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Anisotropic weighted Levin–Cochran–Lee type
inequalities on homogeneous Lie groups

Michael Ruzhansky, Anjali Shriwastawa and Bankteshwar Tiwari

Abstract. In this paper, we first prove the weighted Levin–Cochran–Lee type inequalities

on homogeneous Lie groups for arbitrary weights, quasi-norms, and Lp- and Lq-norms. Then, we

derive a sharp weighted inequality involving specific weights given in the form of quasi-balls in

homogeneous Lie groups. Finally, we also calculate the sharp constants for the aforementioned

inequalities.

Tasakoosteisen Lien ryhmän suunnalliset ja painolliset

Levinin–Cochranin–Leen-tyyppiset epäyhtälöt

Tiivistelmä. Tässä työssä todistetaan aluksi painolliset Levinin–Cochranin–Leen-tyyppiset

epäyhtälöt tasakoosteisen Lien ryhmän mielivaltaisilla painoilla, kvasinormeilla sekä Lp- ja Lq-

normeilla. Sitten johdetaan tiettyjä tasakoosteisen Lien ryhmän kvasipallojen muodossa annettuja

painoja koskeva tarkka painoepäyhtälö. Lopuksi määritetään näiden epäyhtälöiden tarkat vakiot.

1. History and introduction

In 1984, Cochran and Lee rediscovered an exponential weighted inequality in
their paper [5], which was proved earlier in an unnoticed paper of Levin [15] in
1938 written in the Russsian language. We recall the following exponential weighted
inequalities proved in the papers of Levin [15] and Cochran and Lee [5].

Theorem 1.1. Let ǫ and a be two real numbers. Suppose that f is a positive
function such that the function tǫ−1 log f(t) is locally integrable on (0,∞). Then the
inequalityˆ ∞

0

[

exp

(

ǫ x−ǫ

ˆ x

0

tǫ−1 log f(t) dt

)]

xa dx ≤

(

exp
a+ 1

ǫ

) ˆ ∞

0

xa f(x) dx(1.1)

holds for ǫ > 0, andˆ ∞

0

[

exp

(

−ǫ x−ǫ

ˆ ∞

x

tǫ−1 log f(t) dt

)]

xa dx ≤

(

exp
a + 1

ǫ

) ˆ ∞

0

xa f(x) dx(1.2)

holds for ǫ > 0. Moreover, the constant exp
(

a+1
ǫ

)

is the best possible constant.

The inequality (1.1) is called the Levin–Cochran–Lee type inequality and its
complementary inequality (1.2) was proved by Love in [16], which was again reproved
by Yang and Lin [25]. It is worth noting that inequality (1.1) is a generalization of the
famous Knopp inequality [12], which can be obtained by setting a = 0 and ǫ = 1 in
(1.1). Thereafter, several works have been devoted to the study of these exponential
type inequalities in different forms and in different settings such as higher dimensional
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Euclidean spaces and Euclidean balls, by many authors. It is clearly impossible to
give a complete overview of the available literature, therefore we refer to the books,
surveys and papers [3, 4, 5, 6, 10, 12, 14] and references therein.

Čižmešija et al. [4] investigated an n-dimensional analogue of (1.1) by replacing
the intervals (0,∞) by Rn and the means are considered over the balls in Rn centered
as origin. We state this inequality as follows:

Theorem 1.2. Let f be a positive function on Rn and let B(0, |x|) be the ball
in Rn with radius |x|, x ∈ Rn, centered at the origin, with its volume (with respect
to the Lebesgue measure on R

n) denoted by |B(0, |x|)|. Then we have the following
inequality

ˆ
Rn

[

exp

(

ǫ |B(0, |x|)|−ǫ

ˆ
B(0,|x|)

|B(0, |y|)|ǫ−1 log f(y) dy

)]

|B(0, |x|)|a dx

≤

(

exp
a + 1

ǫ

) ˆ
Rn

f(x) |B(0, |x|)|a dx,(1.3)

where a and ǫ > 0 are two real numbers. Moreover, the constant exp a+1
ǫ

appearing
in (1.3) is a sharp constant.

The inequality (1.3) was further generalized by Jain et al. [10] to a more general
situation involving general weight functions on the Euclidean space.

The main objective of this paper is to prove a Levin–Cochran–Lee type inequal-
ity involving general weight functions on homogeneous (Lie) groups equipped with a
quasi-norm |·| and a family of dilations compatible with the group law. For a detailed
description of analysis on homogeneous groups, we refer to [7, 8, 21]. Particular ex-
amples of homogeneous groups are the Euclidean space Rn (in which case Q = n), the
Heisenberg group, as well as general stratified groups (homogeneous Carnot groups)
and graded groups. Recently, Hardy type inequalities and their best constants have
been extensively investigated in non-commutative settings (e.g. Heisenberg groups,
graded groups, homogeneous groups); we cite [9, 19, 21, 18, 24] just to a mention
a few of them. These Hardy type inequalities have several applications in differ-
ent branches on mathematics, particularly, in the theory of linear and nonlinear
partial-differential equations, we refer to [21] and references therein for more detailed
discussion, including the discussion on how these inequalities fit into a broader scale
of different inequalities of the mathematical analysis and mathematical physics. The
exponential terms in the inequality can make it possible applying them for nonlinear
equations with non-polynomial nonlinearities, which is, however, not the subject of
the present paper. They also lead to the corresponding uncertainty principles, see
[20], or a discussion in [21].

Recently, the first author and Verma [22] obtained several characterizations of
weights for two-weight integral Hardy inequalities to hold on general metric measure
spaces possessing polar decompositions for the range 1 < p ≤ q < ∞ (see, [23] for
the case 0 < q < p and 1 < p < ∞). Using this, one deduced the weighted integral
Hardy inequality on homogeneous groups, hyperbolic spaces and Cartan–Hadamard
manifolds. In particular, one proved the following theorem [22] which will be useful
to establish results of the present paper.

