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Carathéodory convergence and
the conformal type problem

Alexandre Eremenko and Sergei Merenkov

Abstract. We study Carathéodory convergence for open, simply connected surfaces spread
over the sphere and, in particular, provide examples demonstrating that in the Speiser class the
conformal type can change when two singular values collide.

Carathéodoryn suppeneminen ja konformityyppikysymys

Tiivistelm&. Téissd tyossd tutkitaan avointen, yhdesti yhtenéisten, pallon péille levitettyjen
pintojen Carathéodoryn suppenemista. Esimerkein osoitetaan, ettd Speiserin luokassa konformi-
tyyppi voi muuttua kahden singulaariarvon térmaétessa.

1. Introduction

Carathéodory Kernel Convergence is an important tool in the theory of univa-
lent functions. It gives a geometric criterion for a sequence of normalized univalent
functions in the unit disk to converge uniformly on compacta, and gives a description
of the image of the disk under the limiting map. In this paper, we adapt the notion
of convergence in the sense of Carathéodory, introduced in Carathéodory [Cal2], see
also Volkovyskii [Vo48], to the setting of pointed surfaces spread over the sphere.
Moreover, we establish a result, Theorem 3.1 below, that relates such convergence
to convergence on compacta omitting certain exceptional sets. A result similar to
the necessary part of Theorem 3.1 for surfaces spread over the plane was proved by
Biswas and Perez-Marco [BPM15, Theorem 1.2]. Another aim of this paper is to
provide examples of sequences of open, simply connected surfaces spread over the
sphere (in fact, over the plane) that have only finitely many singular values and
whose conformal type changes when two of the singular values collide; see Section 4.
We also give an example of a sequence of entire functions in the plane with finitely
many singular values, so that each function in the sequence has infinite order, while
the limit has order one; see Section 5.

1.1. Surfaces spread over the sphere. Classically, Riemann surfaces are
thought of as surfaces associated to holomorphic or, more generally, meromorphic
functions.

Definition 1.1. A surface spread over the sphere is a pair (S, f), where S is
an open simply connected topological surface, i.e., homeomorphic to the plane, and
f: S — C is a continuous, open and discrete map, called a projection. Here, C is
the Riemann sphere.
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The surface S can be endowed with the pull-back conformal structure, so that
f becomes holomorphic. In what follows, we do not distinguish two surfaces (51, f1)
and (Ss, f2) if there exists a homeomorphism h: S; — Sy such that

fi=Jfaoh.

The homeomorphism A is conformal when S; and Sy are endowed with the pull-
back conformal structures. Equipped with the pull-back conformal structure, S is
equivalent to either the complex plane C or the unit disk D in C. In the former case
we call (S, f) parabolic, and in the latter hyperbolic. For a survey on surfaces spread
over the sphere and the type problem one can consult [Er21].

Near each point, a continuous, open and discrete map f is homeomorphically
equivalent to the map z ~ 2%, where d € N. More precisely, for each py € S, there
exists an open neighborhood U of py and two homeomorphisms hq, hs, such that
hi: U — ]D), ho: f(U) — ]D), with hl(pO) =0, hg(f(po)) =0, and

hyo fohi'(z) =2% z¢€D.

The number d is called the local degree of f at pg. It does not depend on the choice
of homeomorphisms h; and hy. If d > 1, pg is called a critical point and f(py) a
critical value of f. An element a € C is called an asymptotic value of f if there exists
a path v: [0,1) — S, called an asymptotic path, that leaves every compact set of S
as t — 1, and such that

lim £(+(8)) = .
A singular value of f is either a critical or an asymptotic value.

Definition 1.2. A surface spread over the sphere (.5, f) is said to belong to the
Speiser class S, if the projection map f has only finitely many singular values.

