
Annales Fennici Mathematici
Volumen 50, 2025, 623–663

Limits of manifolds with a Kato bound
on the Ricci curvature. II

Gilles Carron, Ilaria Mondello and David Tewodrose

Abstract. We prove that metric measure spaces obtained as limits of closed Riemannian

manifolds with Ricci curvature satisfying a uniform Kato bound are rectifiable. In the case of a

non-collapsing assumption and a strong Kato bound, we additionally show that for any α ∈ (0, 1)

the regular part of the space lies in an open set with the structure of a Cα-manifold.

Riccin kaarevuuden Katon rajaa noudattavien monistojen raja-arvot. II

Tiivistelmä. Tässä työssä osoitetaan, että metrinen mitta-avaruus on suoristuva, jos se saa-

daan Riccin kaarevuuden tasaista Katon rajaa noudattavien suljettujen Riemannin monistojen raja-

arvona. Jos lisätään luhistumattomuusoletus ja vahva Katon raja, näytetään lisäksi, että avaruuden

säännöllinen osa sisältyy avoimeen joukkoon, jolla on Cα-moniston rakenne millä tahansa α ∈ (0, 1).

1. Introduction

In this paper, we establish new geometric and analytic properties of Kato limit
spaces, i.e. measured Gromov–Hausdorff limits of closed Riemannian manifolds with
Ricci curvature satisfying a uniform Kato bound. Our work continues the study
began in [CMT24] where we introduced these spaces.

For a closed Riemannian manifold (Mn, g) of dimension n ≥ 2, define

kt(M
n, g) := sup

x∈M

ˆ t

0

ˆ
M

H(s, x, y)Ric-(y) dνg(y) ds

for any t > 0, where H is the heat kernel ofM , νg is the Riemannian volume measure
and Ric- : M → R+ is the lowest non-negative function such that for any x ∈ M ,

Ricx ≥ −Ric-(x)gx.

Equivalently, Ric- is the negative part of the smallest eigenvalue of the Ricci tensor.
For the whole article, we keep a positive number T and a function f : (0, T ] → R+

fixed, so that f is non-decreasing and

(1) lim
t→0

f(t) = 0 and f(T ) ≤ 1

16n
·

We let K(n, f) be the set of isometry classes of n-dimensional closed Riemannian
manifolds (Mn, g) satisfying the Kato bound

(K) kt(M
n, g) ≤ f(t), ∀t ∈ (0, T ].

This bound is implied, for instance, by a lower bound on the Ricci curvature, or by
a suitable uniform Lp estimate on Ric- [RS17].
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For c > 0 fixed throughout the article, let Km(n, f, c) be the set of quadruples
(Mn, dg, µ, o) where (Mn, g) ∈ K(n, f), o ∈ M , dg is the Riemannian distance asso-
ciated with g and µ is a multiple of νg satisfying

c ≤ µ(B√
T (o)) ≤ c−1.

As proved in [Car19, CMT24], elements in K(n, f) satisfy a uniform doubling con-
dition. As a consequence, Gromov’s precompactness theorem ensures that the set
Km(n, f, c) is precompact in the pointed measured Gromov–Hausdorff topology. We

call Kato limit space any element in the closure Km(n, f, c) with respect to this topol-
ogy. Observe that Ricci limit spaces, that is limits of manifolds with a uniform Ricci
lower bound [CC97, CC00a, CC00b, Che01], are Kato limit spaces.

Our first result is the rectifiability of Kato limit spaces. This was shown for Ricci
limit spaces in [CC00b, Theorem 5.7].

Theorem 1.1. Let (X, d, µ, o) be a Kato limit space. Then (X, d, µ) is rec-

tifiable as a metric measure space, in the sense that there exists a countable col-

lection {(ki, Vi, φi)}i where {Vi} are Borel subsets covering X up to a µ-negligible
set, {ki} are positive integers, and φi : Vi → R

ki is a bi-Lipschitz map such that

(φi)#(µ
¬
Vi) ≪ Hki for any i, where Hki is the ki-dimensional Hausdorff measure.

Consider now the non-collapsing case, that is, there exists v > 0 such that for
some o ∈M

(NC) νg(B√
T (o)) ≥ vT

n
2 .

Assume that f additionally satisfies

(SK)

ˆ T

0

√

f(t)

t
dt < +∞.

In this case, we say that (Mn, g) ∈ K(n, f) satisfies a strong Kato bound. Let
K(n, f, v) be the set of isometry classes of pointed closed n-dimensional manifolds
(Mn, g, o) satisfying a strong Kato bound and the non-collapsing assumption. We

call non-collapsed strong Kato limit space any element in the closure K(n, f, v) with
respect to the pointed Gromov–Hausdorff topology. Notice that we do not need
to consider measured Gromov–Hausdorff topology, because, thanks to the volume
continuity proved in [CMT24, Theorem 7.1], Riemannian volumes converge to the
n-dimensional Hausdorff measure.

Our second main result is the bi-Hölder regularity of the regular set of non-
collapsed strong Kato limit spaces. This was proved for non-collapsed Ricci limit
spaces in [CC97, Theorem 5.14].

Theorem 1.2. Let (X, d, o) be a non-collapsed strong Kato limit space. Then

for any α ∈ (0, 1) the regular set

R := {x ∈ X : (Rn, de, 0) ∈ Tan(X, x)}
is contained in an open Cα manifold Uα ⊂ X . Here de is the Euclidean distance and

Tan(X, x) is the set of metric tangent cones of X at x, see Definition 2.1.

In [CMT24, Theorem 6.2] we also showed that non-collapsed strong Kato limit
spaces admit a stratification. By combining this with volume continuity and argu-
ments from [CC97, Theorem 6.1] (see also [Che01, Theorem 10.22]), we then prove

that the singular set S := X \ R of any (X, d, o) ∈ K(n, f, v) has codimension two.
For the sake of completeness, we provide a proof in the Appendix.
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Our proofs of Theorem 1.1 and Theorem 1.2 strongly rely on the existence of
splitting maps on Kato limit spaces. These are harmonic maps with a suitable
W 2,2-estimate which realize a Gromov–Hausdorff approximation between a small
ball around x and a Euclidean ball of same radius. In Section 3, we give conditions
for the existence of such maps, and establish some of their properties, relying on the
analysis performed in [CMT24].

In order to prove Theorem 1.1, we start by observing that almost splitting maps
exist around any point x of a Kato limit space admitting a Euclidean tangent cone.
After that, by means of a suitable propagation property of these maps, we adapt
arguments from [BPS21] which built upon [GP21] to provide a proof of the recti-
fiability of RCD(K,N) spaces [MN19] via almost splitting maps. Let us point out
that, unlike the uniform lower Ricci bound considered in [CC97], the Kato bound (K)
does not provide a directionally restricted relative volume comparison on the limit
space, so that the proof of rectifiability by Cheeger and Colding, based on a suitable
control on the volume deformation of pseudo-cubes through pseudo-translations, do
not carry out.

To prove Theorem 1.2, a key tool is the following almost monotone quantity,
which we introduced in [CMT24] to get information on the infinitesimal geometry of

non-collapsed strong Kato limits. For X ∈ K(n, f, v), x ∈ X , t > 0, consider

θ(t, x) := (4πt)n/2H(t, x, x)

where H is the heat kernel of X . In case (Mn, g) is a Riemannian manifold with
non-negative Ricci curvature, the Li–Yau inequality implies that the function t 7→
θ(t, x) ∈ [1,+∞[ is non-decreasing for all x ∈ M . When (Mn, g) satisfies a strong
Kato bound, we showed in [CMT24] that this function is almost non-decreasing
everywhere. In particular, its limit as t goes to zero is well-defined, not less than
one, and coincides with the inverse of the volume density at x. In the present paper,
we prove that under (SK) the regular set of X is given by points where the limit of
θ equals one:

R =
{

x ∈ X : lim
t→0

θ(t, x) = 1
}

.

We also establish that if θ(t, x) is close enough to 1 for some t > 0 and x ∈ X ,
then any ball centered around x with small radius is Gromov–Hausdorff close to a
Euclidean ball with same radius. More precisely, we prove the following Reifenberg
regularity statement, where dGH denotes the Gromov–Hausdorff distance.

Theorem 1.3. Assume that (SK) holds. Then for any ε > 0 there exists δ > 0

depending on n, f and ε such that for any (X, d, o) ∈ K(n, f, v), if x ∈ X and

t ∈ (0, δT ) satisfy

(2) θ(t, x) ≤ 1 + δ

then for any y ∈ B√
t(x) and s ∈ (0,

√
t],

dGH (Bs(y),B
n
s ) ≤ εs,

where B
n
s is the Euclidean ball of radius s centered at 0 ∈ R

n.

In addition to the almost monotonicity of θ and the appropriate Li–Yau inequal-
ity for Kato limit spaces (see Proposition 2.9), a salient ingredient in our proof of
Theorem 1.3 is the heat kernel rigidity result obtained in [CT22], which allows for a
suitable contradiction argument.
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From Theorem 1.3 we could immediately appeal on the intrinsic Reifenberg the-
orem of Cheeger and Colding [CC97, Theorem A.1.1] and get the conclusion of Theo-
rem 1.2. We prefer to provide an explicit construction of a bi-Hölder homeomorphism
obtained from almost splitting maps through a Transformation Theorem, in the spirit
of [CJN21]. One key new point in our approach is an almost-rigidity statement im-
plying that for sufficiently small δ, if a point x in a non-collapsed strong Kato limit
space satisfies

θ(t, x) < 1 + δ,

then an almost splitting map realizing a GH-isometry exists from B√
t(x) to an Eu-

clidean ball of radius
√
t. We next prove a Transformation Theorem that eventually

provides a better regularity on such harmonic maps: these are bi-Hölder homeomor-
phisms. The proof of the Transformation Theorem is a direct one and uses some
results of [CMT24] about convergence of harmonic functions together with the re-
finements that we develop in Section 3.

We conclude this introduction by pointing out that our recent work [CMT25] al-
lows us to extend all of the previous results to limits of complete manifolds. Moreover,
we improve the result of Theorem 1.1 and obtain the rectifiability of a Kato limit of
complete manifolds with all the dimension ki being equal to a unique k ∈ {0, . . . , n}.
As for Theorems 1.2 and 1.3, we obtain them under the weaker assumption that the
integral between 0 and T of t 7→ f(t)/t is finite, instead of the hypothesis (SK).

Acknowledgments. The authors are partially supported by the ANR grant ANR-
17-CE40-0034: CCEM. The first and third authors thank the Centre Henri Lebesgue
ANR-11-LABX-0020-01 for creating an attractive mathematical environment. The
first author is also partially supported by the ANR grant ANR-18-CE40-0012: RAGE.
The authors thank the referees for their careful reading of the manuscript and for
their relevant suggestions.

2. Preliminaries

In a metric space (X, d) we denote by Br(x) the open ball of radius r centered
at x ∈ X . Letting B = Br(x), for any λ > 0 we denote by λB the re-scaled ball
centered at x of radius λr. We call metric measure space any triple (X, d, µ) where
(X, d) is a geodesic and proper metric space and µ is a fully supported Borel measure
such that µ(Br(x)) is strictly positive and finite for any x ∈ X and r > 0.

The Cheeger energy of (X, d, µ)

Ch : L2(X) → R+ ∪ {+∞}
is defined as the lower semi-continuous envelope of the functional:

f ∈ Lipc(X) 7→
ˆ
X

lip2(f) dµ,

where lip(f) denotes the local Lipschitz constant of f . Following [Gig15, Gig18b]
we say that (X, d, µ) is infinitesimally Hilbertian if Ch is quadratic, in which case
the closure of Ch, still denoted by Ch, is a Dirichlet form with domain denoted by
H1,2(X, d, µ). We write L for the associated non-positive, self-adjoint operator and
{e−tL}t>0 for the Markov semi-group generated by L. For any f ∈ H1,2(X, d, µ) there
exists a unique |df | ∈ L2(X, µ) called minimal relaxed slope of f such that

Ch(f) =

ˆ
X

|df |2 dµ.
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Moreover, Ch is strongly local and regular, and its carré du champ is given by

dΓ(u, v) =
1

4
(|d(u+ v)|2 − |d(u− v)|2) dµ =: 〈du, dv〉 dµ

for any u, v ∈ H1,2(X, d, µ). For any open set Ω ⊂ X we also set

H1,2
loc (Ω, d, µ) := {f ∈ L2

loc(Ω, µ) : φf ∈ H1,2(X, d, µ) for any φ ∈ Lipc(Ω)}.

We say that f ∈ H1,2
loc (Ω, d, µ) is harmonic in Ω if for any φ ∈ Lipc(Ω),ˆ

Ω

〈df, dφ〉 dµ = 0.

If (Mn, g) is a smooth and connected Riemannian manifold, the Cheeger energy
of (M, dg, νg) coincides with its usual Dirichlet energy. We often implicitly identify
a Riemannian manifold (Mn, g) with its isometry class or with the metric measure
space (M, dg, νg).

For any positive integer k, we denote by B
k
r the Euclidean ball of radius r centered

at the origin of Rk, and we write B
k
r(p) = p+ B

k
r for any p ∈ R

k.

2.1. Notions of convergence. We assume the reader to be familiar with the
various notions of Gromov–Hausdorff convergence; we refer to [HKST15, Section 11],
for instance, if this is not the case. We simply recall that a map φ : (X, dX) → (Y, dY )
is called an ε-GH isometry if |dX(x, x′)− dY (φ(x), φ(x

′))| ≤ ε for any x, x′ ∈ X and
for any y ∈ Y there exists x ∈ X such that dY (φ(x), y) ≤ ε. If {(Xα, dα, oα)}, (X, d, o)
are pointed metric spaces such that (Xα, dα, oα) → (X, d, o) in the pointed Gromov–
Hausdorff topology, we denote by xα ∈ Xα → x ∈ X a convergent sequence of points,
following [CMT24, Characterization 1] and the definition soon after.

2.1.1. Tangent cones. Let us recall the classical definitions of tangent cones.

Definition 2.1. (1) Let (X, d) be a metric space. For any x ∈ X , we call
metric tangent cone of (X, d) at x any pointed metric space (Y, dY , x) obtained as
a limit point in the pointed Gromov–Hausdorff topology of the family of rescalings
{(X, r−1

d, x)}r>0 as r ↓ 0. Note that by a slight abuse of notation, we identically
denote the base point x in the tangent cone (Y, dY , x) and the point x ∈ X . These are
strictly speaking not the same points as they belong to different spaces. We denote
by Tan(X, x) the set of metric tangent cones of (X, d) at x.

