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Revisiting cyclic elements in growth spaces

Linus Bergqvist, Adem Limani and Bartosz Malman

Abstract. We revisit the problem of characterizing cyclic elements for the shift operator in a

broad class of radial growth spaces of holomorphic functions on the unit disk, focusing on functions

of finite Nevanlinna characteristic. We provide results in the range of Dini regular weights, and

in the regime of logarithmic integral divergence. Our proofs are largely constructive and allow for

substantial simplifications of earlier works that previously relied on the Carleson Corona Theorem,

such as the Korenblum–Roberts Theorem, as well as a more recent result of El-Fallah, Kellay and

Seip.

En återblick p̊a cykliska element i tillväxtklasser

Sammanfattning. Vi återvänder till problemet att karakterisera cykliska element för skifto-

peratorn p̊a en stor klass av rum best̊aende av holomorfa funktioner p̊a enhetsdisken som uppfyller

n̊agot radiellt tillväxtvillkor, och vi fokuserar i synnerhet p̊a funktioner i Nevanlinnaklassen. Vi pre-

senterar resultat för s̊aväl Dini-reguljära vikter som för vikter som inte är log-integrerbara. V̊ara

bevis är huvudsakligen konstruktiva, vilket medför p̊atagliga förenklingar av resultat vars tidigare

bevis byggde p̊a Carlesons Coronasats – som exempelvis Korenblum–Roberts sats och nyare result

av El-Fallah, Kellay och Seip.

1. Introduction

1.1. Cyclic Nevanlinna functions in growth spaces. LetW : (0, 1] → (0, 1]
be a continuous non-decreasing weight (positive function) with limt→0+W (t) = 0. We
denote by Ap(W ) the space of holomorphic functions f in the unit-disc D equipped
with the metric

‖f‖Ap(W ) =

(ˆ
D

|f(z)|pW (1− |z|) dA(z)

)min(1,1/p)

<∞,

where dA denotes the Lebesgue area measure. Since the weight W is radial, it is
well-known that the polynomials form a dense subset in Ap(W ) (for instance, see
Proposition 3.1 in [1] for a neat proof). We shall also consider the weighted growth
space A∞(W ) consisting of holomorphic functions f in D satisfying

lim
|z|→1−

W (1− |z|)|f(z)| = 0.

Equipped with the norm

‖f‖A∞(W ) := sup
z∈D

W (1− |z|)|f(z)| <∞,

it becomes a separable Banach space, containing the polynomials as a dense subset.
Let N denote the Nevanlinna class, which consists of holomorphic functions in D
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having finite Nevanlinna characteristic:

sup
0<r<1

ˆ
∂D

log(1 + |f(rζ)|) dm(ζ) <∞,

where dm denotes the unit-normalized Lebesgue measure on the unit-circle ∂D. Given
a Nevanlinna class function f on D, we consider the classical problem of when the
set

{f(z)zn : n = 0, 1, 2, . . . }, z ∈ D,

forms a dense linear span in Ap(W ). Such functions f are said to be cyclic in Ap(W )
(with respect to the shift operatorMzf(z) = zf(z)). Questions of this type originate
back to the work of Keldysh in [10] and to Beurling [2]. Since the topologies in Ap(W )
induce uniform convergence on compact subsets of D, cyclic functions f in Ap(W )
can certainly not have any zeros in D. The classical Nevanlinna representation allows
one to express any zero-free function f ∈ N as

f(z) = exp

(ˆ
∂D

ζ + z

ζ − z
dµf(ζ)

)

, z ∈ D,

where µf is a finite real-valued Borel measure on ∂D. In fact, a more refined Lebesgue
and Jordan decomposition, in conjunction with standard properties of Poisson ker-
nels, implies that

dµf = log |f | dm+ dνf − dσf

where νf , σf are mutually singular positive finite Borel measures on ∂D, both singular
wrt dm. We shall often refer to σf as the associated negative singular part of f
(instead of µf). This gives the refined inner-outer factorization of f , defined by

f(z) = Of(z)Θσf
(z)/Θνf (z), z ∈ D,

where Of denotes the so-called outer factor of f , and Θσf
,Θνf are singular inner

functions. For a detailed treatment of Nevanlinna factorization and Hardy spaces,
we refer the reader to the excellent book [7]. In what follows, we shall solely restrict
our attention to continuous non-decreasing weights W , which satisfy the following
additional weak regularity condition:

(1) log
1

W (t/2)
≤ C log

1

W (t)
, for some C > 1.

From now and onward, we shall refer to such weights as good weights. We will use
the notation A . B to indicate that A ≤ cB for some absolute constant c > 0.
When both A . B and B . A hold, we simply write A ≍ B. Occasionally, absolute
constants may appear when carrying out estimates, but the reader should note that
these constants may vary from line to line.

1.2. Dini-regular weights. In this section, we shall restrict our attention to
weights W which tend to zero in a slightly slower fashion. More precisely, we shall
assume that there exists a constant C > 0, such that

(2)

ˆ x

0

log
1

W (t)
dt ≤ Cx log

1

W (x)
, 0 < x < 1.

In this regime, it turns out that there are zero-free holomorphic self-maps f on
D which are not cyclic in Ap(W ). Results of this kind were initially proved by
Korenblum in [11] and independently by Roberts in [14]. For a certain range of
weights W , their results assert that the cyclicity of f in Ap(W ) is entirely contingent
upon whether the associated Nevanlinna measure µf assigns any mass to certain
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exceptional W -sets on ∂D. Below, we clarify these points. Throughout, we let κW
be the associated gauge-function with respect to W , defined by

κW (t) = t log
1

W (t)
, 0 < t < 1.

A compact set K ⊂ ∂D of Lebesgue measure zero is said to have finite κW -entropy if
∑

k

κW (ℓk) <∞.

where (ℓk)k are the lengths of the connected components (Ik)k of ∂D \ K. When
W (t) = tα some α > 0, such sets are typically referred to as Beurling–Carleson sets,
and they play a crucial role in function theory. For instance, they precisely classify all
zero sets on ∂D of holomorphic functions in D which are smooth up to ∂D (see [15]).
We remark that the condition (1) is equivalent to the doubling property of the gauge
function κW (t/2) ≍ κW (t), while (2) is typically referred to as κW being Dini-regular.
Our main intention is to prove the following generalization of the Korenblum–Roberts
Theorem.

