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Revisiting cyclic elements in growth spaces

Linus Bergqvist, Adem Limani and Bartosz Malman

Abstract. We revisit the problem of characterizing cyclic elements for the shift operator in a
broad class of radial growth spaces of holomorphic functions on the unit disk, focusing on functions
of finite Nevanlinna characteristic. We provide results in the range of Dini regular weights, and
in the regime of logarithmic integral divergence. Our proofs are largely constructive and allow for
substantial simplifications of earlier works that previously relied on the Carleson Corona Theorem,
such as the Korenblum—Roberts Theorem, as well as a more recent result of El-Fallah, Kellay and
Seip.

En aterblick pa cykliska element i tillvixtklasser

Sammanfattning. Vi atervinder till problemet att karakterisera cykliska element for skifto-
peratorn pa en stor klass av rum bestaende av holomorfa funktioner pa enhetsdisken som uppfyller
nagot radiellt tillviaxtvillkor, och vi fokuserar i synnerhet pa funktioner i Nevanlinnaklassen. Vi pre-
senterar resultat for saval Dini-reguljira vikter som for vikter som inte &r log-integrerbara. Vara
bevis dr huvudsakligen konstruktiva, vilket medfor patagliga forenklingar av resultat vars tidigare
bevis byggde pa Carlesons Coronasats — som exempelvis Korenblum—Roberts sats och nyare result
av El-Fallah, Kellay och Seip.

1. Introduction

1.1. Cyclic Nevanlinna functions in growth spaces. Let W: (0,1] — (0, 1]
be a continuous non-decreasing weight (positive function) with lim;_,o W (t) = 0. We
denote by AP(W) the space of holomorphic functions f in the unit-disc D equipped
with the metric

min(1,1/p)
11 ap ) = </D|f(2)|pW(1 - |Z|)dA(Z)) < 00,

where dA denotes the Lebesgue area measure. Since the weight W is radial, it is
well-known that the polynomials form a dense subset in AP(W) (for instance, see
Proposition 3.1 in [1] for a neat proof). We shall also consider the weighted growth
space A®(W) consisting of holomorphic functions f in D satisfying

lim W(1— [2])|f(2)] = 0.

|z]—1—

Equipped with the norm
1 | aoe oy = Sup W(L—[z])[f(2)] < oo,

it becomes a separable Banach space, containing the polynomials as a dense subset.
Let NV denote the Nevanlinna class, which consists of holomorphic functions in D
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having finite Nevanlinna characteristic:

sup /a log(1+ (<)) dm(() < o,

0<r<1

where dm denotes the unit-normalized Lebesgue measure on the unit-circle 0. Given
a Nevanlinna class function f on D, we consider the classical problem of when the
set
{f(z)z":n=0,1,2,...}, z€D,

forms a dense linear span in A?(W). Such functions f are said to be cyclic in AP(W)
(with respect to the shift operator M, f(z) = zf(z)). Questions of this type originate
back to the work of Keldysh in [10] and to Beurling [2]. Since the topologies in AP(WV)
induce uniform convergence on compact subsets of D, cyclic functions f in AP(W)
can certainly not have any zeros in ID. The classical Nevanlinna representation allows
one to express any zero-free function f € N as

f<z>=exp( 2 <<>), 2eD,

apG—2 !
where /i is a finite real-valued Borel measure on dD. In fact, a more refined Lebesgue
and Jordan decomposition, in conjunction with standard properties of Poisson ker-
nels, implies that

dus = log|f|dm+ dvy — doy
where vy, 0y are mutually singular positive finite Borel measures on 0D, both singular

wrt dm. We shall often refer to oy as the associated negative singular part of f
(instead of pif). This gives the refined inner-outer factorization of f, defined by

f(2) = 0§(2)0,(2)/O,,(2), z€D,
where Oy denotes the so-called outer factor of f, and ©,,,0,, are singular inner
functions. For a detailed treatment of Nevanlinna factorization and Hardy spaces,
we refer the reader to the excellent book [7]. In what follows, we shall solely restrict

our attention to continuous non-decreasing weights W, which satisfy the following
additional weak regularity condition:

1
(1) log ——— < C'log for some C > 1.

1
Wi(t/2) — wi(t)’
From now and onward, we shall refer to such weights as good weights. We will use
the notation A < B to indicate that A < ¢B for some absolute constant ¢ > 0.
When both A < B and B < A hold, we simply write A < B. Occasionally, absolute
constants may appear when carrying out estimates, but the reader should note that
these constants may vary from line to line.

