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Limits of manifolds with a Kato bound
on the Ricci curvature. 11

Gilles Carron, Ilaria Mondello and David Tewodrose

Abstract. We prove that metric measure spaces obtained as limits of closed Riemannian
manifolds with Ricci curvature satisfying a uniform Kato bound are rectifiable. In the case of a
non-collapsing assumption and a strong Kato bound, we additionally show that for any « € (0, 1)
the regular part of the space lies in an open set with the structure of a C*-manifold.

Riccin kaarevuuden Katon rajaa noudattavien monistojen raja-arvot. II

Tiivistelm&i. Téassd tyossé osoitetaan, ettd metrinen mitta-avaruus on suoristuva, jos se saa-
daan Riccin kaarevuuden tasaista Katon rajaa noudattavien suljettujen Riemannin monistojen raja-
arvona. Jos lisétdan luhistumattomuusoletus ja vahva Katon raja, nidytetaén lisdksi, ettd avaruuden
si@nnollinen osa sisiltyy avoimeen joukkoon, jolla on C*-moniston rakenne milld tahansa « € (0, 1).

1. Introduction

In this paper, we establish new geometric and analytic properties of Kato limit
spaces, i.e. measured Gromov—Hausdorff limits of closed Riemannian manifolds with
Ricci curvature satisfying a uniform Kato bound. Our work continues the study
began in [CMT24] where we introduced these spaces.

For a closed Riemannian manifold (M", g) of dimension n > 2, define

k(M", g _sup//stlec()dyg()d

zeM

for any ¢ > 0, where H is the heat kernel of M, v, is the Riemannian volume measure
and Ric.: M — R, is the lowest non-negative function such that for any x € M,

Ric, > —Ric.(x)g,

Equivalently, Ric. is the negative part of the smallest eigenvalue of the Ricci tensor.
For the whole article, we keep a positive number 7" and a function f: (0,7] — R
fixed, so that f is non-decreasing and

1) lim (1) =0 and f(T) < —

t—0 - 16n

We let K(n, f) be the set of isometry classes of n-dimensional closed Riemannian
manifolds (M™", g) satisfying the Kato bound

(K) ke(M", g) < f(t), Ve (0,T].

This bound is implied, for instance, by a lower bound on the Ricci curvature, or by
a suitable uniform L? estimate on Ric. [RS17].
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For ¢ > 0 fixed throughout the article, let Ky(n, f,c) be the set of quadruples
(M™,dg, g, 0) where (M™,g) € K(n, f), o € M, d, is the Riemannian distance asso-
ciated with g and g is a multiple of v, satisfying

¢ < u(Byz(0) <l

As proved in [Carl9, CMT24], elements in K(n, f) satisfy a uniform doubling con-
dition. As a consequence, Gromov’s precompactness theorem ensures that the set
Kun(n, f,c) is precompact in the pointed measured Gromov—Hausdorff topology. We
call Kato limit space any element in the closure Ky, (n, f, ¢) with respect to this topol-
ogy. Observe that Ricci limit spaces, that is limits of manifolds with a uniform Ricci
lower bound [CC97, CC00a, CCO0b, Che01], are Kato limit spaces.

Our first result is the rectifiability of Kato limit spaces. This was shown for Ricci
limit spaces in [CCO0b, Theorem 5.7].

Theorem 1.1. Let (X,d,u,0) be a Kato limit space. Then (X,d,u) is rec-
tifiable as a metric measure space, in the sense that there exists a countable col-
lection {(k;, Vi, ¢;)}; where {V;} are Borel subsets covering X up to a p-negligible
set, {k;} are positive integers, and ¢;: V; — R is a bi-Lipschitz map such that
()4 (uLV;) < H" for any i, where H" is the k;-dimensional Hausdorff measure.

Consider now the non-collapsing case, that is, there exists v > 0 such that for
some o € M

(NC) vy(B 7(0)) > vT=.
Assume that f additionally satisfies

(SK) /0 v "; ®)

[NIE]

——=dt < 4o00.

In this case, we say that (M™, g) € K(n, f) satisfies a strong Kato bound. Let
K(n, f,v) be the set of isometry classes of pointed closed n-dimensional manifolds
(M™, g,0) satisfying a strong Kato bound and the non-collapsing assumption. We
call non-collapsed strong Kato limit space any element in the closure IC(n, f,v) with
respect to the pointed Gromov—Hausdorff topology. Notice that we do not need
to consider measured Gromov—Hausdorff topology, because, thanks to the volume
continuity proved in [CMT24, Theorem 7.1], Riemannian volumes converge to the
n-dimensional Hausdorff measure.

Our second main result is the bi-Holder regularity of the regular set of non-
collapsed strong Kato limit spaces. This was proved for non-collapsed Ricci limit
spaces in [CC97, Theorem 5.14].

Theorem 1.2. Let (X,d,0) be a non-collapsed strong Kato limit space. Then
for any o € (0,1) the regular set

R:={reX: (R",d.,0) € Tan(X, z)}

is contained in an open C* manifold U, C X. Here d, is the Euclidean distance and
Tan(X, z) is the set of metric tangent cones of X at z, see Definition 2.1.

In [CMT24, Theorem 6.2] we also showed that non-collapsed strong Kato limit
spaces admit a stratification. By combining this with volume continuity and argu-
ments from [CC97, Theorem 6.1] (see also [Che01, Theorem 10.22]), we then prove
that the singular set S := X \ R of any (X,d,0) € K(n, f,v) has codimension two.
For the sake of completeness, we provide a proof in the Appendix.
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Our proofs of Theorem 1.1 and Theorem 1.2 strongly rely on the existence of
splitting maps on Kato limit spaces. These are harmonic maps with a suitable
W22 estimate which realize a Gromov-Hausdorff approximation between a small
ball around x and a Fuclidean ball of same radius. In Section 3, we give conditions
for the existence of such maps, and establish some of their properties, relying on the
analysis performed in [CMT24].

In order to prove Theorem 1.1, we start by observing that almost splitting maps
exist around any point x of a Kato limit space admitting a Euclidean tangent cone.
After that, by means of a suitable propagation property of these maps, we adapt
arguments from [BPS21] which built upon [GP21] to provide a proof of the recti-
fiability of RCD(K, N) spaces [MN19] via almost splitting maps. Let us point out
that, unlike the uniform lower Ricci bound considered in [CC97], the Kato bound (K)
does not provide a directionally restricted relative volume comparison on the limit
space, so that the proof of rectifiability by Cheeger and Colding, based on a suitable
control on the volume deformation of pseudo-cubes through pseudo-translations, do
not carry out.

To prove Theorem 1.2, a key tool is the following almost monotone quantity,
which we introduced in [CMT24] to get information on the infinitesimal geometry of

non-collapsed strong Kato limits. For X € KC(n, f,v), z € X, t > 0, consider
0(t,z) == (4nt)"2H(t, z, )

where H is the heat kernel of X. In case (M",g) is a Riemannian manifold with
non-negative Ricci curvature, the Li—Yau inequality implies that the function ¢ —
0(t,z) € [1,+o0[ is non-decreasing for all x € M. When (M™", g) satisfies a strong
Kato bound, we showed in [CMT24] that this function is almost non-decreasing
everywhere. In particular, its limit as ¢ goes to zero is well-defined, not less than
one, and coincides with the inverse of the volume density at x. In the present paper,
we prove that under (SK) the regular set of X is given by points where the limit of
0 equals one:

R = {xEX: lim O, 7) = 1}.

We also establish that if 0(¢, z) is close enough to 1 for some ¢t > 0 and = € X,
then any ball centered around z with small radius is Gromov—Hausdorff close to a
Euclidean ball with same radius. More precisely, we prove the following Reifenberg
regularity statement, where dgy denotes the Gromov-Hausdorff distance.

Theorem 1.3. Assume that (SK) holds. Then for any € > 0 there exists 6 > 0

depending on n, [ and e such that for any (X,d,0) € K(n, f,v), if + € X and
t € (0,0T) satisty

(2) O(t,z) <1446
then for any y € B s(x) and s € (0, V1],
den (Bs(y), BY) < es,
where B? is the Fuclidean ball of radius s centered at 0 € R™.

In addition to the almost monotonicity of 6 and the appropriate Li—Yau inequal-
ity for Kato limit spaces (see Proposition 2.9), a salient ingredient in our proof of
Theorem 1.3 is the heat kernel rigidity result obtained in [CT22], which allows for a
suitable contradiction argument.
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From Theorem 1.3 we could immediately appeal on the intrinsic Reifenberg the-
orem of Cheeger and Colding [CC97, Theorem A.1.1] and get the conclusion of Theo-
rem 1.2. We prefer to provide an explicit construction of a bi-Hélder homeomorphism
obtained from almost splitting maps through a Transformation Theorem, in the spirit
of [CIN21]. One key new point in our approach is an almost-rigidity statement im-
plying that for sufficiently small 4, if a point z in a non-collapsed strong Kato limit
space satisfies

O(t,x) <144,
then an almost splitting map realizing a GH-isometry exists from B ;(z) to an Eu-

clidean ball of radius v/#. We next prove a Transformation Theorem that eventually
provides a better regularity on such harmonic maps: these are bi-Holder homeomor-
phisms. The proof of the Transformation Theorem is a direct one and uses some
results of [CMT24] about convergence of harmonic functions together with the re-
finements that we develop in Section 3.

We conclude this introduction by pointing out that our recent work [CMT25] al-
lows us to extend all of the previous results to limits of complete manifolds. Moreover,
we improve the result of Theorem 1.1 and obtain the rectifiability of a Kato limit of
complete manifolds with all the dimension k; being equal to a unique k € {0, ..., n}.
As for Theorems 1.2 and 1.3, we obtain them under the weaker assumption that the
integral between 0 and T of ¢ — f(t)/t is finite, instead of the hypothesis (SK).
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17-CE40-0034: CCEM. The first and third authors thank the Centre Henri Lebesgue
ANR-11-LABX-0020-01 for creating an attractive mathematical environment. The
first author is also partially supported by the ANR grant ANR-18-CE40-0012: RAGE.
The authors thank the referees for their careful reading of the manuscript and for
their relevant suggestions.

2. Preliminaries

In a metric space (X, d) we denote by B,.(z) the open ball of radius r centered
at * € X. Letting B = B,(x), for any A > 0 we denote by AB the re-scaled ball
centered at x of radius A\r. We call metric measure space any triple (X, d, ) where
(X,d) is a geodesic and proper metric space and p is a fully supported Borel measure
such that p(B,(x)) is strictly positive and finite for any x € X and r > 0.

The Cheeger energy of (X, d, i)

Ch: L*(X) — Ry U {+oc}

is defined as the lower semi-continuous envelope of the functional:

f € Lip(X) /Xlip2(f) d,

where lip(f) denotes the local Lipschitz constant of f. Following [Gigl5, Gigl8b]
we say that (X,d, p) is infinitesimally Hilbertian if Ch is quadratic, in which case
the closure of Ch, still denoted by Ch, is a Dirichlet form with domain denoted by
H'Y2(X,d,u). We write L for the associated non-positive, self-adjoint operator and
{e7t} ;5 for the Markov semi-group generated by L. For any f € HY?(X,d, i) there
exists a unique |df| € L*(X, u) called minimal relaxed slope of f such that

Chi) = [ 1ar
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Moreover, Ch is strongly local and regular, and its carré du champ is given by

dl(u,v) = = (|d(u +v)|* = |d(u — v)|?) dp =: {du, dv) du

1
4
for any u,v € H"?(X,d, u). For any open set 2 C X we also set

Hy2(9,d, ) == {f € Lp,(Q p): ¢f € HY(X,d, p) for any ¢ € Lip,(Q)}.

loc loc

We say that f € H,>2(Q,d, u) is harmonic in Q if for any ¢ € Lip, (),

/ (df, d¢) dp = 0.
Q

If (M™,g) is a smooth and connected Riemannian manifold, the Cheeger energy
of (M,d,, v,) coincides with its usual Dirichlet energy. We often implicitly identify
a Riemannian manifold (M", g) with its isometry class or with the metric measure
space (M, d,, v,).

