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Teichmüller extremal maps
on infinite Riemann surfaces

Dragomir Šarić

Abstract. Let X = D/Γ be a Riemann surface with Γ of the first kind. We establish a

necessary and sufficient criterion for [f ] ∈ T (X) to have a Teichmüller-type extremal map.

Äärettömien Riemannin pintojen äärimmäiset Teichmüllerin kuvaukset

Tiivistelmä. Olkoon X = D/Γ Riemannin pinta, missä Γ on ensimmäistä lajia. Tässä työssä

annetaan riittävä ja välttämätön ehto sille, että luokka [f ] ∈ T (X) sisältää Teichmüllerin-tyyppisen

äärimmäisen kuvauksen.

1. Introduction

We consider a Riemann surface X = D/Γ, where Γ is a Fuchsian group of the
first kind (i.e., the limit set of Γ is the unit circle S1). The Teichmüller space T (X)
of X consists of equivalence classes [f ] of quasiconformal maps f : X → Y , where
two quasiconformal maps are equivalent if one is homotopic to a post-composition of
the other by a conformal map (see [1, 8, 13]). The homotopy class [id] of the identity
map id : X → X is called the basepoint. Our considerations are valid for infinite
Riemann surfaces (see [2, 3]).

The Teichmüller distance between [id] and [f ] in T (X) is one-half of the logarithm
of the minimal quasiconformal constant of the maps in the homotopy class [f ]. A map
with the minimal quasiconformal constant in its homotopy classes is called extremal.
When X is a compact Riemann surface, each homotopy class has a unique extremal
map which is given by the horizontal stretching in the natural parameter of a (finite-
area) holomorphic quadratic differential on X . Such extremal maps are said to be of
Teichmüller-type. When X is neither a compact surface nor a compact surface minus
finitely many points, there are homotopy classes of quasiconformal maps that have
extremal maps not of Teichmüller-type (see [6, 13, 18, 19] and reference therein).
Some of these classes may have even more than one extremal map (for example, see
[6]). However, the set of points [f ] ∈ T (X) which have Teichmüller-type extremal
maps is open and dense (see [8]). This was proved using the Strebel Frame Mapping
Condition (see [8]), which gives a sufficient condition for a class [f ] to contain a
Teichmüller-type map.

We give a complete characterization for [f ] ∈ T (X) to contain a Teichmüller-type
extremal map (which is necessarily uniquely extremal). Let A(X) be the space of
all finite-area holomorphic quadratic differentials on X . For a non-trivial (i.e., not
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constantly zero) ϕ ∈ A(X), denote by ‖ϕ‖ the L1-norm and by hϕ the measured
horizontal foliation of ϕ. Given [f ] ∈ T (X), we consider the mapping by heights

f# : A(X) → A(Y ),

where f : X → Y . Let f∗(hϕ) be the push-forward of hϕ to the image surface Y .
Then f#(ϕ) is the unique finite-area holomorphic quadratic differential ψ ∈ A(Y )
whose horizontal foliation is homotopic to f∗(hϕ). The existence of f#(ϕ) = ψ is
established in [21, Theorem 1.6] and [22, Theorem 1.1], and the uniqueness in [20].

Theorem 1.1. LetX = D/Γ be a Riemann surface with Γ of the first kind. Then

[f ] ∈ T (X) admits a Teichmüller-type extremal map if and only if the supremum

sup
ϕ∈A(X)\{0}

max

{
‖f#(ϕ)‖

‖ϕ‖
,

‖ϕ‖

‖f#(ϕ)‖

}

is achieved at some ϕmax ∈ A(X) \ {0}. When the supremum is achieved, the

Teichmüller map stretches the horizontal direction in the natural parameter of ϕmax

by the amount equal to the supremum.

The above theorem is established for compact surfaces by Marden and Strebel
[16], and they gave a new proof of the Teichmüller existence theorem for the com-
pact surfaces using the fact that the above supremum is always achieved in finite-
dimensional A(X). For arbitrary Riemann surfaces, the supremum is achieved for
maps that are homotopic to a Teichmüller-type map.

Open problems. Extend the above theorem to arbitrary Fuchsian group Γ.
Characterize the Strebel/Busemann points of T (X) in terms of the height map
f# : A(X) → A(Y ) (see Earle–Li [7]). Characterize the homotopy classes that have
uniquely extremal maps using the height map (see [6]).

2. A necessary condition for the existence

of the Teichmüller extremal maps

Let f : X → Y be aK-quasiconformal map, withX and Y two arbitrary Riemann
surfaces that admit conformal hyperbolic metrics. In particular, we allow X to be
the unit disk D or any infinite Riemann surface. The results in this section do not
require that the Fuchsian groups of X and Y are of the first kind. The map f induces
the height map f# : A(X) → A(Y ) which is a bijection (see [21, Theorem 4.5], [22,
Theorem 1.1]). We note that f# does not preserve the L1-norm. We first establish
that f# maps the unit sphere of A(X) between the two spheres in A(Y ) of radii 1/K
and K.