Theorem 1.1. Let 0 < p ≤ ∞ and W be a good weight which satisfies the

condition (2). Then a function f ∈ Ap(W ) ∩ N is cyclic in Ap(W ) if σf (K) = 0 for

all sets K ⊂ ∂D of finite κW -entropy.

The above theorem was initially proved by Korenblum and Roberts in the clas-
sical setting of the Bergman spaces Ap(W ), corresponding to weights of the form
W (t) = tα. They also showed that the above condition on σf is not only suffi-
cient, but also necessary. For a wider range of weights, the same conclusion was
also recently confirmed in [12], indicating that Theorem 1.1 is sharp. Our proof of
Theorem 1.1 is carried in the following steps. First, we simply reduce the problem to
cyclicity of f to the associated singular inner factor Θσf

. Secondly, we shall utilize a
Roberts-type decomposition adapted to the corresponding weight W , allowing us to
decompose singular measures. In the last step, our approach substantially deviates
from Korenblums proof and from Roberts, where the former involves an implicit lin-
ear programming argument (see [11]), while the latter invokes a quantitative version
of Carleson’s Corona Theorem (see [14]). Instead, we shall carry out a fairly explicit
construction of bounded holomorphic functions (hn)n in D, such that Θσf

hn−1 have
small Ap(W )-norms.

1.3. Logarithmic integral divergence. We now restrict our attention to
weights which tend to zero rapidly. That is, we assume that logW is not integrable:

(3)

ˆ 1

0

logW (t) dt = −∞.

Note that the above condition is slightly stronger than (2), and is equivalent to the
assertion that the associated gauge-function κW (t) is not Dini-continuous. Our next
result shows that the problem of cyclicity in this regime differs substantially from
the previous setting of Theorem 1.1.

Theorem 1.2. Let 0 < p ≤ ∞ and W be a good weight which satisfies the

condition (3). Then any f ∈ Ap(W ) ∩N with no zeros in D is cyclic in Ap(W ).

We mention that a certain version of this result has previously appeared in the
work of El-Fallah, Kellay and Seip in [6] (see Theorem 1.1 therein) on cyclic bounded
holomorphic functions. Their result is phrased in a slightly different yet related
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framework of weighted ℓ2-space, where they obtain a sufficient condition for cyclicity
expressed in terms of moment-sequences. It is well known that for a certain class of
weights W , their condition is equivalent to (3) (for instance, see remark (4) following
Theorem 1.2 in [6]), hence, our Theorem 1.2 provides a complementary perspective
on their result. The proof in [6], principally relying on methods developed by Roberts
in [14], is also based on a clever way of “whittling down” the measure µf , followed
by utilizing a quantitative version of Carleson’s Corona Theorem. Our proof will
initially follow a similar trajectory, but the novelty here is that we outline an explicit
construction, enabling us to entirely circumvent the Corona Theorem.

We give a brief comparison of Theorem 1.2 with earlier works of Beurling in [2],
and that of Nikolskii in [13]. Under certain convexity assumptions on the moment
sequence of W , Beurling proved that every bounded holomorphic function with no
zeros in D, is cyclic in

⋃

n≥1A
2(W n), equipped with the natural inductive limit

topology, if and only if

(4)

ˆ 1

0

√

log 1
W (t)

t
dt = +∞.

In fact, if (4) does not hold, then the atomic singular inner functions are not cyclic
in
⋃

n≥1A
2(W n). Beurling’s original proof relied on a certain form of Bernstein

approximation, which crucially required an additional convexity assumption. Later,
Nikolskii established a similar result in the Hilbertian setting of A2(W ) under a
different log-concavity condition on the moments of W , which instead principally
relied on methods of quasi-analyticity. It was only much later that Borichev, El-
Fallah and Hanine succeeded in removing the assumptions of Beurling and Nikolskii.
They proved that atomic singular inner functions are cyclic in A∞(W ) if and only
if condition (4) holds (see [3]). Their approach employed the so-called resolvent
transform method, initially developed by Carleman, Domar and Gelfand (see [5] and
references therein). A key component of their proof relies on Theorem 1.2 for singular
inner functions, as established in [6]. However, their methods do not appear to extend
to proving that any zero-free bounded holomorphic function is cyclic in A∞(W ) for
weights more general than those considered by Beurling and Nikolskii.

1.4. Notations and organization. The manuscript is organized as follows.
In Section 2 we gather some basic preliminary lemmas in order to equip us for the
following sections. The central tool therein is the simple reduction to that of cyclicity
of singular inner functions. Section 3 is principally concerned with the proof of
Theorem 1.1, and principally relies on a generalized Roberts-type decomposition of
singular measures. At last, Section 4 is devoted to the proof of Theorem 1.2.

2. General properties of Ap(W )

2.1. Compact embeddings. Here we gather some preliminary results of
Ap(W )-functions, which will be utilized in the later sections. We start out by record-
ing the following observation on compact embeddings in growth spaces.

Lemma 2.1. The embeddings Ap(W ) →֒ Aq(W ) for 0 < q < p ≤ ∞, and

Ap(W ) →֒ Ap(W s) for s > 1 are compact.

Proof. If (fn)n is a sequence in the unit-ball of Ap(W ), then for any p > q and
any 0 < ε < 1, we have by Hölder’s inequality
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‖fn‖
q
Aq(W ) ≤

ˆ
|z|≤1−ε

|fn|
qW dA+

(ˆ
1−|z|<ε

|fn|
pW dA

)q/p(ˆ
1−|z|<ε

W dA

)1−q/p

≤

ˆ
|z|≤1−ε

|fn|
qW dA+W (ε)1−q/p.

Since (fn)n forms a normal family, Montel’s Theorem implies that a subsequence
fnk

converges uniformly on compact subsets of D to a holomorphic function f in
D. Fatou’s lemma implies that f belongs to the unit-ball of Ap(W ) and the above
estimate applied to fnk

− f gives

lim sup
n

‖fnk
− f‖qAq(W ) ≤W (ε)1−q/p, ∀ε > 0.