For any positive integer k, we denote by B¥ the Euclidean ball of radius 7 centered
at the origin of R*, and we write B¥(p) = p + BF for any p € R*.

2.1. Notions of convergence. We assume the reader to be familiar with the
various notions of Gromov—Hausdorff convergence; we refer to [HKST15, Section 11],
for instance, if this is not the case. We simply recall that a map ¢: (X,dx) — (Y, dy)
is called an e-GH isometry if |dx(z,2") — dy(¢(x), ¢(2'))| < e for any z, 2’ € X and
for any y € Y there exists € X such that dy (¢(x),y) < e. If {(Xa,da,04)}, (X, d,0)
are pointed metric spaces such that (X,,da, 0,) — (X, d,0) in the pointed Gromov—
Hausdorff topology, we denote by z, € X, — = € X a convergent sequence of points,
following [CMT24, Characterization 1] and the definition soon after.

2.1.1. Tangent cones. Let us recall the classical definitions of tangent cones.

Definition 2.1. (1) Let (X,d) be a metric space. For any = € X, we call
metric tangent cone of (X,d) at x any pointed metric space (Y,dy,z) obtained as
a limit point in the pointed Gromov—Hausdorff topology of the family of rescalings
{(X,r7'd, z)},>0 as 7 | 0. Note that by a slight abuse of notation, we identically
denote the base point z in the tangent cone (Y, dy, z) and the point # € X. These are
strictly speaking not the same points as they belong to different spaces. We denote
by Tan(X, x) the set of metric tangent cones of (X,d) at z.

(2) Let (X,d, 1) be a metric measure space. For any x € X, we call metric mea-
sured tangent cone of (X,d, ) at x any pointed metric measure space (Y,dy, py, x)
obtained as a limit point in the pointed measured Gromov-Hausdorff topology of the
family of rescalings {(X, r~'d, u(B,(2)) 'y, ) },~0 as 7 | 0. We denote by Tan, (X, z)
the set of metric measured tangent cones of (X, d, u) at .

We are especially interested in tangent cones which split off a Euclidean factor.
Let us recall the definition.

Definition 2.2. Let k£ be a positive integer.

(1) We say that a pointed metric space (X,d,z) splits off an R¥ factor if there
exist a pointed metric space (Z,dy, z) and an isometry ¢: X — R¥ x Z such that
o(z) = (0, 2).

(2) We say that a pointed metric measure space (X,d,p,0) splits off an R¥
factor if there exist a pointed metric measure space (Z,dz, iz, z) and an isometry
¢: X — R* x Z such that ¢(z) = (0,2) and ¢up =H* ® pyz.
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Here and in the sequel the space R* x Z is implicitly equipped with the classical
Pythagorean product distance.

2.1.2. Convergence of functions. Let us recall now some notions of conver-
gence for functions defined on varying spaces. We refer to [CMT24, Section 1.4] and
the references therein for a more exhaustive presentation.

Definition 2.3. Let {(X,,dq, fta, 0a) }a, (X, d, i1, 0) be infinitesimally Hilbertian
metric measure spaces such that (X, da, fta; 0a) — (X,d, 1, 0) in the pointed mea-
sured Gromov-Hausdorff topology.

(1) Let po € Co(X,) for any a and ¢ € C.(X) be given. We say that {¢.}
converges uniformly on compact sets to ¢, if there exists R > 0 such that supp ¢ C
Br(0) and supp ¢, C Bg(0,) for any «, and ¢, (z,) — ¢(x) whenever z, € X, —

xr € X. We write ¢, Loy @ if this convergence holds.
(2) Let f, € L*(Xq, 1) for any o and f € L?(X, i) be given.

e We say that {f.,} converges to f weakly in L? if sup,, || fal|z2 < +00 and

/ %fadua—>/ ofdu
o X

whenever ¢, Loy p; we write f, LR f if this convergence holds.
e We say that {f.} converges to f strongly in L? if f, = f and lim,, || fo| 22
= || f|l£2; we write f, ot f if this convergence holds.
(3) Let f, € H"?(X,,da, fto) for any « and f € HY?(X,d, ) be given.

e We say that {f,} converges to f weakly in energy if f, = f and sup,, Ch,(fs)
< 400; we write f, 5 f if this convergence holds.

e We say that { f,} converges to f strongly in energy if f, 5 fand lim, Cha(fa)
= Ch(f); we write f, X f if this convergence holds.

2.2. Kato bound and Kato limits. Recall that 7', f are fixed and satisfy (1).
The following has been proved in [CMT24, Proposition 2.3].

Proposition 2.4. There exists k > 1 and A > 0 depending only on n such that
any (M™,g) € K(n, f) satisfies

1. a uniform volume estimate: for any x € M and 0 < s <r < \/T,

s
2. a uniform local Poincaré inequality: for any ball B C M with radius r < /T
and any ¢ € C'(B),

2
(4) / (gp — ][ godl/g) dy, < 7\7“2/ |dep|? du,.
B B B

Remark 2.5. Note that (3) implies a so-called doubling condition:
() vg(Bar(2)) < A(n)vy(Br(x))

for any z € X and r € (0,v/T/2], where A(n) := k2¢". We shall often use the
following consequence of the doubling condition: for any A € (0,1) there exists a
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constant C'(n,A\) > 1 such that for any ball B C M and any locally integrable
¢: B — R,

(6) ][ lp| dv, < C(n, )\)][ || dv.
AB B
The next proposition collects estimates on the heat kernel of (M",g) € K(n, f).

Proposition 2.6. There exists a constant y > 1 depending only on n such that
for any (M™, g) € K(n, f), for all z,y € M and t € (0,T),

) A (i Hitog) < — Y ~dev
1) — 7 ¢ ¢ = YY) S T ¢ 5,
vg(B () vg(Bi(x))

0 Y dg?(z,)
ii) —H(t,l‘,y)‘ S — ¢ 5t

o 5B ()
Y _dg® @)
iii) |d,H(t,z,y)| < ————€7 5t .

Vv (B ()

Proof. The first estimate i) was established in [Car19], see also [CMT24, Proposi-
tion 2.3]. The second estimate ii) is a consequence of i), see e.g. [Gri95, Corollary 3.1].
The third estimate iii) is a consequence of the Li—Yau inequality [Carl9, Proposi-
tion 3.3]:

e | H(ta,y) < SR (b y) + Htay) |5

together with i) and ii). O

2
‘QH(t,ZL',y)),

Let us now recall a couple of results from [CMT24] about Kato limit spaces.

Proposition 2.7. Any (X,d, u,0) € Ku(n, f,c) is an infinitesimally Hilbertian
space satisfying the doubling condition (5) and the local Poincaré inequality (4).
Moreover, for any x € X, any (Y,dy, py,z) € Tang,(X,z) is a pointed RCD(0,n)
space.

Metric measure spaces satisfying an RCD(0,n) bound have, in a synthetic sense,
non-negative Ricci curvature and dimension less than n. We refer to [Gigl8a] for a
survey about their properties.

From [CMT24], we also know that the following hold.

Proposition 2.8. Let {M2.dq, tta; 0a)} CKn(n, f,c) be converging to (X, d, u, 0)
€ Ku(n, f,c) in the pointed measured Gromov—-Hausdorff topology. Let H, be the
heat kernel of (M, g,) for any ««. Then X admits a locally Lipschitz heat kernel,

that is to say a map H: (0,+00) x X x X — (0, 4+00) such that

(¢ f) () = /X H(t, 2, 9)f (y) duly)

for any f € L*(X,u), any t > 0 and p-a.e. v € X. Moreover, H is analytic with
respect to t and it satisfies the three estimates in Proposition 2.6. Furthermore, the
following convergence results hold.

e fForanyt >0 andxo, € My, w2 € X, yo € M, >y € X,

() Haltram) = Hltry) and S Holtwwa) > S H(12,y)

e Foranyt >0 andx, € M, —»x € X,

(8) Holt, 0, ) 5 H(t, 2, ).
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As an important consequence, we derive in the next statement a Li—Yau inequal-
ity for Kato limit spaces.

Proposition 2.9. Consider (X,d, u,0) € Ku(n, f,c). Set v(t) = exp (8y/nf(t))
for any t € (0,T]. Then for any x € X and t € (0,T], the Li-Yau inequality

() ) dH ) — H () D (g, ) < ")

2 .
5 (1,

holds p-a.e. on X.

Proof. Let {(M},dq, ttas 0a)} C Kun(n, f,c) be converging to (X,d, u,0) in the
pointed measured Gromov—Hausdorff topology. By [Car19, Proposition 3.3], for any
z,y € M, and t € (0,T],

_ 0 ny(t
(10) 27 0) dy Ha b, )~ Halt, ) 5 Holt, ) < "I 200 ).
Take z, € M, — x € X and set u,(y) = Hu(t,24,y) for any y € M, and any «.

The L? heat kernel convergence (8) yields
2
Uo B u = H(t,x,-).
Moreover, the semi-group property implies

10
/ \dua\Qduga :/ Ua Dy, U dvy, = —§§Ha(2t7$a,5€a)

[e3

0H,
ot
hence by Proposition 2.6.ii) the sequence {u,} is bounded in energy, hence u, K

by definition. Since the semi-group property also implies (11) with u, H and z in
place of u,, H, and z, respectively, the convergence (7) yields lim, ||du,|/z2 = Ch(u),

(11)

<2t7 xCU xa>7

hence by definition u, = u. Proposition 2.6.ii1) implies that the sequence {|du,|} is
locally bounded in L* hence with [CMT24, Proposition E.7] we can conclude that

ldua| 2 |dul.
This convergence, together with (7) and (10), implies (9). O

Remark 2.10. If there exists 7 € (0, 7] such that
limk, (M., g.) =0,

then for any € X and ¢ € (0, 7], the Li—Yau inequality

|dH(t,:L‘, )|2 - H(t,l‘, )2

n
H(t.z.) < —H3(t.z.-
ot (’x’)_Qt ()

holds p-a.e. on X.

3. Almost splittings maps and consequences
of GH-closedness on functions

In this section, we define (k,e)-splitting maps on Kato limits and prove some
relevant properties. Such maps were introduced in [CC96, Col97, CC97] for the
study of Ricci limit spaces and extensively used later in the study of limit spaces and
RCD(K, N) spaces, see for instance [CN15, Bam20, CJN21, BPS21].

From now on, for any positive integer k, we let My (R) be the space of k x k
matrices with real entries, Si(R) C My(R) be the subspace made of symmetric
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matrices, and we denote by || - || the matrix norm induced by the Euclidean norm |- |,
meaning that || A]|? := sup{?(A&)AE: € € R* such that €€ = 1} for any A € M (R).
We denote by Id; the identity matrix in My(R). Then the following holds.

Lemma 3.1. Assume that A € S;(R) is positive definite. Then there exists a
unique lower triangular matrix T € M(R) such that

(12) TA'T = Id,.
Moreover, if there exists € € (0,1/2) such that A € Six(R) satisfies
(13) |A —1dg|| <e,

then for some C}, depending only on k, the matrix T satisfies
(14) T — 1dg|| < Cye.
Remark 3.2. The matrix 'T" is obtained by applying the Gram—Schmidt process.

3.1. Almost splitting maps. For any infinitesimally Hilbertian metric mea-
sure space (X,d,p), whenever a map u = (up,...,uy): B — RF satisfies u; €
HY2(B,d, ) for any i € {1,...,k} we define the Gram matrix map of u as the
Sk(R)-valued map

Gy =[G, ] where G;; := (du;,du;) for any 1 <4, j <k,
and we set [dG,|* = > ;o |dG;;|*. Note that if T is a lower triangular k x k
matrix and o := T o u, then

(15) Gy =TG,'T p-ae.in B.

Definition 3.3. Let (X,d, u,0) € Kn(n, f,c). Let B C X be a ball of radius
r>0,ke{l,....,n} and € > 0.

