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Generalized Schwarzians and normal families

Matthias Grätsch

Abstract. We study families of analytic and meromorphic functions with bounded generalized
Schwarzian derivative Sk(f). We show that these families are quasi-normal. Further, we investigate
associated families, such as those formed by derivatives and logarithmic derivatives, and prove
several (quasi-)normality results. Moreover, we derive a new formula for Sk(f), which yields a
result for families F ⊆ H(D) of locally univalent functions that satisfy

Sk(f)(z) 6= b(z) for some b ∈ M(D) and all f ∈ F , z ∈ C

and for entire functions g with Sk(g)(z) 6= 0 and Sk(g)(z) 6= ∞ for all z ∈ C. The classical

Schwarzian derivative Sf is contained as the case k = 2.

Yleistetyt Schwarzin derivaatat ja normaalit perheet

Tiivistelmä. Tässä työssä tarkastellaan analyyttisiä ja meromorfisia funktioita, joilla on rajal-
linen yleistetty Schwarzin derivaatta Sk(f), ja osoitetaan, että tällaisten funktioiden perheet ovat
kvasinormaaleja. Lisäksi tutkitaan näistä esimerkiksi derivoimalla tai logaritmisesti derivoimalla
johdettuja perheitä ja todistetaan useita kvasinormaaliustuloksia. Schwarzin derivaatalle Sk(f) joh-
detaan uusi kaava, jonka avulla saadaan tulos sellaisten paikallisesti injektiivisten funktioiden per-
heille F ⊆ H(D), jotka toteuttavat

Sk(f)(z) 6= b(z) jollakin b ∈ M(D) ja kaikilla f ∈ F , z ∈ C

sekä kokonaisille funktioille g, joilla Sk(g)(z) 6= 0 ja Sk(g)(z) 6= ∞ kaikilla z ∈ C. Klassinen

Schwarzin derivativaatta Sf saadaan tapauksessa k = 2.

1. Introduction and main results

Throughout this paper, we denote the set of all holomorphic functions on a do-
main D ⊆ C by H(D). Likewise, we write M(D) for the set of all meromorphic
functions on D. Further, we denote the open unit disk by D := {z ∈ C : |z| < 1}.
Moreover, when referring to zeros or poles, we use “(CM)” to indicate that multi-
plicity is counted, and “(IM)” when it is ignored.

Let D ⊆ C be a domain. A family F ⊆ M(D) is said to be quasi-normal on D,
if for every sequence (fn)n ⊆ F , there exists a subsequence (fnk

)k ⊆ (fn)n and an
exceptional set E ⊆ D with no accumulation point in D, such that (fnk

)k converges
locally uniformly in D\E (with respect to the spherical metric).

A family F ⊆ M(D) is said to be quasi-normal at z0 ∈ D if there exists a
neighborhood U ⊆ D around z0, such that the restricted family {f |U : f ∈ F} is
quasi-normal.

The theory of normal families offers a multitude of different criteria to check if
a given family F ⊆ M(D) is normal. Probably the most notable one is Marty’s
theorem, which states that a family F is normal, if and only if the family of spherical

derivatives
{ |f ′|

1+|f |2
: f ∈ F

}
is locally uniformly bounded. This draws a connection

between the normality of a family and a particular differential inequality. Similarly,
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there are several (more or less) related results, which connect (quasi-)normality to
other differential operators and inequalities, such as

|f (k)|

1 + |f (j)|α
≤M, M ≤

|f (k)|

1 + |f (j)|α
or fn(z) + f (k)(z) 6= 0

for suitable choices ofM,α, k, j, n and all admissible z (see for example [8, 7, 2, 20, 3]).
This paper seizes this idea and investigates (quasi-)normality in relation to in-

equalities involving a generalization of the Schwarzian derivative by Chuaqui, Gröhn
and Rättyä (see [4]). This generalization is anchored around the relationship be-
tween the Schwarzian derivative and the so called Schwarzian differential equation
y′′ + p0 y = 0. Other generalizations of the Schwarzian derivative, which focus on
different aspects of the Schwarzian derivative, can be found in [13, 22, 24].

