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Anisotropic weighted Levin—Cochran—Lee type
inequalities on homogeneous Lie groups

Michael Ruzhansky, Anjali Shriwastawa and Bankteshwar Tiwari

Abstract. In this paper, we first prove the weighted Levin—Cochran—Lee type inequalities
on homogeneous Lie groups for arbitrary weights, quasi-norms, and LP- and L%-norms. Then, we
derive a sharp weighted inequality involving specific weights given in the form of quasi-balls in
homogeneous Lie groups. Finally, we also calculate the sharp constants for the aforementioned

inequalities.

Tasakoosteisen Lien ryhmén suunnalliset ja painolliset
Levinin—Cochranin—Leen-tyyppiset epiyhtilot

Tiivistelma. Téssd tyossid todistetaan aluksi painolliset Levinin—Cochranin—Leen-tyyppiset
epiyhtilot tasakoosteisen Lien ryhmédn mielivaltaisilla painoilla, kvasinormeilla sekd LP- ja L9-
normeilla. Sitten johdetaan tiettyjd tasakoosteisen Lien ryhmén kvasipallojen muodossa annettuja
painoja koskeva tarkka painoepdyhtéls. Lopuksi méédritetddn ndiden epayhtéloiden tarkat vakiot.

1. History and introduction

In 1984, Cochran and Lee rediscovered an exponential weighted inequality in
their paper [5], which was proved earlier in an unnoticed paper of Levin [15] in
1938 written in the Russsian language. We recall the following exponential weighted
inequalities proved in the papers of Levin [15] and Cochran and Lee [5].

Theorem 1.1. Let ¢ and a be two real numbers. Suppose that f is a positive
function such that the function t~'log f(t) is locally integrable on (0,00). Then the
inequality

(1.1) /Ooo [exp <e:1:6 /Oxtellog (1) dtﬂ 2 dy < <eXpat1) /Ooo  f(z) da

holds for e > 0, and

12 [ o (et [t 10| < (o1 [

a+1

€

holds for e > 0. Moreover, the constant exp ( ) is the best possible constant.

The inequality (1.1) is called the Levin—Cochran—Lee type inequality and its
complementary inequality (1.2) was proved by Love in [16], which was again reproved
by Yang and Lin [25]. It is worth noting that inequality (1.1) is a generalization of the
famous Knopp inequality [12], which can be obtained by setting a = 0 and € = 1 in
(1.1). Thereafter, several works have been devoted to the study of these exponential
type inequalities in different forms and in different settings such as higher dimensional
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Euclidean spaces and Euclidean balls, by many authors. It is clearly impossible to
give a complete overview of the available literature, therefore we refer to the books,
surveys and papers [3, 4, 5, 6, 10, 12, 14] and references therein.

Cizmesija et al. [4] investigated an n-dimensional analogue of (1.1) by replacing
the intervals (0, 00) by R™ and the means are considered over the balls in R™ centered
as origin. We state this inequality as follows:

Theorem 1.2. Let f be a positive function on R"™ and let B(0, |z|) be the ball
in R™ with radius |z|, x € R™, centered at the origin, with its volume (with respect
to the Lebesgue measure on R") denoted by |B(0, |x|)|. Then we have the following
inequality

/ [exp (6 IB(O,IxI)I_E/( " B0, [y)|" " log £(y) dy) B0, [=])|* dz
n B(0,|x
a-+1 “
13 < (ew™) [ @) Bk as
R?’L
where a and € > 0 are two real numbers. Moreover, the constant exp % appearing

in (1.3) is a sharp constant. ‘

The inequality (1.3) was further generalized by Jain et al. [10] to a more general
situation involving general weight functions on the Euclidean space.

