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A variant of inverse mean curvature flow for
star-shaped hypersurfaces evolving in a cone

Jing Mao and Qiang Tu

Abstract. Given a smooth convex cone in the Euclidean (n + 1)-space (n > 2), we consider
strictly mean convex hypersurfaces with boundary which are star-shaped with respect to the center
of the cone and which meet the cone perpendicularly. If those hypersurfaces inside the cone evolve
by a variant of inverse mean curvature flow, then, by using the convexity of the cone in the derivation
of the gradient and Holder estimates, we can prove that this evolution exists for all the time and
the evolving hypersurfaces converge smoothly to a piece of a round sphere as time tends to infinity.

Tadhtiméiisten hyperpintojen aikakehitys kartiossa
muunnetun kiinteisen keskikaarevuusvirtauksen suhteen

Tiivistelmi. Olkoon annettu euklidisen (n + 1)-avaruuden (n > 2) siled, kupera kartio. Tésséi
tyOssé tarkastellaan aidosti keskikuperia reunallisia hyperpintoja, jotka ovat tdhtimaéisid kartion
keskipisteen suhteen ja kohtaavat kartion kohtisuorasti. Jos kartion sisélle jddvét hyperpinnat ke-
hittyvat muunnetun kéénteisen keskikaarevuusvirtauksen mukaisesti, voidaan kartion kuperuutta
gradientti- ja Holderin arvioiden johtamisessa kayttéden todistaa, ettd tdmé kehitys on mééritelty
kaikilla ajanhetkilld, ja hyperpinnat suppenevat sileésti kohti pyéredn pallopinnan osaa, kun aika
lahestyy dédretonta.

1. Introduction

Recently, Chen, Mao, Tu and Wu [2] considered the evolution of a one-parameter
family of closed, star-shaped and strictly mean convex hypersurfaces M;*, given by
X(-,t): S" x [0,T) — R™™ with some T' < oo, under the flow

8X 1

R = U

(1.1) ot T XPHX)
X(-,O) = Mg,

where v is the unit outward normal vector of M;', H is the mean curvature of M,
and | X| is the distance from the point X (z,t) to the origin of R™*!. For a > 0,
they showed the long-time existence and the asymptotical behavior of the flow (1.1).
Clearly, when o = 0, the flow (1.1) degenerates into the classical inverse mean
curvature flow (IMCF for short), and therefore Gerhardt’s or Urbas’s classical result
for the IMCF in R™™! (see [5, 20]) is covered by the main conclusion of [2] as a special
case. There might exist some interesting variants of the classical IMCF by using
other constraint terms (not like | X|*) added to the evolution equation of IMCF, and
moreover, the asymptotic behavior of those variant flows can be investigated—see,
e.g., [17].
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As we know, the classical IMCF is scale invariant. However, generally, the flow
(1.1) is non-scale-invariant except the case @ = 0. The meaning of studying the non-
scale-invariant version of inverse curvature flows (ICF's for short) have been revealed
clearly by Gerhardt [7], where he investigated the non-scale-invariant version of the
classical ICF considered by himself in [5]. This improvement from the scale invariant
case to the non-scale-invariant case permits that Gerhardt’s main conclusion in [7]
covers some interesting conclusions in [12, 18] for the inverse Gauss curvature flow
(IGCF for short) and the power of the IGCF. Based on this reason, it also should be
interesting to investigate properties of the non-scale-invariant flow (1.1) in different
settings—for this purpose, please see the series work [2, 8] of Mao and his collabo-
rators. The flow (1.1) is an initial value problem of second-order parabolic PDEs.
Could we consider the case of boundary value problems? This motivation forces us
to consider the evolution of hypersurfaces with boundary under the ICFs considered
in [2].

Marquardt [16] considered the classical IMCF with a Neumann boundary condi-
tion (NBC for short), where the embedded flowing hypersurfaces were supposed to
be perpendicular to a smooth convex cone in R"*!. He proved that the flow exists
for all the time and after rescaling, the evolving hypersurfaces converge smoothly
to a piece of a round sphere. Later, Lambert and Scheuer [11] extended this inter-
esting conclusion to the situation that the hypersurfaces are perpendicular to the
prescribed sphere. In 2017, Chen, Mao, Xiang and Xu [3] improved Marquardt’s
main conclusion above to the case that the ambient space is the warped product
I x5y N™, where I C R is an unbounded interval of R, N" is an n-dimensional Rie-
mannian manifold with nonnegative Ricci curvature, and the warping function A(r)
satisfies some growth assumptions. Inspired by these works, it should be interesting
to consider the flow (1.1) with a prescribed NBC. In fact, we can prove the following:

Theorem 1.1. Let a > 0 and X" := {rz € R"™ | r > 0, x € OM"} be the
boundary of a smooth, convex cone that is centered at the origin and has outward
unit normal p, where M™ C S™ is some piece of the unit sphere S™ in R"*!. Let
Xo: M™ — R"™ such that M} = Xo(M") is a compact, strictly mean convex
C?7-hypersurface (0 < ~ < 1) which is a graph over M™ for a positive function
up: M™ — R, i.e.,, M} = graph, .ug. Assume that

aM(? Cznv <MOX07VOOXO>|3M" 207
where vy Is the outward unit normal to M{'. Then

i) there exists a family of strictly mean convex hypersurfaces M]* given by the
P t g
unique embedding

X € CHF3(M™ x [0, 00), R N C=(M™ x (0, 00), R")
with X (OM"™,t) C X" for t > 0, satisfying the following system

0 1

—X = in M"

o = pmy M 0.00),
(1.2) (poX,voX)=0 ondM" x (0,00),

X(-,0) = Mg n M*,

where H is the mean curvature of M}* := X(M™,t) = X;(M™), v is the unit
outward normal vector of M}, and |X| is the distance from the point X (z, 1)
to the origin. Moreover, the Holder norm on the parabolic space M™ x (0, 00)
is defined in the usual way (see, e.g., [6, Note 2.5.4]).
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(ii) the hypersurfaces M]* are graphs over M™, i.e.,
M = graphmu(-,t).

(iii) Moreover, the evolving hypersurfaces converge smoothly after rescaling to a
piece of a round sphere of radius r.,, where r., satisfies

1 (H"(Mg‘)) " Lo ! (H"(Mg‘)) "
supug \H*(M»)) — %~ inf ug He (M) )
Mn

where H" () stands for the n-dimensional Hausdorff measure of an n-manifold.

Remark 1.1. In order to avoid any potential confusion with the mean curvature
H, we use C™2H0™ 57 not Hm 24757 yged in [7] to represent the parabolic
Holder norm. It is easy to check that all the arguments in the sequel are still valid
for the case a = 0 except some minor changes should be made. For instance, if & = 0,
then (3.1) becomes ¢(z,t) = ~¢ + c. However, in this setting, one can also get the C°
estimate as well. Clearly, when «a = 0, the flow (1.2) degenerates into the parabolic
system with the vanishing NBC in [16, Theorem 1], and correspondingly, our main

conclusion here covers [16, Theorem 1] as a special case.

2. The corresponding scalar equation

2.1. The geometry of graphic hypersurfaces. For an n-dimensional Rie-
mannian manifold (M", g), the Riemann curvature (3,1)-tensor Rm is defined by

Rm(X, Y)Z =-—-VxVyZ+VyVxZ+ V[Xy]Z.

Pick a local coordinate chart {z‘}?_, of M™, and %,i =1,2,---,n, are the corre-
sponding coordinate vector fields (0; for short). The component of the (3,1)-tensor

Rm is defined by
o o\o . _, 0
Rm(@’ a_)a— = Ringa

m . Then, we have the standard commutation formulas (the Ricci

and Rjju = glmRijk.

identities):

T
(ViVj = ViVi) gk, = > RE Oy ik
=1
If furthermore (M™, g) is an immersed hypersurface in R"*! with R;j1; the Riemann-
ian curvature of M", and let v be the unit outward normal vector of M", then
the second fundamental form h;; of the hypersurface M™ with respect to v can be

computed as follows
0?X
hi‘ =\ =, .
! <8a:28x1 U>Rn+1

Set X ;; = 0,0, X —F%Xk, where Tfj is the Christoffel symbol of the metric g on M™.
We need the following identities

(2.1) X;j = —hijv, Gauss formula

(2.2) v;=h;;X?, Weingarten formula
where X7 := X, g",
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(2.3) Riji = hikhji — hiyhj,,  Gauss equation

(2.4) Vihij = Vjhiz, Codazzi equation.