(1) We call (k, e)-splitting of B any harmonic map u: B — R* such that ||dul| (g
< 2 and

(16) F G~ 1l du <=
B
(2) We say that a (k,e)-splitting u of B is reinforced if
FU1G, ~ 104+ 771G ) dy < =
B

(3) We say that a (possibly reinforced) (k, e)-splitting u of B is balanced if

B

Remark 3.4. Assumption ||du||r=(p) < 2 implies
sup |G, ;(y)| <4 for p-ae. y € B.
1<ij<k

Remark 3.5. Condition (16) implies that the symmetric matrix A, = f, G, du
is e-close to the identity Id,;. As a consequence of Lemma 3.1 applied with A = A,,,
for any e € (0,1/2) and any (k, €)-splitting u: B — R there exists a lower triangular
matrix 7" with ||T|| < 1 + Cje such that the map @ = T o u: B — R satisfies

(17) ][ Godp = Td, and ][ 1Gs — Tdi|| dpe < (14 Che)2e.
B B
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Remark 3.6. The definition of reinforced splitting is just a technical conve-
nience. Indeed, by means of Bochner’s formula and of the Hessian bound given in
[CMT24, Proposition 3.5], one can prove that any splitting on a Riemannian manifold
with a Kato bound is a reinforced splitting on a ball with smaller radius, and then
show that this property for manifolds with a uniform Kato bound is stable under
pointed measured Gromov—Hausdorff convergence. This implies, in particular, that
if u is a reinforced splitting of a ball B in a Kato limit space, then the coefficients of
the Gram matrix map G, all belong to Hllc;f(B, d, ).

The next result provides an improvement of the local Lipschitz constant for split-
tings.

Proposition 3.7. Let (M", g) be a closed Riemaniann manifold, B C M a ball
of radiusr > 0, k € {1,...,n}, n € (0,1), L > 1 and u: B — R* a harmonic map
such that ||du||p~p) < L. Let G, be the Gram matrix map of u. Assume that there
exists 6 € (0,1/16n] such that

k,2(M",g) <6, ][ |G, — Idg || dv, < 6.
B

Then there exists C(n,n, L) > 0 such that ||du| gy < 1+ C(n,n, L)é.

Proof. In the proof of [CMT24, Proposition 7.5], use the gradient bound iii) in
Proposition 2.6 to get 11 < C6 instead of 11 < C§Y/2. Apply the resulting statement
to any function ue := (£, u) with £ € R” satisfying |{| = 1, and conclude by taking
¢ = du/|du| pointwise. O

3.2. GH-closedness and harmonic functions. In the setting of uniform
lower Ricci bounds, existence of almost splitting maps is closely related to mGH-
closedness of a ball to a Euclidean ball. We show below that the same relation
actually holds for Kato limit spaces.

Throughout this subsection, we let k € {1,...,n} be fixed. We denote by || - ||,
the L, matrix norm, namely ||M]|; = Zijzl |m; ;| for any M € M, (R). Note that
|- 1] < | -1l:- We denote by dygu a distance associated to the measured Gromov—
Hausdorff topology.

Theorem 3.8. For all e,n,\ € (0,1) such that A\ < n there exists v depending

only on e,m,\,n, f,c such that if (X,d,pu,o),(X',d 1, o) € Ku(n, f,c), v € X,
¢’ € X" and r € (0,+/T)], are such that

dmau(B,(z), B.(z")) < vr,

if h: B,(z) — R* is a harmonic function satisfying ||dh|| e (p,z)) < L for some L > 1,
then there exists a harmonic function h': By, (2') — R¥ satisfying ||dh|| (s, @) <
LC(n,n) for some C(n,n) > 1 and:
(1) |W o ® — h||reo(B,.(2)) < €T, where ® is a (vr)-GH isometry between B, (x)
and B,(2);
(2) for all s € [Ar,nr]

<e,

Gh du - ][ Gh/ d/f
Bs(x) Bs(x')

(3) for all A € M (R) and s € [Ar,nr],

f HGh—AHldu—][ 1Gh — Al dyt| < <.
Bgs(z) Bg(z')
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The previous is a consequence of the analysis made in [CMT24, Appendix A].
For the sake of completeness, we provide a proof in Appendix B.

Theorem 3.8 has the following direct consequence about existence of reinforced
almost splittings.

Proposition 3.9. For any ¢,n € (0,1) there exists § > 0 depending on n, f,c, &
and n such that if (X,d, p,0) € Ku(n, f,¢), x € X and r € (0,/T) satisfy
frH <6 and dugu(B.(z),BF) < or,
then there exists a reinforced (k,¢e)-splitting of B, (x).

Proof. By density and approximation, it is enough to show this proposition for
(M",dg, 0 = Avg,0) € Kn(n, f,c). Let e,n € (0,1). We are going to show that if
0 > 0 is chosen sufficiently small (depending on n, f, ¢, e and n), if

f('r’Q) < § and deH(BT(:c),Bf) < or,

then the conclusion holds. Consider the identity map from BF to R* which is a
harmonic isometry. Then, according to Theorem 3.8, for any 7 € (0, 1), if § is smaller
than v(re, \/n,n,n, f,c), there exists a harmonic map h = (hy,...,h): B gz (7) —
R* satisfying |dh||lze(B sz, (x)) < C(n,n) and such that for any s € [nr, \/nr] we have

][ ||Gh—1dk||1d[L§T€
Bs(x)

Then according to Proposition 3.7, we know that
|dh|| oo By (z)) < 1+ C(n,m) (Te +0) .

Hence if 7 and § are additionally chosen so that

T < # and 0 < #
~ 2C(n,n) ~ 2C(n,m)
then
ldh|| (B, @) < 2-

An easy variation on the proof of the Hessian bound given in [CMT24, Proposi-
tion 3.5] provides the following estimate

o f, VR Ol ) 1G4
Byr(x B

s(2)

< C(n,n, f)re + 46
and because
|V (dh;,dh;)| < 2(|Vdh;| + |Vdh;]|)

we also get
(?77’)2][ \VGL2dp < 4C(n,n, f)Te + 166.
Bm(x)

Hence the conclusion holds provided that 7 and d are moreover chosen so that
< 1 €
T — —.
= 8C(n., f) 32

Moreover, Theorem 3.8 implies that almost splittings are GH-isometries under
the appopriate assumptions.

and 0§ < O
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Proposition 3.10. For any €,n € (0, 1) there exist 6 > 0 depending on n, f,c, e

and n and a constant C(n,n) > 0, such that for all (X,d,u,0) € Kn(n, f,c), if
u: B.(x) — R* is a (k, &)-splitting and

dwmen (B, (), BY) < or,
then u is a (C(n,n)\/er)-GH isometry between By, (x) and B}, (u(z)).
The proof of this proposition relies on the following Euclidean result.

Lemma 3.11. Ifv: B¥ — R* is a harmonic map such that

][ IG, — Til| <.
Bk
then v: B} — R* is a (C(n,n)y/€)-GH isometry between B, and B} (v(0)).

Proof. We will assume that n > 1/2. Consider a cut-off function x equal to 1 on
%]B%k and vanishing outside ?’TT”B’“ , with

1AX Lo < C(k, 7).
By the Bochner formula we have that

1
|Hess v|* + §A(TI(GU —1dg)) =0

where Tr is the trace function for matrices. Then

1
/ [Hess v|? < / x|Hess v|? = ——/ (Ax)Tr(G, — 1dg)
HTWBk Bk 2 Bk

< Cln) [ Gy~ 1au]| < Ok
Using classical elliptic estimate, we obtain a C? estimate on v:
[[Hess v|| oo ey < C(k,n)Ve.
With Taylor formula, we get that for any = € nBF,
[v(z) —v(0) — dv(0)(z)| < C(k,n)ve and |dv(0) — dv(z)| < C(k,n)Ve.
But we also have

f 1G, — 14, < gt f 1G, — 1d, ] < 2*.
nBk Bk

Hence we find a point z, € 7B* such that
|Go(o) — TIdg|| < 2.
Using the polar decomposition of dv(x,) we obtain a linear isometry g € O(k) such
ldu(z,) — g| < C(k)e.
Introducing the affine isometry ¢ := v(0) + g we get that for any z € nBF,
0(z) — 1(z)] < Ol n)VE.
Setting C'(n,n) = maxi<x<, C(k,n) eventually leads to the desired result. O

Proof of Proposition 3.10.  We let ¢,n € (0,1). We will assume that n >
1/2. With Theorem 3.8, we find some d(n,e,n, f,c) > 0 such that if (X,d, u,0) €

Ku(n, f,c), if u: B.(z) — R¥ is a (k, ¢)-splitting and
dwan (B, (z),BY) < or,
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then there is some harmonic map
. Rk k
v: B tnr R

and some 6r-GH isometry ®: B,(z) — BF such that

(]_8) ||UO(I>_U||L°°(B(1+7])§(:B)) <er

and

][ ||Gu_1dk||1d,u—][ ||Gv—1dk||1 < e.
Bty s (@) v

B(Hn)%

Observe that the doubling condition and the equivalence of the norms || - || and || - ||,
yield

Fo NG - tddn < A £ Gy~ 1] dn < Cloje
By 5 (@) By (z)

for some C'(n) only depending on n. Since ||| < - ||1, we get

|Gy —1di|| < (14 C(n))e.
]B?Hn)%
Hence according to the previous lemma, we know that v is a (C'(n, n)+/er)-GH isom-
etry between ]B%gr and itself. Using (18), we obtain the desired conclusion about the
restriction of u to B, (z). O

3.3. Propagation of reinforced almost splittings. The next result is an
important propagation property of reinforced splittings.

Proposition 3.12. (Propagation of reinforced splittings) Consider (X, d, i, 0) €
Ku(n, f,c). There exists C' > 0 depending only on n such that for any k € {1,...,n}
ande € (0,1), ifu is a reinforced (k, €)-splitting of a ball B,(z) C X withr € (0,v/T),
then there exists a Borel set §). C B, 5(x) such that:

(A) 1(Brya(x)\Q:) < CV/ep(Bra(x)),
(B) the restriction of u to By(y) is a reinforced (k,+/¢)-splitting for any y € €.

and s € (0,r/2),
(C) for p-a.e. y € S, for any £ € R,

(19) (1= Ve)lel* <'€Guly)s < (1+Ve)lgl”,

(D) any y € €. is such that any (Y,dy, puy,y) € Tany, (X, y) splits off an R* factor.

Proof. Let x € X and r € (0,v/T). Assume that u: B,(z) — RF is a reinforced
(k,e)-splitting. Set

Q. :=A{y € Bypa(x): Mypo0(y) < Ve}
where
v = |Gy — Idg|| + r?|dG.)?
and
M, jov(y) := sup ][ vdp.
s€(0,r/2) J Bs(y)

The definition of €. is made so that (B) is satisfied. Let us prove (A). For any y €
B, jo(x)\S2 there exists s, € (0,7/2) such that p(Bs,(y)) < (V)™ sty(y) vdyp. By

the Vitali covering lemma, there exists a countable family of points {y;} C B, 2(2)\2
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such that the balls {B,, (y:)} are pairwise disjoint and B, /»(2)\Q. C U; Bss,, (Ui)-
Then, with a constant C' depending only on n which may change from line to line,

1
M&mmmasganwmscghw%m»<Gﬁ21LMw”“

<o— [ vdu< CVEB, () < CVEN(Ba(x)

\/g B, (x)
where we have used the doubling condition to get the second and the last inequalities,
and the fact that u is a reinforced (k, €)-splitting of B,.(z) to get the fifth one. This
shows (A).

Let us prove (C). It follows from the Lebesgue differentiation theorem for doubling
metric measure spaces (see e.g. [Hei01]) that the set of Lebesgue points of v has full
measure in §2.. At any Lebesgue point y € ). of v we know that

|Gu(y) — 1dg|| < v(y) = lim vdp < M, p0(y) < Ve,
0B ()
which yields (19).