1.2. Dini-regular weights. In this section, we shall restrict our attention to
weights W which tend to zero in a slightly slower fashion. More precisely, we shall
assume that there exists a constant C' > 0, such that

v 1 1
2 / log dt < Crlog——, O0<axz<l1.
) o W e

In this regime, it turns out that there are zero-free holomorphic self-maps f on
D which are not cyclic in AP(W). Results of this kind were initially proved by
Korenblum in [11] and independently by Roberts in [14]. For a certain range of
weights W, their results assert that the cyclicity of f in AP(W) is entirely contingent
upon whether the associated Nevanlinna measure iy assigns any mass to certain
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exceptional W-sets on dD. Below, we clarify these points. Throughout, we let xy,
be the associated gauge-function with respect to W, defined by

1

A compact set K C JD of Lebesgue measure zero is said to have finite ky-entropy if

Z Hw(ek) < Q.

where ({y), are the lengths of the connected components (Ix), of D \ K. When
W (t) = t* some a > 0, such sets are typically referred to as Beurling—Carleson sets,
and they play a crucial role in function theory. For instance, they precisely classify all
zero sets on 0D of holomorphic functions in D which are smooth up to 0D (see [15]).
We remark that the condition (1) is equivalent to the doubling property of the gauge
function ky (t/2) < kw(t), while (2) is typically referred to as ky being Dini-regular.
Our main intention is to prove the following generalization of the Korenblum—-Roberts
Theorem.

Theorem 1.1. Let 0 < p < oo and W be a good weight which satisfies the
condition (2). Then a function f € AP(W)NN is cyclic in AP(W) if o4(K) = 0 for
all sets K C 0D of finite ky -entropy.

The above theorem was initially proved by Korenblum and Roberts in the clas-
sical setting of the Bergman spaces AP(W), corresponding to weights of the form
W(t) = t*. They also showed that the above condition on oy is not only suffi-
cient, but also necessary. For a wider range of weights, the same conclusion was
also recently confirmed in [12], indicating that Theorem 1.1 is sharp. Our proof of
Theorem 1.1 is carried in the following steps. First, we simply reduce the problem to
cyclicity of f to the associated singular inner factor ©,,. Secondly, we shall utilize a
Roberts-type decomposition adapted to the corresponding weight W, allowing us to
decompose singular measures. In the last step, our approach substantially deviates
from Korenblums proof and from Roberts, where the former involves an implicit lin-
ear programming argument (see [11]), while the latter invokes a quantitative version
of Carleson’s Corona Theorem (see [14]). Instead, we shall carry out a fairly explicit
construction of bounded holomorphic functions (h,), in D, such that ©, +hn—1 have
small AP(W)-norms.

1.3. Logarithmic integral divergence. We now restrict our attention to
weights which tend to zero rapidly. That is, we assume that log W is not integrable:

(3) /01 log W (t) dt = —oc0.

Note that the above condition is slightly stronger than (2), and is equivalent to the
assertion that the associated gauge-function ky (t) is not Dini-continuous. Our next
result shows that the problem of cyclicity in this regime differs substantially from
the previous setting of Theorem 1.1.

Theorem 1.2. Let 0 < p < oo and W be a good weight which satisfies the
condition (3). Then any f € A?(W) NN with no zeros in D is cyclic in AP(W).

We mention that a certain version of this result has previously appeared in the
work of El-Fallah, Kellay and Seip in [6] (see Theorem 1.1 therein) on cyclic bounded
holomorphic functions. Their result is phrased in a slightly different yet related
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framework of weighted £?-space, where they obtain a sufficient condition for cyclicity
expressed in terms of moment-sequences. It is well known that for a certain class of
weights W, their condition is equivalent to (3) (for instance, see remark (4) following
Theorem 1.2 in [6]), hence, our Theorem 1.2 provides a complementary perspective
on their result. The proof in [6], principally relying on methods developed by Roberts
in [14], is also based on a clever way of “whittling down” the measure sy, followed
by utilizing a quantitative version of Carleson’s Corona Theorem. Our proof will
initially follow a similar trajectory, but the novelty here is that we outline an explicit
construction, enabling us to entirely circumvent the Corona Theorem.

We give a brief comparison of Theorem 1.2 with earlier works of Beurling in [2],
and that of Nikolskii in [13]. Under certain convexity assumptions on the moment
sequence of W, Beurling proved that every bounded holomorphic function with no
zeros in D, is cyclic in |-, A*(W™), equipped with the natural inductive limit
topology, if and only if -

1 logL
(4) A\/%@dt:+m.

In fact, if (4) does not hold, then the atomic singular inner functions are not cyclic
in J,-; A2(W"). Beurling’s original proof relied on a certain form of Bernstein
approximation, which crucially required an additional convexity assumption. Later,
Nikolskii established a similar result in the Hilbertian setting of A*(W) under a
different log-concavity condition on the moments of W, which instead principally
relied on methods of quasi-analyticity. It was only much later that Borichev, El-
Fallah and Hanine succeeded in removing the assumptions of Beurling and Nikolskii.
They proved that atomic singular inner functions are cyclic in A*°(W) if and only
if condition (4) holds (see [3]). Their approach employed the so-called resolvent
transform method, initially developed by Carleman, Domar and Gelfand (see [5] and
references therein). A key component of their proof relies on Theorem 1.2 for singular
inner functions, as established in [6]. However, their methods do not appear to extend
to proving that any zero-free bounded holomorphic function is cyclic in A% (W) for
weights more general than those considered by Beurling and Nikolskii.