(2) Let (X, d, µ) be a metric measure space. For any x ∈ X , we call metric mea-
sured tangent cone of (X, d, µ) at x any pointed metric measure space (Y, dY , µY , x)
obtained as a limit point in the pointed measured Gromov–Hausdorff topology of the
family of rescalings {(X, r−1

d, µ(Br(x))
−1µ, x)}r>0 as r ↓ 0. We denote by Tanm(X, x)

the set of metric measured tangent cones of (X, d, µ) at x.

We are especially interested in tangent cones which split off a Euclidean factor.
Let us recall the definition.

Definition 2.2. Let k be a positive integer.
(1) We say that a pointed metric space (X, d, x) splits off an R

k factor if there
exist a pointed metric space (Z, dZ, z) and an isometry φ : X → R

k × Z such that
φ(x) = (0, z).

(2) We say that a pointed metric measure space (X, d, µ, o) splits off an R
k

factor if there exist a pointed metric measure space (Z, dZ , µZ , z) and an isometry
φ : X → R

k × Z such that φ(x) = (0, z) and φ#µ = Hk ⊗ µZ .
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Here and in the sequel the space Rk ×Z is implicitly equipped with the classical
Pythagorean product distance.

2.1.2. Convergence of functions. Let us recall now some notions of conver-
gence for functions defined on varying spaces. We refer to [CMT24, Section 1.4] and
the references therein for a more exhaustive presentation.

Definition 2.3. Let {(Xα, dα, µα, oα)}α, (X, d, µ, o) be infinitesimally Hilbertian
metric measure spaces such that (Xα, dα, µα, oα) → (X, d, µ, o) in the pointed mea-
sured Gromov–Hausdorff topology.

(1) Let ϕα ∈ Cc(Xα) for any α and ϕ ∈ Cc(X) be given. We say that {ϕα}
converges uniformly on compact sets to ϕ, if there exists R > 0 such that suppϕ ⊂
BR(o) and suppϕα ⊂ BR(oα) for any α, and ϕα(xα) → ϕ(x) whenever xα ∈ Xα →
x ∈ X . We write ϕα

Cc−→ ϕ if this convergence holds.
(2) Let fα ∈ L2(Xα, µα) for any α and f ∈ L2(X, µ) be given.

• We say that {fα} converges to f weakly in L2 if supα ‖fα‖L2 < +∞ andˆ
Xα

ϕαfα dµα →
ˆ
X

ϕf dµ

whenever ϕα
Cc−→ ϕ; we write fα

L2

⇀ f if this convergence holds.

• We say that {fα} converges to f strongly in L2 if fα
L2

⇀ f and limα ‖fα‖L2

= ‖f‖L2; we write fα
L2

→ f if this convergence holds.

(3) Let fα ∈ H1,2(Xα, dα, µα) for any α and f ∈ H1,2(X, d, µ) be given.

• We say that {fα} converges to f weakly in energy if fα
L2

⇀ f and supα Chα(fα)

< +∞; we write fα
E
⇀ f if this convergence holds.

• We say that {fα} converges to f strongly in energy if fα
E
⇀ f and limα Chα(fα)

= Ch(f); we write fα
E→ f if this convergence holds.

2.2. Kato bound and Kato limits. Recall that T , f are fixed and satisfy (1).
The following has been proved in [CMT24, Proposition 2.3].

Proposition 2.4. There exists κ ≥ 1 and λ > 0 depending only on n such that

any (Mn, g) ∈ K(n, f) satisfies

1. a uniform volume estimate: for any x ∈M and 0 < s < r ≤
√
T ,

(3)
νg(Br(x))

νg(Bs(x))
≤ κ

(r

s

)e2n

,

2. a uniform local Poincaré inequality: for any ball B ⊂M with radius r ≤
√
T

and any ϕ ∈ C1(B),

(4)

ˆ
B

(

ϕ−
 
B

ϕ dνg

)2

dνg ≤ λr2
ˆ
B

|dϕ|2 dνg.

Remark 2.5. Note that (3) implies a so-called doubling condition:

(5) νg(B2r(x)) ≤ A(n)νg(Br(x))

for any x ∈ X and r ∈ (0,
√
T/2], where A(n) := κ2e

2n. We shall often use the
following consequence of the doubling condition: for any λ ∈ (0, 1) there exists a



Limits of manifolds with a Kato bound on the Ricci curvature. II 629

constant C(n, λ) ≥ 1 such that for any ball B ⊂ M and any locally integrable
φ : B → R,

(6)

 
λB

|φ| dνg ≤ C(n, λ)

 
B

|φ| dνg.

The next proposition collects estimates on the heat kernel of (Mn, g) ∈ K(n, f).

Proposition 2.6. There exists a constant γ ≥ 1 depending only on n such that

for any (Mn, g) ∈ K(n, f), for all x, y ∈M and t ∈ (0, T ),

i)
γ−1

νg(B√
t(x))

e−γ
d
2
g(x,y)

t ≤ H(t, x, y) ≤ γ

νg(B√
t(x))

e−
d
2
g(x,y)

5t ,

ii)

∣

∣

∣

∣

∂

∂t
H(t, x, y)

∣

∣

∣

∣

≤ γ

tνg(B√
t(x))

e−
dg

2(x,y)

5t ,

iii) |dxH(t, x, y)| ≤ γ√
tνg(B√

t(x))
e−

dg
2(x,y)

5t .

Proof. The first estimate i) was established in [Car19], see also [CMT24, Proposi-
tion 2.3]. The second estimate ii) is a consequence of i), see e.g. [Gri95, Corollary 3.1].
The third estimate iii) is a consequence of the Li–Yau inequality [Car19, Proposi-
tion 3.3]:

e−2 |dxH(t, x, y)|2 ≤ e2n

2t
H2(t, x, y) +H(t, x, y)

∣

∣

∣

∣

∂

∂t
H(t, x, y)

∣

∣

∣

∣

,

together with i) and ii). �

Let us now recall a couple of results from [CMT24] about Kato limit spaces.

Proposition 2.7. Any (X, d, µ, o) ∈ Km(n, f, c) is an infinitesimally Hilbertian

space satisfying the doubling condition (5) and the local Poincaré inequality (4).
Moreover, for any x ∈ X , any (Y, dY , µY , x) ∈ Tanm(X, x) is a pointed RCD(0, n)
space.

Metric measure spaces satisfying an RCD(0, n) bound have, in a synthetic sense,
non-negative Ricci curvature and dimension less than n. We refer to [Gig18a] for a
survey about their properties.

From [CMT24], we also know that the following hold.

Proposition 2.8. Let {(Mn
α , dα, µα, oα)}⊂Km(n, f, c) be converging to (X, d, µ, o)

∈ Km(n, f, c) in the pointed measured Gromov–Hausdorff topology. Let Hα be the

heat kernel of (Mn
α , gα) for any α. Then X admits a locally Lipschitz heat kernel,

that is to say a map H : (0,+∞)×X ×X → (0,+∞) such that

(

e−tLf
)

(x) =

ˆ
X

H(t, x, y)f(y) dµ(y)

for any f ∈ L2(X, µ), any t > 0 and µ-a.e. x ∈ X . Moreover, H is analytic with

respect to t and it satisfies the three estimates in Proposition 2.6. Furthermore, the

following convergence results hold.

• For any t > 0 and xα ∈Mα → x ∈ X , yα ∈ Mα → y ∈ X ,

(7) Hα(t, xα, yα) → H(t, x, y) and
∂

∂t
Hα(t, xα, yα) →

∂

∂t
H(t, x, y).

• For any t > 0 and xα ∈Mα → x ∈ X ,

(8) Hα(t, xα, ·) L2

→ H(t, x, ·).
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As an important consequence, we derive in the next statement a Li–Yau inequal-
ity for Kato limit spaces.

Proposition 2.9. Consider (X, d, µ, o) ∈ Km(n, f, c). Set γ(t) = exp
(

8
√

nf(t)
)

for any t ∈ (0, T ]. Then for any x ∈ X and t ∈ (0, T ], the Li–Yau inequality

(9) γ−1(t) |dH(t, x, ·)|2 −H(t, x, ·) ∂
∂t
H(t, x, ·) ≤ nγ(t)

2t
H2(t, x, ·)

holds µ-a.e. on X .

Proof. Let {(Mn
α , dα, µα, oα)} ⊂ Km(n, f, c) be converging to (X, d, µ, o) in the

pointed measured Gromov–Hausdorff topology. By [Car19, Proposition 3.3], for any
x, y ∈Mα and t ∈ (0, T ],

(10) γ−1(t) |dyHα(t, x, y)|2 −Hα(t, x, y)
∂

∂t
Hα(t, x, y) ≤

nγ(t)

2t
H2

α(t, x, y).

Take xα ∈ Mα → x ∈ X and set uα(y) = Hα(t, xα, y) for any y ∈ Mα and any α.
The L2 heat kernel convergence (8) yields

uα
L2

→ u := H(t, x, ·).
Moreover, the semi-group property impliesˆ

Mα

|duα|2 dνgα =

ˆ
Mα

uα∆gαuα dνgα = −1

2

∂

∂t
Hα(2t, xα, xα)

= −∂Hα

∂t
(2t, xα, xα),

(11)

hence by Proposition 2.6.ii) the sequence {uα} is bounded in energy, hence uα
E
⇀ u

by definition. Since the semi-group property also implies (11) with u, H and x in
place of uα, Hα and xα respectively, the convergence (7) yields limα ‖duα‖L2 = Ch(u),

hence by definition uα
E→ u. Proposition 2.6.iii) implies that the sequence {|duα|} is

locally bounded in L∞ hence with [CMT24, Proposition E.7] we can conclude that

|duα| L2

⇀ |du|.
This convergence, together with (7) and (10), implies (9). �

Remark 2.10. If there exists τ ∈ (0, T ] such that

lim
α

kτ (Mα, gα) = 0,

then for any x ∈ X and t ∈ (0, τ ], the Li–Yau inequality

|dH(t, x, ·)|2 −H(t, x, ·) ∂
∂t
H(t, x, ·) ≤ n

2t
H2(t, x, ·)

holds µ-a.e. on X .

3. Almost splittings maps and consequences

of GH-closedness on functions

In this section, we define (k, ε)-splitting maps on Kato limits and prove some
relevant properties. Such maps were introduced in [CC96, Col97, CC97] for the
study of Ricci limit spaces and extensively used later in the study of limit spaces and
RCD(K,N) spaces, see for instance [CN15, Bam20, CJN21, BPS21].

From now on, for any positive integer k, we let Mk(R) be the space of k × k
matrices with real entries, Sk(R) ⊂ Mk(R) be the subspace made of symmetric
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matrices, and we denote by ‖ · ‖ the matrix norm induced by the Euclidean norm | · |,
meaning that ‖A‖2 := sup{t(Aξ)Aξ : ξ ∈ R

k such that tξξ = 1} for any A ∈ Mk(R).
We denote by Idk the identity matrix in Mk(R). Then the following holds.

Lemma 3.1. Assume that A ∈ Sk(R) is positive definite. Then there exists a

unique lower triangular matrix T ∈ Mk(R) such that

(12) TAtT = Idk.

Moreover, if there exists ε ∈ (0, 1/2) such that A ∈ Sk(R) satisfies

(13) ‖A− Idk‖ < ε,

then for some Ck depending only on k, the matrix T satisfies

(14) ‖T − Idk‖ < Ckε.

Remark 3.2. The matrix tT is obtained by applying the Gram–Schmidt process.

3.1. Almost splitting maps. For any infinitesimally Hilbertian metric mea-
sure space (X, d, µ), whenever a map u = (u1, . . . , uk) : B → R

k satisfies ui ∈
H1,2(B, d, µ) for any i ∈ {1, . . . , k} we define the Gram matrix map of u as the
Sk(R)-valued map

Gu := [Gi,j] where Gi,j := 〈dui, duj〉 for any 1 ≤ i, j ≤ k,

and we set |dGu|2 :=
∑

1≤i,j≤k |dGi,j|2. Note that if T is a lower triangular k × k
matrix and ũ := T ◦ u, then
(15) Gũ = TGu

tT µ-a.e. in B.

Definition 3.3. Let (X, d, µ, o) ∈ Km(n, f, c). Let B ⊂ X be a ball of radius
r > 0, k ∈ {1, . . . , n} and ε > 0.

(1) We call (k, ε)-splitting ofB any harmonic map u : B → R
k such that ‖du‖L∞(B)

≤ 2 and

(16)

 
B

‖Gu − Idk‖ dµ < ε.

(2) We say that a (k, ε)-splitting u of B is reinforced if 
B

(‖Gu − Idk‖+ r2|dGu|2) dµ < ε.

(3) We say that a (possibly reinforced) (k, ε)-splitting u of B is balanced if 
B

Gu dµ = Idk.

Remark 3.4. Assumption ‖du‖L∞(B) ≤ 2 implies

sup
1≤i,j≤k

|Gi,j(y)| ≤ 4 for µ-a.e. y ∈ B.

Remark 3.5. Condition (16) implies that the symmetric matrix Au =
ffl
B
Gu dµ

is ε-close to the identity Idk. As a consequence of Lemma 3.1 applied with A = Au,
for any ε ∈ (0, 1/2) and any (k, ε)-splitting u : B → R

k there exists a lower triangular
matrix T with ‖T‖ ≤ 1 + Ckε such that the map ũ = T ◦ u : B → R

k satisfies

(17)

 
B

Gũ dµ = Idk and

 
B

‖Gũ − Idk‖ dµ < (1 + Ckε)
2ε.
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Remark 3.6. The definition of reinforced splitting is just a technical conve-
nience. Indeed, by means of Bochner’s formula and of the Hessian bound given in
[CMT24, Proposition 3.5], one can prove that any splitting on a Riemannian manifold
with a Kato bound is a reinforced splitting on a ball with smaller radius, and then
show that this property for manifolds with a uniform Kato bound is stable under
pointed measured Gromov–Hausdorff convergence. This implies, in particular, that
if u is a reinforced splitting of a ball B in a Kato limit space, then the coefficients of
the Gram matrix map Gu all belong to H1,2

loc (B, d, µ).

The next result provides an improvement of the local Lipschitz constant for split-
tings.

Proposition 3.7. Let (Mn, g) be a closed Riemaniann manifold, B ⊂M a ball

of radius r > 0, k ∈ {1, . . . , n}, η ∈ (0, 1), L > 1 and u : B → R
k a harmonic map

such that ‖du‖L∞(B) ≤ L. Let Gu be the Gram matrix map of u. Assume that there

exists δ ∈ (0, 1/16n] such that

kr2(M
n, g) < δ,

 
B

‖Gu − Idk‖ dνg < δ.

