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A variant of inverse mean curvature flow for
star-shaped hypersurfaces evolving in a cone

Jing Mao and Qiang Tu

Abstract. Given a smooth convex cone in the Euclidean (n + 1)-space (n ≥ 2), we consider

strictly mean convex hypersurfaces with boundary which are star-shaped with respect to the center

of the cone and which meet the cone perpendicularly. If those hypersurfaces inside the cone evolve

by a variant of inverse mean curvature flow, then, by using the convexity of the cone in the derivation

of the gradient and Hölder estimates, we can prove that this evolution exists for all the time and

the evolving hypersurfaces converge smoothly to a piece of a round sphere as time tends to infinity.

Tähtimäisten hyperpintojen aikakehitys kartiossa

muunnetun käänteisen keskikaarevuusvirtauksen suhteen

Tiivistelmä. Olkoon annettu euklidisen (n+1)-avaruuden (n ≥ 2) sileä, kupera kartio. Tässä

työssä tarkastellaan aidosti keskikuperia reunallisia hyperpintoja, jotka ovat tähtimäisiä kartion

keskipisteen suhteen ja kohtaavat kartion kohtisuorasti. Jos kartion sisälle jäävät hyperpinnat ke-

hittyvät muunnetun käänteisen keskikaarevuusvirtauksen mukaisesti, voidaan kartion kuperuutta

gradientti- ja Hölderin arvioiden johtamisessa käyttäen todistaa, että tämä kehitys on määritelty

kaikilla ajanhetkillä, ja hyperpinnat suppenevat sileästi kohti pyöreän pallopinnan osaa, kun aika

lähestyy ääretöntä.

1. Introduction

Recently, Chen, Mao, Tu and Wu [2] considered the evolution of a one-parameter
family of closed, star-shaped and strictly mean convex hypersurfaces Mn

t , given by
X(·, t) : Sn × [0, T ) → Rn+1 with some T <∞, under the flow

(1.1)





∂

∂t
X =

1

|X|αH(X)
ν,

X(·, 0) =Mn
0 ,

where ν is the unit outward normal vector of Mn
t , H is the mean curvature of Mn

t ,
and |X| is the distance from the point X(x, t) to the origin of Rn+1. For α ≥ 0,
they showed the long-time existence and the asymptotical behavior of the flow (1.1).
Clearly, when α = 0, the flow (1.1) degenerates into the classical inverse mean
curvature flow (IMCF for short), and therefore Gerhardt’s or Urbas’s classical result
for the IMCF in R

n+1 (see [5, 20]) is covered by the main conclusion of [2] as a special
case. There might exist some interesting variants of the classical IMCF by using
other constraint terms (not like |X|α) added to the evolution equation of IMCF, and
moreover, the asymptotic behavior of those variant flows can be investigated—see,
e.g., [17].
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As we know, the classical IMCF is scale invariant. However, generally, the flow
(1.1) is non-scale-invariant except the case α = 0. The meaning of studying the non-
scale-invariant version of inverse curvature flows (ICFs for short) have been revealed
clearly by Gerhardt [7], where he investigated the non-scale-invariant version of the
classical ICF considered by himself in [5]. This improvement from the scale invariant
case to the non-scale-invariant case permits that Gerhardt’s main conclusion in [7]
covers some interesting conclusions in [12, 18] for the inverse Gauss curvature flow
(IGCF for short) and the power of the IGCF. Based on this reason, it also should be
interesting to investigate properties of the non-scale-invariant flow (1.1) in different
settings—for this purpose, please see the series work [2, 8] of Mao and his collabo-
rators. The flow (1.1) is an initial value problem of second-order parabolic PDEs.
Could we consider the case of boundary value problems? This motivation forces us
to consider the evolution of hypersurfaces with boundary under the ICFs considered
in [2].

Marquardt [16] considered the classical IMCF with a Neumann boundary condi-
tion (NBC for short), where the embedded flowing hypersurfaces were supposed to
be perpendicular to a smooth convex cone in Rn+1. He proved that the flow exists
for all the time and after rescaling, the evolving hypersurfaces converge smoothly
to a piece of a round sphere. Later, Lambert and Scheuer [11] extended this inter-
esting conclusion to the situation that the hypersurfaces are perpendicular to the
prescribed sphere. In 2017, Chen, Mao, Xiang and Xu [3] improved Marquardt’s
main conclusion above to the case that the ambient space is the warped product
I ×λ(r) N

n, where I ⊆ R is an unbounded interval of R, Nn is an n-dimensional Rie-
mannian manifold with nonnegative Ricci curvature, and the warping function λ(r)
satisfies some growth assumptions. Inspired by these works, it should be interesting
to consider the flow (1.1) with a prescribed NBC. In fact, we can prove the following:

Theorem 1.1. Let α > 0 and Σn := {rx ∈ Rn+1 | r > 0, x ∈ ∂Mn} be the
boundary of a smooth, convex cone that is centered at the origin and has outward
unit normal µ, where Mn ⊂ Sn is some piece of the unit sphere Sn in Rn+1. Let
X0 : M

n → Rn+1 such that Mn
0 := X0(M

n) is a compact, strictly mean convex
C2,γ-hypersurface (0 < γ < 1) which is a graph over Mn for a positive function
u0 : M

n → R, i.e., Mn
0 = graphMnu0. Assume that

∂Mn
0 ⊂ Σn, 〈µ ◦X0, ν0 ◦X0〉|∂Mn = 0,

where ν0 is the outward unit normal to Mn
0 . Then

(i) there exists a family of strictly mean convex hypersurfaces Mn
t given by the

unique embedding

X ∈ C2+γ,1+ γ
2 (Mn × [0,∞),Rn+1) ∩ C∞(Mn × (0,∞),Rn+1)

with X(∂Mn, t) ⊂ Σn for t ≥ 0, satisfying the following system

(1.2)





∂

∂t
X =

1

|X|αH
ν in Mn × (0,∞),

〈µ ◦X, ν ◦X〉 = 0 on ∂Mn × (0,∞),

X(·, 0) =Mn
0 in Mn,

where H is the mean curvature of Mn
t := X(Mn, t) = Xt(M

n), ν is the unit
outward normal vector of Mn

t , and |X| is the distance from the point X(x, t)
to the origin. Moreover, the Hölder norm on the parabolic space Mn× (0,∞)
is defined in the usual way (see, e.g., [6, Note 2.5.4]).
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(ii) the hypersurfaces Mn
t are graphs over Mn, i.e.,

Mn
t = graphMnu(·, t).