Examples of surfaces from the Speiser class include (C,p), where p is an arbi-
trary polynomial, (C,exp), (C,sin), (C,cos), (C,expoexp), (C, ), where g is the
Weierstrass p-function, (D, ), where A is the modular function, etc. Surfaces from
the Speiser class have combinatorial descriptions in terms of labeled Speiser graphs
as follows. Let 3 be a base curve, i.e., a curve in the sphere that contains all singular
values of f. For example, when all singular values of f are real or oo, we can choose
3 to be the extended real line. Then, 3 divides the sphere C into two topological
hemispheres, which we can call an “upper” and “lower” hemispheres for convenience.
We fix two points, one in each of the hemispheres, and denote the point in the upper
hemisphere by x and the one in the lower hemisphere by o. If the number of singular
values of f is k, we consider the graph G5 in C with two vertices x and o and k edges,
each edge connecting X to o in such a way that it separates two adjacent singular
values on . The Speiser graph Gy of (S, f) is then the preimage of Gg under the
map f. It is bipartite, homogeneous of degree k, and its faces, i.e., connected compo-
nents of the complement in S, are labeled by the corresponding singular values of f.
The labels appear in cyclic orders around each vertex of G g, according to the order
of the singular values on [ viewed from X or o, respectively. See Figures 1, 2, 3 for
examples. Conversely, given such a labeled graph G in the plane and a base curve
[ that contains all the labels of the faces, one can reconstruct a surface (S, f) by
gluing upper and lower hemispheres of C \ {3}, identifying them along the arcs of 3
between adjacent labels according to the combinatorics of the graph G. See [GO70]
or [Ne70] for further details.
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1.2. Carathéodory convergence. We consider triples T = (S, f,w), where
(S, f) is a surface spread over the sphere, and w € S a point which is not critical for
f. We refer to these triples as pointed surfaces spread over the sphere. Two pointed
surfaces spread over the sphere T} = (S1, f1,w1) and Ty = (Ss, fo, ws) are equivalent,
denoted T} ~ Ty, if there exists a homeomorphism h: S; — S such that h(w;) = we
and f; = fo o h. Equivalence classes are still called pointed surfaces spread over the
sphere. In addition to the equivalence, we define the order relation on surfaces spread
over the sphere:

(S1, fr,w1) C (Sa, fo, we)

means that there is a continuous injective map ¢: S; — S such that

(1) p(w) =wy and f1 = fro¢.

The second equation in (1) implies that ¢ is holomorphic. It is easy to see that
Ty C Ty and Ty C T; imply that there is a homeomorphism h: S; — S5 satisfying
(1) with ¢ = h. In this case T} ~ Ts.

Each equivalence class contains a normalized triple with S = D := {2 € C: |z] <

R} for some R € (0, +o0], w = 0, and f#(0) = 1, where f# is the spherical derivative,
[
L+ [f]?
A triple T is called mazimal if T C Ty implies that T' ~ T;. If S = Dg, the open disk
of radius R centered at the origin, the maximality means that f has no meromorphic
continuation beyond Dg.

Carathéodory [Cal2] and Volkovyskil [Vo48] defined convergence of Riemann
surfaces generalizing Carathéodory convergence for sequences of univalent functions.
The following two definitions are adapted from [Vo48]. As in [Vo48], in these defi-
nitions and below, we assume that if (S, f,,w,), n € N, is a sequence of pointed
surfaces spread over the sphere, then there are p € C and r > 0 such that for every
n € N there exists a domain W, in S, containing w,, such that f,(w,) = p and
fn: Wn — B(p,r) is a homeomorphism.

Definition 1.3. A kernel of a sequence (S, fn, w,), n € N, of pointed surfaces
spread over the sphere is a pointed surface (S, f, w), such that:

1) There exists a discrete set £ C S with w ¢ E, and for every compact set
K C S\FE such that w € K there exists N € N with the property that
for each n > N there exists a continuous embedding ¢ ,,: K — S, with
drn(w) =w, and f = f, 0 ¢px,. The set E is called an exceptional set.

2) The triple (S, f, w) satisfying property 1) is maximal in the sense of the order
relation defined above.

The necessity of having an exceptional set E is demonstrated by the following
examples. Let S, be the surfaces obtained by gluing two spheres with slits [1, 1+1/n],
identifying the lower edge of the slit on one of the spheres with the upper edge of
the other using the identity map. Each S,, n € N, is a simply connected Riemann
surface of genus 0 that can be endowed with an obvious projection f,, onto the sphere.
We further select one of the two points projecting to 0 as a marked point w,,, making
(S, fn,wy,) into a sequence of pointed surfaces spread over the sphere, except that
S, is homeomorphic to the sphere rather than the plane. We can modify the surfaces
S,, n € N, to make each surface to be a topological plane by removing the point
projecting to co that is in the same sheet, i.e., the slitted sphere, as the marked
point w,. The kernel of such a sequence (S,, f,,w,) as n — oo is the plane C
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with the identity map, and the exceptional set E is {1}. Another, analytic, example
is the following. Let S, = C and f,(z2) = 22+ 1/n. Then (C, f,,w,), n € N,
where w,, = /1 — 1/n, has Carathéodory kernel (C, f,1), with f(z) = 22, and the
exceptional set E' is {0}.