Then there exists C(n, η, L) > 0 such that ‖du‖L∞(ηB) ≤ 1 + C(n, η, L)δ.

Proof. In the proof of [CMT24, Proposition 7.5], use the gradient bound iii) in
Proposition 2.6 to get II ≤ Cδ instead of II ≤ Cδ1/2. Apply the resulting statement
to any function uξ := 〈ξ, u〉 with ξ ∈ R

k satisfying |ξ| = 1, and conclude by taking
ξ = du/|du| pointwise. �

3.2. GH-closedness and harmonic functions. In the setting of uniform
lower Ricci bounds, existence of almost splitting maps is closely related to mGH-
closedness of a ball to a Euclidean ball. We show below that the same relation
actually holds for Kato limit spaces.

Throughout this subsection, we let k ∈ {1, . . . , n} be fixed. We denote by ‖ · ‖1
the L1,1 matrix norm, namely ‖M‖1 =

∑k
i,j=1 |mi,j| for any M ∈ Mk(R). Note that

‖ · ‖ ≤ ‖ · ‖1. We denote by dmGH a distance associated to the measured Gromov–
Hausdorff topology.

Theorem 3.8. For all ε, η, λ ∈ (0, 1) such that λ < η there exists ν depending

only on ε, η, λ, n, f, c such that if (X, d, µ, o), (X ′, d′, µ′, o′) ∈ Km(n, f, c), x ∈ X ,

x′ ∈ X ′ and r ∈ (0,
√
T ], are such that

dmGH(Br(x), Br(x
′)) < νr,

if h : Br(x) → R
k is a harmonic function satisfying ‖dh‖L∞(Br(x)) ≤ L for some L > 1,

then there exists a harmonic function h′ : Bηr(x
′) → R

k satisfying ‖dh′‖L∞(Bηr(x′)) ≤
LC(n, η) for some C(n, η) ≥ 1 and:

(1) ‖h′ ◦ Φ − h‖L∞(Bηr(x)) < εr, where Φ is a (νr)-GH isometry between Br(x)
and Br(x

′);
(2) for all s ∈ [λr, ηr]

∥

∥

∥

∥

 
Bs(x)

Gh dµ−
 
Bs(x′)

Gh′ dµ′
∥

∥

∥

∥

< ε,

(3) for all A ∈ Mk(R) and s ∈ [λr, ηr],
∣

∣

∣

∣

 
Bs(x)

‖Gh − A‖1 dµ−
 
Bs(x′)

‖Gh′ − A‖1 dµ′
∣

∣

∣

∣

≤ ε.
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The previous is a consequence of the analysis made in [CMT24, Appendix A].
For the sake of completeness, we provide a proof in Appendix B.

Theorem 3.8 has the following direct consequence about existence of reinforced
almost splittings.

Proposition 3.9. For any ε, η ∈ (0, 1) there exists δ > 0 depending on n, f, c, ε

and η such that if (X, d, µ, o) ∈ Km(n, f, c), x ∈ X and r ∈ (0,
√
T ] satisfy

f(r2) ≤ δ and dmGH(Br(x),B
k
r) < δr,

then there exists a reinforced (k, ε)-splitting of Bηr(x).

Proof. By density and approximation, it is enough to show this proposition for
(Mn, dg, µ = λνg, o) ∈ Km(n, f, c). Let ε, η ∈ (0, 1). We are going to show that if
δ > 0 is chosen sufficiently small (depending on n, f, c, ε and η), if

f(r2) ≤ δ and dmGH(Br(x),B
k
r) < δr,

then the conclusion holds. Consider the identity map from B
k
r to R

k which is a
harmonic isometry. Then, according to Theorem 3.8, for any τ ∈ (0, 1), if δ is smaller
than ν(τε,

√
η, η, n, f, c), there exists a harmonic map h = (h1, . . . , hk) : B√

ηr(x) →
R

k satisfying ‖dh‖L∞(B√
ηr(x)) ≤ C(n, η) and such that for any s ∈ [ηr,

√
ηr] we have 

Bs(x)

‖Gh − Idk‖1 dµ ≤ τε.

Then according to Proposition 3.7, we know that

‖dh‖L∞(Bηr(x)) ≤ 1 + C(n, η) (τε+ δ) .

Hence if τ and δ are additionally chosen so that

τ ≤ 1

2C(n, η)
and δ ≤ 1

2C(n, η)

then

‖dh‖L∞(Bηr(x)) ≤ 2.

An easy variation on the proof of the Hessian bound given in [CMT24, Proposi-
tion 3.5] provides the following estimate

(ηr)2
 
Bηr(x)

|∇dh|2 dµ ≤ C(n, η, f)

 
Bs(x)

‖Gh − Idk‖1 dµ+ 4f(r2)

≤ C(n, η, f)τε+ 4δ

and because

|∇〈dhi, dhj〉| ≤ 2 (|∇dhi|+ |∇dhj|)
we also get

(ηr)2
 
Bηr(x)

|∇Gh|2 dµ ≤ 4C(n, η, f)τε+ 16δ.

Hence the conclusion holds provided that τ and δ are moreover chosen so that

τ ≤ 1

8C(n, η, f)
and δ ≤ ε

32
. �

Moreover, Theorem 3.8 implies that almost splittings are GH-isometries under
the appopriate assumptions.



634 Gilles Carron, Ilaria Mondello and David Tewodrose

Proposition 3.10. For any ε, η ∈ (0, 1) there exist δ > 0 depending on n, f, c, ε

and η and a constant C(n, η) > 0, such that for all (X, d, µ, o) ∈ Km(n, f, c), if

u : Br(x) → R
k is a (k, ε)-splitting and

dmGH(Br(x),B
k
r) < δr,

then u is a (C(n, η)
√
εr)-GH isometry between Bηr(x) and B

k
ηr(u(x)).

The proof of this proposition relies on the following Euclidean result.

Lemma 3.11. If v : Bk → R
k is a harmonic map such that 
Bk

‖Gv − Idk‖ ≤ ε,

then v : Bk
η → R

k is a (C(n, η)
√
ε)-GH isometry between Bη and B

k
η(v(0)).

Proof. We will assume that η ≥ 1/2. Consider a cut-off function χ equal to 1 on
1+η
2
B
k and vanishing outside 3+η

4
B
k, with

‖∆χ‖L∞ ≤ C(k, η).

By the Bochner formula we have that

|Hess v|2 + 1

2
∆(Tr(Gv − Idk)) = 0

where Tr is the trace function for matrices. Thenˆ
1+η
2

Bk

|Hess v|2 ≤
ˆ
Bk

χ|Hess v|2 = −1

2

ˆ
Bk

(∆χ)Tr(Gv − Idk)

≤ C(k, η)

ˆ
Bk

‖Gv − Idk‖ ≤ C(k, η)ε.

Using classical elliptic estimate, we obtain a C2 estimate on v:

‖Hess v‖L∞(ηBk) ≤ C(k, η)
√
ε.

With Taylor formula, we get that for any x ∈ ηBk,

|v(x)− v(0)− dv(0)(x)| ≤ C(k, η)
√
ε and |dv(0)− dv(x)| ≤ C(k, η)

√
ε.

But we also have  
ηBk

‖Gv − Idk‖ ≤ η−k

 
Bk

‖Gv − Idk‖ ≤ 2kε.

Hence we find a point xo ∈ ηBk such that

‖Gv(xo)− Idk‖ ≤ 2kε.

Using the polar decomposition of dv(xo) we obtain a linear isometry g ∈ O(k) such

|dv(xo)− g| ≤ C(k)ε.

Introducing the affine isometry ι := v(0) + g we get that for any x ∈ ηBk,

|v(x)− ι(x)| ≤ C(k, η)
√
ε.

Setting C ′(n, η) = max1≤k≤nC(k, η) eventually leads to the desired result. �

Proof of Proposition 3.10. We let ε, η ∈ (0, 1). We will assume that η ≥
1/2. With Theorem 3.8, we find some δ(n, ε, η, f, c) > 0 such that if (X, d, µ, o) ∈
Km(n, f, c), if u : Br(x) → R

k is a (k, ε)-splitting and

dmGH(Br(x),B
k
r) < δr,



Limits of manifolds with a Kato bound on the Ricci curvature. II 635

then there is some harmonic map

v : Bk
(1+η) r

2
→ R

k

and some δr-GH isometry Φ: Br(x) → B
k
r such that

(18) ‖v ◦ Φ− u‖L∞(B(1+η) r2
(x)) ≤ εr

and
∣

∣

∣

∣

∣

∣

 
B(1+η) r2

(x)

‖Gu − Idk‖1 dµ−
 
Bk
(1+η) r2

‖Gv − Idk‖1

∣

∣

∣

∣

∣

∣

≤ ε.

Observe that the doubling condition and the equivalence of the norms ‖ · ‖ and ‖ · ‖1
yield  

B(1+η) r2
(x)

‖Gu − Idk‖1 dµ ≤ A(n)

 
Br(x)

‖Gu − Idk‖1 dµ ≤ C(n)ε

for some C(n) only depending on n. Since ‖ · ‖ ≤ ‖ · ‖1, we get 
Bk
(1+η) r2

‖Gv − Idk‖ ≤ (1 + C(n))ε.

Hence according to the previous lemma, we know that v is a (C(n, η)
√
εr)-GH isom-

etry between B
k
ηr and itself. Using (18), we obtain the desired conclusion about the

restriction of u to Bηr(x). �

3.3. Propagation of reinforced almost splittings. The next result is an
important propagation property of reinforced splittings.

Proposition 3.12. (Propagation of reinforced splittings) Consider (X, d, µ, o) ∈
Km(n, f, c). There exists C > 0 depending only on n such that for any k ∈ {1, . . . , n}
and ε ∈ (0, 1), if u is a reinforced (k, ε)-splitting of a ball Br(x) ⊂ X with r ∈ (0,

√
T ),

then there exists a Borel set Ωε ⊂ Br/2(x) such that:

(A) µ(Br/2(x)\Ωε) ≤ C
√
εµ(Br/2(x)),

(B) the restriction of u to Bs(y) is a reinforced (k,
√
ε)-splitting for any y ∈ Ωε

and s ∈ (0, r/2),
(C) for µ-a.e. y ∈ Ωε, for any ξ ∈ R

k,

(19) (1−
√
ε)|ξ|2 ≤ tξGu(y)ξ ≤ (1 +

√
ε)|ξ|2,

(D) any y ∈ Ωε is such that any (Y, dY , µY , y) ∈ Tanm(X, y) splits off an R
k factor.

Proof. Let x ∈ X and r ∈ (0,
√
T ). Assume that u : Br(x) → R

k is a reinforced
(k, ε)-splitting. Set

Ωε := {y ∈ Br/2(x) : Mr/2v(y) ≤
√
ε}

where

v := ‖Gu − Idk‖+ r2|dGu|2
and

Mr/2v(y) := sup
s∈(0,r/2)

 
Bs(y)

v dµ.

The definition of Ωε is made so that (B) is satisfied. Let us prove (A). For any y ∈
Br/2(x)\Ωε there exists sy ∈ (0, r/2) such that µ(Bsy(y)) < (

√
ε)−1

´
Bsy (y)

v dµ. By

the Vitali covering lemma, there exists a countable family of points {yi} ⊂ Br/2(x)\Ωε
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such that the balls {Bsyi
(yi)} are pairwise disjoint and Br/2(x)\Ωε ⊂ ⋃

iB5syi
(yi).

Then, with a constant C depending only on n which may change from line to line,

µ(Br/2(x)\Ωε) ≤
∑

i

µ(B5syi
(yi)) ≤ C

∑

i

µ(Bsyi
(yi)) < C

1√
ε

∑

i

ˆ
Bsyi

(yi)

v dµ

≤ C
1√
ε

ˆ
Br(x)

v dµ ≤ C
√
εµ(Br(x)) ≤ C

√
εµ(Br/2(x))

where we have used the doubling condition to get the second and the last inequalities,
and the fact that u is a reinforced (k, ε)-splitting of Br(x) to get the fifth one. This
shows (A).

Let us prove (C). It follows from the Lebesgue differentiation theorem for doubling
metric measure spaces (see e.g. [Hei01]) that the set of Lebesgue points of v has full
measure in Ωε. At any Lebesgue point y ∈ Ωε of v we know that

‖Gu(y)− Idk‖ ≤ v(y) = lim
s↓0

 
Bs(y)

v dµ ≤Mr/2v(y) ≤
√
ε,

which yields (19).
We are left with proving (D) namely that for any y ∈ Ωε, any (Y, dY , µY , y) ∈

Tanm(X, y) splits off an R
k factor. To this aim, we are going to build a harmonic

map ũ∞ : Y → R
k such that Gũ∞(z) = Idk for µY -a.e. z ∈ Y . For any s ∈ (0, r/2),

set

Gs :=

 
Bs(y)

Gu dµ.

Following a classical argument (see [Che99, (4.21)], for instance) involving Hölder’s
inequality, the doubling condition, and the local Poincaré inequality,

‖Gs −Gs/2‖ ≤
 
Bs/2(y)

‖Gu −Gs‖ dµ ≤ A(n)

 
Bs(y)

‖Gu −Gs‖ dµ

≤ A(n)

( 
Bs(y)

‖Gu −Gs‖2 dµ
)1/2

≤ A(n)λ1/2s

( 
Bs(y)

|dGu|2 dµ
)1/2

≤ A(n)λ1/2s
ε1/4

r
·

This shows that {Gs}0<s<r/2 is a Cauchy sequence, hence it admits a limit G as s ↓ 0.
Since

‖G− Idk‖ = lim
s→0

‖Gs − Idk‖ ≤ lim
s→0

 
Bs(y)

‖Gu − Idk‖ dµ ≤
√
ε,

we know from Remark 3.5 that there exists a lower triangular k × k matrix T such
that TGtT = Idk and ‖T‖ ≤ C(n) for some generic constant C(n) only depending
on n. Moreover, for any s ∈ (0, r/2), the previous computation yields

 
Bs(y)

‖Gu −Gs‖ dµ ≤ A(n)λ1/2s
ε1/4

r
,

and a telescopic argument gives

‖Gs −G‖ ≤ C(n)s
ε1/4

r
,
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hence ũ := T ◦ u satisfies

(20)

 
Bs(y)

‖Gũ − Idk‖ dµ ≤ C(n)s
ε1/4

r
·

Now we let {sα} ⊂ (0,+∞) be such that sα ↓ 0 and {(X, dα := s−1
α d, µα :=

µ(Bsα(y))
−1µ, y)} converges to (Y, dY , µY , y) in the pointed measured Gromov–Haus-

dorff topology. Then the maps

ũα :=
1

sα
(ũ− ũ(y)) : Bdα

r/2sα
(y) → R

k

are all harmonic and locally 2-Lipschitz. By [CMT24, Proposition E.10], up to ex-
tracting a subsequence we may assume that {ũα} converges uniformly on compact
sets and locally strongly in energy to some harmonic map

ũ∞ : Y → R
k.

