.

4. Maximal operators

Our proof of Theorem B relies on dyadic techniques. In this section, we define
general dyadic grids, and state some of their properties.

Definition 4.1. Let D be a collection of cubes in Rn. D is a dyadic grid if it
satisfies the following three properties:

(1) given Q ∈ D, ℓ(Q) = 2k for some k ∈ Z;
(2) the subcollection Dk = {Q ∈ D : ℓ(Q) = 2k} forms a partition of Rn;
(3) given any two cubes Q,P ∈ D, we have Q ∩ P = ∅, Q ⊆ P , or P ⊆ Q.

Given a dyadic cube Q, define Q̂ to be the unique dyadic cube containing Q with
side length 2ℓ(Q).

A well-known trick for bounding a maximal operator involves bounding it by a
finite sum of maximal operators over dyadic grids. This relies on a special family of
dyadic grids.
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Definition 4.2. Given an n-tuple t ∈ {0, 1/3}n, define the dyadic grid Dt by

Dt = {2k([0, 1)n +m+ (−1)kt) : k ∈ Z, m ∈ Z
n}.

These special dyadic grids allow us to approximate any cube Q ⊂ Rn by a dyadic
cube from Dt for some t ∈ {0, 1

3
}n. This is known as the “1/3” trick.

Lemma 4.3. Given any cube Q ⊂ R
n, there exists t ∈ {0, 1/3}n and Qt ∈ Dt

such that Q ⊆ Qt and ℓ(Qt) ≤ 6ℓ(Q).

Using this “1/3” trick, we can bound M ′
W,p(·) by a finite sum of corresponding

dyadic maximal operators.

Lemma 4.4. Given p(·) ∈ P(Rn) ∩ LH(Rn) with p+ < ∞ and a matrix weight
W : Rn → Sd, for each t ∈ {0, 1/3}n, define M ′

W,p(·),Dt by

M ′
W,p(·),Dtf(x) = sup

Q∈Dt

−
ˆ

Q

|Wp(·)
Q W−1(y)f(y)| dy χQ(x),

for f ∈ L1
loc(R

n;Fd). Then for all f ∈ L1
loc(R

n;Fd) and x ∈ Rn,

M ′
W,p(·)f(x) ≤ C(n, d, p(·))

∑

t∈{0,1/3}n

M ′
W,p(·),Dtf(x).

Proof. Fix a cube Q ⊂ Rn. Then by Lemma 4.3, there exists t ∈ {0, 1/3}n and
Qt ∈ Dt such that Q ⊆ Qt and |Qt| ≤ 6n|Q|. Combining this with the definition of

Wp(·)
Q and Lemma 2.13, we have for any x ∈ Q

−
ˆ

Q

|Wp(·)
Q W−1(y)f(y)| dy χQ(x) ≤

6n

|Qt|

ˆ

Qt

|Wp(·)
Q W−1(y)f(y)| dy χQt

(x)

≤ 6n
√
d

|Qt|

ˆ

Qt

|Q|−
1

pQ ‖|WW−1(y)f(y)|χQ(y)‖Lp(·)(Rn) dy χQt
(x)

≤
62n24Kp(·)[1]Ap(·)

√
d

|Qt|

ˆ

Qt

|Qt|
− 1

pQt ‖|WW−1(y)f(y)|χQt
‖Lp(·)(Rn) dy χQt

(x)

≤ 62n24Kp(·)[1]Ap(·)

√
d−
ˆ

Qt

|Wp(·)
Qt
W−1(y)f(y)| dy χQt

(x)

≤ 62n24Kp(·)[1]Ap(·)

√
dM ′

W,p(·),Dtf(x)

≤ 62n24Kp(·)[1]Ap(·)

√
d

∑

t∈{0,1/3}n

M ′
W,p(·),Dtf(x).

Taking the supremum over all cubes Q containing x, we get

M ′
W,p(·)f(x) ≤ C(n, d, p(·))

∑

t∈{0,1/3}n

M ′
W,p(·),Dtf(x). �

Define L∞
c (Rn;Fd) to be the set of essentially bounded, compactly supported,

vector-valued measurable functions f : Rn → Fd. The monotone convergence property
of Lp(·)(Rn;Fd) (see [Nie24] for the precise definition) allows us to work with bounded
functions with compact support when proving Theorem B.

Lemma 4.5. Let p(·) ∈ P(Rn) and let W be an invertible matrix weight. Let
f ∈ Lp(·)(Rn;Fd), and let (fk)k≥1 be a sequence in L∞

c (Rn;Fd) for which for all u ∈ Fd

|fk(y) · u| ↑ |f(y) · u|



Matrix-weighted bounds in variable Lebesgue spaces 533

as k → ∞, for a.e. y ∈ R
n. Then

M ′
W,p(·)fk(x) ↑M ′

W,p(·)f(x)

as k → ∞ for a.e. x ∈ Rn.

Remark 4.6. By [Nie24, Proposition 2.4], the convergence |fk(x) ·u| ↑ |f(x) ·u|
for all u ∈ Fd for a.e. x ∈ Rn has several characterizations. A geometrically intuitive
version can be given in terms of the convex-set valued mapping K(f)(x), defined as
the smallest symmetric convex set containing the vector f(x) ∈ Fd. Indeed, in this
case the above convergence is equivalent to the assertion that K(fk) ⊆ K(fk+1) for all
k ≥ 1, and

∞⋃

k=1

K(fk)(x) = K(f)(x)

for a.e. x ∈ Rn. The lemma states that this kind of increasing a.e. convex-set
valued convergence of (fk)k≥1 is compatible with the increasing a.e. convergence of
(M ′

W,p(·)fk)k≥1.

Proof of Lemma 4.5. By [Nie24, Proposition 2.4], the assumption on (fk)k≥1

is equivalent to the statement that we have |Afk(y)| ↑ |Af(y)| for all d × d matri-
ces A for a.e. y ∈ Rn. In particular, this means that for every cube Q we have

|Wp(·)
Q W−1(y)fk(y)| ↑ |Wp(·)

Q W−1(y)f(y)| for a.e. y ∈ Rn. Thus, by the monotone
convergence theorem,

−
ˆ

Q

|Wp(·)
Q W−1(y)fk(y)| dy ↑ −

ˆ

Q

|Wp(·)
Q W−1(y)f(y)| dy = sup

k≥1
−
ˆ

Q

|Wp(·)
Q W−1(y)fk(y)| dy.