Definition 1.4. A sequence (S,, fn,w,), n € N, converges to (S, f,w) in the
sense of Carathéodory if (S, f,w) is the kernel of every subsequence of (S, fn, wy)-

It is clear that this definition is compatible with the equivalence relation on
pointed surfaces spread over the sphere. This notion of convergence is also a version
of the one defined in [BPM15], adapted to surfaces spread over the sphere rather than
the plane. Indeed, the relation f = f, o ¢k, implies that the continuous embedding
Gk n is, in fact, an isometric embedding when surfaces are endowed with the pull-
back spherical metric d. Specifically, d is a path metric on S given in some local
coordinate z = o(f(p)) € C of every non-critical point py € S by 2|dz|/ (1 + |z|?),
where o is the stereographic projection. The metric space (.5, d) is not complete in
the presence of asymptotic values of f.

Acknowledgments. The authors thank the anonymous referee for numerous help-
ful comments and suggestions. The second author also thanks the Institute for Math-
ematical Sciences at Stony Brook University for the hospitality.

2. Properties of the Carathéodory kernel

Simple examples contained in [Vo48] show that not every sequence of pointed
surfaces has a subsequence converging in the sense of Carathéodory to the kernel of
the whole sequence. One such example is obtained by choosing a countable dense
collection {ay,as, ...} of points on the unit circle and letting S,, n € N, to be the
plane with the radial slit from a,, to co. For each n, we choose 0 as the marked point
of S,, and we let the projection map f, be the identity. The kernel of the whole
sequence is the open unit disk. However, from any sequence of such surfaces one can
select a subsequence S, , k € N, with the corresponding a,,, k € N, converging to a.
The kernel of such a subsequence is the plane with the closed radial ray emanating
from a removed, which is different from the unit disk. Therefore, such a sequence of
pointed Riemann surfaces does not converge in the sense of Carathéodory.

In [Tr52], Trohimcuk gave elementary examples of sequences with non-unique
kernels. One example is obtained as follows. Let each Sai_1, & € N, be the disk
{|]z = 1| < 2}, and each Sy, k € N, the two-sheeted disk over {|z — 1| < 2} with
single branch point at z = 1. For odd n, the map f, on S, is the identity, and
for even n, it is the projection. We choose w,, to be 0 if n is odd and one of the 2
points projecting to 0 for even n. Then, for any Jordan arc J connecting z = 1 to
the boundary of the disk and avoiding {|z| < 1}, the surface {|z — 1| < 2} \ J with
the identity map and w = 0 is a kernel of the whole sequence S,,, n € N. Such a
sequence does not converge in the sense of Carathéodory either.

In the same paper, Trohim¢uk gave the following characterization for uniqueness
of a kernel. Assume that (S,, f,,w,), n € N, is a sequence of pointed surfaces
spread over the sphere as above, i.e., there exist p € C and r > 0 such that for
each n € N there exists a domain W, in S, containing w,, such that f,: W, —
B(p,r) is a homeomorphism, f,(w,) = p. We say that a parametrized curve v in C
with the initial point p is admissible for (S, f,,w,) if there exists a chain of disks
B(pi,ri), i = 1,2,...,k, in C covering v with p; = p and p;y1 € v N B(pi, i), i =
1,2,...,k — 1, corresponding to the increasing sequence of the parameter, i.e., for
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i < j, v(ti) = pi, v(t;) = p; implies ¢; < t;, and such that the following holds: for
each © = 1,2,...,k, there exist N; € N, and for all n > N; a domain W,; C S,
Wya = Wy, with f,: W, — B(pi,7i), n > N;, being a homeomorphism, and
there exist p,; € Wy,o1 N Wy, with fo(pn:) = pi, © = 2,3,..., k. Since there
are only finitely many disks in the above definition, there exists N, € N such that
Wyn= Ule Wi C Sy for all n > N, and W, ,, is a domain, i.e., an open connected
set. Each map f,: W, ,, — Ule B(pi,ri), n > N,, is a covering, but not necessarily a
homeomorphism. An admissible parametrized curve + is called normal if there exists
a finite collection of disks B(p;,7i), ¢ = 1,2,...,k, covering 7 as above and N € N,
such that for all m,n > N there exists a homeomorphism ¢, »,: W, . — W, ,, with
fn o ¢7,m,n = fm on W'y,m-

Theorem 2.1. [Tr52, Theorem 2| For (S,, fn,w,), n € N, to have a unique
kernel it is necessary and sufficient that every admissible curve is normal.

We use this theorem to show the uniqueness of the kernel in the Speiser class.

Proposition 2.2. If (S, f,,w,), n € N, is a sequence of surfaces having a
surface of Speiser class S as its kernel, then the kernel is unique, i.e., two kernels are
equivalent.