Then the local strong convergence in energy and (20) imply that for any R > 0, 
B

dY
R (y)

‖Gũ∞ − Idk‖ dµY = lim
α

 
Bdα

R (y)

‖Gũα − Idk‖ dµα

= lim
α

 
BRsα (y)

‖Gũ − Idk‖ dµ = 0.

Since (Y, dY , µY ) is an RCD(0, n) space, the Functional Splitting Lemma [ABS19,
Lemma 1.21] then yields the conclusion. �

Remark 3.13. The choice of r/2 in the previous proof is arbitrary: we can
replace it with σr for σ ∈ (0, 1) and get the same result.

4. Rectifiability of Kato limits

Let us begin this section with recalling the definitions of bi-Lipschitz map and
bi-Lipschitz chart.

Definition 4.1. Let (X, d) be a metric space, k a positive integer, and ε ∈ (0, 1).
We say that a map φ : X → R

k is:

(1) bi-Lipschitz onto its image if there exists C ≥ 1 such that C−1
d(x, y) ≤

|φ(x)− φ(y)| ≤ Cd(x, y) for any x, y ∈ X ,
(2) (1 + ε)-bi-Lipschitz onto its image if (1 + ε)−1

d(x, y) ≤ |φ(x)− φ(y)| ≤ (1 +
ε)d(x, y) for any x, y ∈ X .

Moreover, we call (1+ ε)-bi-Lipschitz chart from X to R
k any couple (V, φ) where V

is a Borel set of X and φ : V → R
k is a (1 + ε)-bi-Lipschitz map onto its image.

We now provide a definition of rectifiability for metric measure spaces which is
a natural variant of the one introduced in [CC00b, Definition 5.3] and which has
notably been used in the setting of RCD(K,N) spaces [DPMR17, KM18, GP21].

Definition 4.2. We say that a metric measure space (X, d, µ) is rectifiable if
there exists a countable collection {(ki, Vi, φi)}i where {Vi} are Borel subsets covering
X up to a µ-negligible set, {ki} are positive integers, and φi : Vi → R

ki is a bi-Lipschitz
map such that (φi)#(µ

¬
Vi) ≪ Hki for any i.

According to this definition, our goal in this section is to prove that Kato limit
spaces are rectifiable. Actually, we prove a more precise result which involves the
so-called k-regular sets.
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Definition 4.3. For any k ∈ {1, . . . , n}, we define the k-regular set of a space

(X, d, µ, o) ∈ Km(n, f, c) as

Rk := {x ∈ X : Tanm(X, x) = {(Rk, de,Hk, 0}}.
Our main result in this section is the following.

Theorem 4.4. Let (X, d, µ, o) ∈ Km(n, f, c). Then the following hold.

(A) Up to a negligible set, the space X coincides with the union of its k-regular
sets:

(21) µ

(

X\
n
⋃

k=1

Rk

)

= 0.

(B) For any k ∈ {1, . . . , n} and ε ∈ (0, 1), there exists a countable family of

(1 + ε)-bi-Lipschitz charts {(V ε
i , φ

ε
i )} from X to R

k such that

µ

(

Rk\
⋃

i

V ε
i

)

= 0

and (φε
i )#(µ

¬
V ε
i ) ≪ Hk for any i.

We call (21) the essential decomposition of X . Rectifiability of Kato limit spaces
as stated in Theorem 1.1 is then an obvious corollary of Theorem 4.4.

The rest of this section is devoted to proving Theorem 4.4. Our proof is in-
spired by [GP21, BPS21] but contains some simplifications over the arguments pre-
sented there. To keep the notations short, we write Y ∈ Tanm(X, x) instead of
(Y, dY , µY , x) ∈ Tanm(X, x).

4.1. Essential decomposition. In this subsection, we prove (A) in Theo-
rem 4.4.

Proof of (A) in Theorem 4.4. First observe that the doubling condition implies
the iterated tangent property, meaning that there exists a Borel set E such that
µ(X\E) = 0 and for any x ∈ E, any Y ∈ Tanm(X, x) and any y ∈ Y , it holds

(22) Tanm(Y, y) ⊂ Tanm(X, x).

This property goes back to the pioneering work of Preiss [Pre87], who showed it for
iterated tangents of measures in the Euclidean space, and was later adapted to metric
doubling spaces by Le Donne [LD11] and by Gigli–Mondino–Rajala in our setting
[GMR15].

Take x ∈ E and assume that for some l ∈ {0, . . . , n} there exists a pointed
RCD(0, n − l) space Z such that R

l × Z ∈ Tanm(X, x). If Z is not reduced to a
singleton, Gigli’s splitting theorem [Gig] ensures that there exists z ∈ Z such that
any Zz ∈ Tanm(Z, z) splits off an R factor, so that (22) implies that there exists a
pointed RCD(0, n− l − 1) space Z ′ such that Rl+1 × Z ′ ∈ Tanm(X, x). Then

R
d(x) ∈ Tanm(X, x)

where

d(x) := max{1 ≤ l ≤ n : there exists a pointed RCD(0, n) space Z

such that Rl × Z ∈ Tanm(X, x)}.
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Setting

i(x) := min{1 ≤ l ≤ n : there exists a pointed RCD(0, n) space Z

which splits off no R such that Rl × Z ∈ Tanm(X, x)},
we obtain (A) in Theorem 4.4 as a consequence of

(23) i(x) = d(x) for µ-a.e. x ∈ E.

Let us prove (23) by contradiction, assuming

µ({x ∈ E : i(x) < d(x)}) > 0.

Set
Jk := {x ∈ E : d(x) = k and i(x) < k}

for any 1 ≤ k ≤ n, and note that these sets are measurable as can be proved following
the arguments of [MN19, Lemma 6.1]. Since

{x ∈ E : i(x) < d(x)} =
⋃

1≤k≤n

Jk

there exists k ∈ {1, . . . , n} such that

µ(Jk) > 0.

Then Jk admits a point with density 1, that is to say a point x ∈ Jk such that

(24) lim
r↓0

µ(Br(x) ∩ Jk)

µ(Br(x))
= 1.

Since R
k ∈ Tanm(X, x), there exist two infinitesimal sequences {εi} and {ri} such

that for any i there exists a (k, εi)-splitting ui of B2ri(x). By propagation of splittings
given in Proposition 3.12, for any i there exists a Borel set Ωi ⊂ Bri(x) such that

(25)
µ(Bri(x)\Ωi)

µ(Bri(x))
≤ C

√
εi

and for any y ∈ Ωi any Y ∈ Tanm(X, y) splits off an R
k factor. As a consequence

i(y) ≥ k. This yields Ωi ∩ Jk = ∅ and (25) implies

lim
i→∞

µ(Ωi)

µ(Bri(x))
= 1,

hence we get a contradiction with (24). �

4.2. Rectifiability of the regular sets: our key result. In this subsection,
with a view to proving (B) in Theorem 4.4, we establish the next key technical
proposition, where we make use of the almost k-regular sets (Rk)δ,r ⊂ X , defined as

(Rk)δ,r :=
{

x ∈ X : dmGH(Bs(x),B
k
s) ≤ δs for any s ∈ (0, r]

}

for any δ, r > 0. Note that each (Rk)δ,r is a closed set. We also define

(Rk)δ :=
⋃

r>0

(Rk)δ,r ⊂
{

x ∈ X : dmGH(B
Y
1 (x),B

k
1) ≤ δ for any Y ∈ Tanm(X, x)

}

for any δ > 0, and we point out that for any 0 < δ′ < δ,

(Rk)δ ⊃
{

x ∈ X : dmGH(B
Y
1 (x),B

k
1) ≤ δ′ for any Y ∈ Tanm(X, x)

}

.

Moreover, we have

Rk =
⋂

δ

(Rk)δ.
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Proposition 4.5. Let (X, d, µ, o) ∈ Km(n, f, c), k ∈ {1, . . . , n} and ε ∈ (0, 1/2)

be given. Then there exists δ > 0 such that for any x ∈ (Rk)δ,16r with r ≤
√
T/16

and f(256r2) ≤ δ and any s ∈ (0, r] there exist a function u : B2s(x) → R
k and a

Borel set V ⊂ Bs(x) such that:

i) u is a (k, ε)-splitting of B2s(x);
ii) µ(Bs(x)\V ) ≤ εµ(Bs(x));
iii) u is an (ε σ)-GH isometry between Bσ(y) and u(y) + B

k
σ for any y ∈ V ∩

(Rk)δ,16r and any σ ≤ s/2;
iv) u is (1 + ε)-bi-Lipschitz on V ∩ (Rk)δ,16r;
v) u#

(

1V ∩(Rk)δ,16r dµ
)

≪ Hk.

In the proof of the last point of this proposition, we use a fundamental result of
De Philippis and Rindler [DPR16, Corollary 1.12] which requires the terminology of
currents. For the interested reader, we refer to [Fed14] or [Sim14].

Roughly speaking a current in R
k is a differential form whose coefficients are

distributions. To be more precise, let d be a positive integer. A d-dimensional
current T on R

k is a continuous linear map

T : C∞
0

(

R
k,Λd(Rk)∗

)

→ R.

The differential of a d-dimensional current T is the (d − 1)-dimensional current dT
defined by

dT (ω) := T (dω)

for any ω ∈ C∞
0

(

R
k,Λd−1(Rk)∗

)

. Here we consider only currents with finite mass,
that is to say differential forms whose coefficents are finite Radon measures. Any one
dimensional current with finite mass admits a canonical decomposition

(26) T (·) =
ˆ
Rk

〈·, ~T 〉 d‖T‖

where ‖T‖ is a Radon measure and ~T is a ‖T‖-integrable unitary vector field. In
this regard, we shall make use of the following easy lemma, whose proof is omitted
for brevity.

Lemma 4.6. Let ν be a Radon measure on R
d and ~V a square ν-integrable

vector field such that |~V (x)| > 0 for ν-a.e. x ∈ R
k. Let T be the one-dimensional

current on R
k defined by

T (ω) =

ˆ
Rk

〈ω, ~V 〉 dν

for any ω ∈ C∞
0

(

R
k,Λ1(Rk)∗

)

. Then ‖T‖ is absolutely continuous with respect to ν

with density |~V | and ~T (x) = ~V (x)/|~V (x)| for ν-a.e. x ∈ R
k.

A current T with finite mass such that dT has finite mass too is called a normal
current. We recall the result due to De Philippis and Rindler that we shall use
[DPR16, Corollary 1.12].

Theorem 4.7. Let ν be a Radon measure on R
k, and let {Ti}1≤i≤k be nor-

mal one-dimensional currents on R
k such that ν ≪ ‖Ti‖ for any i, and the vectors

{~Ti(x)}1≤i≤k are independent for ν-a.e. x ∈ R
k. Then ν ≪ Hk.

We are now in a position to prove Proposition 4.5.
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Proof. We first prove the first three assertions which are direct consequences of
the propagation property of splittings we established in Section 3. Let us set

τ(n) := min

{

1,
1

4
C−1(n, 1/2), (A(n)

√

C ′(n))−1

}

where A(n) is given by the doubling condition (5), C(n, 1/2) is given by Proposi-
tion 3.10, and C ′(n) is given by Proposition 3.12. According to Proposition 3.10,
there is some δ1 such that when y ∈ (Rk)δ1,16r, σ ∈ (0, 4r] and v : B4σ(y) → R

k is a
(k, [τ(n)ε]2)-splitting of B4σ(x) then v is an (ε σ)-GH isometry between B2σ(y) and
v(y) + B

k
2σ.

According to Proposition 3.9, there is a δ ≤ δ1 such that if x ∈ (Rk)δ,16r and
s ≤ r then there is u : B8s(x) → R

k a reinforced (k, [τ(n)ε]4)-splitting of B8s(x).
Now let x ∈ (Rk)δ,16r and let s ∈ (0, r] and u : B8s(x) → R

k be a reinforced
(k, [τ(n)ε]4)-splitting of B8s(x). With Proposition 3.12, we find Ω ⊂ B4s(x) such
that

µ(B4s(x)\Ω) ≤ C ′(n)τ 2(n)ε2 µ(B4s(x))

such that for any y ∈ Ω and any σ ≤ s then u is a (k, [τ(n)ε]2)-splitting of B4σ(y).
If furthermore y ∈ (Rk)δ,16r then u is an (ε σ)-GH isometry between B2σ(y) and
u(y) + B

k
2σ.

We set V := Ω ∩ Bs(x). Then

µ(Bs(x)\V ) ≤ µ(B4s(x)\Ω) ≤ C ′(n)τ 2(n)ε2 µ(B4s(x))

≤ A2(n)C ′(n)τ 2(n)ε2 µ(Bs(x)) ≤ εµ(Bs(x)).

The fourth assertion is a consequence of the third one. Indeed, if y, z ∈ V ∩
(Rk)δ,16r, define 2σ := d(y, z) ≤ 2s. Then, since u is an (ε σ)-GH isometry between
B2σ(y) and u(y) + B

k
2σ, we get

||u(y)− u(z)| − d(y, z)| ≤ εσ = ε
d(y, z)

2

from which follows the desired result.
In order to prove the last point we only need to show that if K is a compact

subset of V ∩ (Rk)δ,16r ⊂ Bs(x) with µ(K) > 0 then

u# (1K dµ) ≪ Hk.

Step 1. To prepare the application of Theorem 4.7, let us introduce a series of
Radon measures and discuss some properties of these measures. Set B := B2s(x).
Choose {χℓ} ⊂ Lipc(B, [0, 1]) such that χℓ ↓ 1K : for instance for any ℓ we may choose
χℓ(·) :=

(

1− ℓd(K, ·)
)

+
which has support Kℓ =

{

d(K, ·) ≤ 1
ℓ

}

. For convenience we

also set χ∞ := 1K . We define the following Radon measures on R
k:

νℓi,j := u# (χℓΓ(ui, uj)) and νℓ := u# (χℓµ)

for i, j ∈ {1, . . . , k} and ℓ ∈ N ∪ {∞} and we also set

ν := u# (1Bµ) .