We make an agreement that, for simplicity, in the sequel the comma “,” in subscripts
will be omitted unless necessary. Then, using the Codazzi equation we get

ViVihiy = Vi(Vih) = Vi(Vihi;) = ViVihy;.
Using the Ricci identities we have
ViVihy = ViVihj + Rigmh]" + Rigjmhy".
Using the Codazzi equation again, it follows that
ViVjihi = Vi(Vihji) + R} + Rigjmhi"
= ViVilji + Rigimh]" + Rigjmhy"
Using the Gauss equation, we have

(2.5) ViV hw = ViVihi; + h;n(hilhkm — himhbir) + 1" (hijhim — RimPij)-

2.2. The corresponding scalar equation. In coordinates on the sphere S”,
we equivalently formulate the problem by the corresponding scalar equation. Since
the initial C*7-hypersurface is star-sharped (which is a direct consequence of the
graphical property of M), there exists a scalar function vy € C*7(M™) such that
Xo: M™ — R™! has the form = — ug(z) - . The hypersurface M}* given by the
embedding
X(-,t): M™ — R

at time ¢t may be represented as a graph over M™ C S", and then we can make ansatz
X(z,t) =u(x,t) - x

for some function u: M™ x [0,7) — R.

Lemma 2.1. Define p := X (z,t) and assume that a point on S" is described by
local coordinates &', . .. &", that is, x = z(€Y,...,€™). Let O; be the corresponding
coordinate fields on S™ and o0;; = gs»(0;,0;) be the metric on S". Let u; = D;u,
w;; = DjDyu, and u;j, = Dy D;D;u denote the covariant derivatives of u with respect
to the round metric gs» and let V be the Levi-Civita connection of M]* with respect
to the metric g := u?gs» + dr? induced from the standard metric of R**'. Then, the
following formulas hold:

(i) The tangential vector on M]" is
Xi = & + u,@r

and the corresponding outward unit normal vector is given by

1 1 .
V= ; <8T — Eujﬁj) y

where v/ = o"u;, and v := \/1 + u~2|Du|? with Du the gradient of u.
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(ii) The induced metric g on M]* has the form

2
Gij = U045 + U

and its inverse is given by

iy

i _ L[ iy uu

9g° = 2 g 2,02 | °
u u=v

(iii) The second fundamental form of M]* is given by

v
and
) ) 1 .. 1 _. iy . gpigpj
= e = i S, 59 =gt O
uv uv v

where ¢ = logu. Naturally, the mean curvature is given by

- i 1 ij SOiSOj
Hzghiza<n—(03—7)%j)-

(iv) Let p € X", i(p) be the normal to ™ at p and u = p'(x)d; be the normal to
OM™ at x. Then

(i(p),v(p)) =0 <= p'(z)ui(z,t) = 0.
Proof. Let V be the covariant connection of R**!. Since
hij = —<vin, I/> = —(?aiaj + Uivajar + Ujvaiar + uiujvaﬁr, I/>,

these formulas can be verified by direct calculation. The details can also be found in
[1]. O

Using techniques as in Ecker [4] (see also [5, 6, 16]), the problem (1.2) can be
reduced to solving the following scalar equation with the corresponding initial data

MY M x (0, 00),
ot uw*H
(2.6) D,u=0 on OM™ x (0, 00),

u(-,0) =up in M™.

Define a new function ¢(z,t) = logu(z,t) and then the mean curvature can be

rewritten as
—~ . e i P
H=) hi= T(”— (0" — 7)9%‘)-
i=1

Hence, the evolution equation in (2.6) can be rewritten as

0 1
—p =1+ |Dyp|? —
A i P

02

i,
ij _ Po¥
n— (oj — SQO)SOO,U‘

= Q(¢, Dy, D*p).

In particular,
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is positive on M™, since M is strictly mean convex. Thus, the problem (1.2) is again
reduced to solving the following scalar equation with the NBC

g—f = Q(p, Do, D*¢) in M™ x (0,T),
(2.7) Dyp =0 on OM™ x (0,T),
90('70) = %o n Mna

where

i,
ij _ Pof
n— (aj — 320)900,@'

is positive on M". Clearly, for the initial surface Mg,
Q) _ 1 ol _ 906906
Bpi;lpo  uFteH? 02
is positive on M". Based on the above facts, as in [5, 6, 16], we can get the following
short-time existence and uniqueness for the parabolic system (1.2).

Lemma 2.2. Let Xo(M") = M{ be as in Theorem 1.1. Then there exist some
T > 0, a unique solution u € C*1*2(M™ x [0,T]) N C®°(M" x (0,T]), where
o(x,t) = logu(x,t), to the parabolic system (2.7) with the matrix

ij W@j
n — ag- — ’(]2 Spij

positive on M™. Thus there exists a unique map t: M™ x [0,T] — M™ such that
Y(OM™,t) = OM™ and the map X defined by

X: M* % [0,T) = R*™: (2,8) = X((z, 1), 1)
has the same regularity as stated in Theorem 1.1 and is the unique solution to the
parabolic system (1.2).
Let T* be the maximal time such that there exists some
we CHIPHT (MY % [0,T) N C®(M™ x (0,T%))

which solves (2.7). In the sequel, we shall prove a priori estimates for those solutions
on [0,T] where T < T*.