We are left with proving (D) namely that for any y € Q., any (Y,dy, uy,y) €
Tany, (X, y) splits off an R* factor. To this aim, we are going to build a harmonic
map fs.: Y — RF such that G;_(2) = Id;, for py-a.e. 2 € Y. For any s € (0,7/2),
set

G, = G, du.
Bs(y)

Following a classical argument (see [Che99, (4.21)], for instance) involving Holder’s
inequality, the doubling condition, and the local Poincaré inequality,

IG.~Gupll < f

BS/Q(y)

IGu = Clldp < Aln) f G~ Gl

Bs(y)

o 1/2
< A(n) (][ G — Gs|!2du)
Bs(y)
1/4

1/2
< A(n)AY2s (][ |dG |2 dﬂ) < A(n)AV2E .
Bs(y) r

This shows that {G}ocser /2 is a Cauchy sequence, hence it admits a limit Gass|O.
Since

|G — Id,|| = lim |G, — Idg| < lim |G — 1dg|| dpe < Ve,

s—0 s—0 Bs(y)
we know from Remark 3.5 that there exists a lower triangular k£ x k matrix 7" such
that TG'T = Id; and ||T|| < C(n) for some generic constant C'(n) only depending

on n. Moreover, for any s € (0,7/2), the previous computation yields

r

o 1/4
F NG~ Gl < AN 5=
Bs(y)
and a telescopic argument gives
c1/4

IGs =Gl < C(n)s—,

r
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hence @ := T o u satisfies
c1/4
(20) F1Gs - Ml d < s
Bs(y) r

Now we let {s,} C (0,+00) be such that s, | 0 and {(X,d, := s;'d, jiq =
w(Bs, (y)) ', y)} converges to (Y,dy, iy, y) in the pointed measured Gromov-Haus-
dorff topology. Then the maps

flo = — (= (y)) : By, () = R

are all harmonic and locally 2-Lipschitz. By [CMT24, Proposition E.10], up to ex-
tracting a subsequence we may assume that {@,} converges uniformly on compact
sets and locally strongly in energy to some harmonic map

lino: Y — R".
Then the local strong convergence in energy and (20) imply that for any R > 0,
Fo NGo. —ildpy =timf (G, — K]
BR (v) « B ()

R

= lim |Ga — Idg|| dpw = 0.
@ BRsa (y)
Since (Y,dy, puy) is an RCD(0,n) space, the Functional Splitting Lemma [ABS19,
Lemma 1.21] then yields the conclusion. 0

Remark 3.13. The choice of r/2 in the previous proof is arbitrary: we can
replace it with or for o € (0,1) and get the same result.

4. Rectifiability of Kato limits

Let us begin this section with recalling the definitions of bi-Lipschitz map and
bi-Lipschitz chart.

Definition 4.1. Let (X, d) be a metric space, k a positive integer, and € € (0, 1).
We say that a map ¢: X — R¥ is:

(1) bi-Lipschitz onto its image if there exists C' > 1 such that C~'d(z,y) <
[¢(z) — o(y)| < Cd(z,y) for any z,y € X
(2) (1 + ¢)-bi-Lipschitz onto its image if (1 +¢)7'd(z,y) < |¢p(z) — o(y)| < (1 +
e)d(z,y) for any =,y € X.
Moreover, we call (1 + ¢)-bi-Lipschitz chart from X to R¥ any couple (V, ¢) where V/
is a Borel set of X and ¢: V — R¥ is a (1 + ¢)-bi-Lipschitz map onto its image.

We now provide a definition of rectifiability for metric measure spaces which is
a natural variant of the one introduced in [CCO0b, Definition 5.3] and which has
notably been used in the setting of RCD(K, N) spaces [DPMR17, KM18, GP21].

Definition 4.2. We say that a metric measure space (X,d, u) is rectifiable if
there exists a countable collection {(k;, Vi, ¢;)}; where {V;} are Borel subsets covering
X up to a p-negligible set, {k;} are positive integers, and ¢;: V; — R¥i is a bi-Lipschitz
map such that (¢;)x(uLV;) < HF* for any .

According to this definition, our goal in this section is to prove that Kato limit

spaces are rectifiable. Actually, we prove a more precise result which involves the
so-called k-regular sets.
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Definition 4.3. For any k£ € {1,...,n}, we define the k-regular set of a space

(X,d, p,0) € Ku(n, f,c) as
Ry = {r € X: Tany,(X,r) = {(R*,d., H*, 0}}.

Our main result in this section is the following.

Theorem 4.4. Let (X,d,u,0) € Kn(n, f,c¢). Then the following hold.

(A) Up to a negligible set, the space X coincides with the union of its k-regular
sets:

(21) 12 (X\ORR> =0.

(B) For any k € {1,...,n} and € € (0,1), there exists a countable family of
(1 + ¢)-bi-Lipschitz charts {(VF, %)} from X to R¥ such that

p (Rk\UVi8> =0

and (¢5)4(pL VE) < HF for any i.

We call (21) the essential decomposition of X. Rectifiability of Kato limit spaces
as stated in Theorem 1.1 is then an obvious corollary of Theorem 4.4.

The rest of this section is devoted to proving Theorem 4.4. Our proof is in-
spired by [GP21, BPS21] but contains some simplifications over the arguments pre-
sented there. To keep the notations short, we write Y € Tany,(X,z) instead of
(Y, dy, py, x) € Tany (X, x).

4.1. Essential decomposition. In this subsection, we prove (A) in Theo-
rem 4.4.

Proof of (A) in Theorem 4.4. First observe that the doubling condition implies
the iterated tangent property, meaning that there exists a Borel set E such that
u(X\E) =0 and for any x € F, any Y € Tan,(X,z) and any y € Y, it holds

(22) Tang (Y, y) C Tany, (X, ).

This property goes back to the pioneering work of Preiss [Pre87], who showed it for
iterated tangents of measures in the Euclidean space, and was later adapted to metric
doubling spaces by Le Donne [LD11] and by Gigli-Mondino-Rajala in our setting
[GMR15].

Take z € E and assume that for some [ € {0,...,n} there exists a pointed
RCD(0,n — 1) space Z such that R! x Z € Tan,(X,z). If Z is not reduced to a
singleton, Gigli’s splitting theorem [Gig] ensures that there exists z € Z such that
any Z, € Tany,(Z, z) splits off an R factor, so that (22) implies that there exists a
pointed RCD(0,n — [ — 1) space Z’ such that R"*! x 7’ € Tan, (X, r). Then

R¥®) € Tang, (X, z)
where
d(x) := max{1 <[ < n: there exists a pointed RCD(0, n) space Z
such that R' x Z € Tany, (X, 2)}.
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Setting
i(x) := min{l <[ < n: there exists a pointed RCD(0,n) space Z
which splits off no R such that R! x Z € Tang, (X, z)},

we obtain (A) in Theorem 4.4 as a consequence of
(23) i(r) =d(z) for p-a.e. x € E.
Let us prove (23) by contradiction, assuming

p({z € E:i(x) <d(x)}) > 0.
Set

Jr:={xr € E:d(x) =k and i(x) < k}

for any 1 < k < n, and note that these sets are measurable as can be proved following
the arguments of [MN19, Lemma 6.1]. Since

{r€Ei(z) <d@)}= ] n

there exists k € {1,...,n} such that

1(Jk) > 0.
Then J; admits a point with density 1, that is to say a point x € J; such that
B.(x)Ng
(24) lim w
{0 M(Br<x>>
Since R¥ € Tany, (X, ), there exist two infinitesimal sequences {¢;} and {r;} such
that for any ¢ there exists a (k, g;)-splitting u; of By, (x). By propagation of splittings
given in Proposition 3.12, for any i there exists a Borel set ; C B,,(x) such that

p(Br, () \$%)
SR SN
(B, ()
and for any y € Q; any Y € Tan,(X,y) splits off an R* factor. As a consequence
i(y) > k. This yields ©; N J, = 0 and (25) implies
. p(§%)
lim ————
i=oo p( By, (2))
hence we get a contradiction with (24). O

=1

(25)

=1,

4.2. Rectifiability of the regular sets: our key result. In this subsection,
with a view to proving (B) in Theorem 4.4, we establish the next key technical
proposition, where we make use of the almost k-regular sets (Ry)s, C X, defined as

(Ri)s.r = {x € X dmau(Bs(z),BY) < s for any s € (0,7]}
for any d,r > 0. Note that each (Ry)s, is a closed set. We also define
(Ry)s := U(Rk)(;’r C {z € X: duncu(B (z),B}) <6 for any Y € Tany,(X,z)}
r>0

for any ¢ > 0, and we point out that for any 0 < ¢’ < 4,
(Ri)s D {z € X: dumen(B] (z),Bf) < ¢ for any Y € Tan,(X,z)}.

Moreover, we have

Ri = )(Ra)s-

0
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Proposition 4.5. Let (X,d, u,0) € Kn(n, f,c), k € {1,...,n} and € € (0,1/2)
be given. Then there exists 6 > 0 such that for any v € (Rg)si6r With r < \/T/lG
and f(256r%) < 0 and any s € (0,r] there exist a function u: Bog(x) — R and a
Borel set V' C Bg(x) such that:

i) w is a (k,e)-splitting of Bag(x);

i) p(Bs(x)\V) < ep(By(x));

iii) u is an (¢0)-GH isometry between B,(y) and u(y) + B for any y € V N

(Rk)s16r and any o < s/2;

iv) u is (1 + €)-bi-Lipschitz on V N (Rk)s.16r;

V) U (1Vﬂ(73k)6,16r du) < H".

In the proof of the last point of this proposition, we use a fundamental result of
De Philippis and Rindler [DPR16, Corollary 1.12] which requires the terminology of
currents. For the interested reader, we refer to [Fed14] or [Sim14].

Roughly speaking a current in R* is a differential form whose coefficients are
distributions. To be more precise, let d be a positive integer. A d-dimensional
current 7" on R* is a continuous linear map

T: C5° (R*, AY(R*)*) — R.
The differential of a d-dimensional current 7" is the (d — 1)-dimensional current dT°
defined by
dT(w) := T'(dw)
for any w € Cg° (Rk , Adil(Rk)*). Here we consider only currents with finite mass,

that is to say differential forms whose coefficents are finite Radon measures. Any one
dimensional current with finite mass admits a canonical decomposition

(26) 70)= [ Tair

where | 7| is a Radon measure and T is a ||T|-integrable unitary vector field. In
this regard, we shall make use of the following easy lemma, whose proof is omitted
for brevity.

Lemma 4.6. Let v be a Radon measure on R? and V a square v-integrable
vector field such that |V (z)| > 0 for v-a.e. x € R¥. Let T be the one-dimensional
current on R* defined by

7w = [ (o 7)av

for any w € C§° (R*, AY(R¥)*). Then ||T|| is absolutely continuous with respect to v
with density |V| and T'(x) = V(z)/|V ()| for v-a.e. z € R¥.
A current T with finite mass such that d7" has finite mass too is called a normal

current. We recall the result due to De Philippis and Rindler that we shall use
[DPR16, Corollary 1.12].

Theorem 4.7. Let v be a Radon measure on R¥, and let {T;},<;<; be nor-
mal one-dimensional currents on R* such that v < ||T;|| for any i, and the vectors

{Ti(2)}1<i<k are independent for v-a.e. x € R¥. Then v < H*.

We are now in a position to prove Proposition 4.5.
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Proof. We first prove the first three assertions which are direct consequences of
the propagation property of splittings we established in Section 3. Let us set

7 = e {1’ 1€ m12), <A<n>m>1}

where A(n) is given by the doubling condition (5), C(n,1/2) is given by Proposi-
tion 3.10, and C’(n) is given by Proposition 3.12. According to Proposition 3.10,
there is some d; such that when y € (Ry)s, 16r, 0 € (0,4r] and v: By, (y) — RF is a
(k, [T(n)e]?)-splitting of By,(x) then v is an (¢ 0)-GH isometry between B, (y) and
v(y) + BS,.

According to Proposition 3.9, there is a § < §; such that if © € (Ry)s16, and
s < r then there is u: Bg,(z) — R* a reinforced (k, [r(n)e]*)-splitting of Bg,(x).