Letting x ∈ Rn and taking a supremum over all cubes Q containing x we obtain

M ′
W,p(·)fk(x) ↑ sup

k≥1
sup
Q∋x

−
ˆ

Q

|Wp(·)
Q W−1(y)fk(y)| dy =M ′

W,p(·)f(x).

The assertion follows. �

We now prove a Calderon–Zygmund decomposition for M ′
W,p(·),D.

Lemma 4.7. Let p(·) ∈ P(Rn)∩LH(Rn) with 1 < p− ≤ p+ <∞, W ∈ Ap(·), D
be a dyadic grid, and f ∈ L∞

c (Rn;Fd). Given λ > 0, there exists a (possibly empty)
collection {Qλ

j }j ⊆ D of pairwise disjoint cubes such that

Ωλ := {x ∈ R
n : M ′

W,p(·),Df(x) > λ} =
⋃

j

Qλ
j ,(7)

and for each Qλ
j ,

λ < −
ˆ

Qλ
j

|Wp(·)

Qλ
j

W−1(y)f(y)|dy ≤ 24 · 4nKp(·)[1]Ap(·)

√
dλ.(8)

Proof. Let D be a dyadic grid and fix λ > 0. Let f ∈ L∞
c (Rn;Fd). For every

x ∈ Ωλ, there exists a maximal cube Qx ∈ D with x ∈ Qx satisfying (8). To see why

maximality holds, observe that for any cube Q, by the definition of Wp(·)
Q , Lemma 2.4,
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and Lemma 2.11,

−
ˆ

Q

|Wp(·)
Q W−1(y)f(y)| dy ≤

√
d−
ˆ

Q

|Q|−1/pQ‖|W (·)W−1(y)f(y)|χQ(·)‖Lp(·)(Rn) dy

≤
√
d−
ˆ

Q

|Q|−1/pQ|f(y)|‖|W (·)W−1(y)|op χQ(·)‖Lp(·)(Rn) dy

≤
√
d|Q|−1|Q|−1/pQ‖f‖Lp(·)(Rn;Fd)‖‖|W (·)W−1(y)|op χQ(·)‖Lp(·)(Rn) χQ(y)‖Lp′(·)

y (Rn)

≤
√
d[W−1]Ap′(·)

|Q|−1/pQ‖f‖Lp(·)(Rn;Fd).

Since W ∈ Ap(·), by Corollary 3.12, W−1 ∈ Ap′(·), and so [W−1]Ap′(·)
< ∞. Thus,

the last expression converges to 0 as |Q| → ∞. Hence, there is a largest cube Qx

containing x satisfying (8). By the properties of dyadic grids, all cubes containing x
that satisfy (8) are contained in Qx. This justifies the maximality of our choice of
the cubes Qx.

Clearly, Ωλ ⊆ ⋃x∈Ωλ
Qx. To see the reverse inclusion, let z ∈ Qx for some x ∈ Ωλ.

By our choice of cubes Qx,

M ′
W,p(·),Df(z) ≥ −

ˆ

Qx

|Wp(·)
Qx
W−1(y)f(y)| dy > λ.

Hence z ∈ Ωλ. Since the D is countable, we may reindex {Qx}x∈Ωλ
by {Qj}j . By

maximality and the properties of dyadic cubes (Definition 4.1), {Qj}j is pairwise
disjoint. This proves (7).

The lower bound of (8) is immediate by our choice of {Qj}j. To see why the

upper bound holds, observe that by the definition of the reducing operator Wp(·)
Qj

,

Lemma 2.13 applied to Qj and Q̂j , and the maximality of the cubes Qj with respect
to inequality (8), we have

−
ˆ

Qj

|Wp(·)
Qj
W−1(y)f(y)| dy ≤ 2n−

ˆ

Q̂j

|Wp(·)
Qj
W−1(y)f(y)| dy

≤ 2n
√
d−
ˆ

Q̂j

|Qj|−1/pQj ‖|W (·)W−1(y)f(y)|χQj
(·)‖Lp(·)(Rn) dy

≤ 2n
√
d(24Kp(·)[1]Ap(·)

)2n−
ˆ

Q̂j

|Q̂j|
−1/p

Q̂j ‖|W (·)W−1(y)f(y)|χQ̂j
(·)‖Lp(·)(Rn)

≤ 2n
√
d(24Kp(·)[1]Ap(·)

)2n−
ˆ

Q̂j

|Wp(·)

Q̂j

W−1(y)f(y)| dy

≤ 24 · 4nKp(·)[1]Ap(·)

√
dλ.

This completes the proof. �

To prove Theorem B, we need a maximal operator based on norm averages. This
maximal operator was utilized in [CDH11] to prove the Hardy–Littlewood maximal
operator is bounded on weighted variable Lebesgue spaces.

Definition 4.8. Let p(·) ∈ P(Rn). Given any cube Q ⊂ Rn, define Ap(·),Q by

Ap(·),Q(f) :=
‖χQ f‖Lp(·)(Rn)

‖χQ ‖Lp(·)(Rn)

,
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for f ∈ L
p(·)
loc (R

n). Define the maximal operator Mp(·) by

Mp(·)f(x) := sup
Q
Ap(·),Q(f) χQ(x).

We need the following results about Ap(·),Q and Mp(·).

Lemma 4.9. [CDH11, Inequality 2.5] Let p(·) ∈ P(Rn)∩LH(Rn) with p+ <∞.
Then there exists a constant C depending only on [1]Ap(·)

such that for any cube
Q ⊂ Rn,

−
ˆ

Q

|f(x)g(x)| dx ≤ CAp(·),Q(f)Ap′(·),Q(g),

for all f ∈ L
p(·)
loc (R

n) and g ∈ L
p′(·)
loc (Rn).

Theorem 4.10. [DHHR11, Theorem 7.3.27] Let p(·), q(·), r(·) ∈ P(Rn)∩LH(Rn)
such that p(·) = q(·)r(·) and r− > 1. Then there exists a constant C depending only
on r− and the log-Hölder constants of p(·), q(·), r(·), such that

‖Mq(·)f‖Lp(·)(Rn) ≤ C‖f‖Lp(·)(Rn),

for all f ∈ Lp(·)(Rn).