The main objective of this paper is to prove a Levin—Cochran—Lee type inequal-
ity involving general weight functions on homogeneous (Lie) groups equipped with a
quasi-norm |-| and a family of dilations compatible with the group law. For a detailed
description of analysis on homogeneous groups, we refer to [7, 8, 21]. Particular ex-
amples of homogeneous groups are the Euclidean space R™ (in which case Q = n), the
Heisenberg group, as well as general stratified groups (homogeneous Carnot groups)
and graded groups. Recently, Hardy type inequalities and their best constants have
been extensively investigated in non-commutative settings (e.g. Heisenberg groups,
graded groups, homogeneous groups); we cite [9, 19, 21, 18, 24] just to a mention
a few of them. These Hardy type inequalities have several applications in differ-
ent branches on mathematics, particularly, in the theory of linear and nonlinear
partial-differential equations, we refer to [21] and references therein for more detailed
discussion, including the discussion on how these inequalities fit into a broader scale
of different inequalities of the mathematical analysis and mathematical physics. The
exponential terms in the inequality can make it possible applying them for nonlinear
equations with non-polynomial nonlinearities, which is, however, not the subject of
the present paper. They also lead to the corresponding uncertainty principles, see
[20], or a discussion in [21].

Recently, the first author and Verma [22] obtained several characterizations of
weights for two-weight integral Hardy inequalities to hold on general metric measure
spaces possessing polar decompositions for the range 1 < p < ¢ < oo (see, [23] for
the case 0 < ¢ < pand 1 < p < 00). Using this, one deduced the weighted integral
Hardy inequality on homogeneous groups, hyperbolic spaces and Cartan-Hadamard
manifolds. In particular, one proved the following theorem [22] which will be useful
to establish results of the present paper.

Theorem 1.3. Let G be a homogeneous group with the homogeneous dimension
@, and let 1 < p < q < o0. Suppose that u and v are two weight functions on G.
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Then the inequality

(1.4) ( /G < /B R dy)qu(:c) da:)é <c < /G () v(x) d:c)%

holds for all non-negative functions f on G if and only if

-1
A = sup (/ u(y) dy) (/ v (y) dy) <o
zeG \JG\B(0,|z|) B(0,|=()

and the best constant C' in (1.4) can be estimated in the following way:

p

Q|

p—1
1

p\7" 1

Apg <C<Ap | —— )

0osCsao(S2)

Very recently, we have proved a sharp version of Theorem 1.3 in [17]. In fact, we

have also calculated the precise value of sharp constants in respective inequalities on

homogeneous groups. Using Theorem 1.3, we prove the following result which is one
of the main results of this paper.

Theorem 1.4. Let G be a homogeneous group with the homogeneous dimension
() equipped with a quasi norm |- | and let 0 < p < g < oo. Suppose that u and v are
two positive weight functions on G. Then, there exists a positive constant C' such
that, for all positive functions f on G, the following inequality holds

([ ol o))
<c ( [ e das) g

Here u; is the spherical average of u, given by

1
(1.7) uy(z) = @/@u“ﬂa) do,

(1.5)

provided that

Q=
SR

(1.6) Dq :=sup|B(0, [z])]
zeG

where & = {x € G: |x| = 1} C G is the unit sphere with respect to the quasi-norm
|-| and |z|o := Dy (o), with D), being the dilation on G by the factor |x|. Moreover,
the optimal constant C' in (1.5) can be estimated as follows:

(1.8) 0<C< (g) "erDo.

We will also prove a conjugate version (see Theorem 3.2) of Theorem 1.4. Fur-
thermore, we establish some stronger exponential inequalities on the quasi-balls on
homogeneous Lie groups (see Theorem 1.5 and Theorem 3.3). In fact, we will prove
the following result:

Theorem 1.5. Let G be a homogeneous group with the homogeneous dimension
() equipped with a quasi norm | -|. Let 0 < p < ¢ < oo and a,b € R. Then for any
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e > 0 and for any arbitrary positive function f on the homogeneous Lie group G, the
following inequality

(/G [exp <EIB(0,\x|)|6 /B(O ; [B(O, [y])|* " log f(y)dy>

1

E q

[B(0, \xl)ladﬂf>

(1.9) gC(/Gfp(x)\]B%(O, Ix\)\bdﬂf>p

holds for a positive finite constant C' if and only if
(1.10) pla+1)—q(b+1)=0.

Moreover, the best constant C' in (1.9) satisfies

% 1 1 b 1 1 % 1_1 b 1
(1.11) (]—9) €r 4 exp ( L —) <C< (]—9) €r 4 exp ( i )
q €p p q ep

For the proof, we follow the method developed in [4, 10] in the (isotropic and
abelian) setting of Euclidean spaces. We note that also in the abelian (both isotropic
and anisotropic) cases of R™, our results provide new insights in view of the arbi-
trariness of the quasi-norm |- | which does not necessarily have to be the Euclidean
norm.