(iii) Moreover, the evolving hypersurfaces converge smoothly after rescaling to a
piece of a round sphere of radius r∞, where r∞ satisfies

1

sup
Mn

u0

(
Hn(Mn

0 )

Hn(Mn)

) 1

n

≤ r∞ ≤
1

inf
Mn

u0

(
Hn(Mn

0 )

Hn(Mn)

) 1

n

,

whereHn(·) stands for the n-dimensional Hausdorff measure of an n-manifold.

Remark 1.1. In order to avoid any potential confusion with the mean curvature

H , we use Cm+2+γ,m+2+γ
2 not Hm+2+γ,m+2+γ

2 used in [7] to represent the parabolic
Hölder norm. It is easy to check that all the arguments in the sequel are still valid
for the case α = 0 except some minor changes should be made. For instance, if α = 0,
then (3.1) becomes φ(x, t) = 1

n
t+ c. However, in this setting, one can also get the C0

estimate as well. Clearly, when α = 0, the flow (1.2) degenerates into the parabolic
system with the vanishing NBC in [16, Theorem 1], and correspondingly, our main
conclusion here covers [16, Theorem 1] as a special case.

2. The corresponding scalar equation

2.1. The geometry of graphic hypersurfaces. For an n-dimensional Rie-
mannian manifold (Mn, g), the Riemann curvature (3,1)-tensor Rm is defined by

Rm(X, Y )Z = −∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z.

Pick a local coordinate chart {xi}ni=1 of Mn, and ∂
∂xi , i = 1, 2, · · · , n, are the corre-

sponding coordinate vector fields (∂i for short). The component of the (3,1)-tensor
Rm is defined by

Rm

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
.
= Rl

ijk

∂

∂xl

and Rijkl := glmR
m
ijk. Then, we have the standard commutation formulas (the Ricci

identities):

(∇i∇j −∇j∇i)αk1···kr =
r∑

l=1

Rm
ijkl
αk1···kl−1mkl+1···kr .

If furthermore (Mn, g) is an immersed hypersurface in Rn+1 with Rijkl the Riemann-
ian curvature of Mn, and let ν be the unit outward normal vector of Mn, then
the second fundamental form hij of the hypersurface Mn with respect to ν can be
computed as follows

hij = −

〈
∂2X

∂xi∂xj
, ν

〉

Rn+1

.

Set X,ij := ∂i∂jX−Γk
ijXk, where Γ

k
ij is the Christoffel symbol of the metric g onMn.

We need the following identities

(2.1) X,ij = −hijν, Gauss formula

(2.2) ν,i = hijX
j , Weingarten formula

where Xj := Xkg
kj,
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(2.3) Rijkl = hikhjl − hilhjk, Gauss equation

(2.4) ∇khij = ∇jhik, Codazzi equation.

We make an agreement that, for simplicity, in the sequel the comma “,” in subscripts
will be omitted unless necessary. Then, using the Codazzi equation we get

∇i∇jhkl = ∇i(∇jhlk) = ∇i(∇khlj) = ∇i∇khlj.

Using the Ricci identities we have

∇i∇jhkl = ∇k∇ihlj +Riklmh
m
j +Rikjmh

m
l .

Using the Codazzi equation again, it follows that

∇i∇jhkl = ∇k(∇lhji) +Riklmh
m
j +Rikjmh

m
l

= ∇k∇lhji +Riklmh
m
j +Rikjmh

m
l .

Using the Gauss equation, we have

(2.5) ∇i∇jhkl = ∇k∇lhij + hmj (hilhkm − himhkl) + hml (hijhkm − himhkj).

2.2. The corresponding scalar equation. In coordinates on the sphere Sn,
we equivalently formulate the problem by the corresponding scalar equation. Since
the initial C2,γ-hypersurface is star-sharped (which is a direct consequence of the
graphical property of Mn

0 ), there exists a scalar function u0 ∈ C2,γ(Mn) such that
X0 : M

n → Rn+1 has the form x 7→ u0(x) · x. The hypersurface Mn
t given by the

embedding

X(·, t) : Mn → R
n+1

at time t may be represented as a graph overMn ⊂ Sn, and then we can make ansatz

X(x, t) = u(x, t) · x

for some function u : Mn × [0, T ) → R.

Lemma 2.1. Define p := X(x, t) and assume that a point on Sn is described by
local coordinates ξ1, . . . , ξn, that is, x = x(ξ1, . . . , ξn). Let ∂i be the corresponding
coordinate fields on S

n and σij = gSn(∂i, ∂j) be the metric on S
n. Let ui = Diu,

uij = DjDiu, and uijk = DkDjDiu denote the covariant derivatives of u with respect
to the round metric gSn and let ∇ be the Levi–Civita connection of Mn

t with respect
to the metric g := u2gSn + dr2 induced from the standard metric of Rn+1. Then, the
following formulas hold:

(i) The tangential vector on Mn
t is

Xi = ∂i + ui∂r

and the corresponding outward unit normal vector is given by

ν =
1

v

(
∂r −

1

u2
uj∂j

)
,

where uj = σijui, and v :=
√

1 + u−2|Du|2 with Du the gradient of u.
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(ii) The induced metric g on Mn
t has the form

gij = u2σij + uiuj

and its inverse is given by

gij =
1

u2

(
σij −

uiuj

u2v2

)
.