Notice that the measures νℓi,j are signed Radon measures. The coefficients

dΓ(ui, uj)

dµ
= 〈dui, duj〉, i, j ∈ {1, . . . , k},
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of the Gram matrix map of u = (u1, . . . , uk) are bounded Borel functions, hence there
exist bounded Borel functions such that for any i, j ∈ {1, . . . , k} and ℓ ∈ N ∪ {∞},

dνℓi,j = ρℓi,j dν
ℓ.

There are also bounded Borel functions J ℓ such that

dνℓ = J ℓ dν

and J ℓ+1 ≤ J ℓ ≤ 1 for any ℓ ∈ N ∪ {∞}. Moreover, recalling that J ℓ dν = dνℓ =
u# (χℓ dµ) and J

∞ dν = dν∞ = u# (χ∞ dµ), one gets

‖J ℓ − J∞‖L1(dν) =

ˆ
Rk

(J ℓ − J∞) dν =

ˆ
B

(χℓ − χ∞) dµ ≤ µ(Kℓ \K) → 0,

so that

(27) lim
ℓ→+∞

‖J ℓ − J∞‖L1(dν) = 0.

Step 2. For any ℓ ∈ N ∪ {∞}, let λℓ be the lowest eigenvalue of the symmetric
matrix

(

ρℓi,j
)

. Our goal is now to establish

(28) lim
ℓ→+∞

‖λℓ − λ∞‖L1(dν∞) = 0

and for ν∞-a.e. p ∈ R
k,

(29) λ∞(p) ≥ 1− ǫ.

For any ξ = (ξ1, . . . , ξk) ∈ R
k such that tξξ = 1 and any ℓ ∈ N ∪ {∞}, we

introduce

ρℓξ :=
∑

i,j

ξiξjρ
ℓ
i,j.

Setting

uξ := 〈ξ, u〉
we have

ρℓξ =
du# (χℓΓ(uξ, uξ))

dνℓ
.

In particular, {ρℓξ(p)}ℓ is a non negative non increasing sequence for ν∞-a.e. p ∈ R
k.

Arguing as we did to get (27) yields

lim
ℓ→+∞

‖J ℓρℓξ − J∞ρ∞ξ ‖L1(dν) = 0.

Since

‖ρℓξ − ρ∞ξ ‖L1(dν∞) =

ˆ
Rk

(ρℓξ − ρ∞ξ )J∞ dν

=

ˆ
Rk

(J ℓρℓξ − J∞ρ∞ξ ) dν −
ˆ
Rk

(J ℓ − J∞)ρℓξ dν

we also get

lim
ℓ→+∞

‖ρℓξ − ρ∞ξ ‖L1(dν∞) = 0.

Using that ξ 7→ ρℓξ is quadratic, by polarization we deduce that for any i, j,

lim
ℓ→+∞

‖ρℓi,j − ρ∞i,j‖L1(dν∞) = 0.
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Up to extraction of a subsequence we can assume that there exists a set C of full ν∞

measure such that for any i, j ∈ {1, . . . , k} and p ∈ C,

lim
ℓ→+∞

ρℓi,j(p) = ρ∞i,j(p).

Then for ν∞-a.e. p ∈ R
k,

(30) lim
ℓ→+∞

λℓ(p) = λ∞(p)

and thus we get (28).
For ν∞-a.e. p ∈ u(K), we have

ρ∞ξ (p) = lim
σ→0

´
K∩u−1(Bk

σ(p))
dΓ(uξ, uξ)

µ (K ∩ u−1 (Bk
σ(p)))

·

Since µ-a.e. on B we have
dΓ(uξ, uξ)

dµ
= tξGuξ,

from (19) in Proposition 3.12 we get µ-a.e. on K:

1− ε ≤ dΓ(uξ, uξ)

dµ
≤ 1 + ε.

Thus for ν∞-a.e. p ∈ u(K),

(31) 1− ǫ ≤ ρ∞ξ (p) ≤ 1 + ǫ,

from which follows (29).

Step 3. Recall that our final goal is to prove that ν∞ ≪ Hk. To this aim, we will
apply Theorem 4.7 for any finite ℓ to the currents

T ℓ
i =

k
∑

j=1

νℓi,jdxj =
k
∑

j=1

ρℓi,jν
ℓdxj .

These are indeed normal currents as for ψ ∈ C∞
0 (Rk),

dT ℓ
i (ψ) =

k
∑

j=1

ˆ
B

χℓ
∂ψ

∂xj
◦ u dΓ(ui, uj)

=

ˆ
B

χℓ dΓ(ψ ◦ u, ui) using the chain rule

= −
ˆ
B

ψ ◦ u dΓ(χℓ, ui) by the fact that ui is harmonic,

hence

T ℓ
i = −u# (Γ(χℓ, ui))

is a finite Radon measure. Moreover, by Lemma 4.6, the decomposition (26) of T ℓ
i is

given by
~T ℓ
i =

(

ρℓi
)−1 (

ρℓi,1, . . . , ρ
ℓ
i,k

)

with

ρℓi =

(

k
∑

j=1

(

ρℓi,j
)2

)

1
2

and ‖T ℓ
i ‖ = ρℓiν

ℓ.
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Notice that ρℓi ≥ ρℓi,i hence

ρ∞i,iν
∞ = ν∞i,i ≪ νℓi,i = ρℓi,iν

ℓ ≪ ‖T ℓ
i ‖,

and inequality (31) implies that ν∞-a.e. ρ∞i,i ≥ 1−√
ε so that

ν∞ ≪ ‖T ℓ
i ‖.

We remark that for any ξ = (ξ1, . . . , ξk) ∈ R
k unitary it holds

〈(

k
∑

i=1

ξiρ
ℓ
i
~T ℓ
i

)

, ξ

〉

= ρℓξ.

We set

Bℓ := {p ∈ R
k : λℓ(p) ≤ (1− ε)/2}.

Since ρℓi are bounded functions, we deduce that if p ∈ R
k \ Bℓ then ~T ℓ

1 (p), . . . ,
~T ℓ
k(p)

is a basis of Rk. Applying Theorem 4.7 we get

1Rk\Bℓ
ν∞ ≪ Hk.

But the convergence (28) and the lower bound (29) yield

lim
ℓ→∞

ν∞ (Bℓ) = 0,

hence we get ν∞ ≪ Hk. �

4.3. Rectifiability of the regular sets: end of the proof. To get (B) in
Theorem 4.4 from Proposition 4.5, we use the following definition, introduced in
[BPS21].

Definition 4.8. Let (X, d, µ) be a metric measure space, k a positive integer
and ε ∈ (0, 1). We call (µ, k, ε)-rectifiable any Borel set Ω ⊂ X for which there exists
a countable family of (1 + ε)-bi-Lipschitz charts {(V ε

i , φ
ε
i )} from X to R

k such that
µ(Ω\⋃i V

ε
i ) = 0.

According to the previous definition, we are left with establishing the following.

Proposition 4.9. Let (X, d, µ, o) ∈ Km(n, f, c), k ∈ {1, . . . , n} and ε ∈ (0, 1).
Then Rk is (µ, k, ε)-rectifiable.

To this aim, we prove a lemma which is a consequence of our key Proposition 4.5.

Lemma 4.10. Let (X, d, µ, o) ∈ Km(n, f, c) and k ∈ {1, . . . , n}. Then for any

p ∈ X , R > 0 and ε ∈ (0, 1), there exists a (µ, k, ε)-rectifiable set Ωε ⊂ Rk ∩ BR(p)
such that µ([Rk ∩ BR(p)]\Ωε) ≤ ε.

Proof. Let (X, d, µ, o) ∈ Km(n, f, c), k ∈ {1, . . . , n}, p ∈ X , R > 0 and ε > 0 be
given. Set ε′ := ε/µ(Rk ∩ BR(p)). Let δ > 0 be given by Proposition 4.5 applied
to ε′. For any x ∈ Rk there exists r(x) > 0 such that x ∈ (Rk)δ,16r(x). Apply the
Vitali covering lemma for doubling metric measure spaces [Hei01, Theorem 1.6] to
the set Rk ∩BR(p) and the collection of balls A := {Br(x)}x∈Rk∩BR(p),0<r≤r(x). Then
there exist countably many pairwise disjoint balls {Brxi

(xi)} ⊂ A such that µ([Rk ∩
BR(p)]\

⋃

iBrxi
(xi)) = 0. By Proposition 4.5 for any i there exists a Borel set Vi ⊂

Brxi
(xi) which is the domain of a bi-Lipschitz chart and such that µ(Brxi

(xi)\Vi) ≤
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ε′µ(Brxi
(xi)). Set Ωε =

⋃

i Vi ∩ Rk. Then Ωε is the union of domains of bi-Lipschitz
charts, so it is obviously (µ, k, ε)-rectifiable. Moreover,

µ([Rk ∩BR(p)]\Ωε) ≤ µ(∪iBrxi
(xi)\Vi) =

∑

i

µ(Brxi
(xi)\Vi)

≤ ε′
∑

i

µ(Brxi
(xi)) ≤ ε′µ(Rk ∩BR(p)) = ε. �

We are now in a position to prove Proposition 4.9.

Proof of Proposition 4.9. From the previous lemma, for any i ∈ N\{0} there
exists a Borel set Ωε,i ⊂ Rk ∩ Bi(p) which is (µ, k, 2−iε)-rectifiable and such that
µ([Rk ∩BR(pi)]\Ωε,i) ≤ 2−iε. We set Ωε :=

⋃

i Ωε,i. Then

µ(Rk\Ωε) ≤ lim
i→+∞

µ([Rk ∩Bi(p)]\Ωε) ≤ lim
i→+∞

µ([Rk ∩Bi(p)]\Ωε,i) = 0.

Since for any i there exist countably many (1 + ε)-bi-Lipschitz charts {(V ε
i,j, φ

ε
i,j)}j

such that µ(Ωε,i\
⋃

j V
ε
i,j) = 0, we get that Ωε (and thenRk) is (µ, k, ε)-rectifiable. �

Noting that the absolute continuity statement is ensured by v) of Proposition 4.5,
we obtain (B) in Theorem 4.4 from the previous proposition.

5. Regularity of non-collapsed strong Kato limits

This section is devoted to the structure and regularity of non-collapsed strong
Kato limits. We start by recalling some properties of these spaces, then show an
almost rigidity result that leads to the Reifenberg regularity stated in Theorem 1.3. In
the second part of this section, we prove a Transformation Theorem which, together
with Theorem 1.3 and the results of Section 3, implies Theorem 1.2.

5.1. Non-collapsed strong Kato limits and almost monotone quantity.

Recall that a manifold (Mn, g) ∈ K(n, f) satisfies a strong Kato bound if the function
f is such that

(SK) Λ :=

ˆ T

0

√

f(s)

s
ds <∞.

Under assumption (SK), the volume bound (3) given by Proposition 2.4 upgrades
into the following, as proved in [CMT24].

Proposition 5.1. Let (Mn, g) ∈ K(n, f) with f satisfying (SK). Then there

exists C = C(n,Λ) > 0 such that for any 0 < s ≤ r ≤
√
T we have

νg(Br(x))

νg(Bs(x))
≤ C

(r

s

)n

.

For v > 0, (Mn, g, o) belongs to K(n, f, v) if f satisfies (SK) and moreover
νg(B√

T (o)) ≥ vT
n
2 . Non-collapsed strong Kato limits are elements of the closure

K(n, f, v) with respect to Gromov–Hausdorff topology. As proved in [CMT24, The-
orem 7.1], volume continuity holds for non-collapsed strong Kato limits.

Theorem 5.2. Let {(Mα, gα, oα)} ⊂ K(n, f, v) be a sequence converging in the

pointed Gromov–Hausdorff topology to (X, d, o) ∈ K(n, f, v). Then (Mα, gα, νgα, oα)
converges to (X, d,Hn, o) in the pointed measured Gromov–Hausdorff topology.
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As a consequence, in this setting the results of Section 3.2 can be revisited. More
precisely, if in Theorem 3.8, Propositions 3.9 and 3.10, we replace Kato limits by
non-collapsed strong Kato limits, we can assume closedness of balls in the Gromov–
Hausdorff topology instead of the measured Gromov–Hausdorff topology. Note that
in this case the quantities ν and δ also depend on the volume bound v > 0.

Now let (X, d, o) ∈ K(n, f, v) and let H : R+ ×X ×X → R+ be its heat kernel.
For any t > 0 and x ∈ X we consider

θ(t, x) = (4πt)
n
2H(t, x, x).

As we recalled in the introduction, in [CMT24] we showed that the map t 7→ θ(t, x)
is almost non-decreasing for all x ∈ X . More precisely, define for any t ∈ (0, T ]

φ(t) :=

ˆ t

0

√

f(s)

s
ds <∞.

Thanks to the Li–Yau inequality given by Proposition 2.9, we get the following (see
also [CMT24, Corollaries 5.12 and 5.13]).

Proposition 5.3. Let (X, d, o) ∈ K(n, f, v) with f satisfying (SK). There is a

constant cn > 0 depending only on n such that for any x ∈ X the function

t ∈ (0, T ) 7→ ecnφ(t)θ(t, x)

is non-decreasing and such that for any t ∈ (0, T ),

ecnφ(t)θ(t, x) ≥ 1.

In particular, the limit ϑ(x) = limt→0 θ(t, x) is well defined and satisfies ϑ(x) ≥ 1.

Remark 5.4. In [CMT24] we also showed that for all x ∈ X , ϑ(x) is the inverse
of the volume density: ϑ(x)−1 = limr→0(Hn(Br(x))/ωnr

n), where ωn is the volume
of the Euclidean unit ball.

One consequence of [CMT24] is that the regular set coincides with the set of
points where ϑ is equal to 1, as we show below.