This proves the first claim. For the second claim, we may repeat the same argument
as before, but instead utilize the following estimate:

‖f‖pAp(W s) ≤

ˆ
|z|≤1−ε

|f(z)|pW (1− |z|)s dA(z) +W (ε)s−1‖f‖pAp(W ).

The case p = ∞ is similar, we omit the details. �

2.2. Cyclic elements in Ap(W ). Here we collect two basic lemmas on cyclic
elements in Ap(W ). We denote by H∞ the Banach space of bounded holomorphic
functions in D, equipped with the supremum norm ‖f‖H∞ := sup{|f(z)| : z ∈ D}.
It is not difficult to see that H∞ is the multiplier algebra of Ap(W ). The smallest
Mz-invariant subspace of Ap(W ), which contains f , will be denoted by [f ]Ap(W ).

With this notation, f is cyclic in Ap(W ) if and only if [f ]Ap(W ) = Ap(W ), and since

polynomials are dense in Ap(W ), this happens if and only if 1 ∈ [f ]Ap(W ).

Lemma 2.2. Let 0 < p ≤ ∞. Then an element f ∈ Ap(W ) is cyclic if and only

if fH∞ := {fh : h ∈ H∞} is dense in Ap(W ).

Proof. One implication is obvious. For the other it suffices to prove that fh ∈
[f ]Ap(W ) for any h ∈ H∞. To avoid redundancy, we will present the proof only for
the case p = ∞, as the argument for 0 < p < ∞ follows in a similar manner. Since
the polynomials are weak-star (sequentially) dense in H∞ (for instance, take Fejér
means of f), there exists M > 0 and polynomials (Qn)n, such that

(a.) supn‖Qn‖H∞ ≤M ,
(b.) Qn → h uniformly on compact subsets of D.

We now claim that fQn → fh in A∞(W ). Indeed, for any 0 < ε < 1, we have

sup
z∈D

|f(z) (Qn(z)− h(z))|W (1− |z|)

≤ ‖f‖A∞(W ) sup
|z|≤1−ε

|Qn(z)− h(z)| + (M + ‖h‖H∞) sup
1−|z|≤ε

|f(z)|W (1− |z|).

By letting n → ∞ and utilizing (b.), and then letting ε → 0+ while using that
f ∈ A∞(W ), the claim follows. �

Next, we make the following simple observation on bounded cyclic elements in
Ap(W ).

Lemma 2.3. Let 0 < p ≤ ∞. If f ∈ H∞ is cyclic in Ap(W ), then fM is cyclic

in Ap(W ) for any M > 0.
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Proof. As before, we only carry out the proof in the case p = ∞. Note that if
f is cyclic in A∞(W ), then f is zero-free in D, and thus fM is well-defined for all
M > 0. Observe that f = f sf 1−s ∈ [f s]A∞(W ) for all 0 < s ≤ 1, hence f s is cyclic

in A∞(W ) for all 0 < s ≤ 1. Now if Qn polynomials such that Qnf → 1 in A∞(W ),
then multiplying by the bounded function f s, we get f s ∈ [f 1+s]A∞(W ), which by the

previous argument implies that fM cyclic in A∞(W ) for all 0 < M ≤ 2. By means of
induction, we may iterate the above argument to deduce that fM is cyclic in A∞(W )
for all M > 0. �

At last, we make one more simple observation, which allows us reduce our prob-
lems to that of characterizing cyclic singular inner functions in Ap(W ).

Theorem 2.4. Let 0 < p ≤ ∞ and f ∈ N ∩ A∞(W ) with Nevanlinna factor-

ization f = OΘµ/Θν , where µ, ν are mutually singular positive measures. If Θµ is

cyclic in Ap(W ), then f is also cyclic in Ap(W ).

Proof. It is a standard fact that one can express f = a/b, where a, b ∈ H∞

and Θµ is the inner factor of a. Recall that bounded outer functions are weak-star
(sequentially) cyclic in H∞ (for instance, see Theorem 7.4 in [7]), and hence they
can easily be shown to be cyclic in A∞(W ) by following an argument similar to the
proof of Lemma 2.2. This implies that Θµ ∈ [a]Ap(W ) ⊆ [f ]Ap(W ). The claim now
follows. �

3. Dini-regular weights

3.1. Cyclic inner functions. Our main goal in this section is to prove the
following theorem on cyclic inner functions.

Theorem 3.1. Let W be a good weight which satisfies the condition (2). Then
Θµ is cyclic in A∞(W ) if µ(K) = 0 for any set K ⊂ ∂D of finite κw-entropy.

We obtain Theorem 1.1 as an immediate corollary of Theorem 3.1 in conjunction
with Theorem 2.4.

3.2. A Roberts decomposition. Our principal tool in this subsection will
be a Roberts-type decomposition, adapted to weights W for which the associated
gauge function κW (t) → 0 as t → 0+. We denote by Dn a collection of 2n disjoint
dyadic arcs of length 2π2−n which partition ∂D. Given a weight W , we declare that a
sequence of positive integers {nk}∞k=0 gives rise to a W -adapted dyadic grid

⋃∞
k=0Dnk

if there exists a constant γ > 0, such that

(5) sup
k≥0

W (2−nk)γ

W (2−nk+1)
<∞.

We shall derive a natural generalization of the Roberts decomposition in [14].
Notably, similar decompositions have also appeared in [9], [12] and in [4], but ours is
essentially as general as it gets.

Theorem 3.2. [Roberts decomposition] Let µ be a positive finite Borel measure

on ∂D which is singular with respect to dm, and letW be a continuous non-decreasing

weight with limt→0+ κW (t) = 0. Then for any integer n0 > 0 any η > 0, and any

W -adapted dyadic grid
⋃∞

k=0Dnk
, there exist positive finite Borel measures (µk)k and
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µ∞ on ∂D which decompose µ as

µ = µ∞ +

∞
∑

k=0

µk,

and where the pieces satisfy the following:

(i) sup
|I|≤2−nk

µk(I) ≤ ηκW (2−nk), k = 0, 1, 2, . . . , where the supremum is taken over

all arcs I ⊂ ∂D of length at most 2−nk .