Theorem 1.3. Let G be a homogeneous group with the homogeneous dimension
Q, and let 1 < p ≤ q < ∞. Suppose that u and v are two weight functions on G.
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Then the inequality

(ˆ
G

(ˆ
B(0,|x|)

f(y) dy

)q

u(x) dx

)
1

q

≤ C

(ˆ
G

f p(x) v(x) dx

)
1

p

(1.4)

holds for all non-negative functions f on G if and only if

AQ := sup
x∈G

(ˆ
G\B(0,|x|)

u(y) dy

)
1

q
(ˆ

B(0,|x|)

v
1

1−p (y) dy

)
p−1

p

< ∞,

and the best constant C in (1.4) can be estimated in the following way:

AQ ≤ C ≤ AQ

(

p

p− 1

)
p−1

p

p
1

q .

Very recently, we have proved a sharp version of Theorem 1.3 in [17]. In fact, we
have also calculated the precise value of sharp constants in respective inequalities on
homogeneous groups. Using Theorem 1.3, we prove the following result which is one
of the main results of this paper.

Theorem 1.4. Let G be a homogeneous group with the homogeneous dimension
Q equipped with a quasi norm | · | and let 0 < p ≤ q < ∞. Suppose that u and v are
two positive weight functions on G. Then, there exists a positive constant C such
that, for all positive functions f on G, the following inequality holds

(ˆ
G

[

exp

(

1

|B(0, |x|)|

ˆ
B(0,|x|)

log f(y) dy

)]q

u(x) dx

)
1

q

≤ C

(ˆ
G

f p(x) v(x) dx

)
1

p

,

(1.5)

provided that

(1.6) DQ := sup
x∈G

|B(0, |x|)|
1

q
− 1

pu
1

q

1 (x)

[

exp

(

1

|B(0, |x|)|

ˆ
B(0,|x|)

log
1

v(y)
dy

)]
1

p

< ∞.

Here u1 is the spherical average of u, given by

u1(x) :=
1

|S|

ˆ
S

u(|x|σ) dσ,(1.7)

where S = {x ∈ G : |x| = 1} ⊂ G is the unit sphere with respect to the quasi-norm
| · | and |x|σ := D|x|(σ), with D|x| being the dilation on G by the factor |x|. Moreover,
the optimal constant C in (1.5) can be estimated as follows:

(1.8) 0 < C ≤

(

p

q

)
1

q

e
1

pDQ.

We will also prove a conjugate version (see Theorem 3.2) of Theorem 1.4. Fur-
thermore, we establish some stronger exponential inequalities on the quasi-balls on
homogeneous Lie groups (see Theorem 1.5 and Theorem 3.3). In fact, we will prove
the following result:

Theorem 1.5. Let G be a homogeneous group with the homogeneous dimension
Q equipped with a quasi norm | · |. Let 0 < p ≤ q < ∞ and a, b ∈ R. Then for any
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ǫ > 0 and for any arbitrary positive function f on the homogeneous Lie group G, the
following inequality

(ˆ
G

[

exp

(

ǫ|B(0, |x|)|−ǫ

ˆ
B(0,|x|)

|B(0, |y|)|ǫ−1 log f(y)dy

)]q

|B(0, |x|)|adx

)
1

q

≤ C

( ˆ
G

f p(x)|B(0, |x|)|b dx

)
1

p

(1.9)

holds for a positive finite constant C if and only if

p (a+ 1)− q (b+ 1) = 0.(1.10)

Moreover, the best constant C in (1.9) satisfies
(

p

q

)
1

q

ǫ
1

p
− 1

q exp

(

b+ 1

ǫp
−

1

p

)

≤ C ≤

(

p

q

)
1

q

ǫ
1

p
− 1

q exp

(

b+ 1

ǫp

)

.(1.11)

For the proof, we follow the method developed in [4, 10] in the (isotropic and
abelian) setting of Euclidean spaces. We note that also in the abelian (both isotropic
and anisotropic) cases of Rn, our results provide new insights in view of the arbi-
trariness of the quasi-norm | · | which does not necessarily have to be the Euclidean
norm.

Apart from Section 1, this manuscript is divided in two sections. In the next
section, we will recall the basics of homogeneous Lie groups and some other useful
concepts. The last section is devoted to presenting proofs of the main results of this
paper.

Throughout this paper, the symbol A ≍ B means ∃C1, C2 > 0 such that C1A ≤
B ≤ C2A.

2. Preliminaries: Basics on homogeneous Lie groups

In this section, we recall the basics of homogeneous groups. For more details
on homogeneous groups as well as several functional inequalities on homogeneous
groups, we refer to monographs [7, 8, 21] and references therein.

A Lie group G (identified with (RN , ◦)) is called a homogeneous group if it is
equipped with the dilation mapping

Dλ : R
N → R

N , λ > 0,

defined as

(2.1) Dλ(x) = (λv1x1, λ
v2x2, . . . , λ

vNxN ), v1, v2, . . . , vN > 0,

which is an automorphism of the group G for each λ > 0. At times, we will denote
the image of x ∈ G under Dλ by λ(x) or, simply λx. The homogeneous dimension
Q of the homogeneous group G is defined by

Q = v1 + v2 + · · ·+ vN .

It is well known that a homogeneous group is necessarily nilpotent and unimodular.
The Haar measure dx on G is nothing but the Lebesgue measure on RN .

Let us denote the volume of a measurable set ω ⊂ G by |ω|. Then we have the
following consequences: for λ > 0

(2.2) |Dλ(ω)| = λQ|ω| and

ˆ
G

f(λx) dx = λ−Q

ˆ
G

f(x) dx.
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A quasi-norm on G is any continuous non-negative function |·| : G → [0,∞) satisfying
the following conditions:

(i) |x| = |x−1| for all x ∈ G,

(ii) |λx| = λ|x| for all x ∈ G and λ > 0,
(iii) |x| = 0 ⇐⇒ x = 0.