(iii) The second fundamental form of Mn
t is given by

hij =
1

v

(
−uij + uσij +

2

u
uiuj

)
.

and

hij = gikhjk =
1

uv
δij −

1

uv
σ̃ikϕjk, σ̃ij = σij −

ϕiϕj

v2
,

where ϕ = log u. Naturally, the mean curvature is given by

H =
n∑

i=1

hii =
1

uv

(
n− (σij −

ϕiϕj

v2
)ϕij

)
.

(iv) Let p ∈ Σn, µ̂(p) be the normal to Σn at p and µ = µi(x)∂i be the normal to
∂Mn at x. Then

〈µ̂(p), ν(p)〉 = 0 ⇐⇒ µi(x)ui(x, t) = 0.

Proof. Let ∇ be the covariant connection of Rn+1. Since

hij = −〈∇ijX, ν〉 = −〈∇∂i∂j + ui∇∂j∂r + uj∇∂i∂r + uiuj∇∂r∂r, ν〉,

these formulas can be verified by direct calculation. The details can also be found in
[1]. �

Using techniques as in Ecker [4] (see also [5, 6, 16]), the problem (1.2) can be
reduced to solving the following scalar equation with the corresponding initial data

(2.6)





∂u

∂t
=

v

uαH
in Mn × (0,∞),

Dµu = 0 on ∂Mn × (0,∞),

u(·, 0) = u0 in Mn.

Define a new function ϕ(x, t) = log u(x, t) and then the mean curvature can be
rewritten as

H =

n∑

i=1

hii =
e−ϕ

v

(
n− (σij −

ϕiϕj

v2
)ϕij

)
.

Hence, the evolution equation in (2.6) can be rewritten as

∂

∂t
ϕ = e−αϕ(1 + |Dϕ|2)

1

[n− (σij − ϕiϕj

v2
)ϕij]

:= Q(ϕ,Dϕ,D2ϕ).

In particular,

n−

(
σij −

ϕi
0ϕ

j
0

v2

)
ϕ0,ij
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is positive onMn, sinceMn
0 is strictly mean convex. Thus, the problem (1.2) is again

reduced to solving the following scalar equation with the NBC

(2.7)





∂ϕ

∂t
= Q(ϕ,Dϕ,D2ϕ) in Mn × (0, T ),

Dµϕ = 0 on ∂Mn × (0, T ),

ϕ(·, 0) = ϕ0 in Mn,

where

n−

(
σij −

ϕi
0ϕ

j
0

v2

)
ϕ0,ij

is positive on Mn. Clearly, for the initial surface Mn
0 ,

∂Q

∂ϕij

∣∣∣
ϕ0

=
1

u2+αH2

(
σij −

ϕi
0ϕ

j
0

v2

)

is positive on Mn. Based on the above facts, as in [5, 6, 16], we can get the following
short-time existence and uniqueness for the parabolic system (1.2).

Lemma 2.2. Let X0(M
n) = Mn

0 be as in Theorem 1.1. Then there exist some
T > 0, a unique solution u ∈ C2+γ,1+ γ

2 (Mn × [0, T ]) ∩ C∞(Mn × (0, T ]), where
ϕ(x, t) = log u(x, t), to the parabolic system (2.7) with the matrix

n−

(
σij −

ϕiϕj

v2

)
ϕij

positive on Mn. Thus there exists a unique map ψ : Mn × [0, T ] → Mn such that

ψ(∂Mn, t) = ∂Mn and the map X̂ defined by

X̂ : Mn × [0, T ) → R
n+1 : (x, t) 7→ X(ψ(x, t), t)

has the same regularity as stated in Theorem 1.1 and is the unique solution to the
parabolic system (1.2).

Let T ∗ be the maximal time such that there exists some

u ∈ C2+γ,1+ γ
2 (Mn × [0, T ∗)) ∩ C∞(Mn × (0, T ∗))

which solves (2.7). In the sequel, we shall prove a priori estimates for those solutions
on [0, T ] where T < T ∗.

3. C0, ϕ̇ and gradient estimates

Lemma 3.1. (C0 estimate) Let ϕ be a solution of (2.7). Then for α > 0, we
have

c1 ≤ u(x, t)Θ−1(t, c) ≤ c2, ∀ x ∈Mn, t ∈ [0, T ],

for some positive constants c1, c2, where Θ(t, c) :=
{

αt
n
+ eαc

} 1

α with

inf
Mn

ϕ(·, 0) ≤ c ≤ sup
Mn

ϕ(·, 0).

Proof. Let ϕ(x, t) = ϕ(t) (independent of x) be the solution of (2.7) with ϕ(0) =
c. In this case, the first equation in (2.7) reduces to an ODE

d

dt
ϕ = e−αϕ 1

n
.
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Therefore,

(3.1) ϕ(t) =
1

α
ln

(
αt

n
+ eαc

)
, for α > 0.

Using the maximum principle, we can obtain that

(3.2)
1

α
ln
(α
n
t+ eαϕ1

)
≤ ϕ(x, t) ≤

1

α
ln

(
αt

n
+ eαϕ2

)
,

where ϕ1 := infMn ϕ(·, 0) and ϕ2 := supMn ϕ(·, 0). The estimate is obtained since
ϕ = log u. �

Lemma 3.2. (ϕ̇ estimate) Let ϕ be a solution of (2.7) and Σn be a smooth,
convex cone, then for α > 0,

min

{
inf
Mn

ϕ̇(·, 0) ·Θ(0)α,
1

n

}
≤ ϕ̇(x, t)Θ(t)α ≤ max

{
sup
Mn

ϕ̇(·, 0) ·Θ(0)α,
1

n

}
.