1.4. Notations and organization. The manuscript is organized as follows.
In Section 2 we gather some basic preliminary lemmas in order to equip us for the
following sections. The central tool therein is the simple reduction to that of cyclicity
of singular inner functions. Section 3 is principally concerned with the proof of
Theorem 1.1, and principally relies on a generalized Roberts-type decomposition of
singular measures. At last, Section 4 is devoted to the proof of Theorem 1.2.

2. General properties of AP(W)

2.1. Compact embeddings. Here we gather some preliminary results of
AP(W)-functions, which will be utilized in the later sections. We start out by record-
ing the following observation on compact embeddings in growth spaces.

Lemma 2.1. The embeddings AP(W) — AYW) for 0 < ¢ < p < o0, and
AP(W) — AP(W?®) for s > 1 are compact.

Proof. If (f,), is a sequence in the unit-ball of AP(W), then for any p > ¢ and
any 0 < € < 1, we have by Holder’s inequality
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a/p 1—q/p
1 fllhaqury < / | fol W dA + (/ |fn\”WdA) (/ WdA)
‘Z‘Sl_f 1—‘Z‘<E 1—|z|<5

< / FalTW dA + W (&)1,
|2|<1—e

Since (fy), forms a normal family, Montel’s Theorem implies that a subsequence
fn, converges uniformly on compact subsets of D to a holomorphic function f in
D. Fatou’s lemma implies that f belongs to the unit-ball of AP(1¥') and the above
estimate applied to f,, — f gives

lim sup|| f,,, — f||?4q(w) <W(e)"9?, Ve >0.

This proves the first claim. For the second claim, we may repeat the same argument
as before, but instead utilize the following estimate:

1 I ap sy < /||<1 [F()PW (L= [21)" dA(2) + W (&) 1 f Iy

The case p = oo is similar, we omit the details. O]

2.2. Cyclic elements in AP(W). Here we collect two basic lemmas on cyclic
elements in AP(W). We denote by H* the Banach space of bounded holomorphic
functions in D, equipped with the supremum norm || f|| . = sup{|f(2)|: z € D}.
It is not difficult to see that H> is the multiplier algebra of AP(W). The smallest
M -invariant subspace of AP(W), which contains f, will be denoted by [f] AP(W)-
With this notation, f is cyclic in AP(W) if and only if [f] 4»(y) = AP(W), and since
polynomials are dense in AP(W), this happens if and only if 1 € [f] 4, -

Lemma 2.2. Let 0 < p < oo. Then an element f € AP(W) is cyclic if and only
if fH® :={fh: h € H*®} is dense in AP(W).

Proof. One implication is obvious. For the other it suffices to prove that fh €
[f] ar(wy for any h € H*. To avoid redundancy, we will present the proof only for
the case p = 00, as the argument for 0 < p < oo follows in a similar manner. Since
the polynomials are weak-star (sequentially) dense in H* (for instance, take Fejér
means of f), there exists M > 0 and polynomials (@), such that

(a.) sup, [|Qnll g < M,
(b.) @, — h uniformly on compact subsets of D.

We now claim that fQ,, — fh in A*(WW). Indeed, for any 0 < € < 1, we have
Sup|f(2) (Qn(2) = h(2))W(1 —[2])
< ||f||A°° w) Sup |Qn(2) = h(2)| + (M + [|h]l o) sup |f(2)[W (1 —|z]).

|z|<1—¢ 1—|z|<e

By letting n — oo and utilizing (b.), and then letting ¢ — 0+ while using that
f € A*(W), the claim follows. O

Next, we make the following simple observation on bounded cyclic elements in

AP(W).

Lemma 2.3. Let 0 < p < oco. If f € H® is cyclic in AP(W), then fM is cyclic
in A?P(W) for any M > 0.
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Proof. As before, we only carry out the proof in the case p = co. Note that if
f is cyclic in A%(W), then f is zero-free in D, and thus fM is well-defined for all
M > 0. Observe that f = f5fl=% € [f*) ase(wy for all 0 <'s < 1, hence f* is cyclic
in A*(W) for all 0 < s < 1. Now if @),, polynomials such that @, f — 1 in A*(W),
then multiplying by the bounded function f*, we get f* € [f1*] acs(wy» Which by the
previous argument implies that f cyclic in A%(W) for all 0 < M < 2. By means of

induction, we may iterate the above argument to deduce that f™ is cyclic in A%(W)
for all M > 0. O

At last, we make one more simple observation, which allows us reduce our prob-
lems to that of characterizing cyclic singular inner functions in A?(W).

Theorem 2.4. Let 0 < p < oo and f € N N A®(W) with Nevanlinna factor-
ization f = 00,/0O,, where u,v are mutually singular positive measures. If ©,, is
cyclic in AP(W), then f is also cyclic in AP(W).

