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Generalized Schwarzians and normal families

Matthias Gratsch

Abstract. We study families of analytic and meromorphic functions with bounded generalized
Schwarzian derivative Sk (f). We show that these families are quasi-normal. Further, we investigate
associated families, such as those formed by derivatives and logarithmic derivatives, and prove
several (quasi-)normality results. Moreover, we derive a new formula for Si(f), which yields a
result for families 7 C H(D) of locally univalent functions that satisfy

Se(f)(z) #b(z) for somebe M(D) and all fe F, z€C

and for entire functions g with Sk(g)(z) # 0 and Sk(g)(z) # oo for all z € C. The classical
Schwarzian derivative S is contained as the case k = 2.

Yleistetyt Schwarzin derivaatat ja normaalit perheet

Tiivistelm&. Téssé tyossi tarkastellaan analyyttisid ja meromorfisia funktioita, joilla on rajal-
linen yleistetty Schwarzin derivaatta Si(f), ja osoitetaan, ettd téllaisten funktioiden perheet ovat
kvasinormaaleja. Lisdksi tutkitaan n&istd esimerkiksi derivoimalla tai logaritmisesti derivoimalla
johdettuja perheiti ja todistetaan useita kvasinormaaliustuloksia. Schwarzin derivaatalle S (f) joh-
detaan uusi kaava, jonka avulla saadaan tulos sellaisten paikallisesti injektiivisten funktioiden per-
heille 7 C H(D), jotka toteuttavat

Se(f)(z) #b(2) jollakin b € M(D) ja kaikilla f € F, z€ C

sekd kokonaisille funktioille g, joilla Sk(g)(z) # 0 ja Sk(g)(z) # oo kaikilla z € C. Klassinen
Schwarzin derivativaatta Sy saadaan tapauksessa k = 2.

1. Introduction and main results

Throughout this paper, we denote the set of all holomorphic functions on a do-
main D C C by H(D). Likewise, we write M(D) for the set of all meromorphic
functions on D. Further, we denote the open unit disk by D= {z € C: |2| < 1}.
Moreover, when referring to zeros or poles, we use “(CM)” to indicate that multi-
plicity is counted, and “(IM)” when it is ignored.

Let D C C be a domain. A family 7 C M(D) is said to be quasi-normal on D,
if for every sequence (f,), C F, there exists a subsequence (f,, ) C (f.)n and an
exceptional set £ C D with no accumulation point in D, such that (f,,)r converges
locally uniformly in D\ E (with respect to the spherical metric).

A family F C M(D) is said to be quasi-normal at zy € D if there exists a
neighborhood U C D around zj, such that the restricted family {f|y: f € F} is
quasi-normal.

The theory of normal families offers a multitude of different criteria to check if
a given family F C M(D) is normal. Probably the most notable one is Marty’s
theorem, which states that a family F is normal, if and only if the family of spherical
derivatives {'f—l‘: feF } is locally uniformly bounded. This draws a connection

1+f?
between the normality of a family and a particular differential inequality. Similarly,
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there are several (more or less) related results, which connect (quasi-)normality to
other differential operators and inequalities, such as
[f%)] f% n K
WS ; MSW or f"(z)+ f®(z) #0

for suitable choices of M, «, k, j, n and all admissible z (see for example [8, 7, 2, 20, 3]).

This paper seizes this idea and investigates (quasi-)normality in relation to in-
equalities involving a generalization of the Schwarzian derivative by Chuaqui, Grohn
and Réttya (see [4]). This generalization is anchored around the relationship be-
tween the Schwarzian derivative and the so called Schwarzian differential equation
y" 4+ poy = 0. Other generalizations of the Schwarzian derivative, which focus on
different aspects of the Schwarzian derivative, can be found in [13, 22, 24].

Definition A. [4, p. 340] Let f € M(D) be non-constant. For n € N and
k € N\{1}, we define:

SQ,n(f) = 7
Now, for all k € N, we call

and Siiin(f) = (Sea() = 25 Skalf).