Proof. Set
M(x, t) = ϕ̇(x, t)Θ(t)α.

Differentiating both sides of the first evolution equation of (2.7), it is easy to get that

(3.3)





∂M

∂t
= QijDijM+QkDkM+ αΘ−α

(
1

n
−M

)
M in Mn × (0, T ),

DµM = 0 on ∂Mn × (0, T ),

M(·, 0) = ϕ̇0 ·Θ(0)α on Mn,

where Qij := ∂Q

∂ϕij
and Qk := ∂Q

∂ϕk
. Then the result follows from the maximum

principle. �

Lemma 3.3. (Gradient estimate) Let ϕ be a solution of (2.7) and Σn be the
boundary of a smooth, convex cone described as in Theorem 1.1. Then we have for
α > 0,

(3.4) |Dϕ| ≤ sup
Mn

|Dϕ(·, 0)|, ∀ x ∈Mn, t ∈ [0, T ].

Proof. Set ψ = |Dϕ|2

2
. By differentiating ψ, we have

∂ψ

∂t
=

∂

∂t
ϕmϕ

m = ϕ̇mϕ
m = Qmϕ

m.

Then using the evolution equation of ϕ in (2.7) yields

∂ψ

∂t
= Qijϕijmϕ

m +Qkϕkmϕ
m − αQ|Dϕ|2.

Interchanging the covariant derivatives, we have

ψij = Dj(ϕmiϕ
m) = ϕmijϕ

m + ϕmiϕ
m
j = (ϕijm − Rl

jmiϕl)ϕ
m + ϕmiϕ

m
j .

Therefore, we can express ϕijmϕ
m as

ϕijmϕ
m = ψij +Rl

jmiϕlϕ
m − ϕmiϕ

m
j .

Then, in view of the fact Rjmil = σjiσml − σljσim on S
n, we have

(3.5)
∂ψ

∂t
= Qijψij +Qkψk −Qij(σij |Dϕ|

2 − ϕiϕj)−Qijϕmiϕ
m
j − αQ|Dϕ|2.

Since the matrix Qij is positive definite, the third and the fourth terms in the
RHS of (3.5) are non-positive. Noticing that the last term in the RHS of (3.5) is also
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non-positive if α > 0. Since Σn is convex, using a similar argument to the proof of
[16, Lemma 5] (see pp. 1308) implies that

Dµψ = −
n−1∑

i,j=1

h∂M
n

ij DeiϕDejϕ ≤ 0 on ∂Mn × (0, T ),

where an orthonormal frame at x ∈ ∂Mn, with e1, . . . , en−1 ∈ Tx∂M
n and en := µ,

has been chosen for convenience in the calculation, and h∂M
n

ij is the second funda-
mental form of the boundary ∂Mn ⊂ Σn. So, we can get





∂ψ

∂t
≤ Qijψij +Qkψk in Mn × (0, T ),

Dµψ ≤ 0 on ∂Mn × (0, T ),

ψ(·, 0) =
|Dϕ(·, 0)|2

2
in Mn.

Using the maximum principle, we get the gradient estimate of ϕ in Lemma 3.3. �

Remark 3.1. It is worth pointing out that the evolving surface Mn
t is always

star-shaped under the assumption of Theorem 1.1, since, by Lemma 3.3, we have
〈
X

|X|
, ν

〉
=

1

v

is bounded from below by a positive constant.

Combining the gradient estimate with ϕ̇ estimate, we can obtain

Corollary 3.4. If ϕ satisfies (2.7), then we have

(3.6) 0 < c3 ≤ HΘ ≤ c4 < +∞,

where c3 and c4 are positive constants independent of ϕ.

Proof. Since ϕ = log u satisfies (2.7), so we have

HΘ =
v

ϕ̇ · e(α+1)ϕ
·Θ =

v

(ϕ̇ ·Θα) · e(α+1)ϕ ·Θ−(α+1)
=

√
1 + |Dϕ|2

(ϕ̇ ·Θα) · (uΘ−1)α+1
.

So, combining the C0 estimate, ϕ̇ estimate and the gradient estimate, we have (3.6)
and c3, c4 are positive constants independent of ϕ. �

4. Hölder estimates and convergence

Set Φ = 1
|X|αH

, w = 〈X, ν〉 = u
v
and Ψ = Φ

w
. We can get the following evolution

equations.

Lemma 4.1. Under the assumptions of Theorem 1.1, we have

∂

∂t
gij = 2Φhij,

∂

∂t
gij = −2Φhij ,

∂

∂t
ν = −∇Φ,

∂th
j
i − ΦH−1∆hji = ΦH−1|A|2hji −

2Φ

H2
HiH

j − 2Φhikh
kj

− αΦ(∇i log u∇
j logH +∇j log u∇i logH)

+ αΦu−1u
j
i − α(α+ 1)Φ∇i log u∇

j log u
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and

∂Ψ

∂t
= divg(u

−αH−2∇Ψ)− 2H−2u−αΨ−1|∇Ψ|2

− αΨ2 − αΨ2u−1∇iu〈X,Xi〉 − αu−α−1H−2∇iu∇
iΨ.

(4.1)

Proof. The first three evolution equations are easy to obtain and so are omitted.
Using the Gauss formula, we have

∂thij = ∂t〈∂i∂jX,−ν〉 = 〈∂i∂j(Φν),−ν〉 − 〈Γk
ij∂kX − hijν, ∂tν〉

= −∂i∂jΦ− Φ〈∂i∂jν, ν〉+ Γk
ijΦk = −∇2

ijΦ− Φ〈∂i(h
k
j∂kX), ν〉

= −∇2
ijΦ + Φhikh

k
j .