By tracking the constants in the proof of Theorem 4.10, we find that

‖Mq(·)‖Lp(·)(Rn)→Lp(·)(Rn) ≤ C(n, C∞(1/p(·))) exp(2mC∞(1/t(·)))‖M‖Lr
−(Rn)→Lr

−(Rn),

where M is the Hardy–Littlewood maximal operator, t(·) is given by

1

t(x)
=

∣∣∣∣
r−
r(x)

− r−
r∞

∣∣∣∣ ,

and m satisfies ρt(·)((e+ | · |)−m) <∞. As,

‖M‖Lr
−(Rn)→Lr

−(Rn) ≤ C(n)(r−)
′,

we conclude that

‖Mq(·)‖Lp(·)(Rn)→Lp(·)(Rn) ≤ C(n, C∞(1/p(·))) exp(2mC∞(1/t(·)))(r−)′.
Before moving on to prove Theorem B, we make a small digression to prove that

if f ∈ Lp(·)(Rn;Fd), then M ′
W,p(·)f(x) is finite for almost every x ∈ Rn. The proof

reduces down to the fact that Mp(·)f(x) is finite for almost every x ∈ R
n. This fact

seems to be known, but a proof appears to be missing from the literature. We provide
it below.

Proposition 4.11. Given p(·) ∈ P(Rn)∩LH(Rn) with p+ <∞, if f ∈ Lp(·)(Rn),
then Mp(·)f(x) <∞ for almost every x ∈ Rn.

Proof. Let p(·) ∈ P(Rn) ∩ LH(Rn) with p+ < ∞ and f ∈ Lp(·)(Rn). We first
show sup|Q|≥1Ap(·),Qf(x) ≤ ‖f‖Lp(·)(Rn) for all x ∈ Rn.

Fix x ∈ Rn and let Q ⊂ Rn be a cube containing x such that |Q| ≥ 1. Since
p(·) ∈ LH(Rn) by Lemma 2.11,

Ap(·),Q(f)χQ(x) =
‖f χQ ‖Lp(·)(Rn)

‖χQ ‖Lp(·)(Rn)

≤ |Q|−
1

pQ ‖f‖Lp(·)(Rn) ≤ ‖f‖Lp(·)(Rn).

We next show for each x ∈ Rn with f(x) < ∞, there exists a constant C such
that

sup
|Q|≤1

Ap(·),Q(f)χQ(x) ≤ |f(x)|+ C.
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Fix x ∈ R
n such that f(x) < ∞. Let Q be a cube containing x such that |Q| ≤ 1.

Observe that by the reverse triangle inequality,

|Ap(·),Q(f)χQ(x)− f(x)| =
∣∣∣∣
‖f χQ ‖Lp(·)(Rn)

‖χQ ‖Lp(·)(Rn)

−
‖f(x)χQ(·)‖Lp(·)(Rn)

‖χQ ‖Lp(·)(Rn)

∣∣∣∣

≤
∥∥∥∥

f(·)χQ(·)
‖χQ ‖Lp(·)(Rn)

− f(x)χQ(·)
‖χQ ‖Lp(·)(Rn)

∥∥∥∥
Lp(·)(Rn)

.

By Lemma 2.11, ‖χQ ‖Lp(·)(Rn) ≥ 1
6
|Q|

1
pQ . Since |Q| ≤ 1 and p(·) ∈ LH0(R

n), by

[CP24b, Lemma 2.8], |Q|−
1

pQ . |Q|− 1
p(y) for all y ∈ Q. Thus,

∥∥∥∥
f(·)χQ(·)

‖χQ ‖Lp(·)(Rn)

− f(x)χQ(·)
‖χQ ‖Lp(·)(Rn)

∥∥∥∥
Lp(·)(Rn)

≤ 6‖|Q|−
1

pQ |f(·)− f(x)|χQ(·)‖Lp(·)(Rn)

. ‖|Q|− 1
p(·) |f(·)− f(x)|χQ(·)‖Lp(·)(Rn).

By [CF13, Remark 2.83],

lim
ℓ(Q)→0

‖|Q|− 1
p(·) |f(·)− f(x)|χQ(·)‖Lp(·)(Rn) = 0.

Hence

sup
|Q|≤1

|Ap(·),Q(f)χQ(x)− f(x)| = C <∞.

Thus, Ap(·),Q(f)χQ(x) ≤ |f(x)|+C for all cubes Q with |Q| ≤ 1. Since f ∈ Lp(·)(Rn),

by the definition of the Lp(·)(Rn) norm, f(x) must be finite for almost every x ∈ Rn.
Hence, sup|Q|≤1Ap(·),Q(f)χQ(x) < ∞ for almost every x ∈ Rn. Putting everything
together, we have shown that

Mp(·)f(x) = sup
Q
Ap(·),Q(f)χQ(x) <∞

for almost every x ∈ Rn. �

As a corollary, we prove M ′
W,p(·)f(x) is finite for almost every x ∈ Rn.

Corollary 4.12. Let p(·) ∈ P(Rn) ∩ LH(Rn) with p+ < ∞ and W ∈ Ap(·). If

f ∈ Lp(·)(Rn;Fd), then M ′
W,p(·)f(x) <∞ for almost every x ∈ Rn.

Proof. Fix x ∈ Rn and let Q ⊂ Rn be a cube containing x. Let {ei}di=1 be
the coordinate basis of Fd. Then by Lemmas 2.4, 3.5, and 3.4, the definition of the

reducing operator Wp′(·)

Q , and Lemma 2.11,

−
ˆ

Q

|Wp(·)
Q W−1(y)f(y)| dy ≤ −

ˆ

Q

|Wp(·)
Q W−1(y)|op|f(y)| dy

≤ |Q|−1‖|Wp(·)
Q W−1|op χQ ‖Lp′(·)(Rn)‖|f |χQ ‖Lp(·)(Rn)

≤ |Q|−1‖|W−1Wp(·)
Q |op χQ ‖Lp′(·)(Rn)‖|f |χQ ‖Lp(·)(Rn)

≤ |Q|−1

∥∥∥∥∥
d∑

i=1

|W−1Wp(·)
Q ei|χQ(·)

∥∥∥∥∥
Lp′(·)(Rn)

‖|f |χQ ‖Lp(·)(Rn)
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≤ |Q|−
1

pQ

d∑

i=1

|Q|
− 1

p′
Q ‖|W−1Wp(·)

Q ei|χQ ‖Lp′(·)(Rn)‖|f |χQ ‖Lp(·)(Rn)

≤ |Q|−
1

pQ

d∑

i=1

|Wp′(·)

Q Wp(·)
Q ei|‖|f |χQ ‖Lp(·)(Rn)

≤ d|Q|−
1

pQ |Wp′(·)

Q Wp(·)
Q |op‖|f |χQ ‖Lp(·)(Rn)

≤ 4Kp(·)[1]Ap(·)
d[W ]RAp(·)

‖|f |χQ ‖Lp(·)(Rn)

‖χQ ‖Lp(·)(Rn)

.