Definition A. [4, p. 340] Let f ∈ M(D) be non-constant. For n ∈ N and
k ∈ N\{1}, we define:

S2,n(f) :=
f ′′

f ′
and Sk+1,n(f) :=

(

Sk,n(f)
)′

−
1

n

f ′′

f ′
Sk,n(f).

Now, for all k ∈ N, we call

Sk(f) := Sk+1,k(f)

the generalized Schwarzian derivative of order k.

Note that the classical Schwarzian derivative Sf is contained as the case k = 2,
since

S2(f) = S3,2(f) = (S2,2(f))
′ −

1

2

f ′′

f ′
S2,2(f) =

(
f ′′

f ′

)′

−
1

2

(
f ′′

f ′

)2

= Sf .

For constant functions c ∈ H(D), we define Sk(c) ≡ ∞ for all k ∈ N. This differs
from [4], where constant functions were not mentioned at all. However, our version
allows us to circumvent degenerate cases in the future. It is further motivated by the
observation that Sk(f) exhibits a (k− 1)-fold pole whenever the derivative of a non-
constant f ∈ M(D) vanishes. We will give a short proof of this result in Section 2,
Proposition 2.1.

The connection between this generalization of the Schwarzian derivative and the
Schwarzian differential equation becomes apparent in the following theorem.

Theorem B. [4, Lemma 3 and Lemma 5] Let f ∈ M(D) and k ∈ N. Then the
following conditions are equivalent:

(a) Sk(f) ∈ H(D).
(b) f ′ = 1/hk, for some h ∈ H(D), which satisfies the differential equation

y(k) + p0 y = 0 for some p0 ∈ H(D).
(c) f ′ = 1/hk for some h ∈ H(D), where every zero z0 ∈ D of h with multiplicity

m is also a zero of h(k) of multiplicity at least m.

If condition (b) is true, then we can specify p0 = Sk(f)/k and Sk(f) = −k h(k)/h.

Again, this result differs slightly from the one given in [4, Lemma 5]. There,
it is additionally required that f ′ is non-vanishing. However, with our exclusion of
constant functions and Proposition 2.1, we can drop this assumption.

To abbreviate our notation, we define for each M ∈ R and k ∈ N:

Mk,M := {f ∈ M(D) : ‖Sk(f)‖∞ ≤M} and Hk,M := Mk,M ∩ H(D),



Generalized Schwarzians and normal families 613

where ‖ · ‖∞ denotes the supremum norm on D. Since no constant function is con-
tained in Hk,M or Mk,M , we can also consider the following families:

M′
k,M := {f ′ : f ∈ Mk,M} and H′

k,M := {f ′ : f ∈ Hk,M},

M
f ′/f
k,M := {g′/g : g ∈ Mk,M} and H

f ′/f
k,M := {g′/g : g ∈ Hk,M},

M
f ′′/f ′

k,M := {g′′/g′ : g ∈ Mk,M} and H
f ′′/f ′

k,M := {g′′/g′ : g ∈ Hk,M}.

In the case of the classical Schwarzian, the quasi-normality of H2,M can be shown for
any M ∈ R as a consequence of [17, Theorem 1.1(b)]. The quasi-normality of M2,M

was later proven in [9, Theorem 1.4] for all M ∈ R. There, it is also shown for any

M ∈ R that M
f ′′/f ′

2,M is normal and M
f ′/f ′

2,M is quasi-normal.
In this paper, we will generalize these results for all k ∈ N. To achieve this, we

consider families of holomorphic functions first and obtain the following theorem.

Theorem 1.1. The following statements hold for all k ∈ N and M ∈ R:

(i) H
f ′′/f ′

k,M is locally uniformly bounded.

(ii) H
f ′/f
k,M is normal and no sequence in H

f ′/f
k,M converges to ∞.

(iii) H′
k,M is normal.

(iv) Hk,M is quasi-normal.

Later, in Lemma 2.2, we will see that the number of poles of each f ∈ Mk,M

is bounded by a constant that depends only on k and M . Thus, every sequence
(fn)n ⊆ Mk,M has a subsequence with a corresponding set of poles having only
isolated points of accumulation. Since (quasi-)normality is a local property, we are
able to treat Mk,M mostly like its holomorphic subset Hk,M and prove the following
theorem:

Theorem 1.2. The following statements hold for all k ∈ N and M ∈ R:

(i) M
f ′′/f ′

k,M is quasi-normal and no sequence in M
f ′′/f ′

k,M converges to ∞.