Proof. Let (S, f,w) be a kernel for (S,, fn,w,), n € N, where (S, f) € S. Let
v € C be an arbitrary admissible curve for (S, f,,w,), and let 4 be the maximal
curve which is a lift of v under f with initial point w. We claim that f(%) = ~.
Clearly, one has f(5) C v and, if the inclusion is strict, either the terminal point of
7 is a critical point for f or 4 is an asymptotic path for an asymptotic value of f
on v. We need to exclude both of these possibilities. If the terminal point pg of 7 is
a critical point of f, we consider a small circle C' (in the pull-back of the spherical
metric) centered at py. Let K be the compact set that is the union of the subcurve of
7 from w to the first intersection of ¥ with C' and C. If K contains critical points or
points of an exceptional set E in the definition of kernel, we perturb it slightly such
that the resulting compact set, still denoted K, does not have this property. Thus,
there exists N € N such that for all n > N we have a continuous embedding ¢ ,,
from K into S, such that ¢, (w) = w, and

(2) f = f n © ¢K,n
on K. This is a contradiction since there is IV, € N such that f,, n > N,, do not
have critical points along the lift of v starting at w, because v is admissible, and so
the right-hand side of the last equation is one-to-one on C' but the left-hand side is
not.

We now assume that 7 is an asymptotic path for an asymptotic value a on ~. Let
D be the preimage under f of a small disk D, centered at a and such that D contains
all points of 4 starting from some parameter; note that ¥ is viewed as a parametrized
curve with 4(0) = w. We choose the radius of D, such that the boundary circle C, of
D, does not contain critical or asymptotic values of f. Let C' be the boundary curve
of D, a lift of C, under f. The restriction of f to C'is not one-to-one, in fact it is
oo-to-one. We choose a closed arc A of C that contains the first point of intersection
of ¥ with C and such that f is not one-to-one on A. If a compact set K is defined
similar to the above, namely K is the union of the subcurve of 4 from w to the first
intersection of 4 with C' and A, perturbed as necessary so that K does not contain
critical points or points of the exceptional set E, then we derive a contradiction as
above from equation (2).
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Finally, we cover v by disks B(p;,7i), @« = 1,2,...,k, as in the definition of
admissible curves. By passing to smaller disks if necessary, we can assume that the
closure of W, defined for f in the same way as W, , for f, above, does not contain
critical points. If W, contains other elements of ', we remove small open disks of radii
0 around such points and denote the resulting set by W, 5. The closure W_%(; being
compact set in S\ F implies that there exists N € N such that for all n > N there is a
continuous embedding ¢ s, of W_%& into S, with f = f,0¢,s,. These equations show
that ¢, s, has a holomorphic extension to an embedding of punctured neighborhoods
of points in £ N W,,, and removability gives an extension to an embedding of all of
Ww' Therefore, if m,n > N, then we can choose ¢y, = @y 0 gzﬁ;}m and so 7 is
normal and the proof is complete. O

Remark 1. A consequence of Proposition 2.2 is that if a sequence of surfaces
(Sns fr,wy), n € N, converges in the sense of Carathéodory to a surface in class S,
then its limit is unique. A similar statement and its proof are contained in [BPM15,
Proposition 3.2].

3. Uniform convergence on compacta

Notice that if all triples (Dg, f,0), (Dg,, fn,0), n € N, are normalized, (Dg, f,0)
is a kernel of (Dg,, fn,0), n € N, and if K is a compact subset of Dy containing 0
in its interior, then ¢ ,(0) =1 for all n > N, where ¢, is from Definition 1.3.

If (S, f,w) is a simply connected surface spread over the sphere, its conformal
radius is the unique R < 400 such that there exists a conformal map F': S — Dg(0)
with F(w) =0, F'(w) = 1. The normalization makes R well defined, and we call F’
the normalized uniformizing map of (S, f,w). The following theorem is an extension
of a result from [BPM15] to the spherical metric case.

Theorem 3.1. Let 0 < R < 400 and (Dg,, fa,0), n € N, be a sequence of
normalized pointed open simply connected surfaces spread over the sphere satisfying
limsup R, < R. The triple (Dg,, fn,0) converges to a normalized triple (Dg, f,0) in
the sense of Carathéodory if and only if there exists a discrete exceptional set E in
Dg such that one has:

a) fn(0) = f(0) for alln € N,
b) lim, . R, = R, and
¢) (fn) converges to f uniformly on every compact set in Dr\E.

To prove this theorem, we need the following lemma.

Lemma 3.2. Let D be a region in the plane, containing 0. For a positive
constant C', let F¢ be the family of all univalent holomorphic functions in D satisfying
|f(0)] <C, |f(0)] <C. Then F¢ is uniformly bounded on each compact subset of
D.