Thus, for all x ∈ Rn,

M ′
W,p(·)f(x) . sup

Q

‖|f |χQ ‖Lp(·)(Rn)

‖χQ ‖Lp(·)(Rn)

χQ(x) = sup
Q
Ap(·),Q(|f |)χQ(x) =Mp(·)|f |(x).

Since |f | ∈ Lp(·)(Rn), by Proposition 4.11, Mp(·)|f |(x) is finite for almost every x ∈ Rn.
Hence, M ′

W,p(·)f(x) <∞ for almost every x ∈ Rn. �

5. Proof of the main results

5.1. Proof of Theorem B. We first need the following lemma.

Lemma 5.1. Let p(·) ∈ P(Rn) ∩ LH(Rn) with 1 < p− ≤ p+ < ∞ and let
W : Rn → Sd be a matrix weight. If W ∈ Ap(·), then there exists r > 1 such that if
u′(·) = rp′(·), then

sup
Q∈D

Au′(·),Q(|W−1Wp(·)
Q |op) ≤ C <∞,

where the supremum is taken over all cubes in a given dyadic grid D in Rn. In
particular, the constant C is an increasing function of [W ]Ap(·)

that depends only on

n, d, p−, p+, the log-Hölder constants of p(·).
In the proof we will see that we can take

r = 1 +
1

C∗(4[W−1]Ap′(·)
)

(
1+2

C∞(p′(·))(p′)+
(p′)∞(p′)

−

)
(p′)+

,

where C∗ is as in Theorem 3.1. By carefully tracking this constant in [CP24b], we
find that it only depends on n, p+, and the log-Hölder constants of p(·).

Proof of Lemma 5.1. Let D be a dyadic grid of Rn. For each cube Q ∈ D and
i = 1, . . . , d, define the weight wQ,i by

wQ,i(x) := |W−1(x)Wp(·)
Q ei|.

By Lemma 3.8, wQ,i is a scalar Ap′(·) weight for each Q and i. Hence, by Theorem 3.1,
for each wQ,i, there exist constants CQ,i and rQ,i > 1 given by

CQ,i = C∗[wQ,i]

C∞(p′(·))(p′)+

(p′)2
−

((p′)++1)

Ap′(·)

and

rQ,i = 1 +
1

C∗[wQ,i]

(
1+2

C∞(p′(·))(p′)+
(p′)∞(p′)

−

)
(p′)+

Ap′(·)
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such that for all cubes P ⊂ R
n,

|P |−
1

rQ,ip
′

P ‖wQ,i χP ‖
L
rQ,ip

′(·)
(Rn)

≤ CQ,i|P |
− 1

p′
P ‖wQ,i χP ‖Lp′(·)(Rn).

Define r and M by

r = 1 +
1

C∗(4[W−1]Ap′(·)
)

(
1+2

C∞(p′(·))(p′)+
(p′)∞(p′)

−

)
(p′)+

and

M = C∗(4[W−1]Ap′(·)
)
C∞(p′(·))(p′)+

(p′)2
−

((p′)++1)
.

By Lemma 3.8, 4[W−1]Ap′(·)
≥ [wQ,i]Ap′(·)

for all Q and i. Thus, r ≤ rQ,i andM ≥ CQ,i

for all Q and i. Define u(·) by u′(·) = rp′(·). Fix Q ∈ D. By definition, we have
r < rQ,i, and so by Lemma 2.11, Lemma 3.4, the triangle inequality, the norm reverse
Hölder inequality (inequality (5)), and Corollary 3.3, we have

‖|W−1Wp(·)
Q |op χQ ‖Lu′(·)(Rn)

‖χQ ‖Lu′(·)(Rn)

≤ 6|Q|−1/u′

Q‖|W−1Wp(·)
Q |op χQ ‖Lu′(·)(Rn)

≤ 6|Q|−1/u′

Q

∥∥∥∥∥
d∑

i=1

|W−1Wp(·)
Q ei|χQ

∥∥∥∥∥
Lu′(·)(Rn)

≤ 6

d∑

i=1

|Q|−1/u′

Q‖wQ,i χQ ‖Lu′(·)(Rn)

. 6

d∑

i=1

CQ,i|Q|−1/p′Q
∥∥wQ,i χQ

∥∥
Lp′(·)(Rn)

≤ 6M

d∑

i=1

|Q|−1/p′
Q‖|W−1Wp(·)

Q ei|χQ ‖Lp′(·)(Rn)

with the implicit constant depending only on C0(1/p
′(·)). Using the definition of the

reducing operator Wp′(·)

Q , for each i = 1, . . . , d, we have

|Q|−1/p′
Q‖|W−1Wp(·)

Q ei|χQ ‖Lp′(·)(Rn) ≤ |Wp′(·)

Q Wp(·)
Q ei|.

Combining this with the previous estimate and Lemma 3.4, we get

‖|W−1Wp(·)
Q |op χQ ‖Lu′(·)(Rn)

‖χQ ‖Lu′(·)(Rn)

≤ C

d∑

i=1

|Wp′(·)

Q Wp(·)
Q ei| ≤ C|Wp′(·)

Q Wp(·)
Q |op ≤ C[W ]RAp(·)

.

Since W ∈ Ap(·), by Proposition 3.11, [W ]RAp(·)
<∞. Tracking the constants and

applying Corollary 3.12, we find that

sup
Q∈D

Au′(·),Q(|W−1Wp(·)
Q |op) ≤ CCD(1/p

′(·))M [W ]RAp(·)

= CCD(1/p
′(·))C∗[W−1]

C∞(p′(·))(p′)+

(p′)2
−

((p′)++1)

Ap′(·)
[W ]RAp(·)

≤ C(n, d, (p′)−, (p
′)+, CD(1/p

′(·)), C0(p
′(·)), C∞(p′(·))[W ]

1+
C∞(p′(·))(p′)+

(p′)2
−

((p′)++1)

Ap(·)
.