If S = {x ∈ G : |x| = 1} ⊂ G is the unit sphere with respect to the quasi-norm
| · |, then there is a unique Radon measure σ on S such that for all f ∈ L1(G), we
have the following polar decomposition (see [8, Proposition 1.15])

(2.3)

ˆ
G

f(x) dx =

ˆ ∞

0

ˆ
S

f(ry)rQ−1 dσ(y) dr.

We also note that Balogh and Tyson [2] refine the polar decomposition (2.3) by
replacing the curves γ(r, y) := Dr(y) = ry, r > 0, with a family of horizontal curves
ϕ(s, ·) : (0,∞) → G in a certain class of Carnot groups. As mentioned in [2], this
refinement has several potential applications, but the decomposition (2.3) will be
sufficient for our purposes. We also note that the question of the existence of polar
decompositions is interesting in general metric measure spaces, and we can refer to
[1] to a recent discussion of this topic.

Here we fix some notation which be used in the sequel. The letters u and v will
be always used to denote the weights on homogeneous groups G. A quasi-ball in
the homogeneous group G with radius |x|, x ∈ G, and centred at the origin will be
denoted by B(0, |x|). We denote the (Radon) measure of the unit sphere S in G by
|S|. The Haar measure of the unit quasi-ball B(0, |x|), denoted by |B(0, |x|)|, can be
calculated by using (2.3) as

|B(0, |x|)| =

ˆ
B(0,|x|)

dy =

ˆ |x|

0

rQ−1

(ˆ
S

dσ

)

dr

=

ˆ
S

(ˆ |x|

0

rQ−1 dr

)

dσ =
|x|Q|S|

Q
.(2.4)

For a given function u on G, the spherical average u1 of u is defined by

u1(x) :=
1

|S|

ˆ
S

u(|x|σ) dσ,(2.5)

where S = {x ∈ G : |x| = 1} ⊂ G is the unit sphere with respect to the quasi-norm
| · |.

3. Main results

In this section, we prove the weighted Levin–Cochran–Lee type inequalities on
a homogeneous Lie group equipped with a quasi-norm for arbitrary weights. We
will derive sharp weighted inequalities on quasi-balls in homogeneous (Lie) groups
involving specific weights and also calculate the sharp constant for these inequalities.

Proof of Theoerem 1.4:. We begin with the proof by rewriting Theorem 1.3 by

replacing p

α
, q

α
, u(x)|B(0, |x|)|

−q

α and fα in the places of p, q, u(x) and f, respectively,
where 0 < α < p. Indeed, we get the following inequality
(ˆ

G

(ˆ
B(0,|x|)

fα(y) dy

)
q

α

u(x)|B(0, |x|)|
−q

α dx

)
α
q

≤ Cα

(ˆ
G

fα
p

α (x) v(x) dx

)
α
p

,
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which in turn implies that

(ˆ
G

(

1

|B(0, |x|)|

ˆ
B(0,|x|)

fα(y) dy

)
q

α

u(x) dx

)
1

q

≤ C
1

α
α

(ˆ
G

f p(x) v(x) dx

)
1

p

,(3.1)

holds for all non-negative functions f ∈ G if

AQ,α = sup
x∈G

(ˆ
G\B(0,|x|)

u(y) |B(0, |y|)|−
q

α dy

)
1

q
(ˆ

B(0,|x|)

v
α

α−p (y) dy

)
p−α

αp

< ∞,

and the constant Cα satisfies the following estimate:

C
1

α
α ≤ AQ,α

(

p

p− α

)
p−α

αp

.
( p

α

)
1

q

.(3.2)

We note that

AQ,α

(

p

p− α

)
p−α

αp

.
( p

α

)
1

q

= AQ,α

(

p

p− α

)
p−α

αp

× p
1

q ,

with

(3.3) AQ,α = sup
x∈G

(

1

α

)
1

q
(ˆ

G\B(0,|x|)

u(y)|B(0, |x|)|
−q

α dy

)
1

q
(ˆ

B(0,|x|)

v
α

α−p (y) dy

)
p−α

αp

.

Therefore, from (3.2), we have

C
1

α
α ≤ AQ,α

(

p

p− α

)
p−α

αp

× p
1

q .(3.4)

Since

lim
α→0+

(

p

p− α

)
p−α

αp

= e
1

p ,(3.5)

using (3.5) in (3.4), we get

C ≤ AQ p
1

q e
1

p ,(3.6)

where

AQ := lim
α→0+

AQ,α and C := lim
α→0+

C
1

α
α .

Recall that by (2.4) we have,

|B(0, |y|)| :=

ˆ
B(0,|y|)

dx =

ˆ
S

(ˆ |y|

0

rQ−1dr

)

dσ =
|y|Q|S|

Q
.
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Now, let us calculate the first integral from (3.3). We get

(ˆ
G\B(0,|x|)

u(y) |B(0, |y|)|
−q

α dy

)
1

q

=

(ˆ
G\B(0,|x|)

u(y)

(

|y|Q

Q
|S|

)

−q

α

dy

)

1

q

=

(

(

|S|

Q

)
−q

α
ˆ
G\B(0,|x|)

u(y)
1

|y|
Qq

α

dy

)

1

q

=

(

(

|S|

Q

)
−q

α
ˆ
G\B(0,|x|)

u(y)

(

|x|

|y|

)
Qq

α

|x|
−Qq

α dy

)

1

q

=

(

(

|S|

Q

)
−q

α
ˆ
G\B(0,|x|)

u(y)

(

|x|

|y|

)
Qq

α

|x|Q |x|−Q |x|
−Qq

α dy

)