Proposition 5.5. Let (X, d, o) ∈ K(n, f, v) with f satisfying (SK). Then

R = {x ∈ X : Tan(X, x) = {(Rn, de, 0)}} = {x ∈ X : ϑ(x) = 1}.
Proof. The first equality is a direct consequence of [CMT24, Theorem 6.2(iii)]

and of volume continuity as recalled in Theorem 5.2. As for the second one, [CMT24,
Theorem 7.2] ensures that if (Rn, de, 0) is a tangent cone at x ∈ X , then ϑ(x) = 1,
so that

R ⊂ {x ∈ X : ϑ(x) = 1}.
To prove the converse inclusion, consider x ∈ X such that ϑ(x) = 1. The proof of
[CMT24, Proposition 6.3] ensures that ϑ is upper semi-continuous. We have then

1 ≤ lim inf
y→x

ϑ(y) ≤ lim sup
y→x

ϑ(y) ≤ ϑ(x) = 1,

so that ϑ is continuous at x. The proof of [CMT24, Theorem 6.2(iii)] then implies
that all tangent cones at x are Euclidean, thus x ∈ R. �

For a manifold (Mn, g) satisfying a strong Kato bound, an upper bound on θ at
some point x implies a lower bound on the volume of B√

T (x).
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Lemma 5.6. Assume that (Mn, g) is a closed manifold in K(n, f) with f satis-

fying (SK). There is a constant v(n) > 0 such that if at some x ∈ X and t ≤ T we

have

θ(t, x) ≤ 2,

then νg
(

B√
t(x)

)

≥ v(n)t
n
2 .

Proof. Thanks to the heat kernel estimates given by Proposition 2.6, we get

t
n
2

Cnνg(B√
t(x))

≤ θ(x, t) ≤ 2,

which immediately gives the desired lower bound. �

We are also going to use the following lemma.

Lemma 5.7. Let (Mn, g) ∈ K(n, f) for f satisfying (SK). For any δ ∈ (0, 1)
there exists ν > 0 depending on δ, f such that if for some t ∈ (0, T ] we have

kt(M
n, g) < ν, then for all x ∈M and s ∈ (0, t] we have θ(s, x) ≤ θ(t, x)(1 + δ).

Proof. Assume kt(M, g) < ν and let cn be the constant appearing in Proposi-
tion 5.3. Observe that for any a ∈ (0, t) we can writeˆ t

0

√

kτ (Mn, g)

τ
dτ ≤

ˆ a

0

√

f(τ)

τ
dτ +

√
ν log

(

T

a

)

.

We can choose a depending on f and δ such that the first addend in the previous
inequality is smaller than log(1 + δ)/2cn. Then we can choose ν depending on a and
δ, thus on f and δ, such that the second addend is also smaller than log(1 + δ)/2cn.
By Proposition 5.3, then we know that for all x ∈M and s ∈ (0, t],

θ(s, x) ≤ θ(t, x) exp

(

cn

ˆ t

s

√

kτ (Mn, g)

τ
dτ

)

≤ θ(t, x)(1 + δ).

Remark 5.8. The same argument as in the previous proof implies that for
a sequence {(Mℓ, gℓ, oℓ)} ⊂ K(n, f, v) converging to (X, d, o) ∈ K(n, f, v) such that
limℓ kt(Mℓ, gℓ) = 0 for some t ∈ (0, T ], we have that for all x ∈ X the map s 7→ θ(s, x)
is monotone non-decreasing and satisfies θ(s, x) ≥ 1 for all s ∈ (0, t].

5.2. Almost rigidity. This subsection is devoted to proving the following
almost rigidity for θ, which will be the key result to obtain our Reifenberg regularity
statement, namely Theorem 1.3.

Theorem 5.9. Let f : (0, T ] → R+ be a non decreasing function satisfying (SK).
For any ε > 0 and A > 0 there exists δ > 0 depending only on f, n, ε and A such

that if (Mn, g) ∈ K(n, f), x ∈M and t ≤ T satisfy

kt(M, g) ≤ δ and θ(t, x) ≤ 1 + δ,

then

dGH

(

BA
√
t(x),B

n
A
√
t

)

< εA
√
t.

In order to prove Theorem 5.9, we are going to use a contradiction argument, that
we sketch here before giving the detailed proof. We will construct a contradicting
sequence for which a ball of radius 1 stays uniformly far from the unit Euclidean
ball. Thanks to Lemma 5.6 such sequence is non-collapsing. Then up to extracting a
sub-sequence, we obtain a limit (X, d, x) ∈ K(n, f, v) such that B1(x) is at a positive
distance from the unit Euclidean ball. We then aim to show that the limit space (X, d)
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is isometric to the Euclidean space. For that, we use the heat kernel rigidity shown
in [CT22]. More precisely, for a non-collapsed strong Kato limit (X, d, x) ∈ K(n, f, v)
we define

P(t, x, y) =
e−

d
2(x,y)
4t

(4πt)
n
2

.

If for all x, y ∈ X and t > 0 we have H(t, x, y) = P(t, x, y), then [CT22, Theorem 1.1]
ensures that (X, d) is isometric to the Euclidean space. In order to show that H
coincides with P, we will rely on the Li–Yau inequality proven in Proposition 2.9 and
on the fact that, thanks to Remark 5.8, θ is monotone non-decreasing.

Proof. We assume by contradiction that the statement is false. Then there exist
ε, A > 0 such that if we consider the sequence δℓ = ℓ−1, ℓ ∈ N, ℓ > 0, we find tℓ ≤ T ,
(Mℓ, gℓ) ∈ K(n, f) and xℓ ∈Mℓ such that

ktℓ(Mℓ, g̃ℓ) ≤ δℓ and θ(tℓ, xℓ) ≤ 1 + δℓ,

but

(32) dGH(BA
√
tℓ(xℓ),B

n
A
√
tℓ
) ≥ ε

√
Atℓ.

Observe that if we define f̃(s) = f(sT ) for all s ∈ [0, 1] and g̃ℓ = t−1
ℓ gℓ for any ℓ, then

the rescaling properties of kt and of the heat kernel imply that each (Mℓ, g̃ℓ) belongs

to K(n, f̃) and

k1(Mℓ, g̃ℓ) = ktℓ(Mℓ, gℓ) ≤ δℓ, θ̃(1, xℓ) = θ(tℓ, xℓ) ≤ 1 + δℓ.

Then up to rescaling we can assume that tℓ = 1 for all ℓ ∈ N.
By Lemma 5.6, we also know that there exists v = v(n) > 0 such that for any ℓ,

νgℓ(B1(xℓ)) ≥ v,

so that each (Mℓ, gℓ, xℓ) belongs to K(n, f, v). Up to extracting a subsequence,
{(Mℓ, gℓ, xℓ)} converges in the pointed Gromov–Hausdorff topology to (X, d, x) ∈
K(n, f, v). Moreover, convergence of the heat kernel given in Proposition 2.8 ensures
that

θ(1, x) = lim
ℓ
θ(1, xℓ) ≤ 1.

Thanks to Remark 5.8, we also know that t 7→ θ(t, x) is monotone non-decreasing
and larger than one. We then get for all s ∈ (0, 1],

(33) θ(s, x) = θ(1, x) = 1.

Because of (32), we also have

(34) dGH(BA(x),B
n
A) ≥ εA.

Our setting constructed, we aim to prove that the heat kernel of X satisfies

(35) H = P

on R+ ×X ×X . In order do so, we introduce the function

Φ: R+ ×X ∋ (t, y) 7→ (4πt)
n
2H2(t/2, x, y).

Step 1. We show that Φ satisfies

(36) 4
∂

∂t

(ˆ
X

ϕΦdHn

)

+

ˆ
X

〈dϕ, dΦ〉 dHn ≥ 0,
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for any non-negative ϕ ∈ Cc(X) ∩H1,2(X). To this aim, we first observe that

4
∂

∂t

(ˆ
X

ϕΦdHn

)

=

ˆ
X

ϕ(y)

(

2n

t
Φ(t, y) + 4(4πt)

n
2H(t/2, x, y)

∂H

∂t
(t/2, x, y)

)

dHn(y).

Then we use the definitions of L, H and Φ to getˆ
X

〈dϕ, dΦ〉 dHn =

ˆ
X

ϕLΦdHn

= 2(4πt)
n
2

ˆ
X

ϕ(y)
(

H(t/2, x, y)LyH(t/2, x, y)− |dyH(t/2, x, y)|2
)

dHn(y)

= −2(4πt)
n
2

ˆ
X

ϕ(y)

(

H(t/2, x, y)
∂H

∂t
(t/2, x, y) + |dyH(t/2, x, y)|2

)

dHn(y).

Adding these two identities yields

4
∂

∂t

(ˆ
X

ϕΦdHn

)

+

ˆ
X

〈dϕ, dΦ〉 dHn = 2(4πt)
n
2

ˆ
X

ϕZ dHn,

where Z is defined by

Z(t, y) =
n

t
H2(t/2, x, y) +H(t/2, x, y)

∂H

∂t
(t/2, x, y)− |dyH(t/2, x, y)|2

for any t ∈ R+ and y ∈ X . Since (X, d, o) is the limit of manifolds {(Mℓ, gℓ)} such
that k1(Mℓ, gℓ) → 0 as ℓ goes to infinity, the Li–Yau inequality given by Remark 2.10
holds. Then Z ≥ 0, this concluding the proof of (36).

Step 2. We show that for any t > 0 and y ∈ X ,

(37) H(t, x, y) = P(t, x, y).

The Gaussian estimate given in Proposition 2.6 implies that for any t > 0,

lim
d(x,y)→∞

Φ(t, y) = 0.

Moreover, the fact that Hn(B1(x)) ≥ v and the volume bound given in Proposi-
tion 5.1 imply that for any y ∈ X\{x},

lim
t→0

Φ(t, y) = 0.

By the semi-group law and (33), we know that for any s ∈ (0, 1],ˆ
X

Φ(s, y) dHn(y) = θ(s, x) = 1.

As a consequence we get

lim
t→0

Φ(t, ·) = δx(·).
Then for any t > 0 and y ∈ X , the function

F : (0, t) ∋ s 7→
ˆ
X

Φ(s, z)H((t− s)/4, z, y) dHn(z)

satisfies

lim
s↓0

F (s) = H(t/4, x, y), lim
s↑t

F (s) = Φ(t, y),
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and a direct computation justified by the Gaussian estimates of Proposition 2.6 yields
that for any s ∈ (0, t),

F ′(s) =

ˆ
X

(

∂sΦ(s, z)H((t− s)/4, z, y) + 〈dzΦ(s, z), dzH((t− s)/4, z, y)〉
)

dHn(z).

As (36) implies that F ′ ≥ 0, we obtain that

Φ(t, y) ≥ H(t/4, x, y).

But we also have, for all t ∈ (0, 1],

1 =

ˆ
X

Φ(t, y) dHn(y) =

ˆ
X

H(t/4, x, y) dHn(y),

then we obtain, for all t ∈ (0, 1] and y ∈ X ,

(38) Φ(t, y) = H(t/4, x, y).

We now introduce

U(t, x, y) = −4t log((4πt)
n
2H(t, x, y)).

By Varadhan’s formula, we know

lim
σ→0

U(σ, x, y) = −d
2(x, y).

Because of (38), a simple computation shows that for any s ∈ (0, 1] we have

U(s/4, x, y) = U(s/2, x, y).

As a consequence, for all s ∈ (0, 1],

U(s/2, x, y) = lim
σ→0

U(σ, x, y) = −d
2(x, y).

This shows that for all t ∈ (0, 1/2] and y ∈ X

H(t, x, y) = P(t, x, y).

Both expressions in this equality are analytic in t, hence we get (37) for any t > 0.

Step 3. We obtain (35) and conclude. Equality (37) implies in particular that
θ(t, x) = 1 for all t > 0 and not only for t ∈ (0, 1]. By using the estimate on the
derivatives of the heat kernel given in the last point of Proposition 2.6, non-collapsing
and the volume bound of Proposition 5.1, we get that there exists a constant C > 0
such that for any t > 0 and z ∈ X ,

|θ(t, x)− θ(t, z)| ≤ C√
t
d(x, z).

Then for any z ∈ X ,

lim
t→+∞

θ(t, z) = 1.

Since by Remark 5.8 the map t 7→ θ(t, z) is monotone non-decreasing and larger
than one, it must be constantly equal to one. Arguing as in the previous step, the
fact that θ(t, z) = 1 for any z ∈ X and t > 0 leads to (35). Then by [CT22, The-
orem 1.1], the strong Kato limit (X, d) is isometric to the Euclidean space (Rn, de),
this contradicting inequality (34). �

Remark 5.10. Theorem 5.9 can be also proven by using [DPG16, Corollary 1.7],
that is the rigidity of the Bishop–Gromov inequality for non-collapsed RCD(0, n)
spaces. We chose to provide a self-contained proof independent of RCD theory.
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5.3. Consequences of almost rigidity. As an immediate consequence of
Theorem 5.9 and of the convergence of heat kernels given by Proposition 2.8 we
obtain the following.

Corollary 5.11. Assume that f satisfies (SK). For any δ > 0, there is some

ν > 0 depending only on f, n and δ such that if (Mn, g) ∈ K(n, f), x ∈M and t ≤ T
satisfy

kt(M, g) ≤ ν and θ(t, x) ≤ 1 + ν,

then for any y ∈ B√
t(x) we have θ(t, y) ≤ 1 + δ.

By combining Corollary 5.11, the almost monotonicity of θ (Lemma 5.7) with
Theorem 5.9, we get a Reifenberg regularity result for manifolds satisfying a strong
Kato bound.

Corollary 5.12. Assume that f satisfies (SK). For any ε > 0, there exists ν > 0
depending only on f, n, ε such that if (Mn, g) ∈ K(n, f), x ∈M and t ≤ T satisfy

kt(M, g) ≤ ν and θ(t, x) ≤ 1 + ν

then for any y ∈ B√
t(x) and s ∈ (0,

√
t) :

dGH (Bs(y),B
n
s ) ≤ εs.

The Reifenberg regularity for non-collapsed strong Kato limits given in Theo-
rem 1.3 is then a direct consequence of Corollary 5.12.

We point out a corollary of the almost rigidity statement Theorem 5.9 and of
Proposition 3.9 that we use later to obtain Hölder regularity of the regular set of a
non-collapsed strong Kato limit.

Corollary 5.13. Let v > 0 and f be a function satisfying (SK). For any ε > 0
there exists δ > 0 depending only f, n, ε such that if (Mn, g) ∈ K(n, f, v), x ∈ M
and t ≤ T satisfy

kt(M
n, g) ≤ δ and θ(t, x) ≤ 1 + δ,

then there exists an (n, ε)-splitting u : B√
t(x) → R

n.

5.4. Transformation theorem. In order to obtain a quantitative version of
Theorem 1.3, we need to prove the following Transformation theorem.