Proof. 1t is a standard fact that one can express f = a/b, where a,b € H™®
and ©,, is the inner factor of a. Recall that bounded outer functions are weak-star
(sequentially) cyclic in H* (for instance, see Theorem 7.4 in [7]), and hence they
can easily be shown to be cyclic in A*°(W) by following an argument similar to the
proof of Lemma 2.2. This implies that ©, € [a]AP(W) - [f]AP(W). The claim now
follows. OJ

3. Dini-regular weights

3.1. Cyclic inner functions. Our main goal in this section is to prove the
following theorem on cyclic inner functions.

Theorem 3.1. Let W be a good weight which satisfies the condition (2). Then
©, is cyclic in A®(W) if u(K) = 0 for any set K C 0D of finite k,,-entropy.

We obtain Theorem 1.1 as an immediate corollary of Theorem 3.1 in conjunction
with Theorem 2.4.

3.2. A Roberts decomposition. Our principal tool in this subsection will
be a Roberts-type decomposition, adapted to weights W for which the associated
gauge function ky (t) — 0 as t — 0+. We denote by D,, a collection of 2" disjoint
dyadic arcs of length 227" which partition dD. Given a weight W, we declare that a
sequence of positive integers {ny}32, gives rise to a W-adapted dyadic grid | J;-, Dn,
if there exists a constant v > 0, such that

W(Z—nk>’Y
? W) <

We shall derive a natural generalization of the Roberts decomposition in [14].
Notably, similar decompositions have also appeared in [9], [12] and in [4], but ours is
essentially as general as it gets.

Theorem 3.2. [Roberts decomposition] Let i be a positive finite Borel measure
on 0D which is singular with respect to dm, and let W be a continuous non-decreasing
weight with limy .oy kw(t) = 0. Then for any integer ng > 0 any n > 0, and any
W -adapted dyadic grid | J,-, Dy, , there exist positive finite Borel measures (pu,); and
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loo on OD which decompose p as

= oo + Z,uka
k=0

and where the pieces satisfy the following:

(i) sup p(l) <mrw(27"), k=0,1,2,..., where the supremum is taken over
|1]<27 "k
all arcs I C 0D of length at most 27",
(i) peo is supported on a set of finite Ky -entropy.
Furthermore, if ;1 does not assign mass to any set of finite ky/-entropy, then the above
decomposition holds with . = 0, for any choice of parameters ngy,n and W-adapted
dyadic grid | J,—y Dn, -
Sketch of proof. We run the argument as in Roberts paper, utilizing Lemma 3.3
(proved below). This gives the decomposition

= foo + > i,
k>0

where i, is supported on the set H := ﬂzozo H,., where each Hj is the union of
so-called heavy arcs I € D, , satisfying

p(l) = nrw (|1]).
We first observe that

= 3 |f|s(nlogm) ST uD =0, koo,

I€Dp,, heavy I€Dnp,, heavy

hence H has zero Lebesgue measure. Let L; denote the set of interiors of the arcs
in D, which are not heavy, but intersect Hy_;. Then H' = D\ U, U, ¢ is
a compact set, which contains H, and differs from it only on a countable set. It
therefore suffices to verify that H’ has finite sy -entropy. To this end, we note that

1 1 1
Z Z rw (0) = ;; | Li| '10gm < ;\Hkﬂ log W)

k ecLy

The W-adapted grid assumption in (5) ensures that

1
log ——— k=1,2,....

1
08 W(Q—nk—l) !

L <
W (2=m) ~
With this at hand, we deduce that

DI TIOED DA 1ogm <Y < %M@D)-

k lely k ?7

This shows that H' has finite ky-entropy, hence the claim on the support of fio
follows. [

We will later use the measures pu; from the Roberts decomposition to explicitly
construct functions F,, € H* such that F,,©, — 1 in A>(W).

But first, we shall need a lemma, which previously appeared in [12] (see Lem-
ma 2.3), allowing us to selected a W-adapted dyadic grid W with some additional
property, that will be crucial in proving Theorem 3.1. Here, we shall make use of the
condition (1) on W being good.



768 Linus Bergqvist, Adem Limani and Bartosz Malman

Lemma 3.3. Let W be a good weight. Then for any integer ng > 0, there exists
a sequence of positive integers (ny)5>, which gives rise to a W-adapted dyadic grid
Ur—o D, and satisfies the additional condition:

k
(6) M) H ), k=0,1,2,...

Proof. For the sake of abbrev1at10n, we set w(t) = log WL@) and note that w is
non-increasing with w(t) T oo as t | 0. According to (1), there exists a constant
C = C(W) > 1, such that
(7) w(t/2) < Cw(t), 0<t<l.

By means of induction, assume that ng < ny < --- < ng has been constructed, and
pick 0 < & < 27™ such that

0
10 < M <10-C°.
w(27mk)
Now choose nj41 > n; be the unique integer such that 27+ < §, < 217™+1 then
we again obtain from (7) that
w(27k+1)
w(27m)
This construction provides a sequence of positive integers (ny)52,, which give rise to
a W-adapted grid since

10 < <10-C".