This completes the proof. �



Matrix-weighted bounds in variable Lebesgue spaces 539

Proof of Theorem B. Let p(·) ∈ P(Rn) ∩ LH(Rn) with 1 < p− ≤ p+ < ∞. Let
W ∈ Ap(·). Fix f ∈ Lp(·)(Rn;Fd). We first make some reductions. By Lemma 4.4,
we may reduce to a dyadic version of M ′

W,p(·). To simplify notation, we will suppress
any reference to the dyadic grid.

By Lemma 4.5, it suffices to assume f ∈ L∞
c (Rn;Fd). To see this, let f ∈

Lp(·)(Rn;Fd) and define the sequence {fk}∞k=1 ⊂ L∞
c (Rn;Fd) by

fk(x) := χ{y∈B(0;k) : |f(y)|≤k} f(x).

Then for a.e. x ∈ Rn we have

|fk(x) · u| = χ{y∈B(0;k) : |f(y)|≤k}(x)|f(x) · u| ↑ |f(x) · u|
as k → ∞ for all u ∈ Fd. Hence, by Lemma 4.5, M ′

W,p(·)fk(x) increases to M ′
W,p(·)f(x)

for all x ∈ Rn. Thus, if M ′
W,p(·) is bounded from L∞

c (Rn;Fd) to Lp(·)(Rn;Fd), then by

Fatou’s lemma for variable Lebesgue spaces (see [CF13, Theorem 2.61]),

‖M ′
W,p(·)f‖Lp(·)(Rn) ≤ lim inf

k→∞
‖M ′

W,p(·)fk‖Lp(·)(Rn) ≤ C lim inf
k→∞

‖fk‖Lp(·)(Rn;Fd)

≤ C‖f‖Lp(·)(Rn;Fd).

By the homogeneity of the Lp(·) norm, we may assume ‖f‖Lp(·)(Rn;Fd) = 1. Thus,
we need to show ‖M ′

W,p(·)f‖Lp(·)(Rn) ≤ C < ∞. Since p+ < ∞, by Lemma 2.1, it
suffices to prove

ˆ

Rn

(M ′
W,p(·)f(x))

p(x) dx ≤ C <∞.

Choose r from Lemma 5.1. Define u(·) by u′(·) = rp′(·) so that

p(·)
u(·) =

1

r′
p(·) + 1

r
=: q(·).

Then we find that q− = 1
r′
p− + 1

r
> 1

r′
+ 1

r
= 1. As, q(·) ∈ LH(Rn) by Lemma 2.14

(with log-Hölder constants depending only on those of p(·) and on p−, p+, and r),
Theorem 4.10 implies that Mu(·) is bounded on Lp(·)(Rn). For k ∈ Z, define the sets
Ωk by

Ωk = {x ∈ R
n : M ′

W f(x) > 2k}.
By the Calderon–Zygmund decomposition from Lemma 4.7, for each k, there exists
a collection {Qk

j}j of dyadic cubes satisfying (7) and (8) with λ = 2k. Define the sets

Ek
j = Qk

j\Ωk+1. Since for each fixed k, the sets Qk
j are disjoint, we get that the sets

Ek
j are pairwise disjoint for all k and j. Using inequality (8), and Lemma 4.9, we get
ˆ

Rn

M ′
W,p(·)f(x)

p(x) dx ≤
∑

k∈Z

ˆ

Ωk\Ωk+1

2(k+1)p(x) dx

≤ 2p+
∑

k,j

ˆ

Ek
j

(
−
ˆ

Qk
j

|Wp(·)

Qk
j

W−1(y)f(y)| dy
)p(x)

dx

≤ 2p+
∑

k,j

ˆ

Ek
j

(
−
ˆ

Qk
j

|Wp(·)

Qk
j

W−1(y)|op|f(y)| dy
)p(x)

dx

≤ 2p+Cp+
∑

k,j

ˆ

Ek
j

(
Au′(·),Qk

j
(|Wp(·)

Qk
j

W−1(y)|op)Au(·),Qk
j
(|f |)

)p(x)
dx.
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Note that the constant in the final estimate only depends on [1]Au(·)
, which, by

Corollary 3.3 is bounded by a constant depending only on n, p−, and the log-Hölder
constants of p(·). By Lemma 3.5 and Lemma 5.1, we have

Au′(·),Qk
j
(|Wp(·)

Qk
j

W−1|op) ≤ sup
Q∈D

Au′(·),Q(|W−1Wp(·)
Q |op) ≤ C <∞,

where D is the underlying dyadic grid. Combining this with the definition of Mu(·),
we get

∑

k,j

ˆ

Ek
j

(
Au′(·),Qk

j
(|Wp(·)

Qk
j

W−1(y)|op)Au(·),Qk
j
(|f |)

)p(x)
dx

≤
∑

k,j

ˆ

Ek
j

Cp(x)Mu(·)(|f |)p(x) dx ≤ Cp+

ˆ

Rn

Mu(·)(|f |)(x)p(x) dx,

with C being the constant from Lemma 5.1. Since Mu(·) is bounded on Lp(·)(Rn)
and ‖f‖Lp(·)(Rn;Fd) = 1, we have ‖Mu(·)(|f |)‖Lp(·)(Rn) ≤ C <∞. Applying the constant
from Theorem 4.10, we get

‖Mu(·)‖Lp(·)(Rn)→Lp(·)(Rn) ≤ (q−)
′C(n, C∞(1/p(·))e2mC∞(1/t(·)),(9)

where t(x) is given by

1

t(x)
=

∣∣∣∣
q−
q(x)

− q−
q∞

∣∣∣∣

and m satisfies ρt(·)((e+ | · |)−m) <∞. Thus, by Lemma 2.1,
´

Rn Mu(·)(|f |)(x)p(x) dx ≤
C <∞. Thus, by our reductions

‖M ′
W,p(·)f‖Lp(·)(Rn) ≤ C‖f‖Lp(·)(Rn;Fd).