Apart from Section 1, this manuscript is divided in two sections. In the next
section, we will recall the basics of homogeneous Lie groups and some other useful
concepts. The last section is devoted to presenting proofs of the main results of this
paper.

Throughout this paper, the symbol A < B means 3C7,Cy > 0 such that C1 A <
B < C5A.

2. Preliminaries: Basics on homogeneous Lie groups

In this section, we recall the basics of homogeneous groups. For more details
on homogeneous groups as well as several functional inequalities on homogeneous
groups, we refer to monographs [7, 8, 21] and references therein.

A Lie group G (identified with (R¥ o)) is called a homogeneous group if it is
equipped with the dilation mapping

Dy:RY - RY, X>0,
defined as
(2.1) Dy(z) = (A"'xq, Axq, ..., AV aN), 01,0V, ...,05 >0,

which is an automorphism of the group G for each A > 0. At times, we will denote
the image of € G under D, by A(z) or, simply Az. The homogeneous dimension
@ of the homogeneous group G is defined by

Q=v+v2+ - +un.

It is well known that a homogeneous group is necessarily nilpotent and unimodular.
The Haar measure dz on G is nothing but the Lebesgue measure on RY.

Let us denote the volume of a measurable set w C G by |w|. Then we have the
following consequences: for A > 0

(2.2) |Dy(w)| = A9|w| and /Gf()\x)da::)\Q/Gf(:c)dx.
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A quasi-norm on G is any continuous non-negative function |-|: G — [0, 00) satisfying
the following conditions:

(i) |z| = |z~ for all x € G,

(i) |Az| = Mz| for all x € G and A > 0,

(iii) |z] =0 <= x=0.

If & ={x € G:|z|] =1} C G is the unit sphere with respect to the quasi-norm
| - |, then there is a unique Radon measure o on & such that for all f € L'(G), we
have the following polar decomposition (see [8, Proposition 1.15])

(2.3) /f da;_/ /fry L Ldo(y)dr.

We also note that Balogh and Tyson [2] refine the polar decomposition (2.3) by
replacing the curves v(r,y) := D,(y) = ry, r > 0, with a family of horizontal curves
©(s,): (0,00) = G in a certain class of Carnot groups. As mentioned in [2], this
refinement has several potential applications, but the decomposition (2.3) will be
sufficient for our purposes. We also note that the question of the existence of polar
decompositions is interesting in general metric measure spaces, and we can refer to
[1] to a recent discussion of this topic.

Here we fix some notation which be used in the sequel. The letters u and v will
be always used to denote the weights on homogeneous groups G. A quasi-ball in
the homogeneous group G with radius |z|, = € G, and centred at the origin will be
denoted by B(0, |z|). We denote the (Radon) measure of the unit sphere & in G by
|&|. The Haar measure of the unit quasi-ball B(0, |x|), denoted by |B(0, |z|)|, can be
calculated by using (2.3) as

o= [ - | " e ([ o)
(2.4) = /6 (/Om rQldr> do = ”'Zﬁ.

For a given function u on G, the spherical average u; of u is defined by

1
(2.5) uy(z) = @/@u“ﬂa) do,

where & = {z € G: |z| = 1} C G is the unit sphere with respect to the quasi-norm

|- .
3. Main results

In this section, we prove the weighted Levin—Cochran—Lee type inequalities on
a homogeneous Lie group equipped with a quasi-norm for arbitrary weights. We
will derive sharp weighted inequalities on quasi-balls in homogeneous (Lie) groups
involving specific weights and also calculate the sharp constant for these inequalities.