(ii) µ∞ is supported on a set of finite κW -entropy.

Furthermore, if µ does not assign mass to any set of finite κW -entropy, then the above

decomposition holds with µ∞ ≡ 0, for any choice of parameters n0, η and W -adapted

dyadic grid
⋃∞

k=0Dnk
.

Sketch of proof. We run the argument as in Roberts paper, utilizing Lemma 3.3
(proved below). This gives the decomposition

µ = µ∞ +
∑

k≥0

µk,

where µ∞ is supported on the set H :=
⋂∞

k=0Hk, where each Hk is the union of
so-called heavy arcs I ∈ Dnk

, satisfying

µk(I) = ηκW (|I|).

We first observe that

|Hk| =
∑

I∈Dnk
heavy

|I| ≤

(

η log
1

W (2−nk)

)−1
∑

I∈Dnk
heavy

µ(I) → 0, k → ∞,

hence H has zero Lebesgue measure. Let Lk denote the set of interiors of the arcs
in Dnk

, which are not heavy, but intersect Hk−1. Then H ′ = ∂D \
⋃

k

⋃

ℓ∈Lk
ℓ is

a compact set, which contains H , and differs from it only on a countable set. It
therefore suffices to verify that H ′ has finite κW -entropy. To this end, we note that

∑

k

∑

ℓ∈Lk

κW (ℓ) =
1

η

∑

k

|Lk| · log
1

W (2−nk)
≤
∑

k

|Hk−1| log
1

W (2−nk)
.

The W -adapted grid assumption in (5) ensures that

log
1

W (2−nk)
. log

1

W (2−nk−1)
, k = 1, 2, . . . .

With this at hand, we deduce that
∑

k

∑

ℓ∈Lk

κW (ℓ) .
∑

k

|Hk| log
1

W (2−nk)
≤
∑

k

1

η
µk(I) ≤

1

η
µ(∂D).

This shows that H ′ has finite κW -entropy, hence the claim on the support of µ∞

follows. �

We will later use the measures µk from the Roberts decomposition to explicitly
construct functions Fn ∈ H∞ such that FnΘµ → 1 in A∞(W ).

But first, we shall need a lemma, which previously appeared in [12] (see Lem-
ma 2.3), allowing us to selected a W -adapted dyadic grid W with some additional
property, that will be crucial in proving Theorem 3.1. Here, we shall make use of the
condition (1) on W being good.
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Lemma 3.3. Let W be a good weight. Then for any integer n0 > 0, there exists
a sequence of positive integers (nk)

∞
k=0 which gives rise to a W -adapted dyadic grid

⋃∞
k=0Dnk

, and satisfies the additional condition:

(6) W (2−nk+1) ≤
k
∏

j=0

W (2−nj), k = 0, 1, 2, . . .

Proof. For the sake of abbreviation, we set w(t) = log 1
W (t)

and note that w is

non-increasing with w(t) ↑ ∞ as t ↓ 0. According to (1), there exists a constant
C = C(W ) > 1, such that

(7) w(t/2) ≤ Cw(t), 0 < t < 1.

By means of induction, assume that n0 < n1 < · · · < nk has been constructed, and
pick 0 < δk < 2−nk such that

10 ≤
w(δk)

w(2−nk)
≤ 10 · C9.

Now choose nk+1 > nk be the unique integer such that 2−nk+1 ≤ δk < 21−nk+1, then
we again obtain from (7) that

10 ≤
w(2−nk+1)

w(2−nk)
≤ 10 · C10.

This construction provides a sequence of positive integers (nk)
∞
k=0, which give rise to

a W -adapted grid since

1

W (2−nk+1)
= expw(2−nk+1) ≤ exp 10 · C10w(2−nk) =

(

1

W (2−nk)

)10·C10

.

In order to verify that (6) holds, we observe that an iteration gives

w(2−nj) ≤ 10−1w(2−nj+1) ≤ · · · ≤
(

10−1
)k−j+1

w(2−nk+1), j = 0, 1, . . . , k.

This implies that

k
∑

j=0

w(2−nj) ≤ w(2−nk+1)

k
∑

j=0

(

10−1
)k−j+1

≤
1

9
w(2−nk+1).

Expressing this in terms of W , conclude that (6) holds. �

3.3. The main construction. Let W be a good weight which satisfies the
condition (2) and let µ be a positive finite singular measure with the property that

µ(K) = 0

for any setK ⊂ ∂D of finite κW -entropy. For any n0 > 0 and any η > 0, we may apply
Lemma 3.3 in conjunction with the Roberts decomposition of µ to find a sequence
of positive integers (nk)k and positive measures (µk)k such that the following holds:

(i) µk(I) ≤ ηκW (2−nk) for any arc I ⊂ ∂D of length |I| ≤ 2−nk for k = 0, 1, 2, . . . .
(ii) µf =

∑

k µk.
(iii) There exists a large number γ > 1, such that

sup
k

W γ(2−nk)

W (2−nk+1)
<∞.
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For each k ≥ 0, we define non-negative functions by

(8) fk(ζ) :=
∑

I∈Dnk

µk(I)

|I|
1I(ζ), ζ ∈ ∂D, k = 0, 1, 2, . . .

We will ultimately consider the functions

Fη := exp

(

H

(

∞
∑

k=0

fk

))

,

where η is the parameter from the Roberts decomposition, and then show that as η →
0, we have that the sequence FηΘµ is uniformly bounded and tends to 1 pointwise,
which implies convergence (of a subsequence) to 1 in A∞(W ), thus proving that Θµ

is cyclic.
To this end, we will study |FηΘµ|, and therefore the Poisson integrals of the

real-valued measures νk on ∂D defined by

dνk = fk dm− dµk, ζ ∈ ∂D, k = 0, 1, 2, . . .

We start with the following simple lemma.

Lemma 3.4. For each k and for any arc I ⊂ ∂D, we have the estimate

|νk(I)| ≤ 4ηκW (2−nk).