Direct calculation results in

∇2
ijΦ = Φ

(
−

1

H
Hij +

2HiHj

H2

)
+ αΦ(∇i log u∇j logH +∇j log u∇i logH)

− αΦu−1uij + α(α + 1)Φ∇i log u∇j log u.

Since

∆hij = Hij +Hhikh
k
j − hij|A|

2,

so

∇2
ijΦ = −ΦH−1∆hij + Φhikh

k
j − ΦH−1|A|2hij +

2HiHj

H2
Φ

+ αΦ(∇i log u∇j logH +∇j log u∇i logH)

− αΦu−1uij + α(α+ 1)Φ∇i log u∇j log u.

Thus,

∂thij − ΦH−1∆hij = ΦH−1|A|2hij −
2Φ

H2
HiHj

− αΦ(∇i log u∇j logH +∇j log u∇i logH)

+ αΦu−1uij − α(α+ 1)Φ∇i log u∇j log u.

Obviously, the evolution equation of hji can be directly obtained from the fact hji =
gjlhli, the evolution equation of the second fundamental form hli, and the evolution
equation of the metric. By direct calculation, one furthermore has

∂tH = ∂tg
ijhij + gij∂thij

= −2Φhijhij + gij
(
ΦH−1∆hij + ΦH−1|A|2hij −

2Φ

H2
∇iH∇jH

)

+ αΦgij
(
−∇i log u∇j logH −∇j log u∇i logH + u−1uij

− (α + 1)∇i log u∇j log u
)

= ΦH−1∆H −
2Φ

H2
|∇H|2 − Φ|A|2 + αΦgij

(
− 2∇i log u∇j logH + u−1uij

− (α + 1)∇i log u∇j log u
)

= u−αH−2∆H − 2u−αH−3|∇H|2 − u−αH−1|A|2 − 2αu−α−1H−2∇iu∇
iH

+ αu−α−1H−1∆u− α(α+ 1)u−α−2H−1|∇u|2.

Clearly,

∂tw = Φ+ αΦu−1∇iu〈X,Xi〉+ ΦH−1∇iH〈X,Xi〉,
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using the Weingarten equation, we have

wi = hki 〈X,Xk〉,

wij = hki, j〈X,Xk〉+ hij − hki hkj〈X, ν〉 = hij,k〈X,X
k〉+ hij − hki hkj〈X, ν〉.

Thus,
∆w = H +∇iH〈X,Xi〉 − |A|2〈X, ν〉

and
∂tw = u−αH−2∆w + u−αH−2w|A|2 + αu−α−1H−1∇iu〈X,Xi〉.

Hence

∂Ψ

∂t
= −α

1

u1+α

1

Hw
u̇−

1

uαH2

1

w
∂tH −

1

uαH

1

w2
∂tw

= −α
1

u1+α

1

Hw

1

uα−1Hw
−

1

uαH2

1

w
∂tH −

1

uαH

1

w2
∂tw

= −αu−2αH−2w−2 + α(α+ 1)u−2α−2H−3w−1|∇u|2 + 2u−2αH−5w−1|∇H|2

+ 2αu−2α−1H−4w−1∇iu∇
iH − αu−2α−1H−3w−1∆u− u−2αH−4w−1∆H

− u−2αH−3w−2∆w − αu−2α−1H−2w−2∇iu〈X,Xi〉.

In order to prove (4.1), we calculate

∇iΨ = −αu−α−1H−1w−1∇iu− u−αH−2w−1∇iH − u−αH−1w−2∇iw

and

∇2
ijΨ = α(α+ 1)u−α−2H−1w−1∇iu∇ju+ αu−α−1H−2w−1∇iu∇jH

+ αu−α−1H−1w−2∇iu∇jw − αu−α−1H−1w−1∇2
iju

+ αu−α−1H−2w−1∇iH∇ju+ 2u−αH−3w−1∇iH∇jH

+ u−αH−2w−2∇iH∇jw − u−αH−2w−1∇2
ijH + αu−α−1H−1w−2∇iw∇ju

+ u−αH−2w−2∇iw∇jH + 2u−αH−1w−3∇iw∇jw − u−αH−1w−2∇2
ijw.

Thus

u−αH−2∆Ψ = α(α+ 1)u−2α−2H−3w−1|∇u|2 + 2u−2αH−5w−1|∇H|2

+ 2u−2αH−3w−3|∇w|2 + 2αu−2α−1H−4w−1∇iu∇
iH

+ 2αu−2α−1H−3w−2∇iu∇
iw + 2u−2αH−4w−2∇iH∇iw

− αu−2α−1H−3w−1∆u− u−2αH−4w−1∆H − u−2αH−3w−2∆w.

So we have

div(u−αH−2∇Ψ) = −αu−α−1H−2∇iΨ∇iu− 2u−αH−3∇iΨ∇iH + u−αH−2∆Ψ

= (2α2 + α)u−2α−2H−3w−1|∇u|2 + 5αu−2α−1H−4w−1∇iu∇
iH

+ 3αu−2α−1H−3w−2∇iu∇
iw + 4u−2αH−5w−1|∇H|2

+ 4u−2αH−4w−2∇iw∇
iH + 2u−2αH−3w−3|∇w|2

− αu−2α−1H−3w−1∆u− u−2αH−4w−1∆H − u−2αH−3w−2∆w

and

2H−1w|∇Ψ|2 = 2α2u−2α−2H−3w−1|∇u|2 + 2u−2αH−5w−1|∇H|2

+ 2u−2αH−3w−3|∇w|2 + 4αu−2α−1H−4w−1∇iu∇
iH

+ 4αu−2α−1H−3w−2∇iu∇
iw + 4u−2αH−4w−2∇iH∇iw.
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As above, we have

∂Ψ

∂t
− div(u−αH−2∇Ψ) + 2H−1w|∇Ψ|2

= −αu−2αH−2w−2 − αu−2α−1H−2w−2∇iu〈X,Xi〉+ α2u−2α−2H−3w−1|∇u|2

+ αu−2α−1H−4w−1∇iu∇
iH + αu−2α−1H−3w−2∇iu∇

iw

= −αΨ2 − αΨ2u−1∇iu〈X,Xi〉 − αu−α−1H−2∇iu∇
iΨ.