Proof of Theoerem 1.4:. We begin with the proof by rewriting Theorem 1.3 by

replacing 2, £, u(z)[B(0, |z[)| = and £ in the places of p, ¢, u(z) and f, respectively,
where 0 < a < p. Indeed, we get the following inequality

o

</G </IB%(O,x)f w )dy>q u(@)B(,la= da:) = (/ foa )d:c)%,
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which in turn implies that

(3.1) < / (m / (O’x)f%y)dy)zu(x)dx);<c§ ( / f”(w)v(ﬂf)dw);,

holds for all non-negative functions f € G if

1 p—a
A — sup (/ u<y>|B<o,|y|>|—idy) ( / v%—p@)dy) <,
z€G \JG\B(0,|z|) B(0,])

and the constant C,, satisfies the following estimate:

(3.2) cégAQ,a( p )a_”,(ﬁf.

p—

We note that

with

1\ 1 .\ o s
(3.3) Aga = sup (—) ( / u<y>|B<o,|x|>|ady) (/ w(y)dy) |
zeG \ & G\B(0,|z|) B(0,|z|)

Therefore, from (3.2), we have

p—a

(3.4) Cs < Aga (ﬁ) o
Since

(3.5) lim, (p - a) o es.

using (3.5) in (3.4), we get

(3.6) C < Agpi er,

where

Ag = lim Ag, and C:= lim Caé.

a—07t a—0t

Recall that by (2.4) we have,

ly| Q
B = [ de= [ [T g0 — %181
B(O,|y]) & 0 Q




Anisotropic weighted Levin—Cochran-Lee type inequalities on homogeneous Lie groups 691

Now, let us calculate the first integral from (3.3). We get

o\ Q =\
(f wwuwawww<w) :</” utn) (51 (w)
G\B(0,|=|) G\B(0,|=|)
((8)" L)
(G\]B(O|m| y| e
;‘f o ‘
-((9)" ( ) )
G\B(07|$|
(S [ (B e
\]B(O|m| Y|
_\605 (M)% o\
3.7 =|— — d )
a0 = (1) el art </G\B(o,|m|)“(y) o) ey

Also, calculating the second integral of (3.3), we get that

1
q

o9

@\@ @\@ @\

= _ (B, e Sd)

vap (y )dy) = (7 ver(y) dy

(/B(O,x) 1B, [z])] S0,z
pea 1 . o
— [B(0, )| (— =10 dy)
IB(O, [2])] JB0,))
2 6\ -
[ dy
< |IB 0 lz)| Je om)

sy =(F) 7 e <|BO|x||/M )"

Next, substituting the values from (3.7) and (3.8) in (3.3), we obtain

Aoe _iﬁg( ) (@) ('2') 2] | 7))
| </G\B(o,|m|)u(y) (%)%q 1™ dy>q <m /Ig(o,x)vaap(y) d?/)ap.

Thus we find,

ANICN
Aaa ‘iﬁ«%( ) - <Q
|x|)7q 0 E( 1 o )
3.9 . = d S — ap(y)d .
(3.9 </G\]B(O,|a:|)u(y) <|?/| g y) |B(Ov|$|)|/ﬂ(0,x)v )y

We set
L@ =2 (5 el
& JG\B(0,|z|) Y|
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Now, performing the variable transformation y = |z|z in I,(z) and then using the
polar decomposition by setting z = rw, we get

Q

1 x _ 1 —Qq
n@=2 ) () =2 [ el
G\B(0,]z|) |y] & JG\B(0,1)
(3.10) // (|z|rw)r Q=1 gr du.

We observe that

X(1,00) (1) @ (% — 1) F-E-1 51(r) as a— 0%,

where 01 (r) is the Dirac delta function at » = 1. Indeed, by choosing a test function
¢ € C°(R) we see that

lim (x(1,00)(r) @ (g - 1) rOS T ) = allrél+ N (g - 1) r@ () dr
:_ahjé{r( 70“25( )+ hm / r)dr =¢(1) = (61, ¢).

This implies that

lim x(1,00) (1) @ (2 — 1) e a1 (r).

a—0t Q
Indeed, for r € (1,00) and for o — 0%, we have lim,_,q+ r@-% = 0, which shows
that
1 Qq 1 51 (T)

li oo — o .
ot X )(r) a’ Qq

Thus, from (3.10), we have

(3.11) I, (x) — é/@uﬂ:ﬂw)dw = é || uy(z) as a— 07,

A simple calculation gives, as  — 07, that

1 L A )
(3.12) (|B<o,|as|>| orel (y)dy> - p(|B<o,|x|>|/B<o,|mD1gf(y)dy)'

Next, using (3.12) in the second integral of (3.9), we have

p—a

1 ap ap ex _ 0 L %
6513 (G Lo, 7 0) T — e (g L s )
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as @ — 07. Substituting (3.11) and (3.13) in (3.9) as a — 01, we have