Sk(f) = Sks1.(f)
the generalized Schwarzian derivative of order k.

Note that the classical Schwarzian derivative Sy is contained as the case k = 2,
since

(1) = ) = (Sua0) 3 E5ea(n = (5) = 3(5) =51

For constant functions ¢ € H (D), we define Si(c) = oo for all k € N. This differs
from [4], where constant functions were not mentioned at all. However, our version
allows us to circumvent degenerate cases in the future. It is further motivated by the
observation that Si(f) exhibits a (k — 1)-fold pole whenever the derivative of a non-
constant f € M(D) vanishes. We will give a short proof of this result in Section 2,
Proposition 2.1.

The connection between this generalization of the Schwarzian derivative and the
Schwarzian differential equation becomes apparent in the following theorem.

Theorem B. [4, Lemma 3 and Lemma 5] Let f € M(D) and k € N. Then the
following conditions are equivalent:
(a) Sk(f) € H(D).
(b) f' = 1/h*, for some h € H(D), which satisfies the differential equation
y*) + poy = 0 for some py € H(D).
(c) f' = 1/h¥ for some h € H(D), where every zero zy € D of h with multiplicity
m is also a zero of h®) of multiplicity at least m.

If condition (b) is true, then we can specify py = Si(f)/k and Si(f) = —kh® /h.
Again, this result differs slightly from the one given in [4, Lemma 5]. There,
it is additionally required that f’ is non-vanishing. However, with our exclusion of

constant functions and Proposition 2.1, we can drop this assumption.
To abbreviate our notation, we define for each M € R and k € N:

Moas = {f € MD): |Sk(f)llee < M} and Hyps = My NH(D),
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where || - ||« denotes the supremum norm on . Since no constant function is con-
tained in Hy ar or My ar, we can also consider the following families:
M;97M =" feMiu} and H;,M ={f" f € Hru},
MiA={g'/9: g € My} and My =1{9'/9: 9 € Huarh,

MU =1g")g g€ Miad  and  HT ={g"/g: g € Hiu}

In the case of the classical Schwarzian, the quasi-normality of Hs s can be shown for
any M € R as a consequence of [17, Theorem 1.1(b)]. The quasi-normality of Mo 5
was later proven in [9, Theorem 1.4] for all M € R. There, it is also shown for any
M € R that Mg/;\/f "is normal and ./\/lg ]{j is quasi-normal.

In this paper, we will generalize these results for all k£ € N. To achieve this, we
consider families of holomorphic functions first and obtain the following theorem.

Theorem 1.1. The following statements hold for all k € N and M € R:
(i) ’H,’:://f, is locally uniformly bounded.

/
(ii) "Hf /7" is normal and no sequence in Hf converges to oo.
(iii) H} p is normal.
(iv) Hyar is quasi-normal.

Later, in Lemma 2.2, we will see that the number of poles of each f € My u
is bounded by a constant that depends only on k and M. Thus, every sequence
(fu)n € My has a subsequence with a corresponding set of poles having only
isolated points of accumulation. Since (quasi-)normality is a local property, we are
able to treat My, 5; mostly like its holomorphic subset Hj ps and prove the following
theorem:

Theorem 1.2. The following statements hold for all k € N and M € R:

///f/

1" ’
(i) Mi ]\//[f is quasi-normal and no sequence in My _,; converges to co.

(ii) /\/lf I7" is quasi-normal and no sequence in /\/lf /f converges to oo.
(iii) My, 5 is quasi-normal.
(iv) My, Is quasi-normal.

The results of Theorems 1.1 and 1.2 extend to families (and the respective families
of derivatives, logarithmic derivatives, or pre-Schwarzians) of the form

F={feMD): [Sk(f)(2)] <g(z) forall ze D} and FnNH(D),

where g: D — R7 is a locally bounded function. This includes bounds of hyperbolic
type, such as those considered in [4, Theorem 7] or [18]. This generalization holds
because each statement can be verified locally, since (quasi-)normality is a local
property. More precisely, it is possible to apply Theorem 1.1 or Theorem 1.2 locally
by using the invariance of the generalized Schwarzian derivative under precomposition
with affine transformations.