The proof is finished. �

Now, we define the rescaled flow by

X̃ = XΘ−1.

Thus,

ũ = uΘ−1,

ϕ̃ = ϕ− log Θ,

and the rescaled mean curvature is given by

H̃ = HΘ.

Then, the rescaled scalar curvature equation takes the form

∂

∂t
ũ =

v

ũαH̃
Θ−α −

1

n
ũΘ−α.

Defining t = t(s) by the relation
dt

ds
= Θα

such that t(0) = 0 and t(S) = T . Then ũ satisfies

(4.2)





∂

∂s
ũ =

v

ũαH̃
−
ũ

n
in Mn × (0, S),

Dµũ = 0 on ∂Mn × (0, S),

ũ(·, 0) = ũ0 in Mn.

Lemma 4.2. Let X be a solution of (1.2) and X̃ = XΘ−1 be the rescaled
solution. Then

Dũ = DuΘ−1, Dϕ̃ = Dϕ,
∂ũ

∂s
=
∂u

∂t
Θα−1 −

1

n
uΘ−1,

g̃ij = Θ−2gij , g̃ij = Θ2gij, h̃ij = hijΘ
−1.

Proof. These relations can be computed directly. �

Lemma 4.3. Let u be a solution to the parabolic system (2.7), where ϕ(x, t) =
log u(x, t), and Σn be a smooth, convex cone described as in Theorem 1.1. Then
there exist some β > 0 and some C > 0 such that the rescaled function ũ(x, s) :=
u(x, t(s))Θ−1(t(s)) satisfies

(4.3) [Dũ]β +

[
∂ũ

∂s

]

β

+ [H̃ ]β ≤ C(‖ u0 ‖C2+γ,1+
γ
2 (Mn)

, n, β,Mn),

where [f ]β := [f ]x,β + [f ]
s,β

2

is the sum of the Hölder seminorms of f in Mn × [0, S]

with respect to x and s.
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Proof. We divide our proof in three steps1.

Step 1. We need to prove that

[Dũ]x,β + [Dũ]
s,β

2

≤ C(‖ u0 ‖C2+γ,1+
γ
2 (Mn)

, n, β,Mn).

According to Lemmas 3.1, 3.2 and 3.3, it follows that

|Dũ|+

∣∣∣∣
∂ũ

∂s

∣∣∣∣ ≤ C(‖ u0 ‖C2+γ,1+
γ
2 (Mn)

,Mn).

Then we can easily obtain the bound of [ũ]β for any 0 < β < 1. Lemma 3.1 in
[10, Chap. 2] implies that the bound for [Dũ]

s,
β
2

follows from a bound for [ũ]
s,

β
2

and

[Dũ]x,β. Hence it remains to bound [Dϕ]x,β since Dũ = ũDϕ̃. Fix s, we know form
[9] that the equation (2.7) can be rewritten as an elliptic Neumann problem

(4.4) divσ

(
Dϕ̃√

1 + |Dϕ̃|2

)
=

n√
1 + |Dϕ̃|2

− e−αϕ̃

√
1 + |Dϕ̃|2

˙̃ϕ+ 1
n

.

Note that the derivative in the above equation is with respect to s. In fact, the
equation (4.4) is of the form Di(a

i(p))+a(x) = 0, where the bound of a, the smallest

and largest eigenvalues of aij(p) := ∂ai

∂pj
are controlled due to the estimate for |Dϕ|

and |ũ|. The estimate of [Dϕ̃]x,β for some β follows from a Morrey estimate by
calculations similar to the arguments in [10, Chap. 4, §6; Chap. 10, §2] (interior
estimate and boundary estimate). For a rigorous proof of this estimate the reader is
referred to [15].

Step 2. The next thing to do is to show that
[
∂ũ

∂s

]

x,β

+

[
∂ũ

∂s

]

s,
β
2

≤ C
(
‖ u0 ‖C2+γ,1+

γ
2 (Mn)

, n, β,Mn
)
.

As ∂
∂s
ũ = ũ

(
v

ũ1+αH̃
− 1

n

)
, it is enough to bound

[
v

ũ1+αH̃

]
β
. Set w(s) := v

ũ1+αH̃
= ΘαΨ,

and then we have
∂w

∂s
=

∂

∂t
(ΘαΨ)

∂t

∂s
=
α

n
w +Θ2α∂Ψ

∂t
.

Let ∇̃ be the Levi–Civita connection of M̃s := X̃(Mn, s) with respect to the metric
g̃. Combining the above equation of ∂w

∂s
with (4.1) and Lemma 4.2, we can obtain

∂w

∂s
= divg̃(ũ

−αH̃−2∇̃w)− 2H̃−2ũ−αw−1|∇̃w|2g̃

+
α

n
w − αw2 − αw2P − αũ−α−1H̃−2∇̃iũ∇̃

iw,

(4.5)

where P := u−1∇iu〈X,Xi〉. Applying Lemma 3.3, we have

|P | ≤ |∇u|g =
|Dϕ|

v
≤ C.