Proof. From the construction of fk it follows that νk(I) = 0 for any dyadic arc
I ∈ Dnk

. Now for an arbitrary arc I ⊂ ∂D, we can decompose I as a union of disjoint
intervals in Dnk

together with the intersection of I with the at most two dyadic arcs
I1, I2 ∈ Dnk

which contain the end-points of I. This implies that

|νk(I)| ≤

ˆ
I∩I1

fk dm+

ˆ
I∩I2

fk dm+ µk(I1) + µ2(I2) ≤ 4ηκW (2−nk). �

We denote the Poisson extension of a measure ν on ∂D by

P (ν)(z) :=

ˆ
∂D

1− |z|2

|ζ − z|2
dν(ζ), z ∈ D.

Our next lemma allows us to transform estimates of νk to growth estimates on their
Poisson extension P (νk).

Lemma 3.5. There exists an absolute constant C > 0, such that

P (νk)(z) ≤ CηκW (2−nk)min

(

2nk ,
1

1− |z|

)

, z ∈ D.

Proof. We primarily note that since νk(∂D) = 0, an integration by parts gives

P (νk)(z) =

ˆ 2π

0

1− |z|2

|eit − z|2
dνk(e

it) = (1− |z|2)

ˆ 2π

0

νk(I(e
it))

d

dt

∣

∣eit − z
∣

∣

−2
dt, z ∈ D,

where I(eit) smallest closed arc, connecting 1 to eit. We make the following two ob-
servations. First, it is straightforward to verify that there exists a numerical constant
C > 0, such that

∣

∣

∣

∣

d

dt

∣

∣eit − z
∣

∣

−2

∣

∣

∣

∣

≤ C
∣

∣eit − z
∣

∣

−3
, z ∈ D.

Applying this observation in conjunction with Lemma 3.4, we get

|P (νk)(z)| ≤ C(1− |z|2)

ˆ 2π

0

ηκW (2−nk)
dt

|eit − z|3
≤ 4CηκW (2−nk)

1

1− |z|
, z ∈ D.
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In the last step utilized standard Poisson estimates, for instance, see Theorem 1.7 in
[8]. On the other hand, the definition of νk and µk yields the estimate

P (νk)(z) ≤ P (fk)(z) ≤
∑

I∈Dnk

η2nkκW (2−nk)P (1I)(z) = η2nkκW (2−nk), z ∈ D.

This completes the proof. �

We are now ready to carry out the proof of the main result.

Proof of Theorem 3.1. Let µ be a positive finite Borel measure on ∂D, which is
singular with respect to dm on ∂D, with the property that

µ(E) = 0

for any subset E ⊂ ∂D of finite κW -entropy, and let Θ = Θµ denote the associated
singular inner factor. To avoid redundancy, we make two simple observations. Note
that if we prove the theorem for A∞(W ), then it also holds for A∞(W γ) since the
κW -entropy condition is invariant under power transformations of the weight W .
Furthermore, by Lemma 2.1 A∞(W 1/p) →֒ Ap(W ), and so it suffices to only carry
out the proof for A∞(W ). Fix n0 > 0 (this parameter will not play a role) and
let η > 0, to be specified later. According to Lemma 3.3, there exists positive
integers (nk)

∞
k=0 which give rise to an W -adapted dyadic grid ∪∞

k=0Dnk
. We now

invoke Roberts decomposition with the above parameters.

Step 1. Estimates in lacunary discs: Note that an application of Lemma 3.5
implies that

∑

j

P (νj)(z) ≤ Cη
∑

0≤j≤k

2njκW (2−nj) +
Cη

1− |z|

∑

j>k

κW (2−nj ), 1− |z| = 2−nk .

Note that the first term can be estimated using the assumption (6) of Lemma 3.3:
∑

0≤j≤k

2njκW (2−nj) =
∑

0≤j≤k

log
1

W (2−nj)
≤ log

1

W (2−nk+1)
, k = 0, 1, 2, . . .

While for the second term, we now utilize the Dini-regularity condition (2) of the
weight W , which implies

∑

j>k

κW (2−nj) .
∑

j>k

ˆ 2−nj

2−nj+1

log
1

W (t)
dt =

ˆ 2−nk+1

0

log
1

W (t)
dt . κW (2−nk+1),

k = 0, 1, 2, . . . Invoking harmonicity and the maximum principle, we actually get
that

(9)
∑

j

P (νj)(z) ≤ Cη2nk+1κW (2−nk+1) = Cη log
1

W (2−nk+1)
, |z| ≤ 1− 2−nk .

Step 2. Uniformly bounded growth: Fix a large integer N > 0 and consider the
bounded outer functions

FN := exp

(

H

(

N
∑

k=0

fk

))

= exp





N
∑

k=0

∑

I∈Dnk

µk(I)

|I|
H(1I)



 ,

where H denotes the Herglotz transform. Here the truncation by N > 0 is just to
ensure that the FN ’s are bounded, and note also that the FN ’s also depend on η, the
parameter in the precise Roberts decomposition of µ. Let Θ be the singular inner
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function with associated singular measure µ, and fix ρ > 0. We claim that there
exists a constant C > 0, independent of N and η > 0, such that

(10) sup
z∈D

|FN(z)Θ(z)|W (1− |z|)ρ ≤ C.

To this end, note that

|FN (z)Θ(z)| ≤ exp

(

∑

0≤k≤N

P (νk)(z)

)

, z ∈ D.

Now on each annuli Rk := {2−nk+1 < 1− |z| ≤ 2−nk}, we have, according to (9), the
following estimate:

sup
z∈Rk

exp

(

∑

0≤k≤N

P (νk)(z)

)

W (1− |z|)ρ ≤
W (2−nk)ρ

W (2−nk+1)ηC
≤ C ′.

where in the last line we utilize that the assumption that (nk)k gives rise to a W -
adapted dyadic grid, which ensures that C ′ > 0 does not depend on k. This holds
whenever the parameter η > 0 is sufficiently small, since the constant C > 0 is
universal. On the other hand, inside that disc |z| ≤ 1− 2−n0, we have

sup
|z|≤1−2−n0

|FN(z)Θ(z)|W (1− |z|)ρ ≤ sup
|z|≤1−2−n0

exp

(

∑

0≤k≤N

P (νk)(z)

)

W (1− |z|)ρ

≤ sup
|z|≤1−2−n0

exp

(

ηC

1− |z|

∑

0≤k≤N

κW (2−nk)

)

= exp

(

η2n0C
∑

0≤k≤N

κW (2−nk)

)

.