AQ = lim AQ@

a—0t

A 5
= supla] (@) (@q'g'w)

<e p ( 1 log 1 dy))%
. X e J—
B, 2] Je,ep — v(¥)

W|QQCQ) %)( ( 1 / log: 1d)y
=supqa |r|e P | — u; (x exXp | ———+ og —— ay
2€G Q ! IB(O, |z])| Joo,zp — v(¥)

o Q@) : ( <# 1Ld))%
SUp g <'9“”' g) @\er |B<o,|x|>|/m,x> 8o Y

(3.14) =q Dy,

Q=
B =

Q=
SR

which is finite by the hypothesis of the theorem.
Thus, putting the value of Ag from (3.14) in (3.6), we get

p\* 1)
3.15 0<C< (=) exp|-]Dg,
(3.15) _(Q) p<p N

which is same as (1.8).
Finally, using (3.12) in (3.1), we obtain

(oo (7 L o 0090)] o)
gC(éﬂ@M@MQE,

completing the proof of the theorem. O

Proof of the Theorem 1.5. Assume that equality (1.10) holds. Let f be an arbi-
trary positive function on the homogeneous Lie group G equipped with a quasi norm
|-|. To prove (1.9) we first obtain its equivalent form using polar decomposition on G
and then we use Theorem 1.4 to establish it. Indeed, using the polar decomposition
on G, by setting = ro and y = t7 in (1.9) on G, we get an equivalent inequality of

i
(LI (e (F)

LLC) e wess) o)
om  zef [T () prn) §

(3.16)
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694
1

Next, we do variable transformation r = r{ and ¢t = ¢; in (3.17) to obtain

(L () e [ (2
. /6 /0 T 9 g f (vi7) an dTﬂqidrlda);
(3.18) <c<// (‘6|) Q(*-1), _1fp(rlia)%dr1da>

Recalling the volume of |B(0, |z|)| in G from (2.4), that is, |B(0, |z|)]

using this in (3.18), we have

([ oot

1 q
(3.19) - {exp (W/ / log F(ty7)t9* dtldT) } r9 1t dry da)
1)
11 <_1__ 1__ %
g&m('S') (// B0, r1)| () FP(r10)r % d'rlda> ,

where we have written F(ro) = f(r<o).
Again using the polar decomposition in G with ;7 = 2z and rj0 = w, the

inequality (3.19) yields that

(/G\]B%(O, )1 [exp (Wq\wbl » lw‘)log F(2) dz)]qdw)

1
P

_ [219e]
=3 and

Q=

(3.20) < Cei ¥ <|g|)<L_%)<1" (/ IB(0, [w])| (D) FP (w )dw)p

—%zO,Weget

Recalling the assumption from (1.10) that, I’J;fl

(/GHB(O, )| (1) [exp (Wq\wl)l B(W)log F(z) dz)]qdw)

1

2y <ol ([ Bog W) )

Now, we note that the above inequality (3.21) is equivalent to the inequality (1.9).
Therefore, to prove (1.9), it is enough to show that ® (ref. (1.6)) is finite. Thus,
we apply Theorem 1.4 with the corresponding weights u(w) = |B(0, |w\)\<a_+l_1) and

v(w) = [B(0, |w|)|(b%171) on G. For this case,

P

Y

(3.22) Dg= ilégu&(o, |w|)|7 7> uf(w) [exp (m /B(MD 1ogm ds)]
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5 Jsu(lw|o)do. Let us now calculate the value of uy. In fact, we

where uj(w) = =

have
ui(w) = (g7 [ ullwlo)ao)
- (é) ([ B o) do—)%
(323) = (é) B, ful) 220 ([ da)é — B(0, w4 ().