(ii) M
f ′/f
k,M is quasi-normal and no sequence in M

f ′/f
k,M converges to ∞.

(iii) M′
k,M is quasi-normal.

(iv) Mk,M is quasi-normal.

The results of Theorems 1.1 and 1.2 extend to families (and the respective families
of derivatives, logarithmic derivatives, or pre-Schwarzians) of the form

F := {f ∈ M(D) : |Sk(f)(z)| ≤ g(z) for all z ∈ D} and F ∩H(D),

where g : D → R+ is a locally bounded function. This includes bounds of hyperbolic
type, such as those considered in [4, Theorem 7] or [18]. This generalization holds
because each statement can be verified locally, since (quasi-)normality is a local
property. More precisely, it is possible to apply Theorem 1.1 or Theorem 1.2 locally
by using the invariance of the generalized Schwarzian derivative under precomposition
with affine transformations.

[4, Lemma 4] shows that Sk(f) ≡ 0 if and only if f ′ = 1/pk, where p is a
polynomial with deg p ≤ k − 1. Thus, Sk(fn) ≡ 0 for fn(z) = nz, for all k ∈ N, so
neither Hk,M nor Mk,M are normal for k ∈ N and M ∈ R

+
0 .

Similarly, M′
k,M is not normal for k ∈ N\{1} and M ∈ R

+
0 , since Sk(gn) ≡ 0 for

gn(z) :=
−1

nk(k − 1)zk−1
with g′n(z) =

1

(nz)k
.
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For k ∈ N\{1} and M ∈ R
+
0 , the family M

f ′/f
k,M is not normal either. To see this, we

consider the sequence

hn(z) :=
1

zk−1
+ n with h′n(z) =

1− k

zk
and

h′n
hn

(z) =
1− k

z(1 + nzk−1)
.

It is unknown to the author, whether M
f ′′/f ′

k,M is normal. However, by using Theo-

rem 1.1, it is possible to show that M
f ′′/f ′

k,M is normal at z0 ∈ D if and only if there
exists a neighborhood of z0, where each f ∈ Mk,M has at most one pole (IM). The-
orem F and the proof of [9, Theorem 1.4] show that these conditions hold for k = 2,
but it remains open whether this is true for k ≥ 3.

For our final results, we will regard Sk(f) as a differential polynomial by showing
the following formula for the generalized Schwarzian derivative.

Lemma 1.3. Let f ∈ M(D) be a non-constant, meromorphic function and
k ∈ N. Then

Sk(f) =
∑

(n1,...,nk)∈Λ

(

−k · k!
∏k

j=1(−k · j!)
nj · nj !

·
k∏

j=1

((
f ′′

f ′

)(j−1)
)nj

)

,(1)

where Λ is the set of all tuples (n1, . . . , nk) (with nr ∈ N0 for all r = 1, . . . , k) that

satisfy
∑k

r=1 r · nr = k.

For k ∈ N\{1}, we can extract the summands where (n1 . . . , nk) = (k, 0, . . . , 0)
and (n1, . . . , nk) = (0, . . . , 0, 1), to obtain that

Sk(f) =
(−1)k+1

kk−1
· gk + g(k−1) + P [g](2)

for g := f ′′/f ′ and some differential polynomial P .
This form is reminiscent of the well known condition afn(z) + f (m)(z) 6= b for

a, b ∈ C, a 6= 0 and large enough n,m ∈ N with n > m. Hayman was the first to
study this condition for f ∈ M(C) (see [11]). In the spirit of Bloch’s principle, his
results on value distribution were later extended to normal families: in the analytic
case by Drasin in [5], and in the meromorphic case by Langley in [16]. Subsequently,
Chen and Hua demonstrated in [3] that the constant value b can be replaced by an
exceptional function B ∈ M(D). This result was further extended to more general
differential polynomials (see Theorem G below) by Grahl in [6]. Now, we will show
that the differential polynomial P from equation (2) fulfills the exact conditions of
Theorem G. This leads to the following result:

Theorem 1.4. Let F ⊆ H(D) be a family of locally univalent functions, let
k ∈ N\{1} and b ∈ M(D) be a meromorphic function, such that every f ∈ F satisfies

Sk(f)(z) 6= b(z) for all z ∈ D.(3)

Then F ′′/F ′ := {f ′′/f ′ : f ∈ F} is a normal family.