Proof. The Koebe Distortion Theorem guarantees the conclusion in the case
when D is a disk centered at 0. Moreover, in this case the derivatives of f € F¢ are
also uniformly bounded on compacta. For a general domain D and a compact set
K C D, we consider a cover of K by a chain of disks, i.e., a finite sequence of open
disks, Bg, 0 < k < n, all contained in D and such that B, is centered at 0, and for
every k = 1,2,...,n, the center of By belongs to By_;. To construct such a chain,
we start with an arbitrary cover of K by open disks whose radii are small compared
to the distance of K to the boundary of D. Since K is a compact set, there exists
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a finite subcover of K by open disks B}, B), ..., B/ . Fach disk B}, i =1,2,...,m,
can be connected to a fixed small disk By centered at 0 by a chain of disks in D
satisfying the above conditions. Similarly, for each ¢ = 1,2,...,m, we can connect
By to B! by a chain of disks so that the center of each successive disk belongs to
the predecessor disk. Combining the chains from By to B; and back is thus also a
chain, a “closed” chain. Putting all these closed chains corresponding to B! in some
order gives a desired chain of disks By, By, ..., B,. Applying the Koebe Distortion
Theorem successively to By, By, ..., B,, we obtain the lemma. O

Proof of Theorem 3.1. We start with the sufficiency, namely, we need to show
that the conditions a), b), and c) imply that every subsequence of (Dg,, fn,0) has
(Dg, f,0) as its kernel. Conditions a), b), and c) are satisfied for any subsequence
of (Dg,, fn,0), n € N, so, to simplify notations, we may assume that the whole
sequence is a given subsequence. We choose E’ to be the union of E and all the
critical points of f. This is a discrete subset of (Dg, f,0). Let K be an arbitrary
compact subset of Dg \ E’. By making it bigger, we can always assume that it has
the form K = {z: |z| < Ry} \ Ej}, where Ej is an open d-neighborhood of E’ and
0 < Ry < R. Here, ¢ should be chosen small enough that the §-neighborhoods of
different critical points are disjoint. Let N be chosen so large that each Dp, , n > N,
contains K, each f,, n > N, has no critical points in K, and, if z € E’ is a critical
point of f of multiplicity m, then each f,, n > N, has total multiplicity of critical
points in the d-neighborhood of z equal m. The last condition is guaranteed by an
application of Rouché’s Theorem. We can now choose ¢x,, = f, ' o f, where the
inverse branch of f, is chosen so that ¢k ,(0) = 0. The above conditions on N
guarantee that each ¢g,, n > N, is one-to-one analytic in a neighborhood of K.
The maximality of (Dg, f,0) is trivial.

The proof of necessity is similar to that of [BPM15, Theorems 1.1, 1.2]. Part
a) follows from the definition of Carathéodory convergence. To prove parts b) and
¢), it is enough to show that each subsequence of (Dg,, f,,0) has a further sub-
sequence that satisfies b), and c¢). To simplify notations, we again assume that
(Dg,, [n,0) is already a subsequence. Let E be the exceptional set from the def-
inition of Carathéodory convergence, which we may assume contains all the criti-
cal points of f. For each compact subset K of Dgi \ E and n large enough, let
¢Krn: K — Dpg, be a continuous embedding such that f = f, o ¢k . Note that the
normalizations of f and f, imply that ¢x,(0) =0, ¢k ,(0) = 1. Exhausting Dr \
by compact subsets Kj;, j € N, we obtain a sequence ¢g;,,;, j € N, of univalent
holomorphic maps in the interiors of the respective compact sets, whose domains
contain a fixed neighborhood of 0 and exhaust Dg \ E. Also, they are normalized
by ¢x;n,;(0) =0, ¢’Kj’nj(0) = 1. Lemma 3.2 implies that, given any compact set K
in Dg \ E, a subsequence of ¢g;n,;, j € N, is uniformly bounded on K. Therefore,
using a diagonalization argument we obtain that a subsequence of ¢x, ., j € N,
converges uniformly on compacta to a conformal map ¢ in Dg \ E. The assumption
that limsup R, < R implies that the image of Dy \ E under ¢ is contained in Dp.
Since F is discrete, it is removable for ¢ and we continue to denote the continuous
extension of ¢ to E by ¢. Note that ¢ satisfies ¢(0) = 0, ¢/(0) = 1. If R = o0,
Liouville’s Theorem implies that ¢(C) = C and the normalization gives that ¢ is the
identity. If R < 400, the Schwarz Lemma gives that ¢ is the identity. 0
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The following example demonstrates the difficulty of establishing uniform conver-
gence without the assumption limsup R, < R, e.g., in the case of parabolic surfaces
converging to a hyperbolic one.