To ensure that the constant C above is given by φ([W ]Ap(·)
), where φ is an

increasing function, we need to estimate (q−)
′ and e2mC∞(1/t(·)). We have

(q−)
′ =
(
1 +

1

r′
(p− − 1)

)′
= 1 +

r′

p− − 1
h (p−)

′r′.

Our choice of r from Lemma 5.1 yields

r′ h C∗[W
−1]

(
1+2

C∞(p′(·))(p′)+
(p′)∞(p′)

−

)
(p′)+

Ap′(·)
.

By Corollary 3.12, [W−1]Ap′(·)
≈d [W ]Ap(·)

. This proves the desired bound.

Next we estimate C∞(1/t(·)). Note that by the definition of t(·), we must have
1
t∞

= 0. Thus, for a.e. x ∈ Rn, we have

∣∣∣∣
1

t(x)
− 1

t∞

∣∣∣∣ = q−

∣∣∣∣
1

q(x)
− 1

q∞

∣∣∣∣ = q−

∣∣∣∣
u(x)

p(x)
− u∞
p∞

∣∣∣∣

≤ q−

(∣∣∣∣
u(x)

p(x)
− u∞
p(x)

∣∣∣∣+
∣∣∣∣
u∞
p(x)

− u∞
p∞

∣∣∣∣
)

≤ q−

(
C∞(u(·))

p− log(e+ |x|) +
u∞C∞(1/p(·))
log(e+ |x|)

)
.
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Note that also q− = 1
r′
p− + 1

r
< ( 1

r′
+ 1

r
)p− = p−, and

|u(x)− u∞| =
∣∣∣∣

u′(x)

u′(x)− 1
− u′∞
u′∞ − 1

∣∣∣∣ = r

∣∣∣∣
p′(x)

rp′(x)− 1
− p′∞
rp′∞ − 1

∣∣∣∣

= r

∣∣∣∣
p′∞ − p(x)

(rp′(x)− 1)(rp′∞ − 1)

∣∣∣∣ ≤
r

((p′)− − 1)2
C∞(p′(·))
log(e+ |x|) .

By the choice of r, r < 2. Thus,

C∞(u(·)) ≤ 2C∞(p′(·))
((p′)− − 1)2

.

Lastly, since r < 2,

u∞ =
u′∞

u′∞ − 1
=

rp′∞
rp′∞ − 1

≤ rp′∞
p′∞ − 1

≤ 2p∞.

Putting everything together, we get that the constant in (9) is bounded by an in-
creasing function φ of [W−1]Ap′(·)

, which depends only on n, d, p−, p+, p∞, and the

log-Hölder constants of p(·). �

5.2. Proof of Theorem A. We first prove that the auxiliary operator M ′
W,p(·)

is equivalent to the modified auxiliary operator

M ′′
W,p(·)f(x) = sup

Q

(
−
ˆ

Q

|(Wp′(·)

Q )−1W−1(y)f(y)| dy
)
χQ(x),

which appears in [KN24].

Proposition 5.2. Let p(·) ∈ P(Rn) and W ∈ Ap(·). Then

M ′′
W,p(·)f(x) .d M

′
W,p(·)f(x) .d [W ]Ap(·)

M ′′
W,p(·)f(x)

for a.e. x ∈ Rn for all f ∈ L1
loc(R

n;Fd).

Proof. The second inequality follows from the fact that for all cubes Q we have

|Wp(·)
Q W−1(x)f(x)| ≤ |Wp(·)

Q Wp′(·)

Q |op|(Wp′(·)

Q )−1W−1(x)f(x)|
≤ [W ]RAp(·)

|(Wp′(·)

Q )−1W−1(x)f(x)|,

combined with Lemma 3.11. For the first inequality, by an analogous argument, it

suffices to bound |(Wp′(·)

Q )−1(Wp(·)
Q )−1|op uniformly in Q. Indeed, for any u ∈ Fd, by

Lemmas 3.5 and 3.4, and the definition of the reducing operators Wp′(·)

Q and Wp(·)
Q ,

we have

|(Wp′(·)

Q )−1(Wp(·)
Q )−1u| = −

ˆ

Q

|(Wp′(·)

Q )−1W−1(y)W (y)(Wp(·)
Q )−1u| dy

≤ −
ˆ

Q

|(Wp′(·)

Q )−1W−1(y)|op|W (y)(Wp(·)
Q )−1u| dy

≤
d∑

i=1

−
ˆ

Q

|W−1(y)(Wp′(·)

Q )−1ei||W (y)(Wp(·)
Q )−1u| dy
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.

d∑

k=1

|Q|−
1

pQ ‖|W−1(Wp′(·)

Q )−1ei|‖Lp′(·)(Rn)|Q|
− 1

p′
Q ‖|W (Wp(·)

Q )−1u|‖Lp(·)(Rn)

≤
d∑

i=1

|Wp′(·)

Q (Wp′(·)

Q )−1ei||Wp(·)
Q (Wp(·)

Q )−1u| = d|u|,

proving the desired result. �

For the proof of the implications (iii) ⇒ (i), (ii) we require several tools from
convex-set valued analysis. We refer the reader to the book [AF09] for a general
reference on this topic, or to [BC23] for a more specialized treatise. We let K denote
the collection of closed non-empty subsets K ⊆ Fd satisfying:

• Symmetry: If u ∈ K, then also λu ∈ K for all λ ∈ F with |λ| = 1;
• Convexity: If u,v ∈ K, then (1− t)u+ tv ∈ K for all 0 ≤ t ≤ 1.

We say that a mapping F : Rn → K is measurable if for all open E ⊆ Fd the set

F−1(E) := {x ∈ R
n : F (x) ∩ E 6= ∅}

is measurable. We denote the measurable mappings F : Rn → K by L0(Rn;K).
Moreover, we define the measurable selections of F ∈ L0(Rn;K) by

S0(Rn;F ) := {f ∈ L0(Rn;Fd) : f(x) ∈ F (x) a.e.}.
For p(·) ∈ P(Rn) and a matrix weight W : Rn → Sd, we say that F ∈ L

p(·)
W (Rn;K) if

S0(Rn;F ) is a bounded set in L
p(·)
W (Rn;Fd), and set

‖F‖
L
p(·)
W

(Rn;K)
:= sup

f∈S0(Rn;F )

‖f‖
L
p(·)
W

(Rn;Fd)
.