Now let z € (Ri)s16- and let s € (0,7] and u: Bg,(x) — RF be a reinforced
(k, [T(n)e]*)-splitting of Bg,(z). With Proposition 3.12, we find Q C Bys(x) such
that

p(Bas(2)\Q) < C'(n)7*(n)e” 1 Bus ()

such that for any y € Q and any o < s then u is a (k, [7(n)e]?)-splitting of By, (y).
If furthermore y € (Rg)s16- then u is an (¢ 0)-GH isometry between Bs,(y) and
u(y) + BS,.

We set V' := QN Bs(x). Then

#(B(2)\V) < u(Bas(2)\Q) < C'(n)7%(n)e? (B ()
< A% (n)C"(n)r*(n)e® w(Bs(x)) < ep(By(x)).
The fourth assertion is a consequence of the third one. Indeed, if y,z € V' N

(Ri)s16r, define 20 := d(y, z) < 2s. Then, since u is an (¢ 0)-GH isometry between
Bay(y) and u(y) + BS,, we get

d(y, 2)

luly) —u(2)] = d(y, 2)| < eo ==

from which follows the desired result.
In order to prove the last point we only need to show that if K is a compact
subset of V N (Rg)s16r C Bs(x) with p(K) > 0 then

Step 1. To prepare the application of Theorem 4.7, let us introduce a series of
Radon measures and discuss some properties of these measures. Set B := Bays(x).
Choose {x,} C Lip.(B,[0,1]) such that x, | 1k : for instance for any ¢ we may choose
xe(+) == (1 — (K, ))+ which has support K, = {d(K,-) < }. For convenience we
also set Yoo := 1x. We define the following Radon measures on R*:

4

vi; = ug (xeI(usu;)) and v°:

= uy (xet)
fori,j € {1,...,k} and £ € NU {oo} and we also set

vi=uy (1lpp).

Notice that the measures I/ﬁj

dl—‘(u“ Uj)
dp

are signed Radon measures. The coefficients

= <dui,duj), ’l,j € {1, .. .,k},
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of the Gram matrix map of u = (uy, . .., u;) are bounded Borel functions, hence there
exist bounded Borel functions such that for any i,j € {1,...,k} and £ € NU {o0},

duﬁj = pﬁj dv’.
There are also bounded Borel functions J¢ such that
dvt = Jtdv

and JH < J¢ < 1 for any £ € NU {oo}. Moreover, recalling that J¢dv = dvt =
uy (xedp) and J*® dv = dv™ = uy (Yoo dpt), one gets

19 = Pl = [

Rk

(J — J®)dv = /<x@ o) i < I\ ) 50,
B

so that

(27) lim || J* = J%| 1w = 0.

{—~+00

Step 2. For any ¢ € NU {oo}, let X’ be the lowest eigenvalue of the symmetric
matrix (pf ;). Our goal is now to establish

(28) lm A= X[ pi(apey = 0

{—~+00

and for v>®-a.e. p € R¥,
(29) A¥(p)>1—e
For any & = (&1,...,&) € RF such that '¢€ = 1 and any £ € N U {o0}, we

introduce
p§ = Zfz‘fj/)f,j-
,J
Setting
ug == (&, u)
we have

o dug (el (ue, ue))
Pe = dut ’

In particular, {pg (p)}¢ is a non negative non increasing sequence for v>-a.e. p € R*.
Arguing as we did to get (27) yields

: YA 00 00
ZEELHOO | Pe — J Pe HLl(du) =0.
Since

Ik = o) = [ (= o)

:/ (J'pe — Jmng)du—/ (J* = J®)pe dv
Rk

Rk
we also get
1' ¢ — p co) — U.
Jm {lpe = o1 ave) =0

Using that & — pg is quadratic, by polarization we deduce that for any 1, j,

; ¢
Jim [l = piglle vy = 0.
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Up to extraction of a subsequence we can assume that there exists a set C' of full »*>°
measure such that for any ¢,j € {1,...,k} and p € C,

Jim i (p) = 935 (p)-

Then for v*>®-a.e. p € R¥,
(30) lim A(p) = A®(p)

{—~+00

and thus we get (28).
For v>®-a.e. p € u(K), we have

meu—l(Bk ) dl (e, u&)

o0 — 1'
P = O L K A (B )

Since p-a.e. on B we have

dl(ug, ug)

Chete) _ e

ot — e
from (19) in Proposition 3.12 we get u-a.e. on K:
oo Tlot) g
dp

Thus for v*>*-a.e. p € u(K),
(31) 1—e<pZ(p) <1+e,
from which follows (29).

Step 3. Recall that our final goal is to prove that v < H*. To this aim, we will
apply Theorem 4.7 for any finite ¢ to the currents

k k
— O g AN
= E v; jdr; = E pi v dz;.
J=1 J=1

These are indeed normal currents as for 1) € C°(R¥),

AT (¢ Z/ Xza—%oudl“(ul, uy)

= / Xe dT'(v) o u, w;) using the chain rule
B

—/ ou dl'(xe, uw;) by the fact that u; is harmonic,
B

hence

T = —ug ((xe, i)
is a finite Radon measure. Moreover, by Lemma 4.6, the decomposition (26) of T} is
given by

T = (o)) (o0 ply)
with

1
k 2
- (Z <pf,j>2) and [T = oo
j=1
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Notice that pf > pﬁi hence
prev™ = vy iy = pivt < ITH,
and inequality (31) implies that v>®-a.e. pf > 1 — /€ so that
v < | T

We remark that for any € = (&;,...,&) € R* unitary it holds

k
{(Seir) &) -
i=1

By = {p e RF: X(p) < (1 —¢)/2}.

Since p! are bounded functions, we deduce that if p € R¥ \ B, then T(p), ..., T(p)
is a basis of R¥. Applying Theorem 4.7 we get

We set

Lgi g, V™ < H.
But the convergence (28) and the lower bound (29) yield
lim v*> (B,) =0,

l—o0

hence we get v < HF. O

4.3. Rectifiability of the regular sets: end of the proof. To get (B) in
Theorem 4.4 from Proposition 4.5, we use the following definition, introduced in
[BPS21].

Definition 4.8. Let (X,d, ) be a metric measure space, k a positive integer
and € € (0,1). We call (u, k, e)-rectifiable any Borel set € C X for which there exists
a countable family of (1 + ¢)-bi-Lipschitz charts {(Vf, #%)} from X to R* such that

p(E\U; ViE) = 0.
According to the previous definition, we are left with establishing the following.

Proposition 4.9. Let (X,d,u,0) € Ku(n, f,c), k € {1,...,n} and ¢ € (0,1).
Then Ry, is (u, k, )-rectifiable.

To this aim, we prove a lemma which is a consequence of our key Proposition 4.5.

Lemma 4.10. Let (X,d, u,0) € Kyn(n, f,c) and k € {1,...,n}. Then for any
p€ X, R>0ande € (0,1), there exists a (i, k,€)-rectifiable set Q. C Ry N Br(p)
such that p([Ry N Br(p)]\) < e.

Proof. Let (X,d,pu,0) € Kn(n, f,c), k€ {l,...,n},pe X, R>0and ¢ >0 be
given. Set ¢’ := ¢/u(Ry N Br(p)). Let 6 > 0 be given by Proposition 4.5 applied
to ¢’. For any x € Ry, there exists r(z) > 0 such that € (Ri)s16r(x)- Apply the
Vitali covering lemma for doubling metric measure spaces [Hei0l, Theorem 1.6] to
the set Ry, N Br(p) and the collection of balls A := {B, () }sernBr(p) 0<r<r()- Then
there exist countably many pairwise disjoint balls {B,, (z;)} C A such that u([R). N
Br(p)\U; Br,, (:)) = 0. By Proposition 4.5 for any i there exists a Borel set V; C
B, (x;) which is the domain of a bi-Lipschitz chart and such that u(B,, (7:)\V;) <
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e'u(B,,, (7). Set Q. = J; Vi N Rg. Then €. is the union of domains of bi-Lipschitz
charts, so it is obviously (u, k, €)-rectifiable. Moreover,

p([Ri N Br(p)\ Q) < p(UiBy, (z:)\Vi) = ZM(BW,. (x:)\V5)
< EIZ“(B% (z;)) < &'u(Rx N Br(p)) =e. O

We are now in a position to prove Proposition 4.9.

Proof of Proposition 4.9. From the previous lemma, for any i € N\{0} there
exists a Borel set .; C Ry N B;(p) which is (p, k, 27%)-rectifiable and such that
([Ri N Br(pi)|\Qei) < 27%. We set Q. := [, Q. Then

PR\) < Tim p([Re 0 Bi(p)\Q2) < lim p([Ry, 0 Bi(p)[\2e) = 0.

Since for any ¢ there exist countably many (1 + )-bi-Lipschitz charts {(V;5, ¢ ,)};
such that p(Q2:;\U; V;5;) = 0, we get that Q. (and then Ry) is (i, k, €)-rectifiable. [

Noting that the absolute continuity statement is ensured by v) of Proposition 4.5,
we obtain (B) in Theorem 4.4 from the previous proposition.

5. Regularity of non-collapsed strong Kato limits

This section is devoted to the structure and regularity of non-collapsed strong
Kato limits. We start by recalling some properties of these spaces, then show an
almost rigidity result that leads to the Reifenberg regularity stated in Theorem 1.3. In
the second part of this section, we prove a Transformation Theorem which, together
with Theorem 1.3 and the results of Section 3, implies Theorem 1.2.

5.1. Non-collapsed strong Kato limits and almost monotone quantity.
Recall that a manifold (M™, g) € K(n, f) satisfies a strong Kato bound if the function
f is such that

(SK) A= /T v J;(S)

ds < 0.

Under assumption (SK), the volume bound (3) given by Proposition 2.4 upgrades
into the following, as proved in [CMT24].

Proposition 5.1. Let (M",g) € K(n, f) with f satisfying (SK). Then there
exists C' = C(n,\) > 0 such that for any 0 < s < r < VT we have

vy(Br(2) _ o (f)”
vy(Bs(z)) =~ \s/

For v > 0, (M™,g,0) belongs to K(n, f,v) if f satisfies (SK) and moreover

ve(B7(0)) > vT=. Non-collapsed strong Kato limits are elements of the closure

K(n, f,v) with respect to Gromov-Hausdorff topology. As proved in [CMT24, The-
orem 7.1], volume continuity holds for non-collapsed strong Kato limits.

Theorem 5.2. Let {(M,, ga,04)} C K(n, f,v) be a sequence converging in the
pointed Gromov-Hausdorff topology to (X, d,0) € K(n, f,v). Then (M, 9o, V., 0a)
converges to (X,d, H",0) in the pointed measured Gromov—Hausdorff topology.
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As a consequence, in this setting the results of Section 3.2 can be revisited. More
precisely, if in Theorem 3.8, Propositions 3.9 and 3.10, we replace Kato limits by
non-collapsed strong Kato limits, we can assume closedness of balls in the Gromov—
Hausdorff topology instead of the measured Gromov-Hausdorff topology. Note that
in this case the quantities v and ¢ also depend on the volume bound v > 0.

Now let (X,d,0) € K(n, f,v) and let H: Ry x X x X — R, be its heat kernel.
For any ¢t > 0 and x € X we consider

0(t,z) = (4nt)2 H(t,x, x).

As we recalled in the introduction, in [CMT24] we showed that the map ¢t — 0(¢, z)
is almost non-decreasing for all 2 € X. More precisely, define for any ¢ € (0,7

o) = [ 10

ds < 0.

Thanks to the Li—Yau inequality given by Proposition 2.9, we get the following (see
also [CMT24, Corollaries 5.12 and 5.13]).

Proposition 5.3. Let (X,d,0) € K(n, f,v) with f satisfying (SK). There is a
constant ¢, > 0 depending only on n such that for any x € X the function

t e (0,T) — e®M9(t, z)
is non-decreasing and such that for any t € (0,7T),
e ®OQ(t, z) > 1.

In particular, the limit 9(x) = lim;_,0 0(¢, x) is well defined and satisfies 9(x) > 1.