3. CY% ¢ and gradient estimates

Lemma 3.1. (C° estimate) Let ¢ be a solution of (2.7). Then for a > 0, we
have

e <ulz, )0 Ht,c) < cy, VazeM" tel0,T],
1
for some positive constants ¢y, ¢y, where O(t,c) := {%t + eac} « with
inf p(+,0) < ¢ <supp(-,0).
M Mn

Proof. Let o(x,t) = ¢(t) (independent of =) be the solution of (2.7) with ¢(0) =
c. In this case, the first equation in (2.7) reduces to an ODE

d 1

Enippape s
dt(p € n
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Therefore,
1 at
(3.1) p(t)=—In|{ —+¢€*), for aa>0.
Q@ n
Using the maximum principle, we can obtain that
1 1 t
(3.2) —In <gt + eam) <z, t) < —In (a_ + 60“'02) ,
Q@ n a n

where ¢; = infym @(-,0) and o = supym ¢(+,0). The estimate is obtained since
© = logu. O

Lemma 3.2. (¢ estimate) Let ¢ be a solution of (2.7) and ¥" be a smooth,
convex cone, then for a > 0,

min {inf¢(~, 0) - ©(0)", 1} < @z, 1)O(1)" < max {sup 2(-,0) - ©(0)°, 1} |
Mn n Mn n
Proof. Set
Mz, t) = oz, t)O(t)".
Differentiating both sides of the first evolution equation of (2.7), it is easy to get that

oM . 1 .

o QDM + Q*DyM + a© ™ (5 — ./\/l) M in M" x (0,7),
(33) D“M =0 on OM™ x (O,T),

M(-,0) = ¢ - O(0) on M™,
where QY = % and Q% := g—i. Then the result follows from the maximum
principle. 0

Lemma 3.3. (Gradient estimate) Let ¢ be a solution of (2.7) and X" be the
boundary of a smooth, convex cone described as in Theorem 1.1. Then we have for
a >0,

(3.4) |Dy| < sup|De(-,0)], VzeM" tel0,T]
Mn

Proof. Set i) = |D;0 E. By differentiating v, we have

8_?/1_2 m o __ m_Q m

Then using the evolution equation of ¢ in (2.7) yields

o = @7 Pime + Q" prme™ — aQ|Dyl.

Interchanging the covariant derivatives, we have
Vi = Dj(omid™) = Pmig™ + Omitf] = (Pijm — Rjpnitt1) 0™ + it}
Therefore, we can express ;™ as
Pim®™ = Vij + Ripmi 1™ = it}
Then, in view of the fact R,y = 0ji0m — 010, on S", we have
o ij ij ij m
i Q7 + Q" — QY (04| Do|* — 0ipj) — Q7 omiel — aQ|D|*.
Since the matrix Q¥ is positive definite, the third and the fourth terms in the
RHS of (3.5) are non-positive. Noticing that the last term in the RHS of (3.5) is also

(3.5)
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non-positive if & > 0. Since X" is convex, using a similar argument to the proof of
[16, Lemma 5] (see pp. 1308) implies that

n—1
Dy == hIM DepDep <0 on OM" x (0,T),
ij=1
where an orthonormal frame at x € oM™, with ey,...,e, 1 € T,OM™ and e, := pu,

has been chosen for convenience in the calculation, and h?jMn is the second funda-
mental form of the boundary OM™ C ¥™. So, we can get

0 )

N < QU+ QU M (0,T),

D,y <0 on OM"™ x (0,T),
. 2

P(-,0) = 7|D¢(2’0)| in M™.

Using the maximum principle, we get the gradient estimate of ¢ in Lemma 3.3. [

Remark 3.1. It is worth pointing out that the evolving surface M;' is always
star-shaped under the assumption of Theorem 1.1, since, by Lemma 3.3, we have

X 1
— e
X1 v

is bounded from below by a positive constant.
Combining the gradient estimate with ¢ estimate, we can obtain

Corollary 3.4. If o satisfies (2.7), then we have
(3.6) 0<c3<HO <¢y <+00,

where c3 and ¢4 are positive constants independent of .

Proof. Since ¢ = logu satisfies (2.7), so we have

HO - v v V 1+ |Dypl?