1
W(Q—nk-H )

In order to verify that (6) holds, we observe that an iteration gives

1 10-c*0
=expw(27"+) < exp10- CPw(27™) = (W) .

w(2T) <107 w@T) << (100) T e, =01k
This implies that

k k
. n k it Lo
2 J k+1 _ 2 k+1 .
> w2 ) < w@ ) 3 (1077 < Swfa )
7=0 7=0
Expressing this in terms of W, conclude that (6) holds. O

3.3. The main construction. Let W be a good weight which satisfies the
condition (2) and let p be a positive finite singular measure with the property that

n(K) =0

for any set K C 0D of finite ky-entropy. For any ng > 0 and any n > 0, we may apply
Lemma 3.3 in conjunction with the Roberts decomposition of i to find a sequence
of positive integers (ny)r and positive measures (pu) such that the following holds:
(i) px(I) < nrw(27™) for any arc I C 0D of length |I| <27 for k =0,1,2,....
(i) pop = D2 -
(iii) There exists a large number v > 1, such that

wr(2™)
supi < 00.

B W(27me)
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For each k > 0, we define non-negative functions by

(8) fu(Q) = “’F}‘Uh(é), CedD, k=0,1,2,...
1Dy,

We will ultimately consider the functions

m(o(59)

where 7 is the parameter from the Roberts decomposition, and then show that as n —
0, we have that the sequence F,0, is uniformly bounded and tends to 1 pointwise,
which implies convergence (of a subsequence) to 1 in A* (W), thus proving that ©,
is cyclic.

To this end, we will study |F,0,|, and therefore the Poisson integrals of the
real-valued measures v, on D defined by

dvg = frdm —du,, €D, k=0,1,2,...
We start with the following simple lemma.
Lemma 3.4. For each k and for any arc I C 0D, we have the estimate
()] < Ay (27,

Proof. From the construction of fy it follows that v4(I) = 0 for any dyadic arc
I € D,,. Now for an arbitrary arc I C JD, we can decompose I as a union of disjoint
intervals in D,, together with the intersection of I with the at most two dyadic arcs
I, I, € D,, which contain the end-points of /. This implies that

lwe(D)] < Jedm + fedm + pr(L) + po(l) < dnky (277, =
Inh NIy

We denote the Poisson extension of a measure v on 9D by
1— |2
Pv)(z) := Sdv(¢), z€D.
ap [ — 2|
Our next lemma allows us to transform estimates of v to growth estimates on their
Poisson extension P(v).

Lemma 3.5. There exists an absolute constant C' > 0, such that

P(v)(2) < Cnrw(27") min (2"’“, : —1\z|) , zeD.

Proof. We primarily note that since v (0D) = 0, an integration by parts gives

2w 2 2m

e = [ ane = =) [t Het - o Par, ze,
o et —z] 0 dt

where I(e) smallest closed arc, connecting 1 to e. We make the following two ob-

servations. First, it is straightforward to verify that there exists a numerical constant

C > 0, such that

i _ }_2 < C‘e“ - z}_g, z €D.

€ z

i
Applying this observation in conjunction with Lemma 3.4, we get
2w
PO < C=|2P) [ mmw(z ™)
0

< ACnRw (27™) z e D.

leit — z]? 11—z
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In the last step utilized standard Poisson estimates, for instance, see Theorem 1.7 in
[8]. On the other hand, the definition of v, and py, yields the estimate

P(n)(2) < P(fi)(z) < D m2™mw(27)P(11)(2) = n2"rw(27™), 2 €D.

I€Dn,
This completes the proof. O]
We are now ready to carry out the proof of the main result.

Proof of Theorem 3.1. Let u be a positive finite Borel measure on 0D, which is
singular with respect to dm on JD, with the property that

n(E) =0

for any subset £/ C 0D of finite ky-entropy, and let © = ©,, denote the associated
singular inner factor. To avoid redundancy, we make two simple observations. Note
that if we prove the theorem for A* (W), then it also holds for A* (W) since the
kw-entropy condition is invariant under power transformations of the weight W.
Furthermore, by Lemma 2.1 A®(W1/P) < AP(W), and so it suffices to only carry
out the proof for A>*(W). Fix ny > 0 (this parameter will not play a role) and
let » > 0, to be specified later. According to Lemma 3.3, there exists positive
integers (ny);>, which give rise to an W-adapted dyadic grid U2 D,,. We now
invoke Roberts decomposition with the above parameters.

Step 1. Estimates in lacunary discs: Note that an application of Lemma 3.5
implies that

S PO O Y o)+

0<j<k

) 1 — |z =27,

7

Note that the first term can be estimated using the assumption (6) of Lemma 3.3:
n; 1
ZQJ/{ ZlOg lgm, k:O,l,Q,...
0<j<k 0<j<k

While for the second term, we now utilize the Dini-regularity condition (2) of the
weight W, which implies

S w2 nj<z/ 1og

>k >k

27 Mk41 1
dt 1 dt < 27

k = 0,1,2,... Invoking harmonicity and the maximum principle, we actually get
that

9) ZP (v;)(2) < Cn2"+1gy (27" +1) = Cnlog |z| <1 —27",

1
W(2-mk+1)’

Step 2. Uniformly bounded growth: Fix a large integer N > 0 and consider the
bounded outer functions

Fy = exp (H (kf;fk» — exp Z “k ,

k=0 I€D,,

where H denotes the Herglotz transform. Here the truncation by N > 0 is just to
ensure that the Fy’s are bounded, and note also that the Fiy’s also depend on 7, the
parameter in the precise Roberts decomposition of p. Let © be the singular inner
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function with associated singular measure p, and fix p > 0. We claim that there
exists a constant C' > 0, independent of N and n > 0, such that

(10) Sup [Fn(2)0(2)[W (1 —[2])” < C.