Lemma 2.1. Let f : X → Y be a K-quasiconformal map. Then, for all ϕ ∈
A(X),

1

K
‖f#(ϕ)‖L1 ≤ ‖ϕ‖L1 ≤ K‖f#(ϕ)‖L1,

where ‖ · ‖L1 is the L1-norm on the corresponding surface.

Proof. By Gardiner and Lakic [9], given f : X → Y , there exists a sequence of
Kn-quasiconformal maps fn : X → Y in the same Teichmüller class as f that are
C∞-maps with limn→∞Kn equal to the minimal dilatation of the Teichmüller class
of f .

Let hϕ denote the measured horizontal foliation of the holomorphic quadratic
differential ϕ. Let (fn)∗(hϕ) be the push-forward of hϕ by the C∞-map fn to a
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foliation of Y . Note that the foliations (fn)∗(hϕ), for all n, are equivalent (homotopic)
because fn are in the same Teichmüller class.

For a measured foliation h, we denote by D(hϕ) its Dirichlet integral (see [21]).
Note that D((fn)∗(hϕ)) ≤ KnD(hϕ) = Kn

´
X
|ϕ| < ∞ (see Ahlfors [1]). Denote by

f#(ϕ) = ψ ∈ A(Y ) the unique holomorphic quadratic differential whose horizontal
foliation is equivalent to the foliations (fn)∗(hϕ) and the foliation f∗(hϕ) (which exists
by [21, Theorem 1.6]). Let hψ be the horizontal foliation of ψ.

Since the heights of hψ and (fn)∗(hϕ) are equal, the Dirichlet’s principle (see
Strebel [25, Theorem 24.5] and [23, Theorem 3.2]) givesˆ

Y

|ψ| = D(hψ) ≤ D((fn)∗(hϕ)).

By the above two inequalities, we getˆ
Y

|ψ| ≤ ( lim
n→∞

Kn)

ˆ
X

|ϕ| ≤ K

ˆ
X

|ϕ|.

The last inequality follows because limn→∞Kn equals the minimal quasiconformal
constant of the Teichmüller class of f , which is less than or equal to K.

The opposite inequality is obtained by replacing f with f−1. �

The above lemma implies that 1/K ≤
‖f#(ϕ)‖

L1

‖ϕ‖
L1

≤ K for all ϕ ∈ A(X) \ {0}. We

define

(1) L = sup
ϕ∈A(X)\{0}

{
‖f#(ϕ)‖L1

‖ϕ‖L1

,
‖ϕ‖L1

‖f#(ϕ)‖L1

}.

Note that L does not have to be achieved for any ϕ on the unit sphere of A(X)
because the unit sphere is not compact. This fact is a major difference between the
Teichmüller spaces of infinite and finite area hyperbolic surfaces.

Assume that f is a Teichmüller extremal map given by stretching in the natural
parameter of ϕ ∈ A(X). If w = u + iv is a natural parameter coordinate (given by

z 7→
´ z
z0

√
ϕ(z) dz), then f is given by w = u+ iv 7→ Ku+ iv. The heights of ϕ and

f#(ϕ) = ψ are equal and
´
Y
|ψ| = K

´
X
|ϕ|. Therefore we conclude

Proposition 2.2. If f : X → Y is in the same class as an extremal Teichmüller

map for ϕ ∈ A(X), then the quantity L is achieved at ϕ.

3. A sufficient condition for the existence

of the Teichmüller extremal maps

The main goal of this section is to prove that if L is achieved on some ϕ ∈ A(X),
then f is homotopic to a Teichmüller map. We assume that X = D/Γ with Γ of the
first kind.

3.1. Approximation by differentials with single cylinders. Let ϕ ∈ A(X)
be a non-trivial finite area holomorphic quadratic differential on X . We construct an
approximation of ϕ by holomorphic quadratic differentials whose horizontal measured
foliations consist of single cylinders, called the Jenkins–Strebel differentials. If X ∈
OG, then every finite area holomorphic quadratic differential is approximated by a
sequence of Jenkins–Strebel differentials on X in L1-norm (see [21, Theorem 1.2]).
However, not every X = D/Γ with Γ of the first kind is in the class OG. Therefore,
we establish an approximation of ϕ on the doubles of an increasing sequence of finite-
type subsurfaces of X , and their images under the quasiconformal map f : X → Y .
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Recall that a step curve for ϕ is obtained by the concatenation of the horizontal and
vertical arcs of ϕ.

Lemma 3.1. Let f : X = D/Γ → Y be a quasiconformal map, with Γ a Fuchsian

group of the first kind. Fix a finite area holomorphic quadratic differential ϕ on X
and let ψ = f#(ϕ) ∈ A(Y ). Let {Xn} be an exhaustion of X by increasing finite-type

subsurfaces whose boundary curves are step curves of ϕ and let {Yn = f(Xn)} be

the corresponding exhaustion of Y . Denote by X̂n and Ŷn the doubled surfaces of

Xn and Yn, respectively.