By [Nie24, Proposition 3.11] we have F ∈ L
p(·)
W (Rn;K) if and only if the function

|W (x)F (x)| := sup
u∈F (x)

|W (x)u|

satisfies |W (·)F (·)| ∈ Lp(·)(Rn). In this case, ‖|W (·)F (·)|‖Lp(·)(Rn) = ‖F‖
L
p(·)
W

(Rn;K)
.

For F ∈ L1(Rn;K) and a measurable set E ⊆ Rn we define the Aumann integral
ˆ

E

F dx :=
{ ˆ

E

f dx : f ∈ S0(Rn;F )
}
.

We say that F ∈ L1
loc(R

n;K) if χQ F ∈ L1(Rn;K) for all cubes Q in Rn, and we
define

〈F 〉Q :=
1

|Q|

ˆ

Q

F dx.

Definition 5.3. For F ∈ L1
loc(R

n;K) and a collection of cubes Q in R
n we define

MK
QF (x) as the smallest set in K containing

⋃

Q∈Q

χQ(x)〈F 〉Q.

Given a matrix weight W and f ∈ L0(Rn;Fd), we define

MQ,W f(x) := sup
Q∈Q

〈|W (x)W−1(·)f |〉Q χQ(x).

When Q is the collection of all cubes in Rn, we omit the subscript.
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The following result is an immediate corollary of [Nie24, Proposition 5.6] applied
to X = Lp(·)(Rn).

Proposition 5.4. Let p(·) ∈ P(Rn) and let W : Rn → Sd be a matrix weight.
Then the following are equivalent:

(i) MK : L
p(·)
W (Rn;K) → L

p(·)
W (Rn;K);

(ii) MW : Lp(·)(Rn;Fd) → Lp(·)(Rn).

Moreover, in this case we have

‖MW‖Lp(·)(Rn;Fd)→Lp(·)(Rn) hd ‖MK‖
L
p(·)
W

(Rn;K)→L
p(·)
W

(Rn;K)
.

Finally, given a collection of cubes Q in Rn, we define the convex body operator

AK
QF (x) :=

∑

Q∈Q

χQ(x)〈F 〉Q,

where the sum is interpreted as a (possibly infinite) Minkowski sum. A collection
of cubes S in Rn is called sparse if there exists a pairwise disjoint collection of sets
(EQ)Q∈S such that for each Q ∈ S we have EQ ⊆ Q, |EQ| ≥ 1

2
|Q|. Then the following

result is a variable exponent version of [KN24, Theorem 6.10] in the linear case.

Theorem 5.5. Let p(·) ∈ P(Rn) and let W ∈ Ap(·). If

M ′′
W,p(·) : L

p(·)(Rn;Fd) → Lp(·)(Rn) and M ′′
W−1,p′(·) : L

p′(·)(Rn;Fd) → Lp′(·)(Rn),

then for all sparse collections S we have

AK
S : L

p(·)
W (Rn;K) → L

p(·)
W (Rn;K)

with

sup
S sparse

‖AK
S ‖Lp(·)

W
(Rn;K)→L

p(·)
W

(Rn;K)

.d [W ]Ap(·)
‖M ′′

W,p(·)‖Lp(·)(Rn;Fd)→Lp(·)(Rn)‖M ′′
W−1,p′(·)‖Lp′(·)(Rn;Fd)→Lp′(·)(Rn).

For the proof, we require a lemma. For a matrix A ∈ Sd and F ∈ L0(Rn;K), we
define |AF (x)| := supu∈F (x) |Au|.

Lemma 5.6. Let p(·) ∈ P(Rn) and let W : Rn → Sd be a matrix weight. For
F ∈ L1

loc(R
n;K), define

M ′′
W,p(·)F (x) := sup

Q

(
−
ˆ

Q

|(Wp′(·)

Q )−1W−1(y)F (y)| dy
)
χQ(x).

Then

‖M ′′
W,p(·)‖Lp(·)(Rn;K)→Lp(·)(Rn) .d ‖M ′′

W,p(·)‖Lp(·)(Rn;Fd)→Lp(·)(Rn).

Proof. As in the proof of [BC23, Theorem 6.9], for each F ∈ Lp(·)(Rn;K) there
is a constant C(d) > 0 and mappings f1, . . . , fd ∈ S0(Rn;F ) for which

F (x) ⊆ C(d)

d∑

k=1

K(fk(x))

for a.e. x ∈ Rn, where K(u) denotes the smallest set in K containing u ∈ Fd. Hence,
for all cubes Q,

−
ˆ

Q

|(Wp′(·)

Q )−1W−1(y)F (y)| dy ≤ C(d)

d∑

k=1

(
−
ˆ

Q

|(Wp′(·)

Q )−1W−1(y)fk(y)| dy
)
,
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proving that for a.e. x ∈ R
n we have

M ′′
W,p(·)F (x) .d

d∑

k=1

M ′′
W,p(·)fk(x).

This implies that

‖M ′′
W,p(·)F‖Lp(·)(Rn) .d

d∑

k=1

‖M ′′
W,p(·)fk‖Lp(·)(Rn)

≤ ‖M ′′
W,p(·)‖Lp(·)(Rn;Fd)→Lp(·)(Rn)

d∑

k=1

‖fk‖Lp(·)(Rn;Fd)

≤ d‖M ′′
W,p(·)‖Lp(·)(Rn;Fd)→Lp(·)(Rn)‖F‖Lp(·)(Rn;K),

proving the desired assertion. �

Proof of Theorem 5.5. For a set K ∈ K and u ∈ F
d, we write |K · u| :=

supv∈K |v · u|. Then, for F ∈ L
p(·)
W (Rn;K), g ∈ S0(Rn;AK

SF ), and h ∈ L
p′(·)
W−1(R

n;Fd),
we have

ˆ

Rn

|g(x) · h(x)| dx ≤
∑

Q∈S

ˆ

Q

|〈F 〉Q · h(x)| dx

≤
∑

Q∈S

ˆ

Q

|Wp(·)
Q Wp′(·)

Q 〈(Wp′(·)

Q )−1F 〉Q · (Wp(·)
Q )−1h(x)| dx

≤
∑

Q∈S

|Wp(·)
Q Wp′(·)

Q |op〈|(W
p′(·)

Q )−1F |〉Q〈|(Wp(·)
Q )−1h|〉Q|Q|

≤ [W ]RAp(·)

∑

Q∈S

〈|(Wp′(·)

Q )−1F |〉Q〈|(Wp(·)
Q )−1h|〉Q|Q|

. [W ]RAp(·)

∑

Q∈S

ˆ

EQ

M ′′
W,p(·)(WF )M ′′

W−1,p′(·)(W
−1h) dx

≤ [W ]RAp(·)

ˆ

Rn

M ′′
W,p(·)(WF )M ′′

W−1,p′(·)(W
−1h) dx

. [W ]RAp(·)
‖M ′′

W,p(·)(WF )‖Lp(·)(Rn)‖M ′′
W−1,p′(·)(W

−1h)‖Lp′(·)(Rn).