Here we estimated W by a constant, since it is not decaying inside the disc |z| ≤
1− 2−n0. Invoking the Dini-regularity assumption on κW in (2) once again (here we
actually only need the logarithmic integrability of W ), we find that

∞
∑

k=0

κW (2−nk) .

∞
∑

k=0

ˆ 2−nk

2−nk+1

log
1

W (t)
dt ≤

ˆ 1

0

log
1

W (t)
dt ≤ c,

where c > 0 is a constant only depending on W . Consequently, we obtain

sup
|z|≤1−2−n0

|FN(z)Θ(z)|W (1− |z|)ρ dA(z) . exp(η2n0Cc).

This proves (10). Letting N → ∞, we arrive at

sup
z∈D

|Fη(z)Θ(z)|W (1− |z|)ρ ≤ C,

where C > 0 is independent of 0 < η < 1 small enough, and

Fη(z) = exp





∞
∑

k=0

∑

I∈Dnk

µk(I)

|I|
H(1I)(z)



 , z ∈ D.

Step 3. Convergence in norm: In order to complete the proof, we shall need one
more lemma:

Lemma 3.6. The measure λη :=
∑∞

k=0

∑

I∈Dnk

µk(I)
|I|

1I converges to µ weak-star

in the topology of measures M(∂D) as η → 0.
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Proof. Fix a number ε > 0 and a continuous function ψ on ∂D. Then for M > 1
large enough, uniform continuity of ψ ensures that

(11) sup
|ζ−ξ|≤1/nk

|ψ(ζ)− ψ(ξ)| ≤ ε, nk > M.

Recall that νk :=
∑

I∈Dnk

(

µk(I)
|I|

1I − µk

)

and note that

∣

∣

∣

∣

ˆ
∂D

ψ dνk

∣

∣

∣

∣

≤
∑

I∈Dnk

∣

∣

∣

∣

µk(I)

|I|

ˆ
I

ψ dm−

ˆ
I

ψ dµk

∣

∣

∣

∣

.

If ξI denotes the center of each arc I ∈ Dnk
, then for nk > M :

∣

∣

∣

∣

µk(I)

|I|

ˆ
I

ψ dm−

ˆ
I

ψ dµk

∣

∣

∣

∣

≤
µk(I)

|I|

ˆ
I

|ψ − ψ(ξI)| dm+

ˆ
I

|ψ − ψ(ξI)| dµk ≤ 2εµk(I).

Summing over all I ∈ Dnk
, we get

∣

∣

∣

∣

ˆ
∂D

ψ dνk

∣

∣

∣

∣

≤
∑

I∈Dnk

2εµk(I) ≤ 2εµk(∂D), nk > M.

Now recall that the estimate µk on each I ∈ Dnk
implies that

µk(∂D) =
∑

I∈Dnk

µk(I) ≤ η2nkκW (2−nk) = η log
1

W (2−nk)
, k = 0, 1, 2, 3, . . .

From this, it follows that
∣

∣

∣

∣

ˆ
∂D

ψdνk

∣

∣

∣

∣

≤ ‖ψ‖∞‖νk‖ ≤ 2‖ψ‖∞µk(∂D) ≤ 2η‖ψ‖∞ log
1

W (2−nk)
.

With this at hand, we may write

νη := λη − µ =
∑

k

νk.

Applying these estimates in conjunction with (11), we get
∣

∣

∣

∣

ˆ
∂D

ψ dνη

∣

∣

∣

∣

≤
∑

k: nk≤M

∣

∣

∣

∣

ˆ
∂D

ψ dνk

∣

∣

∣

∣

+
∑

k: nk>M

∣

∣

∣

∣

ˆ
∂D

ψ dνk

∣

∣

∣

∣

≤ 2η‖ψ‖∞
∑

k: nk≤M

log
1

W (2−nk)
+ 2εµ(∂D).

Letting η → 0 finishes the proof. �

Finally, observe that A∞(W ρ) is compactly contained in A∞(W ) whenever 0 <
ρ < 1, hence we can find a subsequence (ηn)n tending to zero, such that FηnΘ
converges in A∞(W ). However, since FηnΘ → 1 pointwise in D by Lemma 3.6, we
conclude that

lim
n

sup
z∈D

W (1− |z|)|Fηn(z)Θ(z)− 1| = 0.

This completes the proof of the theorem. �
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4. Logarithmic integral divergence

4.1. Cyclicity of inner functions. As in the previous subsection, Theorem 2.4
allows us to reduce Theorem 1.2 to proving the following result, which is the main
purpose of this section.

Theorem 4.1. Let W be a good weight satisfying the condition (3). Then any

singular inner function Θµ is cyclic in A∞(W ).

4.2. Reformulating the logarithmic integral divergence. Here we gather
the main technical lemmas required to prove Theorem 1.2. Our first lemma is essen-
tially a discretized reformulation of condition (3), inspired by Lemma 2.1 in [6].

Lemma 4.2. LetW be a good weight. Then W satisfies the condition (3) if and
only if, for any A > 1, there exists positive integers (nk)k which satisfy the following

conditions:

(i) nk+1 ≥ Ank, k = 0, 1, 2, . . . ,

(ii)
∑k

j=0 log
1

W (1/nj)
≤ log 1

W (1/nk)
, for k = 0, 1, 2, . . . ,

(iii)
∑

j
1

nj+1
log 1

W (1/nj)
= +∞.

Proof. Suppose that W satisfies the condition (3). Pick an arbitrary integer
m0 > 0, and inductively choose mk+1 > mk to be the smallest integer for which

log
1

W (1/mk+1)
≥ 2 log

1

W (1/mk)
, k = 0, 1, 2, . . . .