[4, Lemma 4] shows that S.(f) = 0 if and only if f/ = 1/p*, where p is a
polynomial with degp < k — 1. Thus, Sk(f,) = 0 for f,(z) = nz, for all £ € N, so
neither Hy ps nor My ps are normal for k € N and M € R.

Similarly, Mj, ,, is not normal for & € N\{1} and M € Ry, since S(g,) = 0 for

1 o
gn(2) .:W with gn(z)_<nz>k.




614 Matthias Gratsch

For k € N\{1} and M € R, the family Mf /7" is not normal either. To see this, we
consider the sequence
1—k h! 1—k

1 . n
hn<2) = F +n with h/n<2) = 7 and h—n<2) = m

It is unknown to the author, whether ./\/lf /1" is normal. However, by using Theo-

rem 1.1, it is possible to show that Mi ]\/f is normal at zg € D if and only if there
exists a neighborhood of 2y, where each f € My ps has at most one pole (IM). The-
orem F and the proof of [9, Theorem 1.4] show that these conditions hold for k = 2,
but it remains open whether this is true for £ > 3.

For our final results, we will regard Si(f) as a differential polynomial by showing
the following formula for the generalized Schwarzian derivative.

Lemma 1.3. Let f € M(D) be a non-constant, meromorphic function and
k € N. Then

) kRl k f// (-1
(1) Sk(f)(n—z <H =k - ghni - ny! H(( ) ) >7

7777 nk)EA .]:1

where A is the set of all tuples (ny,...,ny) (with n, € Ny for allr = 1,..., k) that
satisfy Zle r-n, =k.

For k € N\{1}, we can extract the summands where (n;...,n) = (k,0,...,0)
and (ny,...,ng) = (0,...,0,1), to obtain that
(_1)k‘+1

2) SHf) = 5

for g .= f”/f" and some differential polynomial P.

This form is reminiscent of the well known condition af"(z) + f™(z) # b for
a,b € C, a # 0 and large enough n,m € N with n > m. Hayman was the first to
study this condition for f € M(C) (see [11]). In the spirit of Bloch’s principle, his
results on value distribution were later extended to normal families: in the analytic
case by Drasin in [5], and in the meromorphic case by Langley in [16]. Subsequently,
Chen and Hua demonstrated in [3] that the constant value b can be replaced by an
exceptional function B € M(D). This result was further extended to more general
differential polynomials (see Theorem G below) by Grahl in [6]. Now, we will show
that the differential polynomial P from equation (2) fulfills the exact conditions of
Theorem G. This leads to the following result:

Theorem 1.4. Let F C H(D) be a family of locally univalent functions, let
k € N\{1} and b € M(D) be a meromorphic function, such that every f € F satisfies

(3) Sp(f)(2) #b(z) forall zeD.
Then F"/F = {f"/f": f € F} is a normal family.

Note that F”/F’, unlike 7—[,}:;\// ,, does not have to be locally uniformly bounded.
Therefore, the family F does not need to be quasi-normal, as demonstrated by the
family {z — €"*: n € N}.

However, if—in addition to (3)—we know that F”/F’ is pointwise bounded in
a single point, then it follows that F”/F’ is locally uniformly bounded. Now, using
formula (1), we can see that the family Si(F) = {Sk(f): f € F} is locally uniformly

"+ g%V + Plg]
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bounded as well. This, in turn, allows us to apply Theorem 1.1 to F. Thus, we can
regard this as a “self-improving result”, where we require that:

e Si(F) omits a function.

e F"/F"is bounded in a single point.
and obtain that:

e Si(F) is locally uniformly bounded.
e F"/F"is locally uniformly bounded.
e 7'/F and F’ are normal, while F is quasi-normal.