Note that F ′′/F ′, unlike H
f ′′/f ′

k,M , does not have to be locally uniformly bounded.
Therefore, the family F does not need to be quasi-normal, as demonstrated by the
family {z 7→ enz : n ∈ N}.

However, if—in addition to (3)—we know that F ′′/F ′ is pointwise bounded in
a single point, then it follows that F ′′/F ′ is locally uniformly bounded. Now, using
formula (1), we can see that the family Sk(F) := {Sk(f) : f ∈ F} is locally uniformly
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bounded as well. This, in turn, allows us to apply Theorem 1.1 to F . Thus, we can
regard this as a “self-improving result”, where we require that:

• Sk(F) omits a function.
• F ′′/F ′ is bounded in a single point.

and obtain that:

• Sk(F) is locally uniformly bounded.
• F ′′/F ′ is locally uniformly bounded.
• F ′/F and F ′ are normal, while F is quasi-normal.

We should note that Theorem 1.4 can not be extended to families of meromorphic
functions. To see this, consider fn(z) := ((2z)n − 1)−1 for n ∈ N and z ∈ D with

f ′
n(z) = −

n 2n zn−1

(
(2z)n − 1

)2 and f ′′
n(z) =

n 2n zn−2
(
n− 1 + (n+ 1)(2z)n

)

(
(2z)n − 1

)3 .

Clearly, each fn has a pole of order 1 in z0 = 1/2 and is locally injective in D\{0}.

Additionally, for zn := 1
2

n

√
n−1
n+1

eiπ/n, we have f ′′
n(zn) = 0, while (zn)n converges to

1/2. Hence, the sequence (f ′′
n/f

′
n)n is not normal at 1/2.

On the other hand, we can use the fact that the classical Schwarzian derivative
is invariant under Möbius transformations, and calculate

S2(fn)(z) = S2(z
n) =

1− n2

2 z2
.

Thus,
(
Sk(fn)

)

n≥2
omits the value 0, which shows that we can not extend Theorem 1.4

to families of meromorphic functions.
Still, there is a corresponding value distribution result for entire functions. Sim-

ilarly to Theorem 1.4, this corollary relies heavily on the results from [6].

Corollary 1.5. Let f ∈ H(C) be an entire function with

Sk(f)(z) 6= 0 and Sk(f)(z) 6= ∞ for all z ∈ C.

Then there are a, b, c ∈ C with a, b 6= 0 and f(z) = aebz + c.

Based on the counterexample given in [11, p. 34], we consider the locally univalent
function f(z) = exp(exp(cz)/c) with c ∈ C\{0}. A straightforward computation
shows that its classical Schwarzian derivative is

S2(f)(z) = −
e2cz

2
−
c2

2
,

so the exceptional value 0 cannot be replaced by another value.
Likewise, Corollary 1.5 does not extend to meromorphic functions. For k = 2,

this is already evident from compositions of Möbius transformations with exponential
functions. Now, a natural question is whether any f ∈ M(C) with Sk(f)(z) 6= 0 and
Sk(f)(z) 6= ∞ for all z ∈ C must have the form f(z) = T (aebz + c) for some invariant
function T of the k-th generalized Schwarzian derivative. However, Proposition 2.3
provides a counterexample by showing that such a generalization does not hold for
k = 2.

2. Auxiliary lemmas and results

First, we show that non-constant functions with an analytic generalized Schwarzian
derivative have non-vanishing derivatives.
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Proposition 2.1. If f ∈ M(D) is non-constant and f ′ has a zero in z0 ∈ D,
then Sk(f) has a k-fold pole in z0.

Proof. Suppose that f ′ has an m-fold zero in z0. Then S2,n(f) = f ′′/f ′ has a
simple pole in z0 for all n ∈ N. Next, we assume that Sk,n(f) has a (k − 1)-fold pole
in z0 for k ≥ 3, i.e.