Then f : Xn → Yn extends to a quasiconformal map f : X̂n → Ŷn by the reflection

in the boundaries of Xn and Yn. Moreover, there exist Jenkins–Strebel differentials

ϕn ∈ A(X̂n) and ψn = f#(φn) ∈ A(Ŷn) invariant under the reflections in the bound-

aries of Xn and Yn such that, as n→ ∞,

ˆ
Xn

|ϕ− ϕn| → 0

and ˆ
Yn

|ψ − ψn| → 0.

Proof. Let µ ∈ MLint(X) be the geodesic lamination obtained by straightening
the leaves of the horizontal measured foliation hϕ of ϕ (see [21]). As in [21, §3],
consider an exhaustion of X by finite-area geodesic subsurfaces {Xn} such that the
boundary curves of Xn are ϕ-step curves (i.e., curves made by concatenating hori-
zontal and vertical ϕ-arcs). Consider the restriction of the horizontal foliation hϕ of
ϕ ∈ A(X) to the subsurface Xn and erase all leaves that can be homotoped to a sin-
gle component of the boundary of Xn. Denote the partial measured foliation by hn.
Each leaf of hn corresponds to a unique leaf of µ∩Xn (see [21, §3 and Definition 3.4]).

The double Riemann surface X̂n over the boundary ofXn is a finite type Riemann
surface, i.e., a compact Riemann surface with finitely many points removed. The

partial foliation hn ⊂ Xn together with its mirror image in X̂n \Xn forms a partial

foliation ĥn in X̂n that is proper (see [21, Lemma 3.6]). By the realization theorem
of Hubbard–Masur [10], there exists a unique holomorphic quadratic differential ϕ̂n
on X̂n whose horizontal foliation realizes the partial foliation ĥn in the sense that
they have equal heights on simple closed curves.

Since ĥn is invariant under the mirror symmetry in X̂n across the boundary ∂Xn,
it follows that ϕ̂n is also invariant under the mirror symmetry by the uniqueness of
the realization. Then

(2)

ˆ
X̂n

|ϕ̂n| = 2

ˆ
Xn

|ϕ̂n|

and

DX̂n
(ĥn) = 2DXn

(ĥn).

Then by the Dirichlet principle [5, Theorem 7.5] (see also [23, Theorem 3.2]), we have

ˆ
Xn

|ϕ̂n| ≤ DXn
(ĥn) = DXn

(hn).
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Since the foliation hn is a subfoliation of the foliation hϕ, we have DXn
(hn) ≤

DX(hϕ) =
´
X
|ϕ| and we conclude that

(3) lim sup
n→∞

ˆ
Xn

|ϕ̂n| ≤

ˆ
X

|ϕ|.

By [21, Lemmas 3.7 and 3.8], we have that ϕ̂n|Xn
converges uniformly on compact

subsets of X to ϕ.
Define

(4) ξn(z) =

{
ϕ̂n(z), for z ∈ Xn,

0, for z ∈ X \Xn.

By the above, ξn(z) converges locally uniformly to ϕ. From (3) and [21, Lemma 3.9]
we have, as n→ ∞,

(5)

ˆ
X

|ϕ− ξn| → 0.

Consider the holomorphic quadratic differential ψ = f#(ϕ) induced by f : X →
Y . Denote by {Yn} the exhaustion of Y by finite area geodesic subsurfaces such
that Yn = f(Xn). Let en be the partial foliation of Yn obtained by restricting the
horizontal foliation of ψ to Yn and erasing leaves that can be homotoped relative

endpoints to the boundary. Then we double Yn to a finite area surface Ŷn without
boundary and en to a partial foliation ên. By the construction, the partial foliations

f∗ĥn and ên are equivalent since both straighten to the same measured (geodesic)

lamination on Ŷn. Let ψ̂n be the integrable holomorphic quadratic differential on Ŷn
whose horizontal foliation is equivalent to ên (see Hubbard–Masur [10]). We note
that the quasiconformal map f : X → Y restricts to a quasiconformal map f : Xn →
Yn that homeomorphically maps boundary curves to boundary curves. Then, the

extension f : X̂n → Ŷn is defined by the reflections in the boundary sides (namely,
f(r(z)) = r[f(z)], where r(z) is the reflection), which implies that the extended
map is quasiconformal with the same quasiconformal constant as the original map
f : Xn → Yn.

Define

(6) ηn(z) =

{
ψ̂n(z), for z ∈ Yn,

0, for z ∈ Y \ Yn,

and by the same reasoning as the above, we have, as n→ ∞,

(7)

ˆ
Y

|ψ − ηn| → 0.