We should note that Theorem 1.4 can not be extended to families of meromorphic
functions. To see this, consider f,(z) := ((22)" —1)7! for n € N and z € D with

, n2n zn1 " n2" 2" 2(n -1+ (n+1)(22)")
W(2)=—————= and [, (2)= 3 .
RO ey M RO (@ 1)

Clearly, each f, has a pole of order 1 in zy = 1/2 and is locally injective in D\{0}.

Additionally, for z, = 3 {/ Z—ﬁ e™/" we have f”(z,) = 0, while (z,), converges to

1/2. Hence, the sequence (f//f!), is not normal at 1/2.
On the other hand, we can use the fact that the classical Schwarzian derivative
is invariant under Mobius transformations, and calculate
1—n

Sa(f)() = Sal=") = -

Thus, (Sk( f"))n>2 omits the value 0, which shows that we can not extend Theorem 1.4
to families of meromorphic functions.

Still, there is a corresponding value distribution result for entire functions. Sim-
ilarly to Theorem 1.4, this corollary relies heavily on the results from [6].

Corollary 1.5. Let f € H(C) be an entire function with
Se(f)(z2) 0 and  Sp(f)(z) # oo for all z € C.
Then there are a,b,c € C with a,b# 0 and f(z) = ae®” + c.

Based on the counterexample given in [11, p. 34], we consider the locally univalent
function f(z) = exp(exp(cz)/c) with ¢ € C\{0}. A straightforward computation
shows that its classical Schwarzian derivative is

S =-S5 -5,

so the exceptional value 0 cannot be replaced by another value.

Likewise, Corollary 1.5 does not extend to meromorphic functions. For k = 2,
this is already evident from compositions of Mébius transformations with exponential
functions. Now, a natural question is whether any f € M(C) with Sk(f)(z) # 0 and
Sk(f)(z) # oo for all z € C must have the form f(z) = T'(ae® + ¢) for some invariant
function T' of the k-th generalized Schwarzian derivative. However, Proposition 2.3

provides a counterexample by showing that such a generalization does not hold for
k= 2.

2

2. Auxiliary lemmas and results

First, we show that non-constant functions with an analytic generalized Schwarzian
derivative have non-vanishing derivatives.
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Proposition 2.1. If f € M(D) is non-constant and f’ has a zero in zy € D,
then Si(f) has a k-fold pole in z.

Proof. Suppose that f’ has an m-fold zero in z;. Then Sy, (f) = f”/f" has a
simple pole in z, for all n € N. Next, we assume that Sy ,(f) has a (k — 1)-fold pole
in zg for k > 3, i.e.

Skn(f)(2) = % for some analytic A in a neighborhood U of 2.

Then we can calculate
S _ 1—k—2)p f U
k+1,n<f)(2) = m ( — K — E) (Zo) + ... or z € U,

and conclude inductively that Sy, (f) has a k-fold pole for all k,n € N\{1}. O
The proof of Theorem 1.1 relies heavily on the following theorem by Schwick.

Theorem C. [23, Theorem 54| Let (h,), C H(D) be a sequence of non-

vanishing functions, and let k € N. If (hslk) /hn)n converges locally uniformly to
some ¢ € H(D), then (h,/hy), is locally uniformly bounded in D.

Schwick initially stated this result in a slightly weaker form, establishing only that
(h! /hn)n is normal. However, his proof shows that the Nevanlinna characteristic of
(h.,/hn)x is locally uniformly bounded, which, as shown in [23, Theorem 1.13], implies
that the sequence itself is locally uniformly bounded.

Theorem C will be used to show that H,J:/;\é[f s locally uniformly bounded for all
k € N and M € R. Then the following result allows us to transfer the convergence

properties of sequences in 7—[,}:;\7 " to respective subsequences in ?—l,}:]/\}; and Hy ar.

Lemma D. [9, Lemma 2.4] Let E C D be a set without an accumulation point
in D and (f,), € M(D) with:

(1) (f)/f)n converges locally uniformly on D\E to some ¢ € H(D\E).