Theorem 5.14. (Transformation Theorem) Let f satisfy (SK) and v > 0. There
exist a constant γn > 0 and ε0 ∈ (0, 1) depending on n, f such that for all ε ∈ (0, ε0]
there exists δ > 0 depending on ε, n, f and v such that if (Mn, g) ∈ K(n, f), x ∈ M

and r ∈ (0,
√
T ] satisfy

i) νg(Br(x)) ≥ vrn;
ii) kr2(M

n, g) ≤ δ;
iii) for any s ∈ (0, r], dGH(Bs(x),B

n
s ) ≤ δs;

and if u : Br(x) → R
n is an (n, δ)-splitting, then for all s ∈ (0, r] there exists a n× n

lower triangular matrix Ts such that ‖Ts‖ ≤ (1 + ε)(r/s)γnε and the map ũ = Ts ◦ u
is an (n, ε)-splitting on Bs(x).

Remark 5.15. Thanks to Lemma 5.6, we can reformulate the previous theorem
replacing the non-collapsing assumption i) by θ(r2, x) ≤ 2. In this case the choice of
δ will not depend on v.

We obtain Theorem 5.14 as a consequence of the following proposition.
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Proposition 5.16. Let (M, g) ∈ K(n, f). Then there exist Cn > 0 and ε0,
λ ∈ (0, 1) depending only on n such that for all ε ∈ (0, ε0] there exists δ > 0 depending

on n, f, ε such that the following holds. Assume that there exists r ∈ (0,
√
T ] such

that

kr2(M
n, g) ≤ δ,

and a ball B ⊂M of radius r satisfying

dGH(B,B
n
r ) ≤ δr.

Then for any balanced (n, ε)-splitting u : B → R
n there exists a n×n lower triangular

matrix T such that ‖T − Idn‖ ≤ Cnε and the map ũ := T ◦ u|λB is a balanced (n, ε)-
splitting of λB.

We postpone the proof of Proposition 5.16 and first give a proof of Theorem 5.14.

Proof of Theorem 5.14 given Proposition 5.16. Let ε0, λ be as in Proposition 5.16,
and let ε ∈ (0, ε0]. Consider η ∈ (0, 1] to be chosen later depending on n and let
δ = δ(n, f, ηε) be the quantity given by Proposition 5.16. Assume that

kr2(M
n, g) ≤ δ, for all s ∈ (0, r] dGH(Bs(x),B

n
s ) ≤ δs.

Consider a (n, ηε)-splitting u : Br(x) → R
n and s ∈ (0, r].

First assume s ∈ (λr, r]. Since λ only depends on n, then (6) with φ = ‖Gu−Idn‖
implies  

Bs(x)

‖Gu − Idn‖ dνg < C(n)ηε.

If C(n)ε0 < 1/2, Remark 3.5 implies the existence of a lower triangular matrix Ts such
that ‖Ts‖ ≤ 1 + C(n)ηε and Ts ◦ u : Bs(x) → R

n is a balanced (n, (1 + C(n)ηε)2ηε)-
splitting. We have no restriction in assuming that ε0 is lower than 1/4C(n), thus we
do it. Assume also that

η ≤ 16

25
.

Then Ts ◦ u is a balanced (n, ε)-splitting.
Now assume that there exists some positive integer l such that λ−ls ∈ (λr, r].

Thanks to assumption iii), we can apply Proposition 5.16 iteratively to get existence
of lower triangular matrices T0, . . . , Tl such that ũ := Tl ◦ . . . ◦ T0 ◦ u : Bs(x) → R

n is
a balanced (n, ε)-splitting and

‖Tj‖ ≤ (1 + C(n)ηε)

for any j ∈ {0, . . . , l}. Set T :=Tl ◦ . . . ◦ T0. Then
‖T‖ ≤ (1 + C(n)ηε)l+1.

Since λ−ls ≤ r implies l ≤ ln(r/s)
ln(1/λ)

, we get

(1 + C(n)ηε)l ≤ (r/s)
ln(1+C(n)ηε)

ln(1/λ) ≤ (r/s)
C(n)ε
ln(1/λ) .

Then we set

γn :=
C(n)

ln(1/λ)
and η := min

{

16

25
,

1

C(n)

}

to get ‖T‖ ≤ (1 + ε)(r/s)γnε. This concludes the proof. �

Remark 5.17. We point out that, unlike the proof of [CJN21, Proposition 7.7],
which relies on a contradiction argument, we provide a direct proof of the Transfor-
mation Theorem.
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We are left to proving Proposition 5.16. In order to do so, we need the following
property of harmonic maps on B

n.

Proposition 5.18. Let h : Bn → R
k be a harmonic function and set

Λ :=

 
Bn

‖Gh − Idk‖1 dx.

Then there exists a constant C > 0 depending only on n such that for all r ∈ (0, 1/2)

(39)

 
Bn
r

‖Gh −
ffl

Bn
r
Gh‖1 dx ≤ CΛr.

Proof. For the sake of brevity, we show an analog statement in the case k = 1:
consider a harmonic function h : Bn → R and a constant c ∈ R, and set

Λc =

 
Bn

||dh|2 − c| dx.

Then we show that there exists C > 0 only depending on n such that for all r ∈
(0, 1/2) we have

(40)

 
Bn
r

∣

∣

∣

∣

|dh|2 −
 
Bn
r

|dh|2
∣

∣

∣

∣

dx ≤ CΛcr.

By arguing as in Lemma 3.11, we obtain the following Hessian bound:

(41) ‖Hess h‖L∞( 5
8
Bn) ≤ Cn

√

Λc.

Now we write
h = ℓ+ β,

where ℓ is the affine part of h, namely ℓ(·) = h(0) + dh(0)(·), so that β(0) = 0 and
dβ(0) = 0. We also have

Hess h = Hess β,

then from (41) we get, for any x ∈ B
n
5
8

,

(42) |dβ|(x) ≤ Cn

√

Λc |x|.
Using that the coefficients of dh are harmonic and dβ(0) = 0, we obtain 

Bn

dh = dℓ and |dℓ| ≤
 
Bn

|dh|.

Moreover, for any r ∈ (0, 1) the mean value of 〈dℓ, dβ〉 over Bn
r is equal to its value

at 0, thus it is equal to zero. We then get for any r ∈ (0, 1) 
rBn

|dh|2 = |dℓ|2 +
 
rBn

|dβ|2

so that

(43)

 
rBn

∣

∣

∣

∣

|dh|2 −
( 

rBn

|dh|2
)
∣

∣

∣

∣

≤ 2

 
rBn

|dβ|2 + 2

 
rBn

|〈dℓ, dβ〉|.

By (42), the first term in the right-hand side is smaller than CnΛcr
2. As for the

second term, we use
2〈dℓ, dβ〉 = |dh|2 − |dℓ|2 − |dβ|2

to get

2

 
rBn

|〈dℓ, dβ〉| ≤ 2

 
rBn

|dβ|2 +
 
rBn

∣

∣

∣

∣

|dh|2 −
( 

rBn

|dh|2
)
∣

∣

∣

∣
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for any r ∈ (0, 1). Choosing r = 5/8 gives

 
5
8
Bn

|〈dℓ, dβ〉| ≤ CnΛc.

Since 〈dℓ, dβ〉 is harmonic, elliptic estimates imply the following gradient estimate

‖d〈dℓ, dβ〉‖L∞( 1
2
Bn) ≤ Cn

 
5
8
Bn

|〈dℓ, dβ〉| ≤ CnΛc.

Then by using that 〈dℓ, dβ〉(0) vanishes we get for any x ∈ 1
2
B
n

|〈dℓ, dβ〉|(x) ≤ CnΛc|x|.

As a consequence, for any r ∈ (0, 1/2) the second term in (43) is bounded above by
CnΛr. We then get the desired inequality

 
Bn
r

∣

∣

∣

∣

|dh|2 −
( 

Bn
r

|dh|2
)
∣

∣

∣

∣

≤ CnΛc(r
2 + r) ≤ CnΛcr,

for any r ∈ (0, 1/2). �

We can now prove Proposition 5.16.

Proof of Proposition 5.16. Up to rescaling the distance by a factor r−1, we can
assume that r is equal to 1. Let ε0, κ ∈ (0, 1) and λ ∈ (0, 1/4) to be chosen later
and which will depend only on the dimension n. In what follows we note C(n) for
a generic constant which depends only on the dimension n and whose value may
change from line to line.

Take ε ∈ (0, ε0] and let u be a balanced (n, ε)-splitting of a ball B ⊂ M with
radius 1. We assume that (M, g) ∈ K(n, f) and for some δ ∈ (0, 1/16n),

k1(M
n, g) ≤ δ and dGH(B,B

n
1 ) ≤ δ.

By Proposition 3.7, we have

(44) sup
3
4
B

|du| ≤ (1 + C(n)ε) .

If δ ≤ ν(n, f, v, κε, 1/2, λ), then by Theorem 3.8, there exists a harmonic map
h : 1

2
B
n → R

n such that ‖dh‖L∞( 1
2
Bn) ≤ 2C(n) and

∣

∣

∣

∣

∣

 
1
2
B

‖Gu − Idn ‖1 dνg −
 

1
2
Bn

‖Gh − Idn ‖1 dx
∣

∣

∣

∣

∣

< κε,(45)

∣

∣

∣

∣

 
λB

‖Gu −Gh ‖1 dνg −
 
λBn

‖Gh −Gh ‖1 dx
∣

∣

∣

∣

< κε,(46)

where we have noted Gh =
ffl
λBn Gh, and we introduce similarly Gu =

ffl
λB
Gu dνg.
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We now have that 
λB

‖Gu −Gu ‖ dνg ≤
 
λB

‖Gu −Gh ‖ dνg + ‖Gh −Gu ‖

≤
 
λB

‖Gu −Gh ‖ dνg +
∥

∥

∥

∥

 
λB

(

Gh −Gu

)

dνg

∥

∥

∥

∥

≤ 2

 
λB

‖Gu −Gh ‖ dνg

≤ 2

 
λB

‖Gu −Gh ‖1 dνg

≤ 2

 
λBn

‖Gh −Gh ‖1 dx+ 2κε,

where we have used (46) and ‖ · ‖ ≤ ‖ · ‖1. But using Proposition 5.18 and then
estimate (45), one gets that 

λBn

‖Gh −Gh ‖1 dx ≤ C(n)λ

 
1
2
Bn

‖Gh − Idn ‖1 dx

≤ C(n)λ

(

κε+

 
1
2
B

‖Gu − Idn ‖1 dνg
)

≤ C(n)λ (κε+ C(n)ε) ,

where in the last inequality, we have used (6) and ‖ · ‖1 ≤ C(n)‖ · ‖. Gathering all
the estimates, we get that 

λB

‖Gu −Gu ‖ dνg ≤ C(n) (κ+ λ) ε.

Again (6) implies that

‖Gu − Idn‖ ≤
 
λB

‖Gu − Idn‖ dνg ≤ C(n, λ)

 
B

‖Gu − Idn‖ dνg ≤ C(n, λ)ε.

If ε ≤ 1
4C(n,λ)

, then by Lemma 3.1 there exists a lower triangular matrix T such that

(47) T

 
λB

Gu dνg
tT = Idn, ‖T‖ ≤ 1 + C(n)C(n, λ)ε.

Then the map ũ = Tu : λB → R
n satisfies 

λB

Gũ dνg = Idn,

(48)

 
λB

‖Gũ − Idn‖ dνg ≤ ‖T‖2
 
λB

∥

∥

∥

∥

Gu −
 
λB

Gu dνg

∥

∥

∥

∥

dνg ≤ ‖T‖2C(n) (κ+ λ) ε,

and

(49) sup
λB

|dũ| ≤ ‖T‖ (1 + C(n)ε).

We now make the following choices:

κ = λ =
1

8C(n)
and ε0 = min

{

1

2C(n)
;

1

4C(n)C(n, λ)

}
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and assume that

δ = min

{

1

3C(n)
; ν(n, f, v, κε, 1/2, λ)

}

so that

• ‖T‖ ≤ 1 + Cnε ≤ 4
3
≤ 2 by (47) and the fact that ε ≤ ε0,

• supλB |dũ| ≤ 4
3
(1 + C(n)ε) ≤ 4

3
3
2
= 2 by (49),

• ũ is a balanced (n, ε)-splitting of λB by (48).

This concludes the proof. �

5.5. Hölder regularity. We conclude this section by observing that, under
suitable assumptions, the results of the previous sections lead to the following Hölder
regularity of almost splitting maps.

Theorem 5.19. Assume that f satisfies (SK). There exists ε0 ∈ (0, 1) depending
only on f, n such that for all ε ∈ (0, ε0] and η ∈ (0, 1), there exists δ > 0 depending

only on f, n, ε, η such that if (Mn, g) ∈ K(n, f), x ∈ M and t ∈ (0,
√
T ] satisfy

kt(M
n, g) ≤ δ, θ(t, x) ≤ 1 + δ,

then any (n, δ)-splitting u : B√
t(x) → R

n, with u(x) = 0, is a diffeomorphism from

B(1−η)
√
t(x) onto its image. Moreover, u satisfies for all y, z ∈ B(1−η)

√
t(x)

(50) (1− ε)
dg(y, z)

1+ε

(
√
t)ε

≤ |u(y)− u(z)| ≤ (1 + ε)dg(y, z),

and we have B
n
(1−2η)

√
t
⊂ u(B(1−η)

√
t(x)) ⊂ B

n
(1−η/2)

√
t
.

As in the proof of [CJN21, Theorem 7.10], Theorem 5.19 follows from the Reifen-
berg regularity given in Corollary 5.12, Proposition 3.10 and the Transformation
Theorem 5.14. We then refer to [CJN21] for the details of the proof.

Theorem 5.19 clearly passes to the limit to give an analog statement on non-
collapsed strong Kato limits. Now recall that Corollary 5.13 states that if θ(t, x)
is close enough to 1, then there exists an (n, ε)-splitting on a ball around x. As a
consequence, we obtain:

Corollary 5.20. Assume that f satisfies (SK). Let (X, d, o) ∈ K(n, f, v). For

any α ∈ (0, 1) there exists δ depending on α, n and f such that for any x ∈ X

satisfying ϑ(x) < 1 + δ there exist r ∈ (0,
√
T ) and a homeomorphism u : Br(x) →

u(Br(x)) ⊂ R
n such that for all y, z ∈ Br(x) we have

αr1−
1
αd(y, z)

1
α ≤ |u(y)− u(z)| ≤ 1

α
d(y, z)αr1−α.

Theorem 1.3 is then a consequence of this latter result and of a simple covering
argument.

Appendix

A. Codimension 2. In this section we prove the following.

Theorem A.1. Assume that (SK) holds. Let (X, d, o) ∈ K(n, f, v). Then the

singular set S := X \ R has Hausdorff dimension at most n− 2.