The quadratic differentials ϕ̂n ∈ A(X̂n) and ψ̂n ∈ A(Ŷn) are finite-area. A differ-
ential on a finite surface is called Jenkins–Strebel if its regular horizontal trajectories
are closed and homotopic to each other forming a single cylinder on the surface (see
[25]) By [17], each differential can be approximated by Jenkins–Strebel holomorphic

quadratic differentials in the L1-norm (since X̂n and Ŷn are of finite area). We can
choose the approximating differentials to correspond to each other under the homo-
topy class of the double of f : Xn → Yn = f(Xn) and to be invariant under the

reflection by the invariance of ϕ̂n and ψ̂n. More precisely, let ϕ̂n,k ∈ A(X̂n) and
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ψ̂n,k ∈ A(Ŷn) be the Jenkins–Strebel differentials with corresponding cylinders under
f such that ˆ

X̂n

|ϕ̂n − ϕ̂n,k| → 0 and

ˆ
Ŷn

|ψ̂n − ψ̂n,k| → 0

as k → ∞ for each n ∈ N.
Let ξn,k be the quadratic differential which agrees with ϕ̂n,k on Xn and is equal

to zero on X \Xn. Then there exists kn such that, as n→ ∞,ˆ
X

|ϕ− ξn,kn| → 0.

Define the quadratic differential ηn,k given by ηn,k := ψ̂n,k on Yn and ηn,k := 0 on
Y \ Yn we have, as n→ ∞, ˆ

Y

|ψ − ηn,kn| → 0.

The quadratic differentials ϕn := ϕ̂n,kn and ψn := ψ̂n,kn satisfy the statement of
the lemma. �

3.2. The heights of the negative of the maximum quadratic differential.

Let ϕmax be the quadratic differential such that L =
‖f#(ϕmax)‖L1

‖ϕmax‖L1
, where L is the

supremum in (1). Define
ψmax := f#(ϕmax).

In this subsection, we relate the heights of (f#)
−1(−ψmax) to the heights of −ϕmax

which is a major step in the proof of Theorem 1.1.

Theorem 3.2. Let f : X → Y be a quasiconformal map. If the supremum in

(8) L = sup
ϕ∈A(X)\{0}

{
‖f#(ϕ)‖L1

‖ϕ‖L1

,
‖ϕ‖L1

‖f#(ϕ)‖L1

}

is achieved at some ϕmax ∈ A(X) \ {0}, then there exists c > 0 such that

f#(−ϕmax) = −cf#(ϕmax).

Proof. We prove the theorem under the assumption that L =
‖f#(ϕmax)‖L1

‖ϕmax‖L1
. The

proof for the other case is given by replacing f with f−1 and following the steps for
the first case.

Define
ψmax := f#(ϕmax)

and
ϕ̃max := (f#)

−1(−ψmax).

We need to prove that

(9) ϕ̃max = −cϕmax.

Recall that X = D/Γ with Γ a Fuchsian group of the first kind. The proof of (9)
extends the idea in Marden and Strebel [16, Theorem 10.4] from compact to infinite
Riemann surfaces X = D/Γ with Γ of the first kind using an approximation method
developed in [21, §3 and §4].

Let ϕn ∈ A(X̂n) and ψn ∈ A(Ŷn) be the Jenkins–Strebel differentials with the
properties from Lemma 3.1 with respect to ϕmax and ψmax. Let Rn and Qn denote
the horizontal cylinders of ϕn and ψn, respectively. Denote the lengths of the closed
horizontal trajectories in Rn and Qn by an and a′n, and the heights by bn and b′n,
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respectively. Since ϕn and ψn correspond to each other under the natural class of
homeomorphisms obtained by doubling f : Xn → f(Xn), the heights of the cylinders
Rn and Qn are equal, i.e., bn = b′n.

Let Ln be defined by the equation a′n = Lnan (see [15]). Then we haveˆ
X̂n

|ϕn| = anbn

and ˆ
Ŷn

|ψn| = a′nb
′
n = Lnanbn.

Since ϕn and ψn are invariant under mirror symmetries, we have 1
2

´
X̂n

|ϕn| =
´
Xn

|ϕn|

and 1
2

´
Ŷn

|ψn| =
´
Yn

|ψn|. Then by (5) and (7) we haveˆ
Y

|ψmax| = lim
n→∞

1

2
Lnanbn =

(
lim
n→∞

Ln

) ˆ
X

|ϕmax|.

Since ϕmax attains the maximum for L in (8) and ψ = f#(ϕmax) we have that

lim
n→∞

Ln = L.

Let z = x+ iy be a local parameter on X and let

zn = xn + iyn =

ˆ z

z∗

√
ϕn(z) dz

be the natural parameter of ϕn on X̂n. The local parameter z is defined on Xn, and

we extend it by reflection to X̂n \Xn and keep the same notation for simplicity.
Let ϕ̃n = (f#)

−1(−ψn), where f denotes the quasiconformal map obtained by
doubling f : Xn → Yn = f(Xn). Let

w̃n = ũn + iṽn :=

ˆ z

z∗

√
ϕ̃n(zn) dzn

be the natural parameter on the cylinder Rn for the holomorphic quadratic differential
ϕ̃n.