1

q

=

(

|S|

Q

)
−1

α

|x|
−Q

α |x|
Q

q

(ˆ
G\B(0,|x|)

u(y)

(

|x|

|y|

)
Qq

α

|x|−Q dy

)

1

q

.(3.7)

Also, calculating the second integral of (3.3), we get that

(ˆ
B(0,|x|)

v
α

α−p (y) dy

)
p−α

αp

=

(

|B(0, |x|)|

|B(0, |x|)|

ˆ
B(0,|x|)

v
α

α−p (y) dy

)
p−α

αp

= |B(0, |x|)|
p−α

αp

(

1

|B(0, |x|)|

ˆ
B(0,|x|)

v
α

α−p (y) dy

)
p−α

αp

=

(

|x|Q

Q
|S|

)

p−α

αp
(

1

|B(0, |x|)|

ˆ
B(0,|x|)

v
α

α−p (y) dy

)
p−α

αp

=

(

|S|

Q

)
p−α

αp

|x|Q(
p−α

αp )
(

1

|B(0, |x|)|

ˆ
B(0,|x|)

v
α

α−p (y) dy

)
p−α

αp

.(3.8)

Next, substituting the values from (3.7) and (3.8) in (3.3), we obtain

AQ,α = sup
x∈G

(

1

α

)
1

q
(

|S|

Q

)
−1

α
(

|S|

Q

)
p−α

αp

|x|
−Q

α |x|
Q

q |x|Q(
p−α

αp )

·

(ˆ
G\B(0,|x|)

u(y)

(

|x|

|y|

)
Qq

α

|x|−Q dy

)

1

q (

1

|B(0, |x|)|

ˆ
B(0,|x|)

v
α

α−p (y) dy

)
p−α

αp

.

Thus we find,

AQ,α = sup
x∈G

(

1

α

)
1

q

|x|
Q

q
−Q

p

(

|S|

Q

)
−1

p

·

(ˆ
G\B(0,|x|)

u(y)

(

|x|

|y|

)
Qq

α

|x|−Qdy

)

1

q (

1

|B(0, |x|)|

ˆ
B(0,|x|)

v
α

α−p (y) dy

)
p−α

αp

.(3.9)

We set

Iα(x) :=
1

α

ˆ
G\B(0,|x|)

u(y)

(

|x|

|y|

)
Qq

α

|x|−Q dy.
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Now, performing the variable transformation y = |x|z in Iα(x) and then using the
polar decomposition by setting z = rω, we get

Iα(x) =
1

α

ˆ
G\B(0,|x|)

u(y)

(

|x|

|y|

)
Qq

α

|x|−Q dy =
1

α

ˆ
G\B(0,1)

u(|x|z) |z|
−Qq

α dz

=
1

α

ˆ
S

ˆ ∞

1

u (|x|rω) rQ−Qq

α
−1 dr dω.(3.10)

We observe that

χ(1,∞)(r)Q
( q

α
− 1
)

rQ−Qq

α
−1 −→ δ1(r) as α → 0+,

where δ1(r) is the Dirac delta function at r = 1. Indeed, by choosing a test function
φ ∈ C∞

c (R) we see that

lim
α→0+

〈χ(1,∞)(r)Q
( q

α
− 1
)

rQ−Qq

α
−1, φ〉 = lim

α→0+

ˆ ∞

1

Q
( q

α
− 1
)

rQ−Qq

α
−1φ(r) dr

= − lim
α→0+

(rQ−Qq

α φ(r)|∞r=1) + lim
α→0+

ˆ ∞

1

rQ−Qq

α φ′(r) dr = φ(1) = 〈δ1, φ〉.

This implies that

lim
α→0+

χ(1,∞)(r)Q
( q

α
− 1
)

rQ−Qq

α
−1 = δ1(r).

Indeed, for r ∈ (1,∞) and for α → 0+, we have limα→0+ rQ−Qq

α = 0, which shows
that

lim
α→0+

χ(1,∞)(r)
1

α
rQ−Qq

α
−1 =

δ1(r)

Qq
.

Thus, from (3.10), we have

Iα(x) →
1

Qq

ˆ
S

u (|x|ω)dω =
1

Qq
|S| u1(x) as α → 0+.(3.11)

A simple calculation gives, as β → 0+, that

(

1

|B(0, |x|)|

ˆ
B(0,|x|)

fβ(y) dy

)
1

β

→ exp

(

1

|B(0, |x|)|

ˆ
B(0,|x|)

log f(y) dy

)

.(3.12)

Next, using (3.12) in the second integral of (3.9), we have

(

1

|B(0, |x|)|

ˆ
B(0,|x|)

v
α

α−p (y) dy

)
p−α

αp

−→ exp

(

1

|B(0, |x|)|

ˆ
B(0,|x|)

log
1

v(y)
dy

)
1

p

(3.13)
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as α → 0+. Substituting (3.11) and (3.13) in (3.9) as α → 0+, we have

AQ = lim
α→0+

AQ,α

= sup
x∈G

|x|
Q

q
−Q

p

(

|S|

Q

)
−1

p
(

1

Qq
|S|u1(x)

)
1

q

·

(

exp

(

1

|B(0, |x|)|

ˆ
B(0,|x|)

log
1

v(y)
dy

))
1

p

= sup
x∈G

q
−1

q |x|
Q

q
−Q

p

(

|S|

Q

)
1

q
− 1

p

u
1

q

1 (x)

(

exp

(

1

|B(0, |x|)|

ˆ
B(0,|x|)

log
1

v(y)
dy

))
1

p

= sup
x∈G

q
− 1

q

(

|x|Q
|S|

Q

)
1

q
− 1

p

u
1

q

1 (x)