= (’0 . e(C\H’l)@ : @ (SO . @CM) . e(ClH*l)Lp . @7(0{4»1) _ (80 . @a> . (u@*l)&#»l .

So, combining the C? estimate, ¢ estimate and the gradient estimate, we have (3.6)
and c3, ¢4 are positive constants independent of . O

4. Holder estimates and convergence

Set ¢ = \XI;“H’ w=(X,v) =%and ¥ = 2. We can get the following evolution

equations.

Lemma 4.1. Under the assumptions of Theorem 1.1, we have

B D
agw = = —Q(I)hj, — UV = —V(I),

ot
A A 929 A ,
ohl — ®H'Ah! = ®H'|A*h] — —r HiH? — 20h,,h"
— a®(V;loguV?log H + V/ log uV,;log H)

+ a®u'ul — ala+1)®V;loguV? log u

8 i'
2®h, Ere ’
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and
ov _ divy(u"*H2VV) — 2H 2y >0 VY ?
(4.1) gy~ divelu "
—a¥? — Uy 'Vu(X, X;) — au T H2VuV'U.

Proof. The first three evolution equations are easy to obtain and so are omitted.
Using the Gauss formula, we have

athij = 8t(8,~8jX, —I/> = <628]((I>l/), —I/> - <FZ@]€X — hijl/, atl/>
= —0,0;® — ®(0;0;v,v) + T;;®), = —V;® — ©(0;(hf 0, X), v)

=-V;®+ @hikhf.
Direct calculation results in
V2o =& (—% i+ 21251]) +a®(V;loguV,log H + V;log uV;log H)
— a®u i + ala+ 1)@V, loguV; log u.
Since
Ahg; = Hyj + Hhih? — hij| AP,
SO
Vi® = —®H 'Ahy; + hyhk — OH | A[*hy; + 2%5]’@
+ a®(V;loguV,log H + V;loguV,log H)
— a®u " u; + ala+ 1)@V, log uV; log u.
Thus,
Othij — ®H 'Ahy; = ®H ' A|*hy; — @HiHj
H2

—a®(V;loguV, log H + V;loguV,log H)
+ a®uu;; — ala+ 1)@V, log uV; log u.

Obviously, the evolution equation of hf can be directly obtained from the fact hg =
¢*'hy;, the evolution equation of the second fundamental form hy;, and the evolution
equation of the metric. By direct calculation, one furthermore has

O H = atgijhij + gijathz‘j
., .y B _ 29

= —20hh;; + g7 <<I>H "Ahij + ®H ARy — mvl-ijH)
+ a(IJgij( — ViloguV;log H — V,loguV;log H + u’luij
— (a+1)V;loguV;logu)

20 g

= OH 'AH — m|VH|2 — O|A]> + a®g” (- 2V, loguV,log H + u"u;;
— (a+1)V;loguV;logu)

=u *H?AH —2u *H?|VH|> —u “H ' A* - 20u " 'H 2VuV'H
+ou TH ' Au — a(a+ Du *2H ! Vul?.

Clearly,
ow = ® + a®u'Vu(X, X;) + PH 'V H(X, X;),
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using the Weingarten equation, we have
w; = hi (X, X1),
wij = Ry (X, Xp) + hij — hEhg (X, v) = higu(X, X*) + hyg — hihyg (X, v).
Thus,
Aw=H+V'H(X,X;) —|APX,v)

and
Ow =u *H 2Aw +u *H ?w|A]* + au * "H'V'u(X, X;).
Hence
ov 1 1 1 1 1 1
— = — i — —OH— ——0
ot auHO‘ku weH2w " u H w? o
1 1 1 1 1 1 1
= — — —0,H — —0
au”o‘ HwuHw uwH2w ' u H w? o