Let αn be a closed horizontal trajectory of Rn for the quadratic differential
ϕn, and let α′

n be a closed horizontal trajectory of Qn for the quadratic differen-
tial ψn. For the natural parameter zn = xn + iyn of ϕn, we have dzn = dxn on
αn. Then, for the natural parameter w̃n = ũn + iṽn of the quadratic differential
ϕ̃n(z) = (f#)

−1(−ψn)(z), we get

ˆ
αn

|ϕ̃n(zn)|
1
2 dxn =

ˆ
αn

√(
∂ũn
∂xn

)2

+

(
∂ṽn
∂xn

)2

dxn ≥

ˆ
αn

∣∣∣∣
∂ṽn
∂xn

∣∣∣∣ dxn

≥

ˆ
αn

|dṽn| ≥ hϕ̃n
(αn) = h−ψn

(α′
n) = a′n = Lnan.

(10)

Note that hϕ̃n
(αn) = h−ψn

(α′
n) follows by the definition of the height map. By

integrating (10) with respect to dyn from 0 to bn, we obtain

¨
Rn

|ϕ̃n(zn)|
1
2 dxn dyn =

¨
Rn

√(
∂ũn
∂xn

)2

+

(
∂ṽn
∂xn

)2

dxn dyn

≥

¨
Rn

∣∣∣∣
∂ṽn
∂xn

∣∣∣∣ dxn dyn ≥ Lnanbn = Ln

¨
Rn

|ϕn|

(11)
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In order to take the limit as n → ∞, we change the integration to a local
parameter z = x+ iy on the surfaces X̂n, which is obtained by the natural reflection
of a local parameter on Xn ⊂ X . The change of variables gives

|ϕ̃n(zn)|
1/2 = |ϕ̃n(z)|

1/2|dz/dzn|,

dxn dyn = |dzn/dz|
2 dx dy, and

|dzn| = |ϕn(z)|
1/2|dz|.

From (11), we obtain¨
Rn

|ϕ̃n(z)|
1/2|ϕn(z)|

1/2 dx dy ≥ Ln

¨
Rn

|ϕn|

and applying the Cauchy–Schwarz inequality gives
(¨

Rn

|ϕ̃n(z)| dx dy

)(¨
Rn

|ϕn(z)| dx dy

)
≥ L2

n

(¨
Rn

|ϕn(z)| dx dy

)2

.

By (2), (3.1) and limn→∞Ln = L, after letting n go to infinity, the above inequality
gives

(
lim sup
n→∞

¨
Rn

|ϕ̃n(z)| dx dy

)
≥ 2L2

¨
X

|ϕmax(z)| dx dy

= 2L

¨
Y

|ψmax(w)| du dv.

(12)

The second equality sign of (12) follows by the assumption that ϕmax obtains maxi-
mum, namely

[¨
Y

|ψmax(w)| du dv

]/[¨
X

|ϕmax(z)| dx dy

]
= L.

By Proposition 4.1 proved below, we have

lim sup
n→∞

¨
Rn

|ϕ̃n(z)| dx dy ≤ 2

¨
X

|ϕ̃max(z)| dx dy.

Together with (12), we obtain

(13)

¨
X

|ϕ̃max(z)| dx dy ≥ L

¨
Y

|ψmax(w)| du dv.

Since f#(ϕ̃max) = −ψmax and L = max
{‖f#(ϕ)‖

L1

‖ϕ‖
L1

,
‖ϕ‖

L1

‖f#(ϕ)‖
L1

}
, the above inequality is

equality and all the inequalities in the proof become equalities when n→ ∞.
We claim that ϕ̃max = −L2ϕmax. The natural parameter w̃n of ϕ̃n on X converges

to the natural parameter w̃ = ũ+ iṽ of ϕ̃max. To see this, recall that the heights of ϕ̃n
are the same as the heights of −ψn at the curves corresponding under f . Since −ψn
converge locally uniformly to −ψmax, it follows that the heights of −ψn converge
to the heights of −ψmax (see [25, page 162, Theorem 24.7]. By Proposition 4.1,
the L1-norms of ϕ̃n are bounded above. Therefore, a subsequence converges locally
uniformly to a finite-area holomorphic quadratic differential whose heights on X are
the same as the heights of ϕ̃max (see [21, Lemma 3.8]). By the injectivity of the
mapping by heights (see [20, Theorem 1.2]), it follows that the limit is ϕ̃max. This
implies the convergence of the natural parameters w̃n to w̃.

After n → ∞ in (11), inequalities become equalities. We obtain ∂ũ/∂x∗ ≡
0, where z∗ = x∗ + iy∗ is the natural parameter of ϕmax. This implies that the
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horizontal trajectories of ϕ̃max are orthogonal to the horizontal trajectories of ϕmax,
which implies that one differential is a constant multiple of the other. Then, by (8),

ϕ̃max = −L2ϕmax

and

f#(−ϕmax) = −
1

L2
ψmax. �

3.3. From maximum of the height function to the Teichmüller maps.

We prove that the conclusion of Theorem 3.2 implies the desired existence of the
Teichmüller map in the homotopy class of f : X → Y . This establishes Theorem 1.1
from the Introduction.