To this end, note that

|Fn(2)O(2)| < exp ( Z P(Vk)(z)> , z€D.

0<k<N

Now on each annuli Ry := {27™+ <1 — |z| < 27"}, we have, according to (9), the
following estimate:

sup exp ( 3 P(uk><z>> WL~ |2]) < % <

zERy, 0<k<N

where in the last line we utilize that the assumption that (ny)x gives rise to a W-
adapted dyadic grid, which ensures that C’ > 0 does not depend on k. This holds
whenever the parameter n > 0 is sufficiently small, since the constant C' > 0 is
universal. On the other hand, inside that disc |z| <1 — 27", we have

sup  |Fn(2)0()[W(L— )" < sup exp(z P<uk><z>> WL - ||

|z]<1—2-m0 |z|<1—-2-70 0<k<N

< sup exp (1ic|;| Z /@W(Q"k)> = exp (nQ"OC Z /<;W(2"k)>.

|z|<1-2770 0<k<N 0<k<N

Here we estimated W by a constant, since it is not decaying inside the disc |z| <
1 — 27", Invoking the Dini-regularity assumption on sy in (2) once again (here we
actually only need the logarithmic integrability of W), we find that

- I 1 1
Z/{W(Z )52/ 1ogW(t)d /OlogW()dt<c

27 "k+1

where ¢ > 0 is a constant only depending on W. Consequently, we obtain

sup  [Fv(2)0(2)[W(1 = [2])? dA(2) S exp(n2"Ce).

|z <1-2-"0
This proves (10). Letting N — oo, we arrive at
sup| £ (2)0(2)[W (1 — |2[)" < C,
z€D

where C' > 0 is independent of 0 < 1 < 1 small enough, and

F,(z) = exp Z 'uk ()|, =zeD.

k=0 I€Dy,

Step 3. Convergence in norm: In order to complete the proof, we shall need one
more lemma:

Lemma 3.6. The measure A\, ==Y -, ZIean
in the topology of measures M(@]D)) asn — 0.

star
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Proof. Fix a number £ > 0 and a continuous function 1) on dD. Then for M > 1
large enough, uniform continuity of 1 ensures that

(11) sup  [Y(Q) —p(§)[ <&, np > M.

[C—&I1<1/ny,

Recall that v}, := EIED% ( eI )11 — ,uk) and note that

7]
il /wd /wdﬂk

If &; denotes the center of each arc I € D,,, then for ny > M:

e [ [ < -

Summing over all I € D, , we get

P dy,| <
D

1€Dn,, ‘

<202 [l = vtentam+ [10 - vl < 2em(n),

’g[)dl/k Z 2€,uk < 2€Mk(8D), ng > M.

€Dy,

Now recall that the estimate yj on each I € D,, implies that

p(0D) = Z pr(I) < n2™ gy (27") = nlog k=0,1,2,3,...

€Dy,

b
W(2 )’

From this, it follows that

TRE

With this at hand, we may write
Uy 1= )\n—u:ZVk.
k

Applying these estimates in conjunction with (11), we get

S| [ vanj+ 3 |[ van

k: np<M k: np>M

1
<2l¢lle D 10gm+2eu(8ﬂ)).

k: np<M

1
< [ Pllallwell < 2[4 o1 (OD) < 2n|¢0]  log W)

Ydu,| <
D

Letting 7 — 0 finishes the proof. OJ

Finally, observe that A>(WW?) is compactly contained in A (W) whenever 0 <
p < 1, hence we can find a subsequence (7,), tending to zero, such that F, ©
converges in A*(W). However, since F,, © — 1 pointwise in D by Lemma 3.6, we
conclude that
hmsup W(l—|z)|F,,(2)©(z) — 1] = 0.

zeD

This completes the proof of the theorem. O
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4. Logarithmic integral divergence

4.1. Cyeclicity of inner functions. As in the previous subsection, Theorem 2.4
allows us to reduce Theorem 1.2 to proving the following result, which is the main
purpose of this section.

Theorem 4.1. Let W be a good weight satisfying the condition (3). Then any
singular inner function ©,, is cyclic in A>(W).

4.2. Reformulating the logarithmic integral divergence. Here we gather
the main technical lemmas required to prove Theorem 1.2. Our first lemma is essen-
tially a discretized reformulation of condition (3), inspired by Lemma 2.1 in [6].