= —au *H 2w+ ala+ Du 2 ?H 2w |Vul]® + 2u**H 5w | VH|?
+ 200 2 T H w0 ViuViH — au 2 PH 3w Ay — w2 H*w ' AH
—u " H 3w Aw — au?* T H 2wVl X, X;).
In order to prove (4.1), we calculate
V.0 =—au *'H'w'Viu—u*H ?w 'V,H —u *H "wV,w
and
V?jllf =ala+Du*?H 'w 'VauVu+au T H 2w 'VuV,;H
+ou ' H w2 V,uV,w — ozu_o‘_lH_lw_lvlzju
+ au’a’lH’2w’1ViHVju + 2u’°‘H’3w’1ViHVjH
+u "H *w *V,HV jw — u’aH’2w’1V?jH + au ™ TH 'w ™ V,wVu
+ u’O‘H’2w’2VinjH + 2u’°‘H’1w’3Vinjw — u’aH’lw’2V?jw.
Thus
uH2AV = a(a+ Du 22 H 3w HVul? + 2u™2*H 5w | VH|?
+ 2u™*H 3w ™3| Vw|? + 200 ' H 0w ' VauV' H
+ 20u 2 T H 3wV auViw + 202 H w2V, HV 'w
—ou ' H 3w Au —w T H w ' AH — ™ H 3w 2 Aw.
So we have
div(u " *H?VV) = —au * 'H*V,UV'u — 2u"*H *V,UV'H + u *H 2A¥
= (202 + a)u **?H 2w |Vul]? + 5au ' H 0w 'VauV'H
+3au T H 3w A VauViw + 4u " H Pw [ VH|?
+ 4u 2 H 4w VawV' H + 2u**H w3 |V |?
—ou ' H 3w Au —u T H w AH — uw**H 3w Aw
and
2H tw| V|2 = 202022 H 2w [ Vul* + 2u 2 H °w | VH|?
4 2u™ 2 H 3w 73| Vw|? + dou ' H 0w ' VauV H
+dou T H 3w VuViw + 4u 2 H w2V, HV w.
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As above, we have

]
%;-wﬁwuﬂwfﬁvm)+2ﬂ‘%uvmf

= —ou *H 2w — au > 'H 2w V'u(X, X;) + o*u 2> 2H 3w Vu|?
+ou T H*w  ViuViH + au 2 P H 3w 2V, uVie
= —a¥? — oWy ' Vu(X, X;) — au T H*VuV'U.

The proof is finished. O
Now, we define the rescaled flow by
X =Xx0"
Thus,
u=u0""!
P =@ —log®,
and the rescaled mean curvature is given by
H=He.
Then, the rescaled scalar curvature equation takes the form
0 1
Zii=——0" - —ie".
ot U H n
Defining t = ¢(s) by the relation
dt
ds
such that ¢(0) = 0 and #(S) = T. Then u satisfies
o -
Ta=-" Y M x (0,5),
19 0s UH n
(4.2) D,u=0 on OM™ x (0,.5),
’lj(,O) :ﬁo in M".

Lemma 4.2. Let X be a solution of (1.2) and X = XO~! be the rescaled
solution. Then

Jdu  Ou 1
Di=Du®™', Dp=Dp, —=—0""——yo™"
u u ) (p S07 88 at nu )
Gi; =072y, ¢’ =0%" hj=h;0""
Proof. These relations can be computed directly. O

Lemma 4.3. Let u be a solution to the parabolic system (2.7), where p(x,t) =
logu(z,t), and X be a smooth, convex cone described as in Theorem 1.1. Then
there exist some > 0 and some C > 0 such that the rescaled function u(x,s) =

u(x, t(s))O71(t(s)) satisfies

ou
48 Dt ] S OOl o B0,

where [f]s := [flsp + [f], & is the sum of the Hilder seminorms of f in M™ x [0, S]
3
with respect to x and s.
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Proof. We divide our proof in three steps'.
Step 1. We need to prove that

[Dmaﬂﬂ + [Dms,g S C(H Uo ||CQ+%1+%(M¢L)7 n, 67 Mn)

According to Lemmas 3.1, 3.2 and 3.3, it follows that

ou
D
i+ |5

< O 0 | goerrey gy M.

Then we can easily obtain the bound of [u]g for any 0 < f < 1. Lemma 3.1 in
[10, Chap. 2] implies that the bound for [Du], s follows from a bound for [, s and

Dul, 5. Hence it remains to bound [Dy], g since Du = uDp. Fix s, we know form
7ﬁ w 7/3 SO
[9] that the equation (2.7) can be rewritten as an elliptic Neumann problem

, D3 n A1+ D3P

(4.4) div, — | = — — e WX —
<W ) Ve Gl

Note that the derivative in the above equation is with respect to s. In fact, the
equation (4.4) is of the form D;(a’(p))+a(x) = 0, where the bound of a, the smallest
and largest eigenvalues of a(p) := % are controlled due to the estimate for |Dy|
and |u|. The estimate of [D@], s for some § follows from a Morrey estimate by
calculations similar to the arguments in [10, Chap. 4, §6; Chap. 10, §2] (interior
estimate and boundary estimate). For a rigorous proof of this estimate the reader is

referred to [15].
Step 2. The next thing to do is to show that

ou ou )
{%} s + {%} y <C <|| Ug ||Cz+7,1+%(Mn),n,6,M ) i
As u =u <alfaﬁ i) it is enough to bound [NH H}B. Set w(s) := m — Oy,
and then we have
ow 0 at « O
-~ = A @a\I/ _— = — @2a
s 3t< )83 nw ot~