Theorem 3.3. Let f : X → Y be a quasiconformal map. If there exists ϕ0 ∈
A(X) \ {0} with

f#(−ϕ0) = −cf#(ϕ0)

for some c > 0, then there is a Teichmüller extremal map homotopic to f obtained

by horizontal stretching in the natural parameter of ϕ0.

Proof. Let ψ0 = f#(ϕ0) ∈ A(Y ). We lift the holomorphic quadratic differentials

ϕ0 ∈ A(X) and ψ0 ∈ A(Y ) to holomorphic quadratic differentials ϕ̃0 and ψ̃0 on the

universal covers X̃ and Ỹ . Fix conformal identifications of X̃ and Ỹ with the unit
disk D. Then X = D/Γ and Y = D/Γ1; the lift f̃ : D → D of f : X → Y conjugates

Γ to Γ1; and the holomorphic quadratic differentials ϕ̃0 and ψ̃0 are equivariant with
respect to Γ and Γ1, respectively.

By [15], each regular horizontal trajectory of ϕ̃0 and of ψ̃0 has exactly two limit
points on the unit circle S1, and each limit point corresponds to one class of trajectory
rays going to infinity for a fixed parametrization of the ray. The heights map f#
induces a bijective correspondence between regular horizontal trajectories of ϕ0 and
ψ0 (see [20]). There are countably many singular horizontal trajectories of ϕ̃0 and of

ψ̃0 since they have countably many zeros in D.
Since f#(−ϕ0) =

1
L2 (−ψ0) the heights map f# is also mapping the regular vertical

trajectories of ϕ0 onto the regular vertical trajectories of ψ0. The lift f̃ induces a
bijective heights map f̃# between the sets of regular horizontal trajectories of ϕ̃0 and

ψ̃0 as well as regular vertical trajectories of the two differentials.
We construct a map g̃ : D → D using the correspondence f̃#. By the uniqueness

of the geodesics for the metric induced by a holomorphic quadratic differential in a
simply connected domain (see [25, page 72, Theorem 14.2.1]), each regular horizontal
and vertical trajectory of a holomorphic quadratic differential ϕ̃0 can intersect in at
most one point in D (the same is true for ψ̃). Therefore, each point of the complement
of the countably many singular horizontal and vertical trajectories is the intersection
of a unique horizontal and a unique vertical regular trajectory of ϕ̃0. We define g̃
to send this point to the intersection of the corresponding (under f̃#) horizontal and

vertical trajectories of ψ̃0.
So far, the map g̃ is defined on the complement of the singular horizontal and

vertical trajectories of ϕ̃0. We establish that g̃ is continuous. Indeed, let zn ∈ D

be a sequence of points where g̃ is defined that converges to z ∈ D. Let hn be the
horizontal trajectory of ϕ0 that contains zn and let vn be the vertical trajectory of ϕ0

that contains zn. Then hn∩vn = {zn}. Let h be the limit horizontal trajectory of the
sequence hn. The horizontal trajectory h is either regular or it limits to a zero of ϕ0 in
at least one end. In the latter case, we can take a subsequence of hn, if necessary, such
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that hn are on the same side of h. Then the limit of hn consists of a concatenation
of, possibly countably many, singular horizontal trajectories. In either case, the ends
of the trajectory h consist of two distinct points. An analogous construction yields a
sequence of regular vertical trajectories vn that contain zn and converge on one side
to a vertical trajectory v which contains z. The vertical trajectory v is either regular
or it is a concatenation of, at most countably many, singular vertical trajectories,
both ends of which converge to distinct points on S1.

Then f̃#(hn) and f̃#(vn) are regular trajectories of ψ̃. The sequence f̃#(hn)
converges to a horizontal trajectory h∗. The trajectory h∗ is either regular, in which
case f̃#(h) = h∗, or it is a concatenation of singular horizontal trajectories of ψ̃0.

Analogous statements hold for f̃#(vn) and its limiting vertical trajectory v∗. Let

wn = f̃#(hn) ∩ f̃#(vn) and w = h∗ ∩ v∗.

Assume that z is not a zero of ϕ̃0 and w is not a zero of ψ̃0. Let R be an arbitrarily
small rectangle in the natural parameter of ψ̃0 whose center is w. By the convergence
of f̃#(hn) to h∗ and f̃#(vn) to v∗, f̃#(hn) ∩ R and f̃#(vn) ∩ R are a horizontal and
vertical segments when n is large enough. Therefore wn ∈ R and limn→∞wn = w
which implies that g̃ extends to a continuous map from D minus the set of the zeros
of ϕ̃0 and ψ̃0 onto itself. By the same reasoning, it follows that g̃−1 is continuous and
therefore g̃ is a homeomorphism outside a discrete subset of D.