Sk,n(f)(z) =
h(z)

(z − z0)k−1
for some analytic h in a neighborhood U of z0.

Then we can calculate

Sk+1,n(f)(z) =
1

(z − z0)k

((

1− k −
m

n

)

h(z0) + . . .

)

for z ∈ U,

and conclude inductively that Sk,n(f) has a k-fold pole for all k, n ∈ N\{1}. �

The proof of Theorem 1.1 relies heavily on the following theorem by Schwick.

Theorem C. [23, Theorem 5.4] Let (hn)n ⊆ H(D) be a sequence of non-

vanishing functions, and let k ∈ N. If (h
(k)
n /hn)n converges locally uniformly to

some ψ ∈ H(D), then (h′n/hn)n is locally uniformly bounded in D.

Schwick initially stated this result in a slightly weaker form, establishing only that
(h′n/hn)n is normal. However, his proof shows that the Nevanlinna characteristic of
(h′n/hn)n is locally uniformly bounded, which, as shown in [23, Theorem 1.13], implies
that the sequence itself is locally uniformly bounded.

Theorem C will be used to show that H
f ′′/f ′

k,M is locally uniformly bounded for all
k ∈ N and M ∈ R. Then the following result allows us to transfer the convergence

properties of sequences in H
f ′′/f ′

k,M to respective subsequences in H
f ′/f
k,M and Hk,M .

Lemma D. [9, Lemma 2.4] Let E ⊆ D be a set without an accumulation point
in D and (fn)n ⊆ M(D) with:

(1.) (f ′′
n/f

′
n)n converges locally uniformly on D\E to some ψ ∈ H(D\E).

(2.) f ′
n is zero-free for all n ∈ N.

Then (fn)n and (f ′
n/fn)n are quasi-normal on D, and no subsequence of (f ′

n/fn)n
converges to ∞. Moreover, if E = ∅, (f ′

n/fn)n is normal.

Next, we will estimate the maximal number of poles of the functions in Mk,M by
using the differential equation in Theorem B(b). Here, the concept of disconjugate
differential equations will be useful.

Definition E. Let D ⊆ C be a domain, k ∈ N and p0, . . . , pk−1 ∈ H(D). We
say that

y(k) + pk−1 · y
(k−1) + pk−2 · y

(k−2) + . . .+ p0 · y = 0

is disconjugate in D, if no non-trivial solution has more than k − 1 zeros (CM).

A classical result concerning the Schwarzian derivative states that if f1, f2 ∈ H(D)
are linearly independent solutions of the differential equation y′′ + p0 · y = 0, then
f := f1/f2 satisfies S2(f) = p0/2 (cf. [15, Theorem 6.1]). As a consequence, any linear
combination g = c1f1 + c2f2 vanishes at a point z0 if and only if f(z0) = −c2/c1.
Therefore, f attains some value n times if and only if there exists a non-trivial
solution of y′′ + p0 · y = 0 with n zeros.

This observation is due to Nehari and his paper on the Schwarzian derivative
and univalence (see [18, p. 546]). Since then, numerous results provided alternative
criteria for disconjugacy. One such result is the following theorem. However, with
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minor modifications, Theorem F and Lemma 2.2 could also be derived from [10,
Theorem 2] or [19, p. 328].

Theorem F. [14, p. 723] Let k ∈ N, let D ⊆ C be a convex domain with
δ := diam(D) <∞ and let p0 ∈ H(D) be a holomorphic function with

|p0(z)| <
k!

δk
for all z ∈ D.

Then the differential equation y(k)(z) + p0(z)y(z) = 0 is disconjugate in D.

Based on this result, we can show the following lemma.

Lemma 2.2. For k ∈ N andM ∈ R, there exists N ∈ N, such that all f ∈ Mk,M

and all f ′ ∈ M′
k,M have at most N poles (CM).