Let V be the Levi-Civita connection of M, = X (M™, s) with respect to the metric
g. Combining the above equation of %—f with (4.1) and Lemma 4.2, we can obtain

B - -
2 = divy(aH2Vw) — 2H 5w [Vw[2
(4.5) 0s N
+ 2w — aw? — aw?P — ot H 2V aViv
n

where P := u 'V (X, X;). Applying Lemma 3.3, we have

D
< vu, =P <

"n the proof of Lemma 4.3, the constant C' may differ from each other. However, we abuse the
symbol C' for the purpose of convenience.
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The weak formulation of (4.5) is
/ / ndﬂs ds
(4.6) = /Sl /~ divy H’QFI”%w) n— Qﬁ’Qﬂ’o‘w’l\%w%n dps ds
/ / —w — aw? — aw’P — ot " 'H 2V, aV'w )ndusds.

Since V,¢ = 0, the interior and boundary estimates are basically the same. We
define the test function 1 := £2w, where £ is a smooth function with values in [0, 1]
and is supported in a small parabolic neighborhood. Then

81
(4.7) / | Grewduds=3lue Byl - [ [ s
s e S0 Ms

Using integration by parts and Young’s inequality, we can obtain
S1 - -
/ /N divg(u*H *Vw)&w dp ds
S0 s

— / /N ﬁ*afldfzﬁiw%iw dps ds
S0 s

(4.8) s _ o
—2 / /~ U H 26wV,wVie dpg ds
S0 s
S1 . "
< / /~ uH 2| VEEw? dpg ds
S0 s
and
/ / —w — aw?® — aw’P — ot ' H 2V, uViw ) E2wdpg ds
< Ca / €(w? + |uwl?) dp, ds
so o M
S1 . . .
(4.9) + / /~ au* H 2|Vl Vw36 w dps ds
S0 s

< Ca / . 2 (w? 4 |w®) du, ds+%/31 /~ UH 2| Vwl2€? dpy ds
so J M, so J M,
+%/S:1 /Ns 177072?[’2\6&%&2102 dpis ds.
Combining (4.7), (4.8) and (4.9), we have
sl sl +(2=5) [ [ a9k anas
5/31 [ efétu duscm/ | du ds
so J M, .

+Ca/ _ & (w? + [w]?) dps ds + 5/ /N T2 2 V2w dpy ds,
S0 S S0 s
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which implies that