Remark 5.4. In [CMT24] we also showed that for all x € X, ¥(z) is the inverse
of the volume density: ¥(x)™! = lim,_,o(H"(B,(z))/war™), where w, is the volume
of the Euclidean unit ball.

One consequence of [CMT24] is that the regular set coincides with the set of
points where 1 is equal to 1, as we show below.

Proposition 5.5. Let (X,d,o0) € K(n, f,v) with f satisfying (SK). Then
R ={r e X: Tan(X,z) = {(R",d.,0)}} = {z € X: J(z) = 1}.

Proof. The first equality is a direct consequence of [CMT24, Theorem 6.2(iii)]
and of volume continuity as recalled in Theorem 5.2. As for the second one, [CMT24,
Theorem 7.2] ensures that if (R",d.,0) is a tangent cone at z € X, then J(z) = 1,
so that

RcC{xe X: dx)=1}.
To prove the converse inclusion, consider z € X such that J(z) = 1. The proof of

[CMT24, Proposition 6.3] ensures that ¥ is upper semi-continuous. We have then

1 <liminfd(y) < limsupd(y) < d(x) =1,
Yy—

y—x
so that ¢ is continuous at x. The proof of [CMT24, Theorem 6.2(iii)] then implies
that all tangent cones at x are Euclidean, thus z € R. ([l

For a manifold (M", g) satisfying a strong Kato bound, an upper bound on 0 at
some point x implies a lower bound on the volume of B 7(x).
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Lemma 5.6. Assume that (M",g) is a closed manifold in IC(n, f) with f satis-
fying (SK). There is a constant v(n) > 0 such that if at some v € X andt <T we
have

0(t,z) <2,
then vy (B () > v(n)ts.
Proof. Thanks to the heat kernel estimates given by Proposition 2.6, we get
t5

which immediately gives the desired lower bound. O

< 0(z,t) <2,

We are also going to use the following lemma.

Lemma 5.7. Let (M™, g) € K(n, f) for f satisfying (SK). For any 6 € (0,1)
there exists v > 0 depending on 6, f such that if for some t € (0,T] we have
ki(M™, g) < v, then for all t € M and s € (0,t] we have 0(s,z) < 0(t,z)(1 + 9).

Proof. Assume k,(M, g) < v and let ¢, be the constant appearing in Proposi-
tion 5.3. Observe that for any a € (0,t) we can write

At@dfg/oa@“*ﬁbg(%)'

We can choose a depending on f and § such that the first addend in the previous
inequality is smaller than log(1 + §)/2¢,. Then we can choose v depending on a and
d, thus on f and 9, such that the second addend is also smaller than log(1 + 6)/2c¢,.
By Proposition 5.3, then we know that for all x € M and s € (0,¢],

9(sx)<9ta:exp< / ~ - M",g T><9taz)(1—|—5).

Remark 5.8. The same argument as in the previous proof implies that for
a sequence {(My, gs,00)} C K(n, f,v) converging to (X,d,o0) € K(n, f,v) such that
limg ky(My, go) = 0 for some t € (0, T], we have that for all z € X the map s +— 0(s, z)
is monotone non-decreasing and satisfies 0(s,z) > 1 for all s € (0, ¢].

5.2. Almost rigidity. This subsection is devoted to proving the following
almost rigidity for 0, which will be the key result to obtain our Reifenberg regularity
statement, namely Theorem 1.3.

Theorem 5.9. Let f: (0,7] — R, be a non decreasing function satisfying (SK).
For any ¢ > 0 and A > 0 there exists > 0 depending only on f,n,e and A such
that if (M",g) € K(n, f), x € M and t < T satisfy

ki(M,g) <6 and 0O(t,x) <1446,

then
dan <BA silz), B ﬂ> < cAVA.

In order to prove Theorem 5.9, we are going to use a contradiction argument, that
we sketch here before giving the detailed proof. We will construct a contradicting
sequence for which a ball of radius 1 stays uniformly far from the unit Euclidean
ball. Thanks to Lemma 5.6 such sequence is non-collapsing. Then up to extracting a
sub-sequence, we obtain a limit (X, d,z) € K(n, f,v) such that B;(z) is at a positive
distance from the unit Euclidean ball. We then aim to show that the limit space (X, d)
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is isometric to the Euclidean space. For that, we use the heat kernel rigidity shown
in [CT22]. More precisely, for a non-collapsed strong Kato limit (X, d, z) € K(n, f,v)

we define

d%(2.y)
e 4t

(4rt)z
If for all z,y € X and ¢t > 0 we have H(t,z,y) = P(¢, z,y), then [CT22, Theorem 1.1]
ensures that (X,d) is isometric to the Euclidean space. In order to show that H

coincides with P, we will rely on the Li—Yau inequality proven in Proposition 2.9 and
on the fact that, thanks to Remark 5.8, 0 is monotone non-decreasing.

P(t,z,y) =

Proof. We assume by contradiction that the statement is false. Then there exist
e, A > 0 such that if we consider the sequence 6, = ¢!, ¢ € N, ¢ > 0, we find ¢, < T,
(M, g¢) € K(n, f) and x, € M, such that

kt[(M&gZ) S 5@ and e<t£7 .Tg) S 1+ 5@7
but
(32) dGH(BA\/E(xZ)aBz\/ﬁ) > E\/Ztg.

Observe that if we define f(s) = f(sT) for all s € [0,1] and g, = t; ' g for any ¢, then
the rescaling properties of k; and of the heat kernel imply that each (My, ge) belongs
to K(n, f) and

ki(My, Ge) = ke, (Mg, g¢) < ¢, O(1,20) = O(tp, z¢) < 1464

Then up to rescaling we can assume that ¢, = 1 for all / € N.
By Lemma 5.6, we also know that there exists v = v(n) > 0 such that for any ¢,

Vg, (Bi(ae)) = v,

so that each (My, gs, x¢) belongs to K(n, f,v). Up to extracting a subsequence,
{(My, g¢,z¢)} converges in the pointed Gromov-Hausdorff topology to (X,d,z) €

K(n, f,v). Moreover, convergence of the heat kernel given in Proposition 2.8 ensures
that

0(1,z) = liinG(l,xg) < 1.

Thanks to Remark 5.8, we also know that ¢ — 0(¢,z) is monotone non-decreasing
and larger than one. We then get for all s € (0, 1],

(33) 0(s,z) =0(1,z) = 1.
Because of (32), we also have
(34) deu(Ba(x),B) > A.

Our setting constructed, we aim to prove that the heat kernel of X satisfies
(35) H=P
on R, x X x X. In order do so, we introduce the function

O: Ry x X 3 (t,y) — (4nt)2 H*(t/2,z,y).
Step 1. We show that ® satisfies

(36) 22 ( / o0 d?—l") + / (di, dD) dH" > 0,
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for any non-negative ¢ € C.(X) N H“?(X). To this aim, we first observe that

gt </ p® dH")
= [ et (ot + 1m0 a2, 5 0120.0) ) @)

Then we use the definitions of L, H and ® to get
/(dgp,dq)) dH" :/ wL®dH"
X X
= 2(4nt)? / o(y) (H(t/2,2,9)LyH (t/2,2,y) — |dyH(t/2,2,9)*) dH" (y)
X

—24m)? [ o) ( (112,29 0L (1/2.2.) + |d, H (/2. ) )d%”<y>.

Adding these two identities yields

na ( / ©® d?—[") / (dip,d®) dH" = 2(4nt)? / ©Z dH",
where 7 is defined by

Z(t,y) = —HQ(lf/2 v,y) + H(t/2,x y)aH(lﬁ/2 ,y) = |y H(t/2,2,y)

for any t € Ry and y € X. Since (X,d,0) is the limit of manifolds {(M,, g¢)} such
that ki (Mg, go) — 0 as £ goes to infinity, the Li—Yau inequality given by Remark 2.10
holds. Then Z > 0, this concluding the proof of (36).

Step 2. We show that for any ¢t > 0 and y € X,
(37) H(t,z,y) = P(t, z,y).
The Gaussian estimate given in Proposition 2.6 implies that for any ¢ > 0,

lim &(t,y) =0.

d(z,y)—o0

Moreover, the fact that H"(Bi(x)) > v and the volume bound given in Proposi-
tion 5.1 imply that for any y € X\{z},

lim (¢, y) = 0.
By the semi-group law and (33), we know that for any s € (0, 1],

/X<I>(s,y) dH"(y) = 0(s,z) = 1.

As a consequence we get
lim ®(t,-) = 6.().
t—0

Then for any ¢t > 0 and y € X, the function
F:(0,t)> s+ / D(s,2)H((t — 8)/4, z,y) dH"(2)
X
satisfies

lim F'(s) = H(t/4,z,y), LmF(s)=2(ty),
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and a direct computation justified by the Gaussian estimates of Proposition 2.6 yields
that for any s € (0,1),

F/(S) = /X (asq)(sv Z)H((t - 5)/47 Z, y) + <dzq)(87 Z)a dZH((t - 5)/47 2, y))) dHn(Z)

As (36) implies that F’ > 0, we obtain that
O(t,y) = H(t/4,2,y).
But we also have, for all ¢ € (0, 1],

1:/X<I>(t,y) d%"(y):/XH(t/élax,y) dH"(y),

then we obtain, for all t € (0,1] and y € X,
(38) O(t,y) = H(t/4,2,y).
We now introduce
U(t,x,y) = —4tlog((4nt)? H(t, x,y)).
By Varadhan’s formula, we know

lim U(O’, z, y) = —d2<.§L’7 y)
o—0

Because of (38), a simple computation shows that for any s € (0, 1] we have
U(s/4,2,y) =U(s/2,z,y).
As a consequence, for all s € (0, 1],

U(s/2,2,y) = lim U(o, z,y) = —d*(z,y).
o—

This shows that for all ¢t € (0,1/2] and y € X
H(t,z,y) =P(t,z,y).
Both expressions in this equality are analytic in ¢, hence we get (37) for any t > 0.

Step 3. We obtain (35) and conclude. Equality (37) implies in particular that
O(t,x) = 1 for all ¢t > 0 and not only for ¢ € (0,1]. By using the estimate on the
derivatives of the heat kernel given in the last point of Proposition 2.6, non-collapsing
and the volume bound of Proposition 5.1, we get that there exists a constant C' > 0
such that for any ¢ > 0 and z € X,

C
|0(t,z) — 0(t,2)| < %d(x, ).

Then for any z € X,
lim 0(¢,z2) = 1.

t——+o00
Since by Remark 5.8 the map ¢ — 0(¢,z) is monotone non-decreasing and larger
than one, it must be constantly equal to one. Arguing as in the previous step, the
fact that 0(¢,z) = 1 for any z € X and ¢ > 0 leads to (35). Then by [CT22, The-
orem 1.1], the strong Kato limit (X,d) is isometric to the Euclidean space (R",d.),
this contradicting inequality (34). OJ

Remark 5.10. Theorem 5.9 can be also proven by using [DPG16, Corollary 1.7],
that is the rigidity of the Bishop—Gromov inequality for non-collapsed RCD(0,n)
spaces. We chose to provide a self-contained proof independent of RCD theory.
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5.3. Consequences of almost rigidity. As an immediate consequence of
Theorem 5.9 and of the convergence of heat kernels given by Proposition 2.8 we
obtain the following.

Corollary 5.11. Assume that f satisfies (SK). For any § > 0, there is some
v > 0 depending only on f,n and § such that if (M™,g) € K(n, f), x € M andt <T
satisfy

ki(M,g9) <v and O(t,x) <1+v,
then for any y € B ;(x) we have 0(t,y) <1+ 0.

By combining Corollary 5.11, the almost monotonicity of 6 (Lemma 5.7) with
Theorem 5.9, we get a Reifenberg regularity result for manifolds satisfying a strong
Kato bound.

Corollary 5.12. Assume that f satisfies (SK). For any € > 0, there exists v > 0
depending only on f,n,e such that if (M",g) € K(n, f), x € M and t <T satisty

ki(M,g) <v and 0(t,z) <1l+v
then for any y € B s(z) and s € (0,V/1):
dan (Bs(y), BY) < es.