Lemma 4.2. Let W be a good weight. Then W satisfies the condition (3) if and
only if, for any A > 1, there exists positive integers (ny); which satisfy the following
conditions:

(1) Ng+1 Z A?’Lk, k= 0,1,2,...,
.. k 1 1
(11) ijollog m S log m, for k = O, 1, 2, P
(i) >_; i 108 Ty = o0
Proof. Suppose that W satisfies the condition (3). Pick an arbitrary integer
mg > 0, and inductively choose my1 > my to be the smallest integer for which

l 1 > 21 1 k=0,1,2
0g ———— 0g ———, =0,1,2,....
CW (W mie) ~ W (L my)

With the sequence (my ), at hand, we note that for each k£ > 1, we have

1/my, 1 1 1 1 L/(mp41-1) 1
lo dt _— = lo +/ lo dt
/1 W) (mk <mk+1—1>) SW(i/my) ), W)

/M1 /Mg
1 1

1
=|———)log ———,
(mk mk+1) W (1/my)
where the assumption (1) was utilized in the last step. Hence the condition (3)
translates into

[t a3 (- Y
0 = — — —— | log ————7+—— = +00.
. SW () me mae ) WL my)

k=1

)

Using the assumption (1) and the definition of (myg), we conclude that

(12) > L log W@l/mk) = +00.

MEk4+1

Condition (3) ensures that the sequence (my) satisfies the properties (ii)—(iii), hence
we only need to modify it to meet (i). To this end, fix A > 1 and observe that for
each k > 1,

1 1 A 1
Y g <— > g
m; e W (Ljmy) = my, | W1 /my)
my JA<m;<my

-1 1 1 1
<A E 277 —log——+— < —log —F+—.
s °8 W (l/mg) =~ my o8 W(1/my)

Again, a similar argument as when (12) was deduced, shows that we may drop all
the integers my which violate (i), while still maintaining the condition (iii). The
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remaining part of (my ) may then be re-labeled as (ny),. The converse easily follows
from (12), where the inequality can now be reversed by the assumptions on (ny). O

The following lemma will play a crucial role in or developments, and is essentially
a linear programming problem that can be solved explicitly.

Lemma 4.3. Let W be a good weight which satisfies the condition (3), and let
(ng)22, be positive integers which fulfill the hypothesis of Lemma 4.2. Then for any
0 < g9 < 1 and any integer N > 1, there exists a constant ¢y > 0, independent of ¢
and N, and positive numbers €1, 9, ..., en, such that the following statements hold:

o N
(1) >0 =1,

(11) D o0<i<k 5] SCOIOgW’ k=0,1,2,...,N,
(iii) Zk<j§N€j < nioﬂ log WA k=0,1,2,...,N.

Note that (i) in conjunction with (iii) is only possible if (3) holds, which is visible
from Lemma 4.2.

Proof. Note that we may assume that lim o ¢ log WL@ = 0, otherwise the task

becomes simple. Fix 0 < gy < 1, and let (ng)52, be a sequence satisfying the
hypothesis of Lemma 4.2. For brevity, we may set wy, := and take

1 1
Tt 198 Wi/
Ek = C(](wk - wk+1)7 k= 1727 vy N — 17 EN = CQQWN

where ¢y > 0 such that g9 + cow; = 1. This implies that (i) holds. The assumption
of the (ny)g2,, readily implies (ii):

1
ZTLjEEjSCOZlOg (1/ ) Cologm, k?ZO,]_,z,...,N.

The verification of (iii) is also simple:

Co 1
£ = log ., k=0,1,2,...,N.
k<jZ§N J Nk+1 W(l/nk)

By means of increasing ¢y > 0 slightly, we can also ensure it to be independent of
go > 0. O

4.3. Decomposing singular measures and Poisson estimates. Let O :=
©,, be any singular inner function with associated singular measure g, which we
for simplicity shall assume satisfies u(0D) < 1. Fix an arbitrary 0 < ¢y < 1, a
positive integer N > 0, and let (ng)?2; be positive integers satisfying the hypothesis
of Lemma 4.2. According to Lemma 4.3, there exists a constant ¢y > 0, independent
of g9, N > 0, and positive numbers (g;)4_, satisfying the hypothesis (i)-(iii). With
these parameters at hand, we set

(13) 0= ¥ a0, ceom,

where D,, denotes a partition of D consisting of ny arcs of length 1/n;. Similarly
to before, we also set

dl/k:gbkdm—skd,u, k’:O,l,Q,...

and note that (1) = 0 for any arc I € D,,. This implies that for an arbitrary arc
J C JD, we have that there are at most two arcs I, I, € D, such that

l/k(J) = I/k(Il) + l/k(fg) S sknku(ll)Uﬁ Il| + sknku(lg)Uﬁ IQ| S 25k-
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For the lower bound, the same argument gives
v(J) > —epu(ly) — eppu(lz) > —2¢.

Hence we conclude that |vx(J)| < 2e; for any arc J C 0D. As before, we shall
transform this into the following growth estimate on the Poisson extensions of 1.

Lemma 4.4. There exists an absolute constant ¢ > 0, such that the following
holds:

1
P(v)(2) < cg, min <nk, 17||) , ze€D.
— |z

The proof is principally similar to Lemma 3.5, we omit the details.

4.4. The main construction. We now turn our attention to the main case.

Proof of Theorem 4.1.  According to the discussion in Lemma 4.3, we may
assume that W satisfies the condition lim; o4 tlog W (t) = 0.