(2.) f is zero-free for all n € N.

Then (fn)n and (f!/f.)n are quasi-normal on D, and no subsequence of (f)/fn)n
converges to co. Moreover, if E =0, (f!/f.)n is normal.

Next, we will estimate the maximal number of poles of the functions in My, 5s by
using the differential equation in Theorem B(b). Here, the concept of disconjugate
differential equations will be useful.

Definition E. Let D C C be a domain, k € N and pg, ...,px—1 € H(D). We
say that

Yy ey Y A ey ey =0
is disconjugate in D, if no non-trivial solution has more than k — 1 zeros (CM).

A classical result concerning the Schwarzian derivative states that if fi, fo € H(D)
are linearly independent solutions of the differential equation y” + py - y = 0, then
f = f1/ fo satisfies So(f) = po/2 (cf. [15, Theorem 6.1]). As a consequence, any linear
combination g = ¢;f; + caf2 vanishes at a point 2y if and only if f(z) = —ca/cy.
Therefore, f attains some value n times if and only if there exists a non-trivial
solution of y” + pgy - y = 0 with n zeros.

This observation is due to Nehari and his paper on the Schwarzian derivative
and univalence (see [18, p. 546]). Since then, numerous results provided alternative
criteria for disconjugacy. One such result is the following theorem. However, with
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minor modifications, Theorem F and Lemma 2.2 could also be derived from [10,
Theorem 2] or [19, p. 328].

Theorem F. [14, p. 723] Let k € N, let D C C be a convex domain with
0 :=diam(D) < oo and let py € H(D) be a holomorphic function with

k!
Ipo(2)] < 55 for all ze€ D.

Then the differential equation y*)(z) + po(2)y(z) = 0 is disconjugate in D.

Based on this result, we can show the following lemma.

Lemma 2.2. Fork € Nand M € R, there exists N € N, such that all f € My,
and all f" € Mj ,, have at most N poles (CM).

Proof. For f € My, u, it suffices to show that f’ has a limited number of poles.
The case M = 0 was already established in Theorem [4, Lemma 4], so we assume
M > 0. Due to Theorem B, we can write f’ = 1/h*, where h # 0 is a solution of the
differential equation

S,
(4) y(k)(z) + w ~y(z) = 0.
Now, we choose 0 > 0 with § < (%)Uk This implies % < % < é“—,i, so The-

orem F shows that (4) is disconjugate in every convex set Cs C D with diameter 6.
Consequentially, h can have at most k — 1 zeros in Cs. By covering the unit disk D
with N of such convex sets, we obtain the bound N := N(k — 1) for the number of
zeros of h (CM). O

For the reader’s convenience, we also restate the main results of [6] with modified
notation, to prevent conflicts with the notation used in this paper.

Theorem G. [6, Theorem 3] Let F C H(D), ¢ € N and k € N\{1}. Let
a,b,ay,...,ay € M(D) with a # 0, and suppose that all poles of a have multiplicity
at most k — 1. Consider a differential polynomial of the form

Sp

N
Plu] = Z ay, - H u(mi)
p=1 J

—

where s, w, ; € Ny satisfy the inequality

(5) (B=1)-) wpj+Les, <Lk

j=1

for all p = 1,..., N, where equality can only hold if 2 < s, < k — 1. Suppose that
for every f € F and every z € D, the following inequality holds:

a(z) - f*(2) + fO(2) + P[f)(2) # b(2).
Then the family F is normal.

Theorem H. [6, Theorem 4] Let f € H(C), ¢ € N and k € N\{1}. Let
a,ay,...,ay € C with a # 0 and consider a differential polynomial

N Sp
Plu] = Z a, - H u(@ma)
p=1 j=1
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where 2 < 5, < k —1 and Z;il wy,; 7 0 holds for all p=1,..., N. If the function
a- f*+ f® 4+ P[f] does not vanish, then f must be constant.