1In the proof of Lemma 4.3, the constant C may differ from each other. However, we abuse the
symbol C for the purpose of convenience.
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The weak formulation of (4.5) is
ˆ s1

s0

ˆ
M̃s

∂w

∂s
η dµs ds

=

ˆ s1

s0

ˆ
M̃s

divg̃

(
ũ−αH̃−2∇̃w

)
η − 2H̃−2ũ−αw−1|∇̃w|2g̃η dµs ds

+

ˆ s1

s0

ˆ
M̃s

(α
n
w − αw2 − αw2P − αũ−α−1H̃−2∇̃iũ∇̃

iw
)
η dµs ds.

(4.6)

Since ∇µϕ̃ = 0, the interior and boundary estimates are basically the same. We
define the test function η := ξ2w, where ξ is a smooth function with values in [0, 1]
and is supported in a small parabolic neighborhood. Then

ˆ s1

s0

ˆ
M̃s

∂w

∂s
ξ2w dµs ds =

1

2
‖ wξ ‖2

2,M̃s
|s1s0 −

ˆ s1

s0

ˆ
M̃s

ξξ̇w2 dµs ds.(4.7)

Using integration by parts and Young’s inequality, we can obtain
ˆ s1

s0

ˆ
M̃s

divg̃(ũ
−αH̃−2∇̃w)ξ2w dµs ds

= −

ˆ s1

s0

ˆ
M̃s

ũ−αH̃−2ξ2∇̃iw∇̃
iw dµs ds

− 2

ˆ s1

s0

ˆ
M̃s

ũ−αH̃−2ξw∇̃iw∇̃
iξ dµs ds

≤

ˆ s1

s0

ˆ
M̃s

ũ−αH̃−2|∇̃ξ|2g̃w
2 dµs ds

(4.8)

and ˆ s1

s0

ˆ
M̃s

(α
n
w − αw2 − αw2P − αũ−α−1H̃−2∇̃iũ∇̃

iw
)
ξ2w dµs ds

≤ Cα

ˆ s1

s0

ˆ
M̃s

ξ2(w2 + |w|3) dµs ds

+

ˆ s1

s0

ˆ
M̃s

αũ−α−1H̃−2|∇̃ũ|g̃|∇̃w|g̃ξ
2w dµs ds

≤ Cα

ˆ s1

s0

ˆ
M̃s

ξ2(w2 + |w|3) dµs ds+
α

2

ˆ s1

s0

ˆ
M̃s

ũ−αH̃−2|∇̃w|2g̃ξ
2 dµs ds

+
α

2

ˆ s1

s0

ˆ
M̃s

ũ−α−2H̃−2|∇̃ũ|2g̃ξ
2w2 dµs ds.

(4.9)

Combining (4.7), (4.8) and (4.9), we have

1

2
‖ wξ ‖2

2,M̃s
|s1s0 +

(
2−

α

2

) ˆ s1

s0

ˆ
M̃s

ũ−αH̃−2|∇̃w|2g̃ξ
2 dµs ds

≤

ˆ s1

s0

ˆ
M̃s

ξ|ξ̇|w2 dµs ds+

ˆ s1

s0

ˆ
M̃s

ũ−αH̃−2|∇̃ξ|2g̃w
2 dµs ds

+ Cα

ˆ s1

s0

ˆ
M̃s

ξ2(w2 + |w|3) dµs ds+
α

2

ˆ s1

s0

ˆ
M̃s

ũ−α−2H̃−2|∇̃ũ|2g̃ξ
2w2 dµs ds,
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which implies that

1

2
‖ wξ ‖2

2,M̃s
|s1s0 +

(2− α
2
)

max(ũαH̃2)

ˆ s1

s0

ˆ
M̃s

|∇̃w|2g̃ξ
2 dµs ds

≤

(
1 +

1

min(ũαH̃2)

) ˆ s1

s0

ˆ
M̃s

w2(ξ|ξ̇|+ |∇̃ξ|2g̃) dµs ds

+ α

(
C +

max(|∇̃ũ|g̃)
2

2min(ũ2+αH̃2)

) ˆ s1

s0

ˆ
M̃s

ξ2w2 + ξ2|w|3 dµs ds.

(4.10)

This means that w belong to the De Giorgi class of functions in Mn × [0, S). Similar
to the arguments in [10, Chap. 5, §1 and §7], there exist constants β and C such
that

[w]β ≤ C ‖ w ‖L∞(Mn×[0,S))≤ C(‖ u0 ‖C2+γ,1+
γ
2 (Mn)

, n, β,Mn).

Step 3. Finally, we have to show that

[H̃ ]x,β + [H̃]
s,

β
2

≤ C(‖ u0 ‖C2+γ,1+
γ
2 (Mn)

, n, β,Mn).

This follows from the fact that

H̃ =

√
1 + |Dϕ|2

ũ1+αw

together with the estimates for ũ, w, Dϕ. �

Then we can obtain the following higher-order estimates.

Lemma 4.4. Let u be a solution to the parabolic system (2.7), where ϕ(x, t) =
log u(x, t), and Σn be a smooth, convex cone described as in Theorem 1.1. Then for
any s0 ∈ (0, S) there exist some β > 0 and some C > 0 such that

(4.11) ‖ ũ ‖
C

2+β,1+
β
2 (Mn×[0,S])

≤ C(‖ u0 ‖C2+γ,1+
γ
2 (Mn)

, n, β,Mn)

and for all k ∈ N,

(4.12) ‖ ũ ‖
C

2k+β,k+
β
2 (Mn×[s0,S])

≤ C(‖ u0(·, s0) ‖
C

2k+β,k+
β
2 (Mn)

, n, β,Mn).

Proof. By Lemma 2.1, we have

uvH = n−

(
σij −

ϕiϕj

v2

)
ϕij = n− u2∆gϕ.