(

exp

(

1

|B(0, |x|)|

ˆ
B(0,|x|)

log
1

v(y)
dy

))
1

p

= q−
1

qDQ,(3.14)

which is finite by the hypothesis of the theorem.
Thus, putting the value of AQ from (3.14) in (3.6), we get

0 < C ≤

(

p

q

)
1

q

exp

(

1

p

)

DQ,(3.15)

which is same as (1.8).
Finally, using (3.12) in (3.1), we obtain

(ˆ
G

[

exp

(

1

|B(0, |x|)|

ˆ
B(0,|x|)

log f(y) dy

)]q

u(x) dx

)
1

q

≤ C

(ˆ
G

f p(x) v(x) dx

)
1

p

,

(3.16)

completing the proof of the theorem. �

Proof of the Theorem 1.5. Assume that equality (1.10) holds. Let f be an arbi-
trary positive function on the homogeneous Lie group G equipped with a quasi norm
| · |. To prove (1.9) we first obtain its equivalent form using polar decomposition on G

and then we use Theorem 1.4 to establish it. Indeed, using the polar decomposition
on G, by setting x = rσ and y = tτ in (1.9) on G, we get an equivalent inequality of
(1.9):

(ˆ
S

ˆ ∞

0

(

|S|

Q

)a

rQa+Q−1

[

exp

(

ǫr−Qǫ

(

|S|

Q

)−ǫ

·

ˆ
S

ˆ r

0

(

|S|

Q

)ǫ−1

tQǫ−1 log f(tτ) dt dτ

)

]q

dr dσ

)
1

q

≤ C

(ˆ
S

ˆ ∞

0

rQb+Q−1

(

|S|

Q

)b

f p(rσ) dr dσ

)
1

p

.(3.17)
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Next, we do variable transformation r = r
1

ǫ

1 and t = t
1

ǫ

1 in (3.17) to obtain
(ˆ

S

ˆ ∞

0

(

|S|

Q

)a

r
Q(a+1

ǫ
−1)

1 r
Q−1
1

[

exp

(

Qq

|S|rQ1

·

ˆ
S

ˆ r1

0

t
Q−1
1 log f

(

t
1

ǫ

1 τ
)

dt1 dτ

)

]q
1

ǫ
dr1dσ

)
1

q

≤ C

(ˆ
S

ˆ ∞

0

(

|S|

Q

)b

r
Q( b+1

ǫ
−1)

1 r
Q−1
1 f p(r

1

ǫ

1 σ)
1

ǫ
dr1 dσ

)
1

p

.(3.18)

Recalling the volume of |B(0, |z|)| in G from (2.4), that is, |B(0, |z|)| = |z|Q|S|
Q

and

using this in (3.18), we have
(ˆ

S

ˆ ∞

0

|B(0, r1)|
( a+1

ǫ
−1)

·

[

exp

(

q

|B(0, r1)|

ˆ
S

ˆ r1

0

log F (t1τ)t
Q−1
1 dt1dτ

)]q

r
Q−1
1 dr1 dσ

)
1

q

(3.19)

≤ Cǫ
1

q
− 1

p

(

|S|

Q

)( b+1

p
− a+1

q )(1− 1

ǫ )(ˆ
S

ˆ ∞

0

|B(0, r1)|
( b+1

ǫ
−1)F p(r1σ)r

Q−1
1 dr1 dσ

)
1

p

,

where we have written F (rσ) = f(r
1

ǫ σ).
Again using the polar decomposition in G with t1τ = z and r1σ = w, the

inequality (3.19) yields that

(ˆ
G

|B(0, |w|)|(
a+1

ǫ
−1)
[

exp

(

q

|B(0, |w|)|

ˆ
B(0,|w|)

log F (z) dz

)]q

dw

)
1

q

≤ Cǫ
1

q
− 1

p

(

|S|

Q

)( b+1

p
− a+1

q )(1− 1

ǫ )(ˆ
G

|B(0, |w|)|(
b+1

ǫ
−1)F p(w) dw

)
1

p

.(3.20)

Recalling the assumption from (1.10) that, b+1
p

− a+1
q

= 0, we get

(ˆ
G

|B(0, |w|)|(
a+1

ǫ
−1)
[

exp

(

q

|B(0, |w|)|

ˆ
B(0,|w|)

log F (z) dz

)]q

dw

)
1

q

≤ Cǫ
1

q
− 1

p

(ˆ
G

|B(0, |w|)|(
b+1

ǫ
−1)F p(w) dw

)
1

p

.(3.21)

Now, we note that the above inequality (3.21) is equivalent to the inequality (1.9).
Therefore, to prove (1.9), it is enough to show that DQ (ref. (1.6)) is finite. Thus,

we apply Theorem 1.4 with the corresponding weights u(w) = |B(0, |w|)|(
a+1

ǫ
−1) and

v(w) = |B(0, |w|)|(
b+1

ǫ
−1) on G. For this case,

DQ = sup
w∈G

|B(0, |w|)|
1

q
− 1

p u
1

q

1 (w)

[

exp

(

1

|B(0, |w|)|

ˆ
B(0,|w|)

log
1

v(s)
ds

)]
1

p

,(3.22)
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where u1(w) =
1
|S|

´
S
u(|w|σ) dσ. Let us now calculate the value of u1. In fact, we

have

u
1

q

1 (w) =

(

1

|S|

ˆ
S

u(|w|σ) dσ

)
1

q

=

(

1

|S|

)
1

q
(ˆ

S

|B(0, |w|)|(
a+1

ǫ
−1) dσ

)
1

q

=

(

1

|S|

)
1

q

|B(0, |w|)|
1

q (
a+1

ǫ
−1)
(ˆ

S

dσ

)
1

q

= |B(0, |w|)|
1

q (
a+1

ǫ
−1).(3.23)

Now, we calculate the value of the integral in right hand side of (3.22) by using the
polar decomposition s = (t, w) with |s| = t as follows:

ˆ
B(0,|w|)

log
1

v(s)
ds =

ˆ
B(0,|w|)

log |B(0, |s|)|−(
b+1

ǫ
−1) ds

=

ˆ
S

ˆ |w|

0

(

1−
b+ 1

ǫ

)

tQ−1 log

(

|S|

Q
tQ
)

dt dw

=

(

1−
b+ 1

ǫ

) ˆ |w|

0

|S| tQ−1 log

(

|S|

Q
tQ
)

dt.(3.24)

Observe that,

ˆ |S|
Q

|w|Q

0

logU dU = logU × U

∣

∣

∣

∣

|S|
Q

|w|Q

0

−

ˆ |S|
Q

|w|Q

0

d

dU
(logU)× U

=

(

log
|S|

Q
|w|Q

)(

|S|

Q
|w|Q

)

−

(

|S|

Q
|w|Q

)

.(3.25)

Using (3.25) in (3.24) along with the change of variable |S|
Q
tQ = U and using

|B(0, |w|)| = |w|Q|S|
Q

, we get

ˆ
B(0,|w|)

log
1

v(s)
ds =

(

1−
b+ 1

ǫ

) ˆ |S|
Q

|w|Q

0

logUdU

=

(

1−
b+ 1

ǫ

)[(

log
|S|

Q
|w|Q

)(

|S|

Q
|w|Q

)

−

(

|S|

Q
|w|Q

)]

=

(

1−
b+ 1

ǫ

)(

|S|

Q
|w|Q

)[

log

(

|S|

Q
|w|Q

)

− 1

]

= |B(0, |w|)|

(

log |B(0, |w|)|(1−
b+1

ǫ ) +
b+ 1

ǫ
− 1

)

.(3.26)
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Substituting the values from (3.23) and (3.26) in (3.22), we obtain

DQ = sup
w∈G

|B(0, |w|)|
1

q
− 1

p |B(0, |w|)|
1

q (
a+1

ǫ
−1)

·

[

exp

(

1

|B(0, |w|)|
|B(0, |w|)|

(

log |B(0, |w|)|(1−
b+1

ǫ ) +
b+ 1

ǫ
− 1

))]
1

p

= sup
w∈G

|B(0, |w|)|(
a+1

qǫ
− 1

p)
[

exp

(

log |B(0, |w|)|1−
b+1

ǫ +
b+ 1

ǫ
− 1

)]
1

p

= e
1

p(
b+1

ǫ
−1) sup

w∈G
|B(0, |w|)|(

a+1

qǫ
− 1

p)|B(0, |w|)|
1

p
− b+1

ǫp ,(3.27)

which implies that

DQ = exp

(

1

p

(

b+ 1

ǫ
− 1

))

sup
w∈G

|B(0, |w|)|
1

ǫ (
a+1

q
− b+1

p ).(3.28)

Thus, using the assumption (1.10) in (3.28), we have

DQ = exp

(

1

p

(

b+ 1

ǫ
− 1

))

,(3.29)

which is finite. Therefore, by Theorem 1.4 inequality (1.9) holds for each positive
function f defined on G.

Moreover, by (1.8) and using the explicit value of DQ from (3.29), we get

ǫ
1

q
− 1

pC ≤

(

p

q

)
1

q

exp

(

b+ 1

ǫp

)

implies that C ≤

(

p

q

)
1

q

ǫ
1

p
− 1

q exp

(

b+ 1

ǫp

)

.(3.30)

Conversely, we assume that (1.9) holds for all positive functions f onG. Again we
will use the equivalent form (3.20) of (1.9). It is clear from (3.20) that the following
inequality is true for any ball B(0, |x|) of radius x ∈ G :

(ˆ
B(0,|x|)

|B(0, |w|)|(
a+1

ǫ
−1)
[

exp
1

|B(0, |w|)|

ˆ
B(0,|w|)

log F (z) dz

]q

dw

)
1

q

≤ Cǫ
1

q
− 1

p

(

|S|

Q

)( b+1

p
− a+1

q )(1− 1

ǫ )(ˆ
G

|B(0, |w|)|(
b+1

ǫ
−1)F p(w) dw

)
1

p

.(3.31)

So, we will test the inequality (3.31) (and therefore, equivalently, inequality (1.9))
with the test function, for x ∈ G as chosen above,

Fx(z) = |B(0, |z|)|
1

p(1−
b+1

ǫ ) χB(0,|x|), z ∈ G,

where χB(0,|x|) is the characteristic function of B(0, |x|) in G. Indeed, we obtain by
noting |z| ≤ |w| ≤ |x| that

(ˆ
B(0,|x|)

|B(0, |w|)|(
a+1

ǫ
−1)
[

exp
1

|B(0, |w|)|

ˆ
B(0,|w|)

log |B(0, |z|)|
1

p(1−
b+1

ǫ ) dz

]q

dw

)
1

q

≤ Cǫ
1

q
− 1

p

(

|S|

Q

)( b+1

p
− a+1

q )(1− 1

ǫ )
|B(0, |x|)|

1

p = C̃ |B(0, |x|)|
1

p ,

(3.32)



Anisotropic weighted Levin–Cochran–Lee type inequalities on homogeneous Lie groups 697

where

C̃ = Cǫ
1

q
− 1

p

(

|S|

Q

)( b+1

p
− a+1

q )(1− 1

ǫ )
.(3.33)

Again, using the polar decomposition on G and doing calculations similar to (3.24),
we get

ˆ
B(0,|w|)

log |B(0, |z|)|
1

p(1−
b+1

ǫ ) dz

= |B(0, |w|)|

(

log |B(0, |w|)|
1

p(1−
b+1

ǫ ) +
1

p

(

b+ 1

ǫ
− 1

))

.