With the sequence (mk)k at hand, we note that for each k ≥ 1, we haveˆ 1/mk

1/mk+1

log
1

W (t)
dt ≍

(

1

mk

−
1

(mk+1 − 1)

)

log
1

W (1/mk)
+

ˆ 1/(mk+1−1)

1/mk+1

log
1

W (t)
dt

≍

(

1

mk
−

1

mk+1

)

log
1

W (1/mk)
,

where the assumption (1) was utilized in the last step. Hence the condition (3)
translates intoˆ 1/m1

0

log
1

W (t)
dt ≍

∞
∑

k=1

(

1

mk
−

1

mk+1

)

log
1

W (1/mk)
= +∞.

Using the assumption (1) and the definition of (mk), we conclude that

(12)
∑

k

1

mk+1

log
1

W (1/mk)
= +∞.

Condition (3) ensures that the sequence (mk) satisfies the properties (ii)–(iii), hence
we only need to modify it to meet (i). To this end, fix A > 1 and observe that for
each k ≥ 1,

∑

mk/A≤mj≤mk

1

mj
log

1

W (1/mj)
≤

A

mk

∑

mk/A≤mj≤mk

log
1

W (1/mj)

≤ A
∑

j≥0

2−j 1

mk

log
1

W (1/mk)
.

1

mk

log
1

W (1/mk)
.

Again, a similar argument as when (12) was deduced, shows that we may drop all
the integers mk which violate (i), while still maintaining the condition (iii). The



774 Linus Bergqvist, Adem Limani and Bartosz Malman

remaining part of (mk)k may then be re-labeled as (nk)k. The converse easily follows
from (12), where the inequality can now be reversed by the assumptions on (nk). �

The following lemma will play a crucial role in or developments, and is essentially
a linear programming problem that can be solved explicitly.

Lemma 4.3. Let W be a good weight which satisfies the condition (3), and let

(nk)
∞
k=0 be positive integers which fulfill the hypothesis of Lemma 4.2. Then for any

0 < ε0 < 1 and any integer N > 1, there exists a constant c0 > 0, independent of ε0
and N , and positive numbers ε1, ε2, . . . , εN , such that the following statements hold:

(i)
∑N

j=0 εj = 1,

(ii)
∑

0≤j≤k njεj ≤ c0 log
1

W (1/nk)
, k = 0, 1, 2, . . . , N ,

(iii)
∑

k<j≤N εj ≤
c0

nk+1
log 1

W (1/nk)
, k = 0, 1, 2, . . . , N .

Note that (i) in conjunction with (iii) is only possible if (3) holds, which is visible
from Lemma 4.2.

Proof. Note that we may assume that limt↓0+ t log
1

W (t)
= 0, otherwise the task

becomes simple. Fix 0 < ε0 < 1, and let (nk)
∞
k=0 be a sequence satisfying the

hypothesis of Lemma 4.2. For brevity, we may set wk :=
1

nk+1
log 1

W (1/nk)
and take

εk := c0(wk − wk+1), k = 1, 2, . . . , N − 1, εN = c0wN

where c0 > 0 such that ε0 + c0w1 = 1. This implies that (i) holds. The assumption
of the (nk)

∞
k=1, readily implies (ii):

k
∑

j=0

njεj ≤ c0

k
∑

j=0

log
1

W (1/nj)
≤ c0 log

1

W (1/nk)
, k = 0, 1, 2, . . . , N.

The verification of (iii) is also simple:
∑

k<j≤N

εj =
c0
nk+1

log
1

W (1/nk)
, k = 0, 1, 2, . . . , N.

By means of increasing c0 > 0 slightly, we can also ensure it to be independent of
ε0 > 0. �

4.3. Decomposing singular measures and Poisson estimates. Let Θ :=
Θµ be any singular inner function with associated singular measure µ, which we
for simplicity shall assume satisfies µ(∂D) ≤ 1. Fix an arbitrary 0 < ε0 < 1, a
positive integer N > 0, and let (nk)

∞
k=1 be positive integers satisfying the hypothesis

of Lemma 4.2. According to Lemma 4.3, there exists a constant c0 > 0, independent
of ε0, N > 0, and positive numbers (εk)

N
k=1 satisfying the hypothesis (i)–(iii). With

these parameters at hand, we set

(13) φk(ζ) =
∑

I∈Dnk

εk
µ(I)

|I|
1I(ζ), ζ ∈ ∂D,

where Dnk
denotes a partition of ∂D consisting of nk arcs of length 1/nk. Similarly

to before, we also set

dνk = φk dm− εk dµ, k = 0, 1, 2, . . .

and note that νk(I) = 0 for any arc I ∈ Dnk
. This implies that for an arbitrary arc

J ⊂ ∂D, we have that there are at most two arcs I1, I2 ∈ Dnk
such that

νk(J) = νk(I1) + νk(I2) ≤ εknkµ(I1)|J ∩ I1|+ εknkµ(I2)|J ∩ I2| ≤ 2εk.
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For the lower bound, the same argument gives

νk(J) ≥ −εkµ(I1)− εkµ(I2) ≥ −2εk.

Hence we conclude that |νk(J)| ≤ 2εk for any arc J ⊂ ∂D. As before, we shall
transform this into the following growth estimate on the Poisson extensions of νk.

Lemma 4.4. There exists an absolute constant c > 0, such that the following

holds:

P (νk)(z) ≤ cεk min

(

nk,
1

1− |z|

)

, z ∈ D.

The proof is principally similar to Lemma 3.5, we omit the details.

4.4. The main construction. We now turn our attention to the main case.

Proof of Theorem 4.1. According to the discussion in Lemma 4.3, we may
assume that W satisfies the condition limt→0+ t logW (t) = 0.