The Reifenberg regularity for non-collapsed strong Kato limits given in Theo-
rem 1.3 is then a direct consequence of Corollary 5.12.

We point out a corollary of the almost rigidity statement Theorem 5.9 and of
Proposition 3.9 that we use later to obtain Holder regularity of the regular set of a
non-collapsed strong Kato limit.

Corollary 5.13. Let v > 0 and f be a function satisfying (SK). For any ¢ > 0
there exists 6 > 0 depending only f,n,e such that if (M", g) € K(n, f,v), x € M
and t < T satisfy

ki(M", g) <6 and O(t,z) <1+,
then there exists an (n, €)-splitting u: B ;(z) — R".

5.4. Transformation theorem. In order to obtain a quantitative version of
Theorem 1.3, we need to prove the following Transformation theorem.

Theorem 5.14. (Transformation Theorem) Let f satisfy (SK) andv > 0. There
exist a constant vy, > 0 and gy € (0,1) depending on n, f such that for all € € (0, ¢
there exists 6 > 0 depending on e, n, f and v such that if (M",g) € K(n, f), x € M
and r € (0,/T] satisfy

i) y(By(2)) > 0"

i) k2(M", g) < 6

iii) for any s € (0,r], dgu(Bs(z),B?) < ds;
and if u: B.(x) — R"™ is an (n, d)-splitting, then for all s € (0,r] there exists an X n
lower triangular matrix T, such that ||Ts|| < (14 ¢)(r/s)" and the map @ = Tsou
is an (n,€)-splitting on Bs(z).

Remark 5.15. Thanks to Lemma 5.6, we can reformulate the previous theorem
replacing the non-collapsing assumption i) by 0(r?, z) < 2. In this case the choice of
0 will not depend on v.

We obtain Theorem 5.14 as a consequence of the following proposition.
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Proposition 5.16. Let (M,g) € K(n, f). Then there exist C,, > 0 and e,
A € (0, 1) depending only on n such that for alle € (0, gg] there exists § > 0 depending
on n, f,e such that the following holds. Assume that there exists r € (0, \/T] such
that
k2 (M", g) <,
and a ball B C M of radius r satisfying
dGH<B,B:}> S or.

Then for any balanced (n, €)-splitting u: B — R™ there exists a nxn lower triangular
matrix T such that ||T —1d,|| < C,e and the map @ := T oup\p Is a balanced (n, €)-
splitting of AB.

We postpone the proof of Proposition 5.16 and first give a proof of Theorem 5.14.

Proof of Theorem 5.14 given Proposition 5.16. Let €, A be as in Proposition 5.16,
and let € € (0,g0]. Consider n € (0,1] to be chosen later depending on n and let
d = d(n, f,ne) be the quantity given by Proposition 5.16. Assume that

k2(M", g) <9, for all s € (0,7r] dou(Bs(x),B) < Js.

Consider a (n, ne)-splitting u: B,(z) — R" and s € (0, 7].
First assume s € (Ar,r]. Since A only depends on n, then (6) with ¢ = |G, —1Id,||
implies

][ |Gy — 1d,, || dv, < C'(n)ne
s(z)

If C(n)ep < 1/2, Remark 3.5 implies the existence of a lower triangular matrix 7 such
that | Ty]| <1+ C(n)ne and Ty o u: By(x) — R™ is a balanced (n, (1 + C(n)ne)?ne)-
splitting. We have no restriction in assuming that ¢ is lower than 1/4C(n), thus we

do it. Assume also that 16

n < o5
Then Ty o u is a balanced (n, €)-splitting.
Now assume that there exists some positive integer [ such that A~'s € (\r,7].
Thanks to assumption iii), we can apply Proposition 5.16 iteratively to get existence
of lower triangular matrices Ty, ..., T} such that @ :=Tjo...0cThou: Bs(x) — R" is

a balanced (n, ¢)-splitting and
IT5] < (1 + C(n)ne)
for any j € {0,...,1l}. Set T:=T;0...0T;. Then
IT|I < (1 + C(n)ne)*.

ln(r/s)

Since A\~!'s < 7 implies [ < L

we get

In(14C(n)ne) C(n)e

(14 Clyne)t < (r/s) TR < (rf) 0075

Then we set

- and = min 16 _1
T /N = 25" C(n)
to get ||T]| < (1 +¢)(r/s)™. This concludes the proof. O

Remark 5.17. We point out that, unlike the proof of [CJN21, Proposition 7.7],
which relies on a contradiction argument, we provide a direct proof of the Transfor-
mation Theorem.
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We are left to proving Proposition 5.16. In order to do so, we need the following
property of harmonic maps on B”.

Proposition 5.18. Let h: B" — R be a harmonic function and set
A= . |G, — Idg]|1 d.
Then there exists a constant C' > 0 depending only on n such that for all r € (0,1/2)
(39) ; |Gy, — le? Gp|l1 dz < CAr.
Proof. For the sake of br;Vity, we show an analog statement in the case £ = 1:
consider a harmonic function h: B” — R and a constant ¢ € R, and set

A= |dh|* — c| da.

]Bn
Then we show that there exists C' > 0 only depending on n such that for all r €

(0,1/2) we have
anf? — f jdnf
By

(40) ]i

By arguing as in Lemma 3.11, we obtain the following Hessian bound:

(41) || Hess h[ oo (s5n) < Cnv/ Ac.

Now we write

dz < CA.r.

h=(+5,
where £ is the affine part of h, namely £(-) = h(0) 4+ dh(0)(+), so that 5(0) = 0 and
dB(0) = 0. We also have
Hess h = Hess f3,

then from (41) we get, for any = € B?,
8

(42) |dB|(z) < Cov/Aczl.
Using that the coefficients of dh are harmonic and d5(0) = 0, we obtain
][ dh=dl and |dl| < |dh|.
n ]Bn
Moreover, for any r € (0,1) the mean value of (d¢,dS) over B! is equal to its value
at 0, thus it is equal to zero. We then get for any r € (0,1)

f dhf? = |0 + f dBP
rBn rBn
so that

(43) ]{Bn \dh|* — <][B \dh|2> < 2];” |dB)? + 2];” [(de, dB)|.

By (42), the first term in the right-hand side is smaller than C,A.r?. As for the
second term, we use

2(dt,dp) = |dh|* — |d(|* — |dB|*

2]€ ) [(de, dB)| < 2]an |dB|? +]f ) |dh|? — (f ) IthQ)

to get
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for any r € (0,1). Choosing r = 5/8 gives
Flaeds) < Can.
zor
Since (d¢, df) is harmonic, elliptic estimates imply the following gradient estimate
(e, A8}y < CufN(dE.45)] < o
g n

Then by using that (d¢, d3)(0) vanishes we get for any = € IB"
[(dt, dB)|(z) < CpA |z

As a consequence, for any r € (0,1/2) the second term in (43) is bounded above by
CpAr. We then get the desired inequality

£ = (f )
B BR

for any r € (0,1/2). O

We can now prove Proposition 5.16.

< CpAe(r? + 1) < CpAr,

Proof of Proposition 5.16. Up to rescaling the distance by a factor r~1, we can
assume that r is equal to 1. Let g9,k € (0,1) and A € (0,1/4) to be chosen later
and which will depend only on the dimension n. In what follows we note C(n) for
a generic constant which depends only on the dimension n and whose value may
change from line to line.

Take ¢ € (0,¢0] and let u be a balanced (n,e)-splitting of a ball B C M with
radius 1. We assume that (M, g) € K(n, f) and for some 6 € (0,1/16n),

ky(M" g) <6 and dgu(B,B}) <6.
By Proposition 3.7, we have

(44) sup |du| < (14 C(n)e).

3
1B

If 6 <wv(n,f,v,ke,1/2,X), then by Theorem 3.8, there exists a harmonic map
h: iB"™ — R" such that ldh|| Lo (18ny < 2C(n) and

< Ke,

(45) '][ |G, — 1d,, ||1d1/g—][ |Gy, — 1d,, || dz
15 o

fna~@Mw%—f|mﬁGwa
A\B AB™

where we have noted G}, = fABn G, and we introduce similarly G, = fA 5 Gudyy.

(46)

< Ke,
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We now have that

f ||GU—G7||dugs][ |G — G || dvy + |G — T |
B B

f @ -c)a,
AB

<f r\Gu—G_hr\dvg+]
A\B

< 2][ 1G — G || dv,
A\B

gz][ 1G — G |
A\B

< 2][ |G — Gy ||y o + 2ke,
AB?

where we have used (46) and || - || < || - ||;. But using Proposition 5.18 and then
estimate (45), one gets that

][ IGh — Gy |1 dx < C(n)A][ |Gy — 1d,, ||y dz
AB" ipn

< C(n)A <:‘i€ +][ |Gy — 1d, |1 dyg>
1p

2

< C(n)A (ke + C(n)e),

where in the last inequality, we have used (6) and || - ||; < C(n)]| - ||. Gathering all
the estimates, we get that

F G~ Tuldv, < Ol s+ )
AB
Again (6) implies that
G, —1Id,|| < ][ |Gy — 1d,|| dv, < C(n, )\)][ |Gy — 1d,|| dv, < C(n, Ne.
AB B

Ife < Wlnx)v then by Lemma 3.1 there exists a lower triangular matrix 7" such that

(47) T ][ G.dv,'T =1d,, |T| <1+ C(n)C(n,MNe.
AB

Then the map © = Tu: AB — R" satisfies

Gady, = 1d,,
AB
4s) £ 16a - 1aulv, <171 f HG“‘ Gudv,|| v, < ITI2 Cn) (1 + e,
A\B A\B A\B
and
(49) sup |da| < ||T|| (1 + C(n)e).
A\B

We now make the following choices:

K==

. 1 1
sC(ny d fo=min { 2C(n)’ 4C(n)C(n, )\)}
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and assume that

0= min{301<n) sv(n, fiv, ke, 1/2, )\)}

so that
o |T|| <1+ Cpe <3 <2by (47) and the fact that e < e,
o supyp|dul < 5(1+ C(n)e) < 55 =2 by (49),
e 7 is a balanced (n, €)-splitting of AB by (48).
This concludes the proof. O

5.5. Holder regularity. We conclude this section by observing that, under
suitable assumptions, the results of the previous sections lead to the following Holder
regularity of almost splitting maps.

Theorem 5.19. Assume that f satisfies (SK). There exists ¢y € (0, 1) depending
only on f,n such that for all € € (0,e0] and n € (0,1), there exists 6 > 0 depending
only on f,n,e,n such that if (M",g) € K(n, f), x € M and t € (0,V/T) satisfy

ki(M",g) <6, O(t,x) <1+,

then any (n,0)-splitting u: B 4(z) — R", with u(z) = 0, is a diffeomorphism from
Bi_vi(x) onto its image. Moreover, u satisties for all y,z € B(;_,y ()

dy(y,2)'**
(50) (1- 5)W

and we have B i C u(B (7)) C B2

As in the proof of [CJN21, Theorem 7.10], Theorem 5.19 follows from the Reifen-
berg regularity given in Corollary 5.12, Proposition 3.10 and the Transformation
Theorem 5.14. We then refer to [CIJN21] for the details of the proof.

Theorem 5.19 clearly passes to the limit to give an analog statement on non-
collapsed strong Kato limits. Now recall that Corollary 5.13 states that if 0(t, x)
is close enough to 1, then there exists an (n,e)-splitting on a ball around z. As a
consequence, we obtain:

Corollary 5.20. Assume that f satisfies (SK). Let (X,d,0) € K(n, f,v). For
any « € (0,1) there exists 6 depending on «, n and f such that for any © € X
satisfying 9(x) < 1+ § there exist r € (0,v/T) and a homeomorphism u: B,(x) —
u(B,(x)) C R™ such that for all y, z € B,(x) we have

< Ju(y) — u(z)] < (1+¢e)dy(y, 2),

wr'Ed(y, 2)% < July) — u(2)] < ~d(y, 2)"r' "
Theorem 1.3 is then a consequence of this latter result and of a simple covering
argument.
Appendix
A. Codimension 2. In this section we prove the following.