In addition, the map g̃ is fixing the vertical direction and stretching the horizontal
direction by a factor L2 in the natural parameter of ϕ̃0 because f∗(h−ϕ0

) = 1
L2 (h−ψ0

).
It follows that g̃ is an L2-quasiconformal map, and it extends to the complementary
discrete set because quasiconformal maps extend to isolated points. In fact, g̃ is the
Teichmüller map for the differential ϕ̃0 and it agrees with f̃ on S1 by the construction.
Since g̃ is invariant under Γ, then we obtain a Teichmüller map g : X → Y in the
homotopy class of f : X → Y . �

4. The continuity of the approximations with respect to the heights map

Let f : X → Y be a quasiconformal map. Consider the mapping by heights
f# : A(X) → A(Y ) which assigns to each ϕ ∈ A(X) a holomorphic quadratic differ-
ential f#(ϕ) ∈ A(Y ) such that f∗(νϕ) = νf#(ϕ), where νϕ is the measured geodesic
foliation obtained by straigthening hϕ and νf#(ϕ) is the measured geodesic lamination
obtained by straigthening hf#(ϕ). We set ψ = f#(ϕ).

The quasiconformal map f : X → Y extends by reflections to a quasiconformal
map f : X̂n → Ŷn. Denote by Xn and Yn the halves of X̂n and Ŷn that lie in X and
Y , respectively. Let g := f−1 be the inverse quasiconformal map and let µ be its
Beltrami coefficient. Set

gt = gtµ : Y → Y t

where gtµ is the quasiconformal map whose Beltrami coefficient is tµ for 0 ≤ t ≤ 1.
Then g1 = f−1, g0 = id and Y t is the image Riemann surface gtµ(Y ). By definition,
g0(Y ) = Y and g1(Y ) = X .

The double Riemann surfaces Ŷ t
n are obtained by doubling the Riemann surfaces

gt(Yn) = Y t
n ⊂ Y t. The induced quasiconformal map from Ŷn to Ŷ t

n will be denoted
by gt, for simplicity.

Let ϕn ∈ A(X̂n) and ψn ∈ A(Ŷn) be Jenkins–Strebel differentials with corre-
sponding cylinders under f from Lemma 3.1 for ϕ ∈ A(X) and ψ = f#(ϕ) ∈ A(Y ).
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To simplify the notation, we set
qn := ψn

and
pn := ϕ̃n.

Note that g1#(−qn) = pn and define

ptn = gt#(−qn).

Proposition 4.1. Under the above notation, we have

lim sup
n→∞

ˆ
X̂n

|pn| ≤ 2

¨
X

|ϕ̃|.

Proof. Assume, on the contrary, that

lim sup
n→∞

ˆ
X̂n

|pn| > 2

ˆ
X

|ϕ|.

We seek a contradiction. Our method uses an idea from Lakic [12, Lemma 3].

We note that ptn have bounded L1-norms on Ŷ t
n because gt#(−qn) = ptn, gt is a

quasiconformal map and the L1-norms on Ŷn of qn are bounded. Since the heights
of simple closed curves on Y t in the ptn-metric converge to the heights of the corre-
sponding curves on Y in the (−ψ)-metric, it follows that ptn converge uniformly on
compact subsets of Y t to an integrable holomorphic quadratic differential pt whose
heights are equal to the heights of ψ on Y . Indeed, the L1-norms of the differen-
tials ptn are bounded by the Dirichlet principle and the fact that gtµ have bounded
quasiconformal constants. Then a subsequence of ptn converges uniformly on com-
pact subsets. By [25, Theorem 24.7], the heights of the subsequence converge to the
heights of the limit quadratic differential. By the uniqueness of the heights function
[20], the limit differential pt ∈ A(Y t) is independent of the subsequence. Therefore,
the whole sequence converges to pt.

Define

A(t) = lim sup
n→∞

ˆ
Ŷ t
n

|ptn| − 2

ˆ
Y t

|pt|

and note that the following holds:

(1) A(t) is non-negative for all 0 ≤ t ≤ 1 and

S = sup
t∈[0,1]

A(t) ≤ 2‖ψ‖L1(Y )

1 + ‖µ‖∞
1− ‖µ‖∞

,

(2) A(1) = lim supn→∞

´
X̂n

|pn| − 2
´
X
|ϕ| > 0 and A(0) = lim supn→∞

´
Ŷn

|qn| −

2
´
X
|ψ| = 0, and

(3) limt→0A(t) = 0.

To see that A(t) ≥ 0, note that by Fatou’s lemma we have

lim sup
n→∞

ˆ
Ŷ t
n

|ptn| ≥ lim inf
n→∞

ˆ
Ŷ t
n

|ptn| ≥ 2

ˆ
Y t

|pt|.