By Lemma 5.6 we have

‖M ′′
W,p(·)(WF )‖Lp(·)(Rn) .d ‖M ′′

W,p(·)‖Lp(·)(Rn)→Lp(·)(Rn)‖F‖Lp(·)
W

(Rn;K)
.

Thus, taking a supremum over all h ∈ L
p′(·)
W−1(Rn;Fd) of norm 1 and g ∈ S0(Rn;AK

SF ),
we conclude that

‖AK
SF‖Lp(·)

W
(Rn;K)

.d [W ]RAp(·)
‖MW,p(·)‖Lp(·)(Rn;Fd)→Lp(·)(Rn)‖MW−1,p′(·)‖Lp′(·)(Rn;Fd)→Lp′(·)(Rn)‖F‖Lp(·)

W
(Rn;K)

.

Since [W ]RAp(·)
hd [W ]Ap(·)

by Lemma 3.11, the result follows. �

Finally, we will need the following result, which is the m = 1, X = Lp(·)(Rn) case
of [KN24, Theorem 6.16] combined with [CP24a, Theorem 4.1].
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Lemma 5.7. Let p(·) ∈ P(Rn) and let W : Rn → Sd be a matrix weight satisfy-

ing |W−1|op ∈ L
p′(·)
loc (Rn). If T is a directionally non-degenerate Calderón–Zygmund

operator satisfying

T : L
p(·)
W (Rn;Fd) → L

p(·)
W (Rn;Fd),

then W ∈ Ap(·) with

[W ]Ap(·)
.d ‖T‖2Lp(·)

W
(Rn;Fd)→L

p(·)
W

(Rn;Fd)
.

For the definition of directional non-degeneracy, we refer the reader to [KN24].
The only result we will need is that the Riesz transform of the first coordinate

R1f(x) := p.v.

ˆ

Rn

x1 − y1
|x− y|n+1

f(y) dy

is directionally non-degenerate, see [KN24, Example 6.19]. As a matter of fact,
Goldberg’s proof of [Gol03, Theorem 5.2] shows that if a Calderón–Zygmund operator
with convolution kernel K is is non-degenerate in the sense of Stein [Ste93, p. 210],
i.e., there is a unit vector u ∈ R

n for which for all t ∈ R we have

K(tu) & |t|−n,

then it is also directionally non-degenerate.

Proof of Theorem A. The implication (i) ⇒ (iii) follows from Lemma 5.7 applied
to T = R1. Similarly, for (ii) ⇒ (iii), note that the boundedness of the convex-
set valued maximal operator MK (which follows from Proposition 5.4) implies the
uniform boundedness of the family of averaging operators over the cubes in Rn. Thus,
the result follows from [CP24a, Theorem 4.1]. It remains to prove (iii) ⇒ (i), (ii).

To prove (iii) ⇒ (ii), note that by Proposition 5.4 it suffices to bound MK. By
the “1/3” trick and monotone convergence (see [Nie24, Proposition 3.7]), it suffices
to bound MK

F for all finite collections F contained in a dyadic grid D. Let F ∈
L
p(·)
W (Rn;K). By [Nie24, Theorem C], there is a sparse collection S ⊆ F such that

MK
FF (x) ⊆ C(d)MK

S F (x) ⊆ C(d)AK
SF (x)

for a.e. x ∈ R
n. Since this implies that

‖MK
FF‖Lp(·)

W
(Rn;K)

.d ‖AK
SF‖Lp(·)

W
(Rn;K)

,

the result follows from Theorem 5.5.
Finally, for (iii) ⇒ (i), note that by [NPTV17], for each Calderón–Zygmund

operator T there is a constant CT > 0 such that for all f ∈ L∞
c (Rn;Fd) there is a

sparse collection S such that Tf(x) ∈ CTA
K
S (K(f))(x) for a.e. x ∈ Rn. Hence, by

[Nie24, Proposition 3.6], we have

‖Tf‖
L
p(·)
W

(Rn;Fd)
≤ CT‖AK

S ‖Lp(·)
W

(Rn;K)→L
p(·)
W

(Rn;K)
‖f‖

L
p(·)
W

(Rn;Fd)
.

Thus, the result again follows from Theorem 5.5. �

5.3. Proof of Theorem C. By [Nie24, Theorem 8.1], the assumptions of the
theorem imply that if

(10) MW : Lp(·)(Rn;Fd) → Lp(·)(Rn), MW−1 : Lp′(·)(Rn;Fd) → Lp′(·)(Rn),



546 Zoe Nieraeth and Michael Penrod

then Tf is well-defined for all f ∈ V with Sf ∈ L
p(·)
W (Rn;Fd), and

‖T f‖
L
p(·)
W

(Rn;Fd)

.dφ(C(d)‖MW‖
1
p′
0

Lp(·)(Rn;Fd)→Lp(·)(Rn)
‖MW−1‖

1
p0

Lp′(·)(Rn;Fd)→Lp′(·)(Rn)
)‖Sf‖

L
p(·)
W

(Rn;Fd)
.

(11)

Since our assumptions on p(·) imply that we are in the setting of Theorem A, we
find that the first bound in (10) holds, and the associated operator norm is bounded
by some increasing function of [W ]Ap(·)

, depending only on n, d, p−, p+, p∞, and the

LH(Rn) constants of p(·). Since [W ]Ap
hd [W−1]Ap′(·)

and p′(·) ∈ LH(Rn) with the

same constants as p(·), the same assertion is true for the second bound in (10). Thus,
the result follows from (11). �
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