We conclude this section by proving the claim stated at the end of Section 1.

Proposition 2.3. There exists some f € M(C) such that f is not of the form

flz) = Zeez:j:g for any choice of a,b,c,d,a € C, while Sy(f) omits the values 0 and
00.

Proof. We consider the Bessel functions defined by (cf. [1, 9.1.12 and 9.1.13])
LS oy
Jo(2) = Z )2 (5) and

2 2 & k+1H 2%k
Yo(2) = = (log 5 +7)olz +;k§_; = (5)

where Hj denotes the k-th harmonic number and v is Euler’s constant. These are
linearly independent solutions of the Bessel differential equation (cf. [1, 9.1.1])

2y'(2) + 2/ (2) + 2%y (2) = 0.

Next, we define

fi(z) = JO(eZ/Q) and  fo(2) = YO(eZ/Q).

Due to the logarithmic singularity of Yy, we initially restrict our consideration of fs
to the horizontal strips

Spi={2€C: (4n—-2)7 <Im(z) < (4n+ 2)7}.

Within each S,,, a direct computation yields

e? e? 6;:/2 e?
2(2) + 1 f(x) = Yy'(e*?) + e Y5 (e*?) + i Yo(e*?) =0,
which implies that f, satisfies a second-order linear differential equation with entire
coefficients. Hence, f5 is analytically extensible to an entire function (cf. [12, Satz3.2]).
Similarly, f; satisfies

z

V) + T ) =

Now, a classical result about the Schwarzian derivative (see [15, Theorem 6.1]) implies
that the function f = fi/fs fulfills So(f)(2) = €*/2. In particular, Sa(f) omits the
values 0 and oo.

Next, we suppose that f(z) = Z:zzzig for some choice of a,b,c,d,a € C. Then
the poles and zeros of f must be periodic. However, let jo, and v, denote the n-th
positive real zero of .Jy and Yy respectively. Then asymptotically (cf. [1, 9.5.12])

, 1 3

Jon ~ (n — Z)TF and Yo, ~ (n — Z)ﬂ'
Thus, the positive real zeros of Jy and Y{ are almost equidistant, which shows that the
zeros and poles of f are not periodic. Hence, f can not be expressed as a composition
of a Mobius transformation and an exponential function. O
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3. Proofs of the main results

Throughout this section, we consider k € N and M € R fixed.

Proof of Theorem 1.1. From Theorem B we know that the derivative of ev-
ery f € Hyr can be written as f' = 1/h¥ for some zero-free function h € H(D).
Additionally we have Si(f) = —kh®) /h. Therefore, the family {h¥)/h € H(D):
f' = 1/h* for some f € Hj ) is locally uniformly bounded. Applying Theo-
rem C shows that {h'/h € H(D): f' = 1/h* for some f € Hy s} is locally uniformly
bounded as well. Since f”/f" = —kh'/h, it follows that the family Hf s locally
uniformly bounded.

Next, we consider a sequence (f,,), C Hyar. Because (f/f!), is locally uniformly
bounded and due to Proposition 2.1, we are able to apply Lemma D to a subsequence
of (fn)n with E = (). This implies that Hy 5/ is quasi-normal, that Hf 1 s normal,
and that no sequence in HIJ:/]/\; converges to oo.
For the final claim, we use the inequality 1+ z < 2 (1 + 2?) for z € R to obtain

) 21f7(2)]

| 176)
T IPEP S T+IFC)

N# () —
(6) (£)#(2) 125

for all f € M(D) and z € D. Since Hf s locally uniformly bounded, it follows
that the spherical derivatives of the functlons in Hj, , are locally uniformly bounded.
Now, Marty’s theorem implies that Hj, ,, is normal. O

Proof of Theorem 1.2. We consider a sequence (f,), € My . By Lemma 2.2,
there exists N € N, such that each f, has at most N poles. Therefore, we can
find a subsequence (f,,),, and a set £ C DD consisting of at most N points, such
that for every z € D\FE there exists a neighborhood U of z in which almost all f,
are analytic. Applying Theorem 1.1 locally on D\ E implies that there is a subse-
quence (fy /fh )n, S (f)./fh, )n, that converges locally uniformly on D\E to some
F € H(D\FE). Since E has no accumulation point, we conclude that Mf s quasi-
normal and that no sequence in M k”]\élf / converges to oo.