Step 1. Uniform norm bound: Let ε0, N > 0 and A > 1 be given. According
to Lemma 4.2, we can pick positive integers (nk)k satisfying the hypothesis therein.
With this choice of (nk)k, we may apply Lemma 4.3, in order to obtain a constant
c0 > 0, independent on ε0, N > 0 and positive numbers (εk)

N
k=1, which satisfy the re-

quired properties (i)–(iii) in the statement. We now form the corresponding bounded
holomorphic functions defined by

(14) FN(z) := exp

(

∑

1≤j≤N

H(φj)(z)

)

, z ∈ D,

where H denotes the Herglotz transform. Fix a number ρ > 1 to be determined
later and consider annuli’s of the form Rk := {1/nk+1 < 1 − |z| ≤ 1/nk}. Invoking
Lemma 4.4 and (ii)–(iii) of Lemma 4.3, we obtain the following estimate in z ∈ Rk:

|Θ(z)FN(z)|W (1− |z|)ρ ≤ exp

(

∑

1≤j≤N

P (νj)(z)

)

W (1− |z|)ρ

≤ exp

(

c0
∑

1≤j≤k

εjnj

)

· exp

(

c0nk+1

∑

k<j≤N

εj

)

W (1/nk)
ρ .W (1/nk)

(ρ−2c0)

Hence this quantity remains bounded if ρ > 2c0. Meanwhile, the estimate on the
disc |z| ≤ 1− 1/n0 is again carried out using Lemma 4.4:

sup
|z|≤1−1/n0

|Θ(z)FN (z)|W (1− |z|)ρ ≤ sup
|z|≤1−1/n0

exp

(

c0
1− |z|

N
∑

k=1

εk

)

≤ exp(c0n0).

As a consequence, there exists a constant C > 0, independent of N > 0, the initial
value ε0 > 0 of the sequence (εj)

N
j=0, and the minimal gap A > 1 of the sequence

(nj)
∞
j=0, such that

sup
z∈D

W (1− |z|)ρ|FN (z)Θ(z)| ≤ C,

whenever ρ > 2c0.

Step 2. Passing to a convergent sequence: We now reintroduce the appropriate
parameters, so that they all depend on the single parameter N > 0. To this end, let
ε0(N) → 0 and AN → ∞ as N → ∞, and apply Lemma 4.2 with parameter AN and
Lemma 4.3 with ε0(N), which give rise to positive integers (nj(N))∞j=0 and positive
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numbers (εj(N))Nj=0. We now highlight the following crucial properties, needed for
our purposes:

(a.) nj+1(N) ≥ ANnj(N), j = 0, 1, 2, . . . ,

(b.)
∑N

j=0 εj(N) = 1,

(c.) εj(N) ≤ c0
1

nj+1(N)
log 1

W (1/nj(N))
→ 0, as N → ∞, for each fixed j,

since the gaps AN → ∞, and κW (t) → 0 as t→ 0. We shall now record the following
lemma on weak-star convergence.

Lemma 4.5. Let (FN )N be the functions defined as in (14), where the cor-

responding parameters (nj(N))∞j=0 and (εj(N))Nj=0, are defined as in the previous

paragraph. Then the product FNΘ converges to 1 uniformly on compact subsets in

D.

Proof. Set

φk dm− εk(N) dµ = εk(N)





∑

I∈Dnk

µ(I)

|I|
1I dm− dµ



 =: εk(N) dσk(N), ζ ∈ ∂D,

and note that it clearly suffices to show that

dνN :=
N
∑

k=1

φk dm− dµ =
N
∑

k=1

(φk dm− εk(N) dµ) =
N
∑

k=1

εk(N) dσk(N),

converges to zero in the weak-star topology of measures M(∂D), as N → ∞. Fix an
arbitrary η > 0 and let ψ be a continuous function on ∂D. By uniform continuity,
we can find a large integer M > 1, such that

(15) sup
|ζ−ξ|≤1/nk(N)

|ψ(ζ)− ψ(ξ)| ≤ η, nk(N) > M.

We now group the terms as follows:
∣

∣

∣

∣

ˆ
∂D

ψ dσk(N)

∣

∣

∣

∣

≤
∑

I∈Dnk

∣

∣

∣

∣

µ(I)

|I|

ˆ
I

ψ dm−

ˆ
I

ψ dµ

∣

∣

∣

∣

.

If ξI denotes the center of each arc I ∈ Dnk
, then

∣

∣

∣

∣

µ(I)

|I|

ˆ
I

ψ dm−

ˆ
I

ψ dµ

∣

∣

∣

∣

≤
µ(I)

|I|

ˆ
I

|ψ − ψ(ξI)| dm+

ˆ
I

|ψ − ψ(ξI)| dµ ≤ 2ηµ(I).

Summing over all I ∈ Dnk
, we get

∣

∣

∣

∣

ˆ
∂D

ψ dσk(N)

∣

∣

∣

∣

≤
∑

I∈Dnk

2ηµ(I) ≤ 2ηµ(∂D), nk(N) > M.

On the other hand, we also have the trivial estimate
∣

∣

∣

∣

ˆ
∂D

ψ dσk(N)

∣

∣

∣

∣

≤ ‖ψ‖∞‖σk(N)‖ ≤ 2‖ψ‖∞µ(∂D).

Combining the above estimates, we obtain
∣

∣

∣

∣

ˆ
∂D

ψ dνN
∣

∣

∣

∣

≤
N
∑

k=1

εk(N)

∣

∣

∣

∣

ˆ
∂D

ψ dσk(N)

∣

∣

∣

∣

≤
M
∑

k=1

εk(N)2‖ψ‖∞µ(∂D) + 2ηµ(∂D).

Letting N → ∞ finishes the proof. �
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With this lemma at hand, we now invoke the compact embedding of A∞(W ρ)
into the space A∞(WM) for M > ρ, allowing us to pass a subsequence FNk

such that
FNk

Θ → 1 in A∞(WM). Since the FN ’s are zero-free in D, we get that

(i) supk

∥

∥

∥
Θ1/2MF

1/2M
Nk

∥

∥

∥

A∞(W 1/2)
<∞,

(ii) Θ1/2M (z)F
1/2M
Nk

(z) → 1 uniformly on compact subsets of D.

Using the compact embedding of A∞(W 1/2) →֒ A∞(W ) from Lemma 2.1, we conclude
that Θ1/2M is cyclic in A∞(W ) for large enough integers M > 1. Since Θ is bounded,
we may invoke Lemma 2.3 to deduce that Θ is cyclic in A∞(W ). A similar argument
also allows us to dispense the initial assumption that µ(∂D) ≤ 1. The proof is now
complete. �
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