Proof. For f ∈ Mk,M , it suffices to show that f ′ has a limited number of poles.
The case M = 0 was already established in Theorem [4, Lemma 4], so we assume
M > 0. Due to Theorem B, we can write f ′ = 1/hk, where h 6≡ 0 is a solution of the
differential equation

y(k)(z) +
Sk(f)(z)

k
· y(z) = 0.(4)

Now, we choose δ > 0 with δ <
(
k·k!
M

)1/k
. This implies ‖Sk(f)‖∞

k
≤ M

k
< k!

δk
, so The-

orem F shows that (4) is disconjugate in every convex set Cδ ⊆ D with diameter δ.
Consequentially, h can have at most k − 1 zeros in Cδ. By covering the unit disk D

with Ñ of such convex sets, we obtain the bound N := Ñ(k − 1) for the number of
zeros of h (CM). �

For the reader’s convenience, we also restate the main results of [6] with modified
notation, to prevent conflicts with the notation used in this paper.

Theorem G. [6, Theorem 3] Let F ⊆ H(D), ℓ ∈ N and k ∈ N\{1}. Let
a, b, a1, . . . , aN ∈ M(D) with a 6≡ 0, and suppose that all poles of a have multiplicity
at most k − 1. Consider a differential polynomial of the form

P [u] =
N∑

µ=1

aµ ·

sµ∏

j=1

u(ωµ,j),

where sµ, ωµ,j ∈ N0 satisfy the inequality

(k − 1) ·

sµ∑

j=1

ωµ,j + ℓ · sµ ≤ ℓ · k(5)

for all µ = 1, . . . , N , where equality can only hold if 2 ≤ sµ ≤ k − 1. Suppose that
for every f ∈ F and every z ∈ D, the following inequality holds:

a(z) · fk(z) + f (ℓ)(z) + P [f ](z) 6= b(z).

Then the family F is normal.

Theorem H. [6, Theorem 4] Let f ∈ H(C), ℓ ∈ N and k ∈ N\{1}. Let
a, a1, . . . , aN ∈ C with a 6= 0 and consider a differential polynomial

P [u] =

N∑

µ=1

aµ ·

sµ∏

j=1

u(ωµ,j),
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where 2 ≤ sµ ≤ k − 1 and
∑sµ

j=1 ωµ,j 6= 0 holds for all µ = 1, . . . , N . If the function

a · fk + f (ℓ) + P [f ] does not vanish, then f must be constant.

We conclude this section by proving the claim stated at the end of Section 1.

Proposition 2.3. There exists some f ∈ M(C) such that f is not of the form
f(z) = aeαz+b

ceαz+d
for any choice of a, b, c, d, α ∈ C, while S2(f) omits the values 0 and

∞.

Proof. We consider the Bessel functions defined by (cf. [1, 9.1.12 and 9.1.13])

J0(z) :=
∞∑

k=0

(−1)k

(k!)2

(z

2

)2k

and

Y0(z) :=
2

π

(
log

z

2
+ γ
)
J0(z) +

2

π

∞∑

k=1

(−1)k+1Hk

(k!)2

(z

2

)2k

,

where Hk denotes the k-th harmonic number and γ is Euler’s constant. These are
linearly independent solutions of the Bessel differential equation (cf. [1, 9.1.1])

z2y′′(z) + zy′(z) + z2y(z) = 0.

Next, we define

f1(z) := J0(e
z/2) and f2(z) := Y0(e

z/2).

Due to the logarithmic singularity of Y0, we initially restrict our consideration of f2
to the horizontal strips

Sn := {z ∈ C : (4n− 2)π < Im(z) < (4n+ 2)π}.

Within each Sn, a direct computation yields

f ′′
2 (z) +

ez

4
f2(z) =

ez

4
Y ′′
0 (e

z/2) +
ez/2

4
Y ′
0(e

z/2) +
ez

4
Y0(e

z/2) = 0,

which implies that f2 satisfies a second-order linear differential equation with entire
coefficients. Hence, f2 is analytically extensible to an entire function (cf. [12, Satz 3.2]).
Similarly, f1 satisfies

f ′′
1 (z) +

ez

4
f1(z) = 0.

Now, a classical result about the Schwarzian derivative (see [15, Theorem 6.1]) implies
that the function f := f1/f2 fulfills S2(f)(z) = ez/2. In particular, S2(f) omits the
values 0 and ∞.