(3.34)

Using (3.34) in (3.32) we obtain

(ˆ
B(0,|x|)

|B(0, |w|)|
a+1

ǫ
−1

(

exp
1

|B(0, |w|)|

{

|B(0, |w|)|

·

(

log |B(0, |w|)|
1

p(1−
b+1

ǫ ) +
1

p

(

b+ 1

ǫ
− 1

))

})q

dw

)
1

q

≤ C̃|B(0, |x|)|
1

p .

This implies that

(ˆ
B(0,|x|)

|B(0, |w|)|
a+1

ǫ
−1

(

|B(0, |w|)|
1

p(1−
b+1

ǫ ) exp

(

1

p

(

b+ 1

ǫ
− 1

)))q

dw

)
1

q

≤ C̃|B(0, |x|)|
1

p .

(3.35)

Therefore, from (3.35), we can rewrite (3.32) in the following form

exp

{

b+ 1

ǫp
−

1

p

}(ˆ
B(0,|x|)

|B(0, |w|)|
a+1

ǫ
−1+ q

p(1−
b+1

ǫ ) dw

)
1

q

≤ C̃ |B(0, |x|)|
1

p ,

which further can be rewritten as

(ˆ
B(0,|x|)

|B(0, |w|)|(
q

p(
a+1

ǫ

p

q
− b+1

ǫ
+1)−1) dw

)
1

q

≤ C̃ exp

{

1

p
−

b+ 1

ǫp

}

|B(0, |x|)|
1

p .

(3.36)

Therefore, the inequality (3.36) implies that

(ˆ
B(0,|x|)

|B(0, |w|)|
q

p0
−1

dw

)
1

q

≤ C̃ exp

{

1

p
−

b+ 1

ǫp

}

|B(0, |x|)|
1

p ,(3.37)

where

p0 =
p

a+1
ǫ

p

q
− b+1

ǫ
+ 1

.(3.38)
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Now, again using the polar decomposition on G, from (3.37) we obtain

(ˆ
B(0,|x|)

|B(0, |w|)|
q

p0
−1

dw

)
1

q

=

(

(

|S|

Q

)
q

p0
−1 ˆ

B(0,|x|)

|w|
Q( q

p0
−1)

dw

)
1

q

=

(

(

|S|

Q

)
q

p0
−1 ˆ

S

ˆ |x|

0

rQ−1 r
Q( q

p0
−1)

dr dρ

)
1

q

=

(

(

|S|

Q

)
q

p0
−1 ˆ |x|

0

|S| r
Q q

p0
−1

dr

)
1

q

=

(

(

|S|

Q

)
q

p0
−1

|S| |x|
Q q

p0

(

p0

Qq

)

)
1

q

=

(

p0

q

)
1

q
(

|x|Q |S|

Q

)
1

p0

= |B(0, |x|)|
1

p0

(

p0

q

)
1

q

.

Thus we have
(ˆ

B(0,|x|)

|B(0, |w|)|
q

p0
−1

dw

)
1

q

= |B(0, |x|)|
1

p0

(

p0

q

)
1

q

.(3.39)

Therefore, using (3.39) in (3.37), we deduce that

|B(0, |x|)|
1

p0

(

p0

q

)
1

q

≤ C̃ exp

(

1

p
−

b+ 1

ǫp

)

|B(0, |x|)|
1

p ,

which implies that

|B(0, |x|)|
1

p0
− 1

p ≤ C̃ exp

(

1

p
−

b+ 1

ǫp

)(

q

p0

)
1

q

.(3.40)

Since (3.40) holds for every x ∈ G, this implies that p0 = p, that is, from (3.38),

a+ 1

ǫ

p

q
−

b+ 1

ǫ
+ 1 = 1.

Hence

a+ 1

q
−

b+ 1

p
= 0,(3.41)

which is same as (1.10).
Again substituting the value of C̃ from (3.33) in (3.40), we estimate that

|B(0, |x|)|
1

p0
− 1

p ≤ exp

(

1

p
−

b+ 1

ǫp

)(

q

p0

)
1

q

Cǫ
1

q
− 1

p

(

|S|

Q

)( b+1

p
− a+1

q )(1− 1

ǫ )

which with the fact that p = p0 and (3.41) gives that

C ≥

(

p

q

)
1

q

exp

(

b+ 1

ǫp
−

1

p

)

ǫ
1

p
− 1

q .(3.42)

This completes the proof of the theorem. �

Remark 3.1. We observe that applying Theorem 1.5 with p = q = 1 yields a
more general result than the Čižmešija–Pečarić–Perić estimate on Euclidean space
Rn in Theorem 1.2 (see [4]).

Next, we also state the following result which is conjugate of Theorem 1.4:
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Theorem 3.2. Let u and v be weight functions on a homogeneous Lie group G

of homogeneous dimension Q, equipped with an arbitrary quasi norm | · |, and let
0 < p ≤ q < ∞ and ǫ > 0. Then, there exist a positive constant C such that, for all
positive functions f on G, the following inequality holds

(ˆ
G

[

exp

(

ǫ |B(0, |x|)|ǫ
ˆ
G\B(0,|x|)

|B(0, |x|)|−ǫ−1 log f(y) dy

)]q

u(x) dx

)
1

q

≤ C

(ˆ
G

f p(x) v(x) dx

)
1

p

,(3.43)

provided that

(3.44) D̃Q := sup
x∈G

|B(0, |x|)|
1

q
− 1

p ũ
1

q (x)

[

exp

(

1

|B(0, |x|)|

ˆ
B(0,|x|)

log
1

ṽ(y)
dy

)]
1

p

< ∞,

where ũ and ṽ are the spherical average of u and v respectively, given by,

ũ(s) = u(s−
1

ǫ )
1

ǫ
|s|−Q(1+ 1

ǫ ), ṽ(s) = v(s−
1

ǫ )
1

ǫ
|s|−Q(1+ 1

ǫ ).