Now, we calculate the value of the integral in right hand side of (3.22) by using the

polar decomposition s = (t,w) with |s| =t as follows

1 b
log ——ds = [ 1og[B(0,s])| ("
/]B(O lw|) v(s) B(0,|w)|)

|w]
// (1—b+—1) t% tlog (%tQ) dt dw
b+1\ [ _ |6
—(1- S| t9 1 (— Q)d.
( )/0 |G|t og 0 t t

€

7)ds

(3.24)

Observe that,

ﬂ‘w@

logU) x U

ﬂ‘w@

5! wl@
/ logUdU:logUxU /

(o) () -5,

(3.25)
Using (3.25) in (3.24) along with the change of variable |g‘tQ = U and using
w|@
B(O, fuo])] = 129 e get
1 Bl
/ log ——ds = (1 )/ log UdU
B(0,|w]) v(s) 0
ahie) (Gher) - (G|
1-— lo w|? —
= (1= ) [ (roe G ) (e vl
(1 )(‘6"“"@) e (g 1) -]
(3.20) ~ B, ul) |(log|Bo ul0#) 252 1)
€
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Substituting the values from (3.23) and (3.26) in (3.22), we obtain

1_1 1(a+1
@Q:SEEHB(O, lw|)|a "> |B(0’|w|)|q( H-1)

: [exp <Wllw\)\ IB(O, |w])] (IOg B0, [w])| (-5 + bJErl B 1))]é

= sup [B(0, |53 [exp (log [BO, =2 + 2 1) |1
(327) = el sup [B(O, )] U5 ) BO, )%
we
which implies that
(3.28) Dy = exp Gg (bt L 1)) sup [B(0, |w]) c(=mh,

Thus, using the assumption (1.10) in (3.28), we have

(3.29) Do = exp G) (btl —1)),

which is finite. Therefore, by Theorem 1.4 inequality (1.9) holds for each positive
function f defined on G.
Moreover, by (1.8) and using the explicit value of ©¢ from (3.29), we get

1_1 . b+1 ¢ b+1
(3.30) ea rC' < (g) exp (Lp) implies that C' < (E) €r 4 exp ( il )
€

q ep

Conversely, we assume that (1.9) holds for all positive functions f on G. Again we
will use the equivalent form (3.20) of (1.9). It is clear from (3.20) that the following
inequality is true for any ball B(0, |z|) of radius x € G :

a+1 1 q E
IB(0, |w\)\<L_1) {exp Ty log F(z) dz] dw)
</]B(J>‘,|f\|) IB(O, |w])| Jao,w)

b+l a1 1

(3.31) < Cei ¥ <%|)< Fo)) (/G B0, [w])| (2 =) FP (w) dw)p

So, we will test the inequality (3.31) (and therefore, equivalently, inequality (1.9))
with the test function, for x € G as chosen above,

b+l

Fu(2) = BO, |2D1" ) sy, 2 €G,

where xg(o,|2)) is the characteristic function of B(0, |z|) in G. Indeed, we obtain by
noting |z| < |w| < |z| that

</}B(Olel) B0, |u])| (=) {expm/ﬂ(o’wn log |B(07\2|)|;<1T)dzrdw);
(3.32)

11 (T q(e> 1 - 1
s0@70§0 B0, |a])|* = € [BO, o)),
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where

b+1

(3.33) C = Cei» ('%)( P .

Again, using the polar decomposition on G and doing calculations similar to (3.24),
we get

[t B a:
B(0,|wl)

= B0, o) (1og BO. D P02+ 3 (252 1) ).

Using (3.34) in (3.32) we obtain

( / o )
. <log\]B%(O, )3 (-5) +% (btl _ 1)) }>qdw); < CIB(O, ||)[7.

This implies that
a+1 1 1 g 5
( [ B e (m%(o, )]0 exp ( ((i - 1))) dw)
B(0,|z|) p €
~ 1
< CIB(O, |2])|F-

(3.34)

(3.35)

Therefore, from (3.35), we can rewrite (3.32) in the following form

1
b+1 1 o1 (1 jeYe
exp{ ; “} </ B0, ) *”“Mt)dw) S IR0
B(0,|z|)

€p p

which further can be rewritten as

(3.36) (/Bmmn IB(0, |w])| (G (=2 5= +1)-1) dw) ;

~ 1 b+ 1 1
<¢ exp{— o }\Mo, j@])].
p €p

Therefore, the inequality (3.36) implies that

a _ % ~ 1 b+1 1
(3.37) (/ IB(0, [w])| 76 1dw) gcexp{—— * }|]B%(O,|x|)|p,
B(0,|z|) p
where

(3.38) po =

p
atip _ il | 1
€ q € +1
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Now, again using the polar decomposition on G, from (3.37) we obtain