Let D; and D, be two distinct simply connected domains containing 0, and let
the Riemann maps ¢; of D;, j = 1,2, onto the unit disk be normalized by g;(0) = 0,
and ¢3(0) = 1, j = 1,2. In addition, we assume that g, g, have analytic extensions
to the plane as entire functions. Let f be an analytic function in the unit disk which
has no analytic continuation to a bigger domain, f(0) = 0, f'(0) = 1, and let f,, be its
Taylor partial sums. For example, we can take f to be the normalized conformal map
of the unit disk onto a domain bounded by the von Koch snowflake. Consider now the
sequence of entire functions h,, given by hop_1 = frog; and hoy = frogs, k=1,2,....
The Carathéodory kernel for this sequence will be the Riemann surface of f, which
is hyperbolic. The sequence is normalized, consists of entire functions in the whole
plane, but no limit of functions h,,, n € N, exists since Dy # Ds.

Based on this example, we do not expect that a general uniform convergence
statement can be proved for a sequence of parabolic surfaces converging to a hyper-
bolic one in the sense of Carathéodory. However, Example 4.3 below provides an
indication that such uniform convergence might be possible if one allows to pass to
subsurfaces.

4. Examples

In this section we provide examples of Carathéodory convergence of parabolic
surfaces to a hyperbolic one and vice versa, when one singular value approaches
another. The relevant Speiser graphs are depicted in Figures 1, 2 and 3 below. The
following lemma address the conformal type of the surfaces corresponding to these
graphs.

Lemma 4.1. The surface (S, p, fop) whose labeled Speiser graph is depicted in
Figure 1 is parabolic for each a,b # 1,00. The surface (Sy, fy) with labeled Speiser
graph from Figure 2 is hyperbolic for each b # 1,00. The surface (S, f) with labeled
Speiser graph from Figure 3 is parabolic.

| a

X O=x O—X O—X o —
oo
O X==0 X=0 X=—==0 X=
[ a
X O=x O—X O—Xx o=
1 oo
L8] X o] X O x O X
b
X o X o X O X O
oo
O X o] x o] X o] b 4
b

Figure 1. Double exponential, perturbed, (Sq.b, fa.b)-
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I

O oo

%

1

O——-X——=O0—X—0—X—0——X—
b

X—O—X—0—X—0—X——0—
oo

O—X——0—X—0—X—0——X—
b

Figure 2. Hyperbolic surface, (Sp, fp)-

Figure 3. Surface of the exponential function f(z) =e* + 1, (S, f).

Proof. For a = b = 0, the surface with labeled Speiser graph in Figure 1 is
the surface of the double exponential function z — exp(exp(z)), and therefore is
parabolic. Note that when a = b and their common value is different from 1 and oo,
the graph in Figure 1 reduces to the graph of degree 3 since one needs to remove all the
preimages of the edges between a and b. For arbitrary a,b # 1, 00, it is obtained from
the double exponential using a quasiconformal deformation, and so it is parabolic as
well. An alternative way to conclude parabolicity for an arbitrary a,b # 1, 0o, is via
a random walk argument; see [Do84] and also [Me03] for a geometric proof.

To show hyperbolicity of the surface whose labeled Speiser graph is depicted in
Figure 2, with b = 0, we use cutting and gluing techniques of Volkovyskii [Vo50];
see [GMO5] for a similar example. Namely, we make a horizontal cut that separates
the graph into two parts and such that the cut crosses the lowest vertical edge that has
the property that there are no asymptotic paths above the cut that have asymptotic
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value b = 0. The part above the cut is uniformized by the upper half-plane by the
exponential map adjusted so that the asymptotic values are 1 and oo rather than 0
and oo, namely by the map f(z) = e + 1; see Figure 3 for the labeled Speiser graph
of (C, f(z)). The part below the cut is uniformized by the double exponential map
z +— exp(exp(z)). Its labeled Speiser graph is given in Figure 1 with a = b = 0; note
that, as above, when a = b, the graph reduces to one of degree 3 since one needs to
remove all the edges separating a and b. The gluing homeomorphism of the real line
is therefore given by x — In (In (¢ + 1)). This map is asymptotic to the identity as
r — —oo and to x — Inx as © — +o00. Therefore, according to [Vo50, Theorem 24,
p. 89], the surface is hyperbolic.

For arbitrary b # 1, 0o, the corresponding surface is obtained from a quasicon-
formal deformation of the above hyperbolic surface, and hence is also hyperbolic.