Analogously to the proof of Theorem 1.1, applying Lemma D to (f,,),, shows
that both My, »; and Milﬁ are quasi-normal, and that no subsequence of (f, /fn, )n,
converges to oo. 7

Finally, the convergence of (f, /f, )n, on D\E to F' € H(D\E) together with
inequality (6) show that ((f},,)#)n, is locally uniformly bounded on D\E. Therefore,

ks 1 quasi-normal by Marty’s theorem. O

Proof of Lemma 1.3. Since f is non-constant, there exists a neighborhood U C D
such that Si(f)|y € H(U). By Theorem B, there exists a zero-free h € H(U) with
f"=1/h* on U. Furthermore, we can find a logarithm L € H(U) of h, i.e. h = ek.
Using Faa di Bruno’s formula (cf. [21, Chapter 2.8]), we have that

B = (1) ® = Z)€A<n1 U (Lo ) )

where A is the set of all natural tuples (nq, ..., ng) with Zlej n; = k.
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Now, using Theorem B and L' = h'/h = —f"/(k - '), we have

_k k! L)
=+ =3 (G T(5))
_ —k -k 1 i G-1)\ ¥
(’;"'”)“mg(—k-ﬂ'(ﬂ ) )
_ —k - kl k (f”) e 1)>nj>
(n1,...,ng) EA Hj‘:zl ((—k‘) "I’L ];[( .

.....

Finally, by the identity theorem, this equality extends from U to D. U
Proof of Theorem 1.4. Let A be defined as in Lemma 1.3, and set
A= A\{(k,0,...,0),(0,...,0,1)}.
Next, we fix an enumeration y of A, denote N := [A| and define for each multi-index
(ny,...,ng) € A that
o —k - k!
T L (R D)t

In addition, for v = u~'(ny,...,ng) we set:

= an and for 7=1,...,s,, we define
r=1
wy; =1—1 whenever n;+...,n,_1 <j<ni+...+n,.

Using Lemma 1.3, we get for all f € F that

( )k+1 f// f// (k—1) k f// (3-1)
sin =G (5) + (5) 2 e 11 (%)

(n1,...,nE) EA J
- ) N " (WL
( )k+1 f// f// (k—1 f .
(7) T k1 f’ + ? _'_Za“ H f’ :
=PI/
Now, we want to apply Theorem G with ¢ := k—1. Note that f”/f’ is analytic, since
f is locally univalent. Furthermore, condition (5) holds for 4 = 1,..., N, because

S ne-r=kfor (ny,...,n;) € A and therefore we get

SH k k
k—1)~wa—|—£.su:(k—l)znr(r_1)+(/{;_1)anzg_k
7=l r=1 r=1

independently of p. Additionally, we have 2 < s, < k—1for all p = 1,..., N,
because we removed the multi-indices (k,0,...,0) and (0,...,0,1) from A. Hence,
Theorem G applies and we conclude that F”/F’ is a normal family. O

Proof of Corollary 1.5. We reuse the notation used in the proof of Theorem 1.4
and write Si(f) as in equation (7). By Proposition 2.1, f’ does not vanish and
therefore f” /f/ is an entire function. Since 2 <5, <k —1and 7", w,; # 0 holds
for all u =1,..., N, we are able to apply Theorem H to f”/f". Thus f'/f =0 for
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some constant b € C. Notice that b # 0, since Si(f) omits the value 0. Therefore, f
must be of the form f(z) = ae® + ¢ for some a, b, c € C with a,b # 0. O

Acknowledgment. 1 am very grateful to Jiirgen Grahl for several valuable re-
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