Consider (X, d, o) ∈ K(n, f, v). From [CMT24, Theorem 6.2], we know that the
singular set S admits a filtration

S0 ⊂ . . . ⊂ Sn−1 = S
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where
Sk := {x ∈ X : Rℓ × Z ∈ Tan(X, x) ⇒ ℓ ≤ k}

for any k ∈ {0, . . . , n− 1}. Moreover, the Hausdorff dimension of each Sk is at most
k. Thus we are left with proving Sn−1 = Sn−2.

Let us explain why the latter follows from proving that R+ × R
n−1 cannot be a

tangent cone of X at any x ∈ X . In [CMT24, Theorem A] we proved that any metric
measure tangent cone of X is an RCD(0, n) metric measure cone. As a consequence,
if Xx = Z × R

n−1 is a tangent cone of X at x, since X has Hausdorff dimension
at most n, then Z is an RCD(0, 1) metric measure cone over some finite set F . If
#F ≥ 2 then Z has at least two ends and as a consequence splits so that necessarily
Z = R. Therefore, we have #F = 1 and then Z = R+, and this is what we aim to
prove impossible.

We prove this by contradiction. With no loss of generality, suppose T = 1.
Assume that there exists x ∈ X admitting a metric tangent cone isometric to R

+ ×
R

n−1. Then there exist pointed closed Riemannian manifolds {(Mα, gα, oα)} and
positive numbers {εα} such that εα ↓ 0,

(Mα, dgα, oα)
pGH−→ (R+ × R

n−1, de, 0)

and

kt(Mα, gα) ≤ f(εαt)

for any α and any t ∈ (0, 1/εα]. Set

τBn
+ := {(x1, . . . , xn) ∈ B

n
τ : x1 ≥ 0}

for any τ > 0. By arguing as in the proof of [CMT24, Theorem 7.4], we get harmonic
maps

Ψα = (hα2 , . . . , h
α
n) : B2(oα) → R

n−1

which converge uniformly to (x2, . . . , xn) : 2B
n
+ → R

n−1 and such that for any α,

i) ‖dΨα‖L∞(B2(oα)) ≤ 1 + εα,

ii)

 
B2(oα)

‖GΨα − Idn−1‖dνgα ≤ εα,

iii)

 
B2(oα)

|dGΨα|2 dνgα ≤ εα.

From [CMT24, Proposition A.1], we get existence of uniformly Lipschitz functions
fα
1 ∈ C∞(B2(oα)) which converge uniformly to x1 : 2B

n
+ → R. With no loss of

generality, we may assume that

Φα := (fα
1 , h

α
2 , . . . , h

α
n) : B2(oα) → 2Bn

+

is an εα-GH isometry. We are going to modify each fα
1 into a suitable hα1 . To this

aim, we consider a convergent sequence pα ∈ B1(oα) → p = (1/2, 0, . . . , 0). Up to
working with Φα modified by an additive constant, we can assume that

Φα(pα) = p,

and up to considering large enough α only, we can assume that

B3/8(pα) ⊂ B1(oα).

For any α let f̃α
1 : B2(oα) → R be equal to the harmonic replacement of fα

1 on B3/8(pα)

and equal to fα
1 elsewhere. Then the sequence {f̃α

1 } is uniformly bounded in energy
and in L∞, and any of its weak sub-limit in energy is equal to x1 on 2Bn

+\B3/8(p) and
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is harmonic on B3/8(p), hence it is equal to x1. Using the energy characterization of
harmonic functions and the semicontinuity of the energy, this implies

f̃α
1

E→ x1.

Moreover, the gradient estimate [CMT24, Lemma 3.6] implies that the convergence
is uniform on B5/16(pα).

For any α let χα be the smooth cut-off function on Mα such that χα = 1 on
B9/32(pα) and χα = 0 on Mα \ B5/16(pα) with Lipχα ≤ 64. Up to extraction of
a subsequence, we may assume that {χα} converges uniformly to a similar cut-off
function on R+ × R

n−1. For any α set

hα1 := χαf̃
α
1 + (1− χα)f

α
1 ;

then hα1 is smooth on B2(pα) and harmonic on B9/32(pα). Furthermore, the sequence
{hα1} converges uniformly to x1 on B1(pα), and the maps

hα := (hα1 , h
α
2 , . . . , h

α
n) : B1(oα) → B

n
+

are εα-GH isometries which converge uniformly to the identity function. Moreover,

i) ‖dhα‖L∞(B17/64(pα)) ≤ 1 + εα,

ii)

 
B17/64(pα)

‖Ghα − Idn‖dνgα ≤ εα,

iii)

 
B17/64(pα)

|dGhα|2 dνgα ≤ εα.

Let {τα}, {ρα} ⊂ (0, 1) be such that τα ↑ 1, ρα ↑ 1/4, and for any α, τ 2α is a
regular value of |hα|2 and ρ2α is a regular value of |hα1 − 1/2|2 + |Ψα|2. For a given α,
set

Ωα := h−1
α (Bn

τα) and Uα := h−1
α (Bn

ρα(p)).

Since hα(Ωα) ⊂ B
n
+, we know that hα : Ωα → B

n
τα is not surjective. Moreover,

hα(∂Ωα) ⊂ ∂Bn
τα . Thus for any regular value x ∈ ταB

n
+ of hα,

(51) #(h−1
α ({x}) ∩ Ωα) ∈ 2N.

Let us now consider a sequence qα ∈ Uα → p such that each hα(qα) is a regular
value of hα. As each hα is an εα-GH isometry, for any q ∈ Ωα:

hα(q) = hα(qα) =⇒ dα(q, qα) ≤ εα.

Hence for large enough α:

{q ∈ Ωα : hα(q) = hα(qα)} ⊂ Uα.

But the analysis done in the proof of [CMT24, Theorem 7.4] shows that

• if Uα is orientable, then the degree of hα : Uα → Bρα(p) is ±1,

• if Uα is not orientable and if πα : Ũα → Uα is the 2-fold orientation cover, then
the degree of hα ◦ πα : Ũα → Bρα(p) is ±2.

In any case we get

# {q ∈ Ωα : hα(q) = hα(qα)} ∈ 2N+ 1,

which contradicts (51).
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B. Proof of Theorem 3.8. In this section, we obtain Theorem 3.8 as a conse-
quence of a contradiction argument and the following result.

Theorem B.1. Let {(Mα, dgα, µα, oα)} ⊂ Km(n, f, c) be converging to (X, d, µ, o)

in the pointed measured Gromov–Hausdorff topology. For some r ∈ (0,
√
T ], as-

sume that there exists a harmonic function h : Br(o) → R
k such that h(o) = 0 and

‖dh‖L∞(Br(o)) ≤ L for some L > 1. Let η ∈ (0, 1) be given. Then there exist

C(n, η) ≥ 1 and hα : Bηr(oα) → R
k harmonic with ‖dhα‖L∞(Bηr(oα)) ≤ LC(n, η) and

hα(oα) = 0 for any α, such that hα converges uniformly to h; moreover, the folllowing

properties hold:

(1) for all s ∈ (0, ηr]

(52)

 
Bs(oα)

Ghα dµα →
 
Bs(o)

Gh dµ,

(2) for all s ∈ (0, ηr] and A ∈ Mk(R)

(53)

 
Bs(oα)

‖Ghα −A‖ dµα →
 
Bs(o)

‖Gh −A‖ dµ.

Before proving it, we need a preliminary lemma.

Lemma B.2. Let {(Xα, dα, µα, oα)}α∈N∪{∞} ⊂ Km(n, f, c) be such that

(Xα, dα, µα, oα) → (X∞, d∞, µ∞, o∞)

in the pointed measured Gromov–Hausdorff topology. Consider r ∈ (0,
√
T ). For

any α, let uα, vα ∈ H1,2(Br(oα), dα, µα) be such that

(1) uα
L2(Br)→ u∞ and vα

L2(Br)→ v∞,

(2) supα∈N

(´
Br(oα)

dΓ(uα) dµα ,
´
Br(oα)

dΓ(vα) dµα

)

< +∞.

Then for any s ∈ (0, r],

(54)

 
Bs(oα)

|u2α − v2α| dµα →
 
Bs(o∞)

|u2∞ − v2∞| dµ.

Proof. For any γ > 0 and α ∈ N ∪ {∞}, set

uα,γ(·) :=
 
Bγ(·)

uα dµα, vα,γ(·) :=
 
Bγ (·)

vα dµα.

Acting as in the proof of [CMT24, Proposition E.1], it is enough to consider the case
s ∈ (0, r) only.

We first claim that there exists C0 > 0 such that for any γ ∈ (0, r − s),

(55) sup
α∈N∪{∞}

∣

∣

∣

∣

 
Bs(oα)

|u2α − v2α| − |u2α,γ − v2α,γ | dµα

∣

∣

∣

∣

≤ C0γ.

Indeed,
∣

∣

∣

∣

 
Bs(oα)

|u2α − v2α| − |u2α,γ − v2α,γ | dµα

∣

∣

∣

∣

≤
 
Bs(oα)

|u2α − u2α,γ| dµα +

 
Bs(oα)

|v2α − v2α,γ| dµα.
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Boundedness in L2 of the averaging operator on doubling spaces (see e.g. [Ald19,
Theorem 3.5]) yields the existence of C1 > 0 such that

‖uα,γ‖L2(Bs(oα)) ≤ C1‖uα‖L2(Br(oα)).

Moreover, the L2 strong convergence of {uα} to u∞ gives C2 > 0 such that

sup
α∈N∪{∞}

‖uα‖L2(Br(oα)) ≤ C2.

Finally, the L2 pseudo-Poincaré inequality [CSC93] and assumption (2) yield the
existence of C3 > 0 such that

( 
Bs(oα)

|uα − uα,γ|2 dµα

)1/2

≤ C3γ.

Then 
Bs(oα)

|u2α − u2α,γ| dµα ≤
( 

Bs(oα)

|uα − uα,γ|2 dµα

)1/2( 
Bs(oα)

|uα + uα,γ|2 dµα

)1/2

≤ (1 + C1)C2C3γ

µα(Bs(oα))1/2
≤ 2(1 + C1)C2C3γA(n)

µ(Br(o))1/2

(r

s

)C(n)

where we obtain the last inequality by the doubling condition and by making the
assumption, with no loss of generality, that infα µα(Br(oα)) ≥ µ(Br(o))/2. This and
the symmetry between u and v eventually leads to (55).

We now claim that for any given ε > 0 and γ ∈ (0, (r − s)/2), we can choose
α ∈ N large enough to ensure

(56)

∣

∣

∣

∣

 
Bs(oα)

|u2α,γ − v2α,γ | dµα −
 
Bs(o∞)

|u2∞,γ − v2∞,γ| dµ∞

∣

∣

∣

∣

≤ ε

3
·

The Hölder inequality and a consequence of the doubling condition (see e.g. [CMT24,
Proposition 1.2, (v)]) imply that {uα,γ} and {vα,γ} are equicontinuous on balls of
radius B(s+r)/2(oα) for any fixed γ ∈ (0, (r − s)/2). Then uα,γ → u∞,γ and vα,γ →
v∞,γ uniformly on Bs. This yields (56).

To conclude, take ε > 0, choose γ = ε/(3C0) and then choose α such that (56)
holds. Then the triangle inequality, (55) and (56) yield (54). �

Remark B.3. The previous proof may be easily adapted to show that for any
a ∈ R and for all s ∈ [0, r] 

Bs(oα)

|u2α − v2α − a| dµα →
 
Bs(o)

|u2∞ − v2∞ − a| dµ.

We are now in a position to prove Theorem B.1 and conclude.

Proof. We start by treating the case k = 1. Consider η′ = η1/2 and η′′ = η1/3

so that η < η′ < η′′ < 1. Then [CMT24, Proposition E.11] ensures the existence of
harmonic functions hα : Bη′′r(oα) → R uniformly converging to h|Bη′′r(o)

on Bη′′r(o)

and such that for all s ∈ (0, η′′r]

(57)

 
Bs(oα)

|dhα|2 dµα →
 
Bs(o)

|dh|2 dµ.

By replacing hα by hα − hα(oα) we can assume that hα(oα) = 0 for all α. Moreover,
the convergence of |dhα| given by (57) and the fact that ‖dh‖L∞(Br(o)) ≤ L imply
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that for any large enough α  
Bs(oα)

|dhα|2 dµα ≤ 2L2.

We can then apply [CMT24, Lemma 3.6] to get existence of C(n, η) ≥ 1 such
that ‖dhα‖L∞(Bη′r(oα))

≤ LC(n, η). Now consider s ∈ (0, ηr]. The previous local

Lipschitz bound and the Hessian estimate of [CMT24, Proposition 3.5] yield the
uniform Hessian bound

(58) sup
α

 
Bηr(oα)

|∇dhα|2 dµα ≤ C(n, η, L)

r2
·

We are then in a position to apply [CMT24, Proposition E.7] and get L2(Bηr) strong
convergence of {|dhα|} to |dh|. Then {uα = |dhα|} and {vα = 0} satisfy the assump-
tions of Lemma B.2. We apply it and use Remark B.3 to obtain that for all a ∈ R

and s ∈ (0, ηr]  
Bs(oα)

||dhα|2 − a| dµα →
 
Bs(o)

||dh|2 − a| dµ.

We consider now the case k > 1. Observe that for all i, j = 1, . . . , k we have

(Ghα)i,j = 〈d(hα)i, d(hα)j〉 =
1

4
(|d((hα)i + (hα)j)|2 − |d((hα)i − (hα)j)|2).

Set

fα =
1

2
|d((hα)i + (hα)j)|, gα =

1

2
|d((hα)i − (hα)j)|,

f =
1

2
|d(hi + hj)|, g =

1

2
|d(hi − hj)|.

The sequences {fα} and {gα} satisfy the assumptions of Lemma B.2. This imme-
diately yields (52). Moreover, if we consider A ∈ Mk(R) with components ai,j, by
arguing as above we get for all i, j = 1, . . . , k, 

Bs(oα)

|f 2
α − g2α − ai,j | dµα →

 
Bs(o)

|f 2 − g2 − ai,j| dµ,

which is equivalent to 
Bs(oα)

|(Ghα)i,j − ai,j | dµα →
 
Bs(o)

|(Gh)i,j − ai,j| dµ.

This shows (53). �
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Var. Partial Differential Equations 64:6, 2025, art. no. 193.

[CT22] Carron, G., and D. Tewodrose: A rigidity result for metric measure spaces with
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