Next, we suppose that f(z) = aeαz+b
ceαz+d

for some choice of a, b, c, d, α ∈ C. Then
the poles and zeros of f must be periodic. However, let j0,n and y0,n denote the n-th
positive real zero of J0 and Y0 respectively. Then asymptotically (cf. [1, 9.5.12])

j0,n ∼
(

n−
1

4

)

π and y0,n ∼
(

n−
3

4

)

π.

Thus, the positive real zeros of J0 and Y0 are almost equidistant, which shows that the
zeros and poles of f are not periodic. Hence, f can not be expressed as a composition
of a Möbius transformation and an exponential function. �
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3. Proofs of the main results

Throughout this section, we consider k ∈ N and M ∈ R fixed.

Proof of Theorem 1.1. From Theorem B we know that the derivative of ev-
ery f ∈ Hk,M can be written as f ′ = 1/hk for some zero-free function h ∈ H(D).
Additionally we have Sk(f) = −k h(k)/h. Therefore, the family {h(k)/h ∈ H(D) :
f ′ = 1/hk for some f ∈ Hk,M} is locally uniformly bounded. Applying Theo-
rem C shows that {h′/h ∈ H(D) : f ′ = 1/hk for some f ∈ Hk,M} is locally uniformly

bounded as well. Since f ′′/f ′ = −k h′/h, it follows that the family H
f ′′/f ′

k,M is locally
uniformly bounded.

Next, we consider a sequence (fn)n ⊆ Hk,M . Because (f ′′
n/f

′
n)n is locally uniformly

bounded and due to Proposition 2.1, we are able to apply Lemma D to a subsequence

of (fn)n with E = ∅. This implies that Hk,M is quasi-normal, that H
f ′/f
k,M is normal,

and that no sequence in H
f ′/f
k,M converges to ∞.

For the final claim, we use the inequality 1 + x < 2 (1 + x2) for x ∈ R to obtain

(f ′)#(z) =
|f ′′(z)|

1 + |f ′(z)|2
<

2 |f ′′(z)|

1 + |f ′(z)|
< 2

∣
∣
∣
∣

f ′′(z)

f ′(z)

∣
∣
∣
∣

(6)

for all f ∈ M(D) and z ∈ D. Since H
f ′′/f ′

k,M is locally uniformly bounded, it follows
that the spherical derivatives of the functions in H′

k,M are locally uniformly bounded.
Now, Marty’s theorem implies that H′

k,M is normal. �

Proof of Theorem 1.2. We consider a sequence (fn)n ⊆ Mk,M . By Lemma 2.2,
there exists N ∈ N, such that each fn has at most N poles. Therefore, we can
find a subsequence (fnk

)nk
and a set E ⊆ D consisting of at most N points, such

that for every z ∈ D\E there exists a neighborhood U of z in which almost all fn
are analytic. Applying Theorem 1.1 locally on D\E implies that there is a subse-
quence (f ′′

nℓ
/f ′

nℓ
)nℓ

⊆ (f ′′
nk
/f ′

nk
)nk

that converges locally uniformly on D\E to some

F ∈ H(D\E). Since E has no accumulation point, we conclude that M
f ′′/f ′

k,M is quasi-

normal and that no sequence in M
f ′′/f ′

k,M converges to ∞.
Analogously to the proof of Theorem 1.1, applying Lemma D to (fnℓ

)nℓ
shows

that bothMk,M andMf ′/f
k,M are quasi-normal, and that no subsequence of (f ′

nk
/fnk

)nk

converges to ∞.
Finally, the convergence of (f ′′

nℓ
/f ′

nℓ
)nℓ

on D\E to F ∈ H(D\E) together with

inequality (6) show that ((f ′
nℓ
)#)nℓ

is locally uniformly bounded on D\E. Therefore,
M′

k,M is quasi-normal by Marty’s theorem. �

Proof of Lemma 1.3. Since f is non-constant, there exists a neighborhood U ⊆ D

such that Sk(f)|U ∈ H(U). By Theorem B, there exists a zero-free h ∈ H(U) with
f ′ = 1/hk on U . Furthermore, we can find a logarithm L ∈ H(U) of h, i.e. h = eL.
Using Faà di Bruno’s formula (cf. [21, Chapter 2.8]), we have that

h(k) =
(
eL
)(k)

=
∑

(n1,...,nk)∈Λ

(

k!

n1! · . . . · nk!
eL

k∏

j=1

(
L(j)

j!