Since
u2∆gϕ = ũ2∆g̃ϕ = −|∇̃ũ|2 + ũ∆g̃ũ,

then
∂ũ

∂s
=
∂u

∂t
Θα−1 −

1

n
ũ = −

uvH

u1+αH2
Θα−1 +

2v

uαH
Θα−1 −

1

n
ũ

=
∆g̃ũ

ũαH̃2
+

2v

ũαH̃
−

1

n
ũ−

n + |∇̃ũ|2

ũ1+αH̃2
,

which is a uniformly parabolic equation with Hölder continuous coefficients. There-
fore, the linear theory (see [13, Chap. 4]) yields the inequality (4.11).

Set ϕ̃ = log ũ, and then the rescaled version of the evolution equation in (4.2)
takes the form

∂ϕ̃

∂s
= e−αϕ̃ v2[

n−
(
σij − ϕ̃iϕ̃j

v2

)
ϕ̃ij

] − 1

n
,



A variant of inverse mean curvature flow for star-shaped hypersurfaces evolving in a cone 717

where v =
√

1 + |Dϕ̃|2. According to the C2+β,1+β
2 -estimate of ũ (see (4.11)), we can

treat the equations for ∂ϕ̃

∂s
and Diϕ̃ as second-order linear uniformly parabolic PDEs

on Mn × [s0, S]. At the initial time s0, all compatibility conditions are satisfied and

the initial function u(·, t0) is smooth. We can obtain a C3+β,
3+β
2 -estimate for Diϕ̃

and a C2+β, 2+β
2 -estimate for ∂ϕ̃

∂s
(the estimates are independent of T ) by Theorem 4.3

and Exercise 4.5 in [13, Chap. 4]. Higher regularity can be proven by induction over
k. �

Theorem 4.5. Under the hypothesis of Theorem 1.1, we conclude

T ∗ = +∞.

Proof. The proof of this result is quite similar to the corresponding argument in
[16, Lemma 8] and so is omitted. �

5. Convergence of the rescaled flow

We know that after the long-time existence of the flow has been obtained (see
Theorem 4.5), the rescaled version of the system (2.7) satisfies

(5.1)





∂
∂s
ϕ̃ = Q̃(ϕ̃, Dϕ̃,D2ϕ̃) in Mn × (0,∞),

Dµϕ̃ = 0 on ∂Mn × (0,∞),

ϕ̃(·, 0) = ϕ̃0 in Mn,

where

Q̃(ϕ̃, Dϕ̃,D2ϕ̃) := e−αϕ̃ v2[
n−

(
σij − ϕ̃iϕ̃j

v2

)
ϕ̃ij

] − 1

n

and ϕ̃ = log ũ. Similar to what has been done in the C1 estimate (see Lemma 3.3),
we can deduce a decay estimate of ũ(·, s) as follows.

Lemma 5.1. Let u be a solution of (2.6), then for α > 0, we have

(5.2) |Dũ(x, s)| ≤ sup
Mn

|Dũ(·, 0)|e−λs,

where λ is a positive constant.

Proof. Set ψ = |Dϕ̃|2

2
. Similar to that in Lemma 3.3, we can obtain

(5.3)

∂ψ

∂s
= Q̃ijψij + Q̃kψk − Q̃ij(σij |Dϕ̃|

2 − ϕ̃iϕ̃j)

− Q̃ijϕ̃miϕ̃
m
j − αQ̃|Dϕ̃|2,

with the boundary condition
Dµψ ≤ 0.

By the C2 estimate, we can find a positive constant λ such that




∂ψ

∂s
≤ Q̃ijψij + Q̃kψk − λψ in Mn × (0,∞),

Dµψ ≤ 0 on ∂Mn × (0,∞),

ψ(·, 0) =
|Dϕ̃(·, 0)|2

2
in Mn.

Using the maximum principle and Hopf’s lemma, we can get the gradient estimates
of ϕ̃, and then the inequality (5.2) holds from the estimate for Dũ. �
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Lemma 5.2. Let u be a solution of the flow (2.6). Then,

ũ(·, s)

converges to a real number as s→ +∞.

Proof. We first look at the flow of geodesic spheres. Spheres centered at the origin
with radius r are umbilical, their second fundamental forms are given by hij =

1
r
gij

and Dr = 0. Hence, the flow equation (2.6) can be reduced to

∂r(t)

∂t
=

1

nrα−1(t)
.

Calculating the above ODE, we have

r(t) =
(α
n
t + rα0

) 1

α

,

where r(0) = r0. Taking the same Θ(t) as in Lemma 3.1, we obtain for any r0 > 0,

(5.4) lim
t→∞

r(t)

Θ(t)
= 1.

Let r1, r2 be positive constants such that r1 ≤ inf |u(·, 0)|, r2 ≥ sup |u(·, 0)| and

ri(t) =
(α
n
t+ rαi

) 1

α

, i = 1, 2.

The spheres with radii ri(t) are the spherical solutions of the flow (2.6) with initial
spheres of radius ri. Due to the maximum principle, the solution u(·, t) of the flow
(2.6) satisfies

r1(t) ≤ u(x, t) ≤ r2(t).

Thus,
r1(t)Θ

−1 ≤ ũ ≤ r2(t)Θ
−1,

where ũ = uΘ−1. Therefore, the convergence of ũ is determined by (5.4) and inter-
polation,

lim
s→∞

ũ(s) = 1 = r∞.

This completes the proof. �

Remark 5.1. For Lemma 5.2, there exists another proof, which looks a bit more
complicated than the one here and which can also establish the convergence of the
solution, and moreover using that proof, the third conclusion (iii) of Theorem 1.1 can
be derived. For details, we refer readers to our previous manuscript [14, pp. 15–16].

So, we have

Theorem 5.3. The rescaled flow

dX̃

ds
=

1

|X̃|αH̃
ν −

X̃

n

exists for all time and the leaves converge in C∞ to a piece of round sphere of radius
r∞.
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