Step 1. Uniform norm bound: Let g9, N > 0 and A > 1 be given. According
to Lemma 4.2, we can pick positive integers (ny )y satisfying the hypothesis therein.
With this choice of (ng)x, we may apply Lemma 4.3, in order to obtain a constant
co > 0, independent on &, N > 0 and positive numbers (g)X_,, which satisfy the re-
quired properties (i)—(iii) in the statement. We now form the corresponding bounded
holomorphic functions defined by

(14) Fy(z) == exp ( > H((bj)(z)) , z€D,

1<j<N

where H denotes the Herglotz transform. Fix a number p > 1 to be determined
later and consider annuli’s of the form Ry := {1/ng1 <1 —|z| < 1/ng}. Invoking
Lemma 4.4 and (ii)—(iii) of Lemma 4.3, we obtain the following estimate in z € Ry:

O(2) Fn (2)[W(1 = [2])” < exp < > P(Vj)(Z)) W1 —|z[)”

1<G<N
S eXp (CO Z Ej”j) - €Xp (Conk-i-l Z Ej) W(l/nk)p S W(l/nk)(pi%o)
1<j<k k<j<N

Hence this quantity remains bounded if p > 2¢;. Meanwhile, the estimate on the
disc |z| <1 —1/ng is again carried out using Lemma 4.4:

N
sup [O(2)Ey(2)|W(L=[s)" < sup exp (== | < explcono).
|z|<1-1/ngo |2|<1-1/ng — 2] 1

As a consequence, there exists a constant C' > 0, independent of N > 0, the initial
value g9 > 0 of the sequence (5]»);»\[:0, and the minimal gap A > 1 of the sequence
(n;)32, such that

sup W(l — |2[)°|Fn(2)0(2)] < C,

zeD
whenever p > 2¢.

Step 2. Passing to a convergent sequence: We now reintroduce the appropriate
parameters, so that they all depend on the single parameter N > 0. To this end, let
go(N) — 0 and Ay — oo as N — o0, and apply Lemma 4.2 with parameter Ay and
Lemma 4.3 with gy(N), which give rise to positive integers (n;(N))32, and positive
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numbers (g;(N ))j-vzo. We now highlight the following crucial properties, needed for
our purposes:

(a.) nJJ]er(N) > AN’I’I,]'(N), j = 0, 1, 2, ey
(b.) Ej:() gj(N) =1,
1 1
(c) &5(N) < corrwy 198 Wiz oy
since the gaps Ay — 00, and ry (t) — 0 as ¢ — 0. We shall now record the following

lemma on weak-star convergence.

Lemma 4.5. Let (Fy)y be the functions defined as in (14), where the cor-
responding parameters (n;(N));2, and (g;(N))Y,, are defined as in the previous
paragraph. Then the product Fy© converges to 1 uniformly on compact subsets in
D.

Proof. Set

— 0, as N — oo, for each fixed j,

u(l)

S

O dm — ex(N) dp = ex(N) lydm —du | =:ex(N)dog(N), (€ 0D,
and note that it clearly suffices to show that
N

N
N :Zgbkdm—duzzwkdm—% Zf‘:k ) doy (N
k=1

k=1

converges to zero in the weak-star topology of measures M (9D), as N — oo. Fix an
arbitrary n > 0 and let 1) be a continuous function on dD. By uniform continuity,
we can find a large integer M > 1, such that

(15) sup  [¢(Q) =¥ <n, m(N) > M.
[C—€I<1 /()

We now group the terms as follows:

= ‘m v /W‘

1€Dn,,

Y doy,(N

oD

If &; denotes the center of each arc I € D,,, then

’III /wd /W' I /W’ w&idm+/|w V(€] du < 2nu(I).

Summing over all I € D, , we get

/B]I)Jd)dak ' Z 2nu(I) < 2nu(0D), ni(N) > M.

I€Dn,

On the other hand, we also have the trivial estimate

e

Combining the above estimates, we obtain

N
S Z Ek(N
k=1

Letting N — oo finishes the proof. O

< [Pl lloe (N < 2[4]] oo 11(OD).

W dv™
oD

6 wdakuv)' < 3 eu (N2 opi(OD) + 20(2D).
D k=1
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With this lemma at hand, we now invoke the compact embedding of A>(W?)
into the space A®(W™M) for M > p, allowing us to pass a subsequence Fy, such that
Fn,© — 1in A®(WM). Since the Fiy's are zero-free in D, we get that

. 1/2M
(1) SupkH@UzMFN{e HAOO(Wl/Q) < 00,
(ii) @1/2M(z)F%€2M(z) — 1 uniformly on compact subsets of D.

Using the compact embedding of A>(W1/2) < A>(W) from Lemma 2.1, we conclude
that ©1/2M is cyclic in A% (W) for large enough integers M > 1. Since © is bounded,
we may invoke Lemma 2.3 to deduce that © is cyclic in A>(W). A similar argument
also allows us to dispense the initial assumption that p(0D) < 1. The proof is now
complete. ([l
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