)nj

)

,

where Λ is the set of all natural tuples (n1, . . . , nk) with
∑k

j=1 j · nj = k.
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Now, using Theorem B and L′ = h′/h = −f ′′/(k · f ′), we have

Sk(f) = −k
h(k)

h
=
∑

(n1,...,nk)∈Λ

(

−k · k!

n1! · . . . · nk!

k∏

j=1

(
L(j)

j!

)nj

)

=
∑

(n1,...,nk)∈Λ

(

−k · k!

n1! · . . . · nk!

k∏

j=1

(

1

−k · j!
·

(
f ′′

f ′

)(j−1)
)nj

)

=
∑

(n1,...,nk)∈Λ

(

−k · k!
∏k

j=1

(
(−k) · (j!)

)nj · nj !

k∏

j=1

((
f ′′

f ′

)(j−1)
)nj

)

.

Finally, by the identity theorem, this equality extends from U to D. �

Proof of Theorem 1.4. Let Λ be defined as in Lemma 1.3, and set

Λ̃ := Λ\{(k, 0, . . . , 0), (0, . . . , 0, 1)}.

Next, we fix an enumeration µ of Λ̃, denote N := |Λ̃| and define for each multi-index
(n1, . . . , nk) ∈ Λ̃ that

aµ−1(n1,...,nk) :=
−k · k!

∏k
j=1

(
(−k) · (j!)

)nj · nj!
.

In addition, for ν = µ−1(n1, . . . , nk) we set:

sν :=

k∑

r=1

nr and for j = 1, . . . , sν, we define

ων,j := r − 1 whenever n1 + . . . , nr−1 < j ≤ n1 + . . .+ nr.

Using Lemma 1.3, we get for all f ∈ F that

Sk(f) =
(−1)k+1

kk−1

(
f ′′

f ′

)k

+

(
f ′′

f ′

)(k−1)

+
∑

(n1,...,nk)∈ Λ̃

a(n1,...,nk)

k∏

j=1

((
f ′′

f ′

)(j−1)
)nj

=
(−1)k+1

kk−1

(
f ′′

f ′

)k

+

(
f ′′

f ′

)(k−1)

+
N∑

µ=1

aµ

sµ∏

j=1

(
f ′′

f ′

)(ωµ,j)

︸ ︷︷ ︸

=:P [f ′′/f ′]

.(7)

Now, we want to apply Theorem G with ℓ := k−1. Note that f ′′/f ′ is analytic, since
f is locally univalent. Furthermore, condition (5) holds for µ = 1, . . . , N , because
∑k

r=1 nr · r = k for (n1, . . . , nk) ∈ Λ̃ and therefore we get

(k − 1) ·

sµ∑

j=1

ωµ,j + ℓ · sµ = (k − 1)

k∑

r=1

nr (r − 1) + (k − 1)

k∑

r=1

nr = ℓ · k

independently of µ. Additionally, we have 2 ≤ sµ ≤ k − 1 for all µ = 1, . . . , N ,

because we removed the multi-indices (k, 0, . . . , 0) and (0, . . . , 0, 1) from Λ̃. Hence,
Theorem G applies and we conclude that F ′′/F ′ is a normal family. �

Proof of Corollary 1.5. We reuse the notation used in the proof of Theorem 1.4
and write Sk(f) as in equation (7). By Proposition 2.1, f ′ does not vanish and
therefore f ′′/f ′ is an entire function. Since 2 ≤ sµ ≤ k − 1 and

∑sµ
j=1 ωµ,j 6= 0 holds

for all µ = 1, . . . , N , we are able to apply Theorem H to f ′′/f ′. Thus, f ′′/f ′ ≡ b for
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some constant b ∈ C. Notice that b 6= 0, since Sk(f) omits the value 0. Therefore, f
must be of the form f(z) = aebz + c for some a, b, c ∈ C with a, b 6= 0. �
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