1 2 <2_ %) /Sl/ |22
— || w& |5+ 3} +———%— Vwl|z£* dpu ds
sl o o2 [ [ Fukea,

1 s1 20 plé| L 1Sl
(4.10) < (H?H@Qm)) / /Msw (1€l + [VE[) dus ds

~~~ 2 S1
ta <C+ maX(‘VU‘g) ) / - €2U}2 +§2|w\3dusd5.

2 min(u2+e H?) M,

This means that w belong to the De Giorgi class of functions in M" x [0, S). Similar
to the arguments in [10, Chap. 5, §1 and §7], there exist constants  and C' such
that
[wlp < Ol w e anxio,sn< Ol o | 2eae5 (ygny 70 B, MT).
Step 3. Finally, we have to show that

[H]Lﬁ + [H]Sg < C(|| uo ”CH%H%(Mn)v n, 3, M").
This follows from the fact that
= V14Dl
H ==
together with the estimates for u, w, De. 0
Then we can obtain the following higher-order estimates.

Lemma 4.4. Let u be a solution to the parabolic system (2.7), where p(x,t) =
logu(z,t), and X" be a smooth, convex cone described as in Theorem 1.1. Then for
any so € (0,.5) there exist some 8 > 0 and some C' > 0 such that

(4'11) H u ||02+B’1+§(M"><[O,S])§ C(H Ug ||CQ+'Y,1+%(M7L)7TL767 Mn)
and for all k € N,
(4'12) H u ||02k+/3,k+§—(Mn><[8075D§ C(H uO(') 50) ||C2k+6,k+§(Mn)>n> B, Mn)
Proof. By Lemma 2.1, we have
» i pd
uwwH =n — (o” — govf ) 0ij = n — utAyp.
Since N
w?Ayp = WAy = —|Va|* + uAzu,
then
ou Ou 1 woH 2v 1
I, _@afl Ty = @afl @afl Iy
ds Ot nu ultte 2 + u*H nu
Agu 20 1. n+|Vuf?
= = +~ ~——U/—~7~,
u*H? wucH n ultteH?

which is a uniformly parabolic equation with Holder continuous coefficients. There-
fore, the linear theory (see [13, Chap. 4]) yields the inequality (4.11).

Set ¢ = logu, and then the rescaled version of the evolution equation in (4.2)
takes the form

>~ 2

0Os [n _ <0-ij _ 55%25_9) @j] n’
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where v = /1 4 |D@|2. According to the C*+5 145 estimate of U (see (4.11)), we can

treat the equations for g—f and D;p as second-order linear uniformly parabolic PDEs
on M™ x [sg,S]. At the initial time s, all compatibility conditions are satisfied and

the initial function u(-,%y) is smooth. We can obtain a C3+6: 55 _estimate for D;p
and a C2+#*5" _estimate for g—f (the estimates are independent of T") by Theorem 4.3

and Exercise 4.5 in [13, Chap. 4]. Higher regularity can be proven by induction over
k. O
Theorem 4.5. Under the hypothesis of Theorem 1.1, we conclude
T = +o0.

Proof. The proof of this result is quite similar to the corresponding argument in
[16, Lemma 8] and so is omitted. O

5. Convergence of the rescaled flow

We know that after the long-time existence of the flow has been obtained (see
Theorem 4.5), the rescaled version of the system (2.7) satisfies

95 =Q(3,Dg,D*3) in M" x (0,00),

(5.1) D,p=0 on OM™ x (0, 00),
55(70) = 950 in Mn’
where
02 1

Q3. DF, D*p) = ¢ P
-

Ja] "

and ¢ = logu. Similar to what has been done in the C! estimate (see Lemma 3.3),
we can deduce a decay estimate of u(-, s) as follows.

Lemma 5.1. Let u be a solution of (2.6), then for o > 0, we have

(5.2) | Du(x, s)| < sup | Du(-,0)]e™,
Mn

where \ is a positive constant.

Proof. Set i) = %. Similar to that in Lemma 3.3, we can obtain
W_@’z‘j 4+ QF Q" (0| DP|? — 5,3,
(53> g - 1/}7'.] + ,l/}k - (O-Z]‘ 80‘ - QOZQOJ)
~ QUGwmi} — aQID3P,

with the boundary condition
D, <0.

By the C? estimate, we can find a positive constant A such that

g—f S@ij¢zj+©k¢k—A¢ in M™ x (0, 00),

D, <0 on IM"™ x (0,00),
~ 2

(-, 0) = M in M™.

Using the maximum principle and Hopf’s lemma, we can get the gradient estimates
of ¢, and then the inequality (5.2) holds from the estimate for Du. O
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Lemma 5.2. Let u be a solution of the flow (2.6). Then,
a('v S)
converges to a real number as s — +00.

Proof. We first look at the flow of geodesic spheres. Spheres centered at the origin
with radius 7 are umbilical, their second fundamental forms are given by h;; = % Gij
and Dr = 0. Hence, the flow equation (2.6) can be reduced to

or(t) 1

ot nro-1(t)
Calculating the above ODE, we have

1

a o
0= (i)
r(t) n + 7o
where 7(0) = ro. Taking the same O(t) as in Lemma 3.1, we obtain for any ry > 0,

r(t)
I
i O(t)
Let 71, 73 be positive constants such that r; < inf |u(-,0)|, ro > sup |u(-,0)| and

1

(67 o .
ri(t) = (—t+ria> , 1=1,2.
n

(5.4) ~ 1

The spheres with radii 7;(¢) are the spherical solutions of the flow (2.6) with initial
spheres of radius r;. Due to the maximum principle, the solution u(-,t) of the flow
(2.6) satisfies
ri(t) < ulz,t) < ro(?).

Thus,

T‘l(t)@_l S U S Tg(t)@_l,
where @ = u®~!. Therefore, the convergence of 4 is determined by (5.4) and inter-
polation,

lim @(s) =1 = re.
S$—00

This completes the proof. 0

Remark 5.1. For Lemma 5.2, there exists another proof, which looks a bit more
complicated than the one here and which can also establish the convergence of the
solution, and moreover using that proof, the third conclusion (iii) of Theorem 1.1 can
be derived. For details, we refer readers to our previous manuscript [14, pp. 15-16].

So, we have

Theorem 5.3. The rescaled flow

ax 1 X

— =V
ds | X|eH n

exists for all time and the leaves converge in C* to a piece of round sphere of radius

Too-
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