Moreover, the optimal constant C in (3.43) can estimated as follows:

(3.45) 0 < C ≤

(

p

q

)
1

q

exp

(

1

p

)

D̃Q.

Proof. Let f be a positive function on the homogeneous group G with an arbi-
trary quasi norm | · |. Now, using the polar decomposition of (3.43) on the homo-
geneous group G similar to (3.17) in Theorem 1.5 and again, making some variable
transformations similar to (3.18) and using (2.4), (3.43) can be written as

(ˆ
G

[

exp

(

1

|B(0, |w|)|

ˆ
B(0,|w|)

log f(z−
1

ǫ ) dz

)]q

ũ(w) dw

)
1

q

≤ C

(ˆ
G

f p(w− 1

ǫ ) ṽ(w) dw

)
1

p

.(3.46)

Again, applying Theorem 1.4, using polar decomposition, (2.4) and some variable
transformations we get the required result (3.45). �

Next, we present the conjugate of Theorem 1.5 for the power weights u(x) =
|B(0, |x|)|a and v(x) = |B(0, |x|)|b. We have the following inequality.

Theorem 3.3. Let G be a homogeneous group with the homogeneous dimension
Q equipped with a quasi norm | · |. Let 0 < p ≤ q < ∞, and let a, b ∈ R and ǫ > 0.
Then for all positive functions f on G the inequality
(ˆ

G

[

exp

(

ǫ|B(0, |x|)|ǫ
ˆ
G\B(0,|x|)

|B(0, |y|)|(−ǫ−1) log f(y) dy

)]q

|B(0, |x|)|a dx

)
1

q

≤ C

(ˆ
G

f p(x)|B(0, |x|)|b dx

)
1

p

(3.47)

holds for some finite constant C, if and only if

p (a+ 1)− q (b+ 1) = 0.
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Moreover, the least possible constant C such that (3.47) holds can be estimated as
follows:

(

p

q

)
1

q

ǫ
1

p
− 1

q exp

(

−

(

b+ 1

ǫp

)

−
1

p

)

≤ C ≤

(

p

q

)
1

q

ǫ
1

p
− 1

q exp

(

−

(

b+ 1

ǫp

))

.

Proof. The proof of this theorem follows exactly same lines as the proof of
Theorem 1.5 and therefore, we omit the proof. �

Remark 3.4. If we take p = q and so that a = b, then the inequality (3.47)
holds with the constant C = exp

(

− b+1
ǫp

)

. By using the test function in inequality

(3.47)

fδ(x) =

{

exp
(

b+1
ǫp

)

|B(0, 1)|−(b+1)|x|−
Q

p
(b+1−ǫδ), x ∈ B(0, 1),

exp
(

b+1
ǫp

)

|B(0, 1)|−(b+1)|x|−
Q

p
(b+1+ǫδ)

, x ∈ G\B(0, 1),

and suppose that δ → 0+, it can be shown that the constant C = exp
(

− b+1
ǫp

)

is

sharp.
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Birkhäuser, Basel, Switzerland, 2016.

[8] Folland, G.B., and E.M. Stein: Hardy spaces on homogeneous groups. - Math. Notes 28,
Princeton Univ. Press, Princeton, 1982.

[9] Frank, R. L., and E.H. Lieb: Sharp constants in several inequalities on the Heisenberg
group. - Ann. of Math. (2) 176, 2012, 349–381.



Anisotropic weighted Levin–Cochran–Lee type inequalities on homogeneous Lie groups 701

[10] Jain, P., L. Persson, and A. Wedestig: Multidimensional Cochran and Lee type inequali-
ties with weights. - Proc. of A. Razmadze Math. Inst. 129, 2002, 17–27.

[11] Kassymov, A., M. Ruzhansky, and D. Suragan: Hardy–Littlewood-Sobolev and Stein–
Weiss inequalities on homogeneous Lie groups. - Integral Transforms Spec. Funct. 30:8, 2019,
643–655.

[12] Knopp, K.: Uber Reih en mit positiven Gliedern. - J. London Math. Soc. 3, 1928, 205–211.

[13] Kufner, A., and L.-E. Persson: Weighted inequalities of Hardy type. - World Scientific
Publishing Co. Inc., River Edge, NJ, 2003.

[14] Kufner, A., L.-E. Persson, and N. Samko: Weighted inequalities of Hardy type. - World
Scientific Publishing Co., Hackensack, NJ, 2nd ed., 2003.

[15] Levin, V.: Neravenstvah III: Neravenstva, vypolnjaemie geometriceskim srednim neotrica-
tel’noi funkcii. - Math. Sbornik 4:46, 1938, 325–331.

[16] Love, E.R.: Inequalities related to those of Hardy and of Cochran and Lee. - Math. Proc.
Cambridge Phil. Soc. 99, 1986, 395–408.

[17] Ruzhansky, M., A. Shriwastawa, and B. Tiwari: A note on best constants for weighted
integral Hardy inequalities on homogeneous groups. - Results Math. 79:1, 2024, Paper No. 29.

[18] Ruzhansky, M., A. Shriwastawa, and B. Tiwari: Hardy inequalities on metric measure
spaces, IV: The case p = 1. - Forum Math. 36, 2024, 1603-1611.

[19] Ruzhansky, M., and D. Suragan: Hardy and Rellich inequalities, identities, and sharp
remainders on homogeneous groups. - Adv. Math. 317, 2017, 799–822.

[20] Ruzhansky, M., and D. Suragan: Uncertainty relations on nilpotent Lie groups. - Proc. R.
Soc. A 473:2201, 2017, 20170082.

[21] Ruzhansky, M., and D. Suragan: Hardy inequalities on homogeneous groups: 100 years of
Hardy inequalities. - Prog. Math. 327, Springer Birkhäuser, Cham, Switzerland, 2019.
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