The surface with labeled Speiser graph in Figure 3 is that of f(z) = e* 4+ 1, and
so is parabolic. [l

Theorem 4.2. For a,b € R, let (Sup, fap) be a surface spread over the sphere
whose labeled Speiser graph is depicted in Figure 1. Fix an arbitrary point w in
an open hemisphere represented by either o or x in Figure 2. Then, for any real
sequence a, — 400, there exists a corresponding sequence of points w,, € S, 5, such
that the sequence of parabolic surfaces (Sa, p, fan b, Wn), N € N, whose labeled Speiser
graphs are as in Figure 1 with a = a,,, converges in the sense of Carathéodory to the
hyperbolic surface (S, fy, w) with labeled Speiser graph as in Figure 2.

Likewise, for any point w in an open hemisphere represented by either o or X in
Figure 3, and any real sequence b, — +00, there exists a corresponding sequence of
points w,, € Sy, , such that the sequence of hyperbolic surfaces (Sy, , fp,, Wn), n € N,
with labeled Speiser graphs as in Figure 2 with b = b, converges in the sense of
Carathéodory to the parabolic surface (S, f,w) with labeled Speiser graph depicted
in Figure 3.

Proof. There is an isometric (in the graph metric; multiple edges between two
vertices being identified) orientation preserving embedding of the Speiser graph of
(Sb, fp) from Figure 2 into that of (S,p, fap) from Figure 1, satisfying the following
properties: the bipartite structure is preserved, i.e., X goes to x and o goes to o,
the embedding extends to an orientation preserving homeomorphism of the plane, it
takes the vertical linear subgraph that is the boundary of the face labeled 1 to the
subgraph with the same property, and it takes the topmost horizontal face labeled b
to the face with the same property.

For an arbitrary point w € S, as in the first part of the statement, let w,, € Sq, s
be the point that corresponds to w under the isometric embedding of the Speiser
graphs above. Let K be an arbitrary compact subset of S, that contains w. Let
§ > 0 be small so that the closed disk D(co,§) in C centered at oo of radius d does
not contain either 1 or b. We choose the extended real line to be a base curve . For
singular values 1,0, 00 of f, the graph Gg defined in Subsection 1.1 is embedded in
C, has two vertices x and o and three edges connecting them, each crossing the base
curve [ between two adjacent singular values. We can further choose § such that
D(00, 6) does not intersect G3. The full preimage Us = f; ' (D(00, d)) then consists of
infinitely many connected components U °(0), k € N, that are open topological half-
planes. Finally, we may choose § > 0 even smaller so that none of the components
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U2(9), k € N, intersects the compact set K. Indeed, the family of open sets
Vs = f; ' (C\ D(c0,8)), >0,

forms an open cover of S, and hence of K. If small 6 > 0 is chosen such that the
above conditions are satisfied, choosing N such that a, € B(c0,d), n > N, works.
To see this, we just observe that for n > N, the isometric embedding of Speiser
graphs above induces an embedding %, of V} s into S,, » such that f, = f,, 50 @y.
Since the above holds for any sequence (Sa,p; fan b Wn), an — +00, and the
maximality of (S, fp, w) is trivial, the first part of the theorem follows.
The convergence of (S, fo,, wn) to (S, f,w) follows the same lines. O

At the end of Section 3 we gave an example demonstrating that the condition
limsup R, < R in Theorem 3.1 is necessary to conclude the uniform convergence
of (f,) on compacta to f for (Dg,, fn,0) converging to (Dg, f,0) in the sense of
Carathéodory. In particular, in general we cannot guarantee uniform convergence on
compacta for parabolic surfaces converging to a hyperbolic one. The next example
shows that such uniform convergence on compacta is possible if we allow to pass to
subsurfaces that converge to the same kernel.

Example 4.3. Let (S,, fn,w,), n € N, be as in Figure 1, where we choose
a = a, — 00. Then there exists a sequence (5!, fn,w,), n € N, where S/ C S, is
open and simply connected, that has the following properties: (S’ fn, w,), n € N,
has the same kernel as (S, f.,w,), n € N, which is (5, f,w) as in Figure 2, and
for the normalized uniformizing maps F,: S/, — Dpg,, we have im R, = R < o0,
where R is the conformal radius of (S, f,w), and F,,, n € N, converge uniformly on
compacta to F': S — Dg, the normalized uniformizing map of (5, f, w).