<4w¢>B“LUHZ%1dw);((E;)iémﬁ)U¢WQndw>;
((ISI)f— / ro drd,;)é

<(|6\)zf’ / |79~ dr>‘11 <(|6‘);01I6||a;|% (g;))é
< ) a 6) = |B(0, |)|% @)

Thus we have
1

S
) QAmm Ol (moqzﬂﬁmﬁﬂ”%<%g

Therefore, using (3.39) in (3.37), we deduce that

\:v\

‘QM—‘(Q

Qe

1

e (%) < 0o (221 B0,

p €p

which implies that

i1 ~ 1 b+1 @
(3.40) Bl 7 < Cop (3= PE0) (L))

€p Po

Since (3.40) holds for every = € G, this implies that py = p, that is, from (3.38),

1 b+1

at+lp 0+ L1=1
€ q €
Hence
1 b+1

(3.41) e )

q p

which is same as (1.10). )
Again substituting the value of C' from (3.33) in (3.40), we estimate that

a+1

o 222 (8 ()

which with the fact that p = py and (3.41) gives that

. 1 1Y\ 1.1
(3.42) C> (g) exp (b+ — —)eﬂq.

€p p
This completes the proof of the theorem. O

Remark 3.1. We observe that applying Theorem 1.5 with p = ¢ = 1 yields a
more general result than the Cizmesija—Pecari¢-Peri¢ estimate on Euclidean space
R™ in Theorem 1.2 (see [4]).

Next, we also state the following result which is conjugate of Theorem 1.4:
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Theorem 3.2. Let u and v be weight functions on a homogeneous Lie group G
of homogeneous dimension (), equipped with an arbitrary quasi norm | - |, and let
0 <p<q<ooande>0. Then, there exist a positive constant C' such that, for all
positive functions f on G, the following inequality holds

1

(3.43) <C(/fp d:c) :

provided that

< 00,

where . and v are the spherical average of u and v respectively, given by,
1 1
a(s) = u(s~#)=|s] 20 a(s) = w(se)—[s| 20T,
€ €

Moreover, the optimal constant C' in (3.43) can estimated as follows:

p% 1)~
3.45 0<C< (2] exp|-]D0.
(3.45) _(q) p<p N

Proof. Let f be a positive function on the homogeneous group G with an arbi-
trary quasi norm | - |. Now, using the polar decomposition of (3.43) on the homo-
geneous group G similar to (3.17) in Theorem 1.5 and again, making some variable
transformations similar to (3.18) and using (2.4), (3.43) can be written as

([ ] <m [ e 00| ae)
(3.46) <c< / Pl dw)%.

Again, applying Theorem 1.4, using polar decomposition, (2.4) and some variable
transformations we get the required result (3.45). O

Next, we present the conjugate of Theorem 1.5 for the power weights u(z) =
IB(0, |z])|* and v(x) = |B(0, |])|*. We have the following inequality.

Theorem 3.3. Let G be a homogeneous group with the homogeneous dimension
Q) equipped with a quasi norm |- |. Let 0 < p < q < oo, and let a,b € R and € > 0.
Then for all positive functions f on G the inequality

(/«; {exp (GIIB%(O, |z|)[* S IB(0, [y)] < log f() dy)r B0, |x|)|“dx>%

(3.47) 1
<o( [ r@roldra)

holds for some finite constant C| if and only if

pla+1)—q(b+1)=0.
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Moreover, the least possible constant C' such that (3.47) holds can be estimated as
tollows:

¢ 1 1 1 @ 1 1
) (- () )z o m((2)
q €p P q ep

Proof. The proof of this theorem follows exactly same lines as the proof of
Theorem 1.5 and therefore, we omit the proof. O

Remark 3.4. If we take p = ¢ and so that a = b, then the inequality (3.47)
holds with the constant C' = exp ( — M) By using the test function in inequality

(3.47) v

€p

fi() = 4P (BE1) [B(0, 1)] =+ |25 e B(0,1),
€T) =
exp (1) [B(0, 1)~ ¢+ |z| ¥+ 1 e G\B(0, 1),
and suppose that § — 0T, it can be shown that the constant C' = exp ( — 2£1) is

ep
sharp.
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