The second part of (1) follows from

lim sup
n→∞

ˆ
Y t
n

|ptn| −

ˆ
Y t

|pt| ≤ lim sup
n→∞

ˆ
Y t
n

|ptn| ≤ lim sup
n→∞

K(gt)

ˆ
Yn

|qn|

≤ lim sup
n→∞

ˆ
Ŷn

|qn|
1 + t‖µ‖∞
1− t‖µ‖∞

≤ 2‖ψ‖L1(Y )

1 + t‖µ‖∞
1− t‖µ‖∞

.
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The first condition in (2) is the initial assumption in this proof, and the second
condition in (2) is by definition. To prove condition (3), note that, by the change of
variables,

A(t) ≤ lim sup
n→∞

‖qn‖L1(Ŷn)

1 + t‖µ‖∞
1− t‖µ‖∞

− 2‖q‖L1(Y )

1− t‖µ‖∞
1 + t‖µ‖∞

= 2‖q‖L1(Y )

(
1 + t‖µ‖∞
1− t‖µ‖∞

−
1− t‖µ‖∞
1 + t‖µ‖∞

)(14)

which implies the desired condition.
The supremum S is positive because A(1) > 0. Since limt→0A(t) = 0 and

A(0) = 0, there exists t0 ∈ (0, 1] such that

(15) A(t0) > S/2.

Define

(16) h(t) =

¨
Y t

|pt|

and

(17) hn(t) =

¨
Y t
n

|ptn|.

The functions h(t) and hn(t) are C
1, and a variational formula for the Dirichlet

integral from Lakic [12, page 311] applies to arbitrary Riemann surfaces to give

(18) h′(t) = 2Re

¨
Y t

µ

1− |tµ|2
gtz
gtz

◦ (gt)−1pt

and

(19) h′n(t) = 2Re

¨
Y t
n

µ

1− |tµ|2
gtz
gtz

◦ (gt)−1ptn.

In order to have integration over the same space, we extend ptn to be zero in
Y t \ Y t

n and keep the notation ptn. Whenever we have the integration of ptn over Y t
n ,

we formally replace it with the integration of ptn over Y t without further mention.
Then we have

A(t0) = lim sup
n→∞

ˆ t0

0

[h′n(t)− h′(t)] dt

≤ 2 lim sup
n→∞

ˆ t0

0

∣∣∣∣
¨
Y t

µ

1− |tµ|2
gtz
gtz

◦ (gt)−1
(
ptn − pt

)∣∣∣∣ dt

≤
2‖µ‖∞

1− ‖µ‖2∞
lim sup
n→∞

ˆ t0

0

¨
Y t
n

∣∣ptn − pt
∣∣ dt.

(20)

Since qn approximate q and by the change of the variables, there exists M > 0
such that

˜
Y t |p

t
n − pt| ≤M . The Fatou’s lemma gives

lim sup
n→∞

ˆ t0

0

¨
Y t

|ptn − pt| dt =Mt0 − lim inf
n→∞

ˆ t0

0

(
M −

¨
Y t

|ptn − pt| dt

)

≤ Mt0 −

ˆ t0

0

lim inf
n→∞

(
M −

¨
Y t

|ptn − pt|

)
dt

≤

ˆ t0

0

lim sup
n→∞

¨
Y t

|ptn − pt| dt.

(21)



Teichmüller extremal maps on infinite Riemann surfaces 15

Then we obtain

A(t0) ≤
2‖µ‖∞

1− ‖µ‖2∞

ˆ t0

0

(
lim sup
n→∞

¨
Y t

|ptn − pt|

)
dt

≤
2‖µ‖∞

1− ‖µ‖2∞

ˆ t0

0

(
lim sup
n→∞

(¨
Y t

|ptn − pt| − |ptn|

)
+ lim sup

n→∞

¨
Y t

|ptn|

)
dt.

(22)

By the above inequality, since ptn converges uniformly on compact subsets of Y t

to pt and by an application of the Lebesgue Dominated Convergence Theorem to the
first integral on the right, we get

A(t0) ≤
2‖µ‖∞

1− ‖µ‖2∞

ˆ t0

0

(¨
Y t

−|pt|+ lim sup
n→∞

¨
Y t

|pt|

)
dt

=
2‖µ‖∞

1− ‖µ‖2∞

ˆ t0

0

A(t) dt ≤
2‖µ‖∞

1− ‖µ‖2∞
t0A(t0) =

2‖µ‖∞
1− ‖µ‖2∞

t0S

(23)

Since A(t0) > S/2, the above inequality implies

S/2 <
2‖µ‖∞

1− ‖µ‖2∞
t0S <

2‖µ‖∞
1− ‖µ‖2∞

S

which gives

1− ‖µ‖2∞ < 4‖µ‖∞.

The above inequality gives a contradiction when ‖µ‖∞ < 1/5.
Therefore the statement is true for all f whose Beltrami coefficient has norm

less than 1/5. Since each quasiconformal map can be written as a composition of
finitely many quasiconformal maps whose Beltrami coefficients have norms less than
1/5 and the heights map of a composition is the composition of the height maps, the
proposition follows. �
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