Proof. By Theorem 4.2, the sequence (S,, f,,w,), n € N, converges to (S, f, w)
in the sense of Carathéodory. The surface (S, f) is hyperbolic by Lemma 4.1. For
simplicity, we assume that the sequence a,, monotonically approaches co. There is a
unique isometric (in the graph metric, where we identify multiple edges connecting
any pair of vertices) orientation preserving embedding of the graph in Figure 2 into
that in Figure 1 such that the bipartite structure is preserved and that satisfies the
following properties. The embedding extends to an orientation preserving homeo-
morphism of the plane, it takes the vertical linear subgraph that is the boundary of
the face labeled 1 to the subgraph with the same properties, and it takes the topmost
horizontal face labeled b to the face with the same properties. Let (Sy, fn, w;,) be the
pointed sequence corresponding to Figure 1 with w,, being the point that corresponds
to w under the above isometric embedding of graphs. Note that for each compact set
K in S, there is an isometric embedding of K into S, for all n large enough. Indeed,
if K is a compact subset of S, it follows immediately that its projection to C under
f cannot contain co. Thus, for all n large enough, a, will be in the same connected
component of C\ f(K), and the claim follows.

Now, let S/, be the connected component of the surface obtained from S, by
cutting out all the preimages of the extended real line (this is our base curve) between
a, and oo in the first quadrant of Figure 1, i.e., the part bounded by the vertical
linear subgraph that is the boundary of the face labeled 1 and above the top most
face labeled b, and that contains w,. Each (S),, fn,w,) is still a simply connected
surface spread over C, even C. (It is, however, not a log-Riemann surface in the
sense of [BPM15] because its completion is not obtained by adding a discrete set of
points to S.) Note that each S}, n =1,2,..., is a subset of S, because we assume



574 Alexandre Eremenko and Sergei Merenkov

monotonicity of a,, and also a subset of S. These facts along with the Schwarz
Lemma imply that for each n, R, < R,.1 < R. In particular, lim R,, exists. From
the definition of S), and the above claim on embedding every compact set K in S
into S, n > N, for some N € N, it follows that each such K embeds into S! for
all n large enough. Indeed, the compact set f(K) does not contain the segment
between a,, and oo for all large n. In particular, (S, f.,w,), n € N, has the same
Carathéodory kernel (S, f,w) as (S,, fn,w,), n € N, and lim R,, = R. The proof of
uniform convergence of F,, to F' on compacta now follows the same lines as the proof
of the necessity part of Theorem 3.1; see also [BPM15, Theorem 1.1]. O

5. Changing the order

In this section we show, in addition, that convergence in the sense of Carathéodory
can change the order of entire functions.

Theorem 5.1. There exists a sequence of normalized triples (C, f,,,0), n € N,
where each f, is an entire function of infinite order, that converges in the sense of
Carathéodory to a normalized triple (C, f,0), where f has order 1.

Proof. Consider labeled Speiser graphs as in Figure 1 with a = b = a,, — 00, and
denote the corresponding surfaces by (S, f,). Note that in this case there are only
3 singular values, namely a,, 1,00, and so some of the double edges in Figure 1 are
identified to become single edges. Also, let f(z) = e¢* + 1. This is an entire function
of order 1 whose Speiser graph is depicted in Figure 3. We choose an isometric
orientation preserving embedding of the unlabeled Speiser graph in Figure 3 to that
in Figure 1. Namely, an embedding such that one of the complementary components
of the embedded graph does not contain any vertices of the graph in Figure 1, and the
bipartite structure is preserved, i.e., X goes to x and o goes to o. Such an embedding
is unique up to a vertical translation. The point 0 in C is on the common boundary
of two of the components of the preimages of the upper and lower hemispheres, in
this case half-planes, under f. Such half-planes correspond to the vertices of the
Speiser graph in Figure 3. Let w, be the point in S, that corresponds to 0 under the
embedding of half-planes that corresponds to the embedding of Speiser graphs.

The surface (S, fn, w,) is equivalent to (C, f,,0), where

fu(2) = an (exp(exp(z)) — 1) + 1,

and so f, has infinite order; here, w, = Inln (1 —1/a,). Note that infinite order
of each f, also follows from Mori’s Theorem, see [Al06, Theorem III.C], since each
surface (C, f,,) is obtained via a quasiconformal deformation of the surface of the
double exponential function, and a K-quasiconformal equivalence can change the
order by at most a factor of K. It is worth noting here that, by [Bil5], the order of
a function of Speiser class can change by a quasiconformal equivalence.

Arguing as in Theorem 4.2, we conclude that (C, f,,,0), n € N, converges in the
sense of Carathéodory to the surface (C, f,0) as a,, — —oo. In this case the maps
Grn = [, o[ are asymptotic to translations z — z 4+ w,. The theorem follows. O
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