Theorem A.1. Assume that (SK) holds. Let (X,d,o0) € K(n, f,v). Then the
singular set § := X \ R has Hausdorfl dimension at most n — 2.

Consider (X,d,0) € K(n, f,v). From [CMT24, Theorem 6.2], we know that the
singular set & admits a filtration

Slc...cs"t=8
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where

St ={rec X:R' x Z cTan(X,z) = (< k}
for any k € {0,...,n — 1}. Moreover, the Hausdorff dimension of each S* is at most
k. Thus we are left with proving S"~! = §"2.

Let us explain why the latter follows from proving that R, x R"~! cannot be a
tangent cone of X at any z € X. In [CMT24, Theorem A] we proved that any metric
measure tangent cone of X is an RCD(0, n) metric measure cone. As a consequence,
if X, = Z x R"!is a tangent cone of X at z, since X has Hausdorff dimension
at most n, then Z is an RCD(0, 1) metric measure cone over some finite set F. If
#F > 2 then Z has at least two ends and as a consequence splits so that necessarily
7 = R. Therefore, we have #F = 1 and then Z = R, , and this is what we aim to
prove impossible.

We prove this by contradiction. With no loss of generality, suppose 7' = 1.
Assume that there exists x € X admitting a metric tangent cone isometric to Rt x
R""!. Then there exist pointed closed Riemannian manifolds {(M,,ga,0.)} and
positive numbers {e,} such that ¢, | 0,

(MCU dgon OCV) ﬂ (RJr X Rnilu de7 0)
and
ki(My, ga) < fleat)
for any @ and any t € (0,1/e,]. Set
TBY = {(21,...,2,) € B} : 21 >0}

for any 7 > 0. By arguing as in the proof of [CMT24, Theorem 7.4], we get harmonic
maps
U, = (hS,...,hY): By(oy) — R™!

» '

which converge uniformly to (z2,...,2,): 2B? — R""! and such that for any «,
1) [|[d¥allLo(Ba(0n)) < 1+ €ay
11) ||G\I/a — Idn_1|| dl/ga S Eas
BQ(OQ)
iii) |dGy, |* dy,, < e
BQ(OQ)

From [CMT24, Proposition A.1], we get existence of uniformly Lipschitz functions
i € C*(B3(0q)) which converge uniformly to z;: 2B} — R. With no loss of
generality, we may assume that

O = (O, 1S, ... h%): Bo(0,) — 2B"

is an €,-GH isometry. We are going to modify each f{* into a suitable A{. To this
aim, we consider a convergent sequence p, € Bi(0,) — p = (1/2,0,...,0). Up to
working with ®* modified by an additive constant, we can assume that

(pa) = p,

and up to considering large enough « only, we can assume that
Bsys(pa) € Bi(0a)-

For any o let f{*: By(0,) — R be equal to the harmonic replacement of f{* on By s(pa)

and equal to f{* elsewhere. Then the sequence { ff‘ } is uniformly bounded in energy
and in L*°, and any of its weak sub-limit in energy is equal to z; on 2B"} \ Bs/s(p) and
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is harmonic on Bs/s(p), hence it is equal to x1. Using the energy characterization of
harmonic functions and the semicontinuity of the energy, this implies

ffé E) xIq.
Moreover, the gradient estimate [CMT24, Lemma 3.6] implies that the convergence
is uniform on Bj;16(pa).
For any « let yx, be the smooth cut-off function on M, such that y, = 1 on
By/32(pa) and xq = 0 on M, \ Bsji6(pa) with Lip xo < 64. Up to extraction of

a subsequence, we may assume that {x,} converges uniformly to a similar cut-off
function on Ry x R"~!. For any « set

1= Xafla‘i‘ (1 _Xa)fla§

then A{ is smooth on B (p,) and harmonic on By/32(pa). Furthermore, the sequence
{h{'} converges uniformly to x; on Bj(p,), and the maps

he == (AT, hS, ..., hy): Bi(oa) — BY
are €,-GH isometries which converge uniformly to the identity function. Moreover,

i) ”dh’a”LC’o(Bn/M(Pa)) < 14 eq,
i) f G - ldv,, <=
B17/64(pa)

iii) |dG), |2 dv,, < ea.
Bi7/64(pa)

Let {7}, {pa} C (0,1) be such that 7, T 1, po T 1/4, and for any «, 72 is a

regular value of |h,|* and p? is a regular value of |h¢ — 1/2|? 4+ |V, |%. For a given «,

set
Qu=h'(Br) and U, := h;'(BL (p)).

Since hq () C B, we know that hq: Q. — B is not surjective. Moreover,
ha(082,) C OB . Thus for any regular value x € 7,B7 of h,,

(51) #(h'({z}) N Q,) € 2N.

Let us now consider a sequence ¢, € U, — p such that each h,(q,) is a regular
value of h,. As each h, is an €,-GH isometry, for any g € €,:

ha(‘]) = ha(‘]a) = da(Qa%{) < €a.

Hence for large enough a:

{g € Q0 halg) = halga)} C U
But the analysis done in the proof of [CMT24, Theorem 7.4] shows that

e if U, is orientable, then the degree of h,: U, — B, (p) is *1,
e if U, is not orientable and if 7, : U, — U, is the 2-fold orientation cover, then
the degree of hy o my: Uy — B, (p) is £2.

In any case we get

#{q € Qy: hal(q) = ha(ga)} € 2N+ 1,
which contradicts (51).
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B. Proof of Theorem 3.8. In this section, we obtain Theorem 3.8 as a conse-
quence of a contradiction argument and the following result.

Theorem B.1. Let {(M,,d,,, fta, 0a)} C Ku(n, f,c) be converging to (X, d, u1, 0)
in the pointed measured Gromov—Hausdorff topology. For some r € (0,+/T], as-
sume that there exists a harmonic function h: B,(0) — R¥ such that h(o) = 0 and
|dh||Loo(B, (o)) < L for some L > 1. Let n € (0,1) be given. Then there exist
C(n,n) > 1 and hy: By, (04) — R¥ harmonic with ||dhq| 18, (0n)) < LC(n,n) and
ha(0q) = 0 for any «, such that h,, converges uniformly to h; moreover, the folllowing
properties hold:

(1) for all s € (0,nr]

(52) ][ Gh, dpta — G dp,
Bs(0a) Bs(0)
(2) for all s € (0,nr] and A € My(R)
(53) FooAG — Al = {6 Al dg
Bs(0a) Bs(0)

Before proving it, we need a preliminary lemma.

Lemma B.2. Let {(X,,dq, fta, 0a) }aenugoo} C Km(n, f,c) be such that
(Xa» da, tas 00) = (Xoo, doos floos Ooc)

in the pointed measured Gromov-Hausdorff topology. Consider r € (0,+/T). For
any «, let Uy, vq € HY*(B,:(04), da, ta) be such that

2 2
(1) uq L&) Uso and v, L&) Voo,

(2) supgen (IBT(OQ) dl'(ua) dpta IBT(OQ) dl'(va) dﬂa) < +0o0.
Then for any s € (0, 7],

(54 Foom—dldi s k-
Bs(Oa) Bs(Ooo)

Proof. For any v > 0 and o € NU {oco}, set

uOé,’Y(') = ][B ()ua d,uom 'Uom/(') = ]{3 ()'Ua d[ta.

Acting as in the proof of [CMT24, Proposition E.1], it is enough to consider the case
s € (0,7) only.
We first claim that there exists Cp > 0 such that for any v € (0,7 — s),

(59 sup | Jud == i o2 dp
Bs(0a)

aeNU{oo}

< Coy.

Indeed,

Foo == b~ k) du
Bs(0a)

<t d
Bs(0a)

Bs(0a)
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Boundedness in L? of the averaging operator on doubling spaces (see e.g. [Ald19,
Theorem 3.5]) yields the existence of C; > 0 such that

||ua’7'y||L2(Bs(Oo¢)) < ClHUaHL?(Br(Oa))'

Moreover, the L? strong convergence of {uq} to s gives Cy > 0 such that

sup |[uallL2(5, (o)) < Ca-
aeNU{oco}
Finally, the L? pseudo-Poincaré inequality [CSC93] and assumption (2) yield the
existence of C3 > 0 such that

1/2
<][ |uoz - uoz,'y|2 dua> S 037
Bs(0a)
Then

1/2 1/2
fomeidan s (£ o woPan) (£ )
Bs(0a) Bs(0a) Bs(0a)

(1 + 01)02037 < 2(1 + 01)0203’7/14(71) <C>C(n)
po(Bs(0a))? = p(Br(0))"?

where we obtain the last inequality by the doubling condition and by making the
assumption, with no loss of generality, that inf, p.(B,(04)) > pu(B.(0))/2. This and
the symmetry between u and v eventually leads to (55).

We now claim that for any given ¢ > 0 and vy € (0, (r — s)/2), we can choose
a € N large enough to ensure

Footom il f i, - il <
Bs(0a) Bs(00)

The Holder inequality and a consequence of the doubling condition (see e.g. [CMT24,
Proposition 1.2, (v)]) imply that {u,~} and {v,,} are equicontinuous on balls of
radius Bsjry/2(04) for any fixed v € (0, (r —s5)/2). Then uay — Uy and vy, —
Uso uniformly on By. This yields (56).

To conclude, take ¢ > 0, choose 7 = ¢/(3C)) and then choose a such that (56)
holds. Then the triangle inequality, (55) and (56) yield (54). O

<

S

(56)

Wl M

Remark B.3. The previous proof may be easily adapted to show that for any
a € R and for all s € [0, 7]

Foo— el f k- -
Bs(oa) BS(O)

We are now in a position to prove Theorem B.1 and conclude.

Proof. We start by treating the case k¥ = 1. Consider ¥ = n'/? and 7’ = n'/3
so that n < n’ < n” < 1. Then [CMT24, Proposition E.11] ensures the existence of
harmonic functions hy: By (0o) — R uniformly converging to Al B, (0) O B,y (0)
and such that for all s € (0,7"r]

(57) f (dhal?dpe — 4 |dh2 du.
Bs(0a) Bs(0)

By replacing h,, by hy — ho(0,) We can assume that h,(0,) = 0 for all . Moreover,
the convergence of |dh,| given by (57) and the fact that ||dh||z~, (o) < L imply
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that for any large enough «

][ \dho|? dpie < 2L
Bs(oa)

We can then apply [CMT24, Lemma 3.6] to get existence of C'(n,n) > 1 such
that [[dhallz=(5,, (0. < LC(n,n). Now consider s € (0,nr]. The previous local
Lipschitz bound and the Hessian estimate of [CMT24, Proposition 3.5] yield the
uniform Hessian bound

L
(58) sup][ (Vdha|? dpe < L?) :
Bnr(oa)

«

We are then in a position to apply [CMT24, Proposition E.7] and get L?(B,,) strong
convergence of {|dh|} to |dh|. Then {u, = |dh,|} and {v, = 0} satisfy the assump-
tions of Lemma B.2. We apply it and use Remark B.3 to obtain that for all a € R
and s € (0, nr]
dhal? = al do > |Idh]? — al dps.
Bs(oa) Bs (o)
We consider now the case k > 1. Observe that for all 7,5 = 1,... k we have

(Gha)ig = (d(ha)i, d(ha);) = i(ld((ha)z + (ha)i)I” = ld((ha)i — (ha);)I?).

Set
1

o= gl + Bl g0 = 5l — (),

1 1
f= §|d(hi +hy)], g= §|d(h,~ — hy)|.

The sequences {f,} and {g,} satisfy the assumptions of Lemma B.2. This imme-
diately yields (52). Moreover, if we consider A € My (R) with components a; ;, by

arguing as above we get for all 4,5 =1,... k,
][ |fa = g5 — iyl dpa — f* = g% — ai | dp,
Bs(oa) BS(O)
which is equivalent to
F UG =il = F |Gy = gl
Bs(Oa) BS(O)
This shows (53). O
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