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Teichmiiller extremal maps
on infinite Riemann surfaces

Dragomir Sarié¢

Abstract. Let X = D/T be a Riemann surface with I' of the first kind. We establish a
necessary and sufficient criterion for [f] € T'(X) to have a Teichmiiller-type extremal map.

Airettémien Riemannin pintojen didrimméiiset Teichmiillerin kuvaukset

Tiivistelmi. Olkoon X = ID/T" Riemannin pinta, missi I' on ensimméistd lajia. Tassd tyossd
annetaan riittdvi ja vilttdmiton ehto sille, ettd luokka [f] € T'(X) sisdltdd Teichmiillerin-tyyppisen

Adrimméisen kuvauksen.

1. Introduction

We consider a Riemann surface X = D/T", where I' is a Fuchsian group of the
first kind (i.e., the limit set of T is the unit circle S'). The Teichmiiller space T'(X)
of X consists of equivalence classes [f] of quasiconformal maps f: X — Y, where
two quasiconformal maps are equivalent if one is homotopic to a post-composition of
the other by a conformal map (see [1, 8, 13]). The homotopy class [id] of the identity
map id: X — X is called the basepoint. Our considerations are valid for infinite
Riemann surfaces (see [2, 3]).

The Teichmiiller distance between [id] and [f] in T'(X) is one-half of the logarithm
of the minimal quasiconformal constant of the maps in the homotopy class [f]. A map
with the minimal quasiconformal constant in its homotopy classes is called extremal.
When X is a compact Riemann surface, each homotopy class has a unique extremal
map which is given by the horizontal stretching in the natural parameter of a (finite-
area) holomorphic quadratic differential on X. Such extremal maps are said to be of
Teichmiiller-type. When X is neither a compact surface nor a compact surface minus
finitely many points, there are homotopy classes of quasiconformal maps that have
extremal maps not of Teichmiiller-type (see [6, 13, 18, 19] and reference therein).
Some of these classes may have even more than one extremal map (for example, see
[6]). However, the set of points [f] € T(X) which have Teichmiiller-type extremal
maps is open and dense (see [8]). This was proved using the Strebel Frame Mapping
Condition (see [8]), which gives a sufficient condition for a class [f] to contain a
Teichmiiller-type map.

We give a complete characterization for [f] € T'(X) to contain a Teichmiiller-type
extremal map (which is necessarily uniquely extremal). Let A(X) be the space of
all finite-area holomorphic quadratic differentials on X. For a non-trivial (i.e., not
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constantly zero) ¢ € A(X), denote by ||¢|| the L'-norm and by h, the measured
horizontal foliation of . Given [f] € T(X), we consider the mapping by heights

fa: AX) = A(Y),

where f: X — Y. Let f.(h,) be the push-forward of h, to the image surface Y.
Then f4 () is the unique finite-area holomorphic quadratic differential ¢ € A(Y)
whose horizontal foliation is homotopic to f.(hy,). The existence of fu(p) = 9 is
established in [21, Theorem 1.6] and [22, Theorem 1.1], and the uniqueness in [20].

Theorem 1.1. Let X = D/I" be a Riemann surface with I' of the first kind. Then
[f] € T(X) admits a Teichmiiller-type extremal map if and only if the supremum

1l }

sup max { ,
peA(X)\{0} ”@H Hf#(@) H

is achieved at some Ymax € A(X) \ {0}. When the supremum is achieved, the
Teichmiiller map stretches the horizontal direction in the natural parameter of Y.
by the amount equal to the supremum.

The above theorem is established for compact surfaces by Marden and Strebel
[16], and they gave a new proof of the Teichmiiller existence theorem for the com-
pact surfaces using the fact that the above supremum is always achieved in finite-
dimensional A(X). For arbitrary Riemann surfaces, the supremum is achieved for
maps that are homotopic to a Teichmiiller-type map.

Open problems. FExtend the above theorem to arbitrary Fuchsian group T'.
Characterize the Strebel/Busemann points of 7'(X) in terms of the height map
fu: A(X) = A(Y) (see Earle-Li [7]). Characterize the homotopy classes that have
uniquely extremal maps using the height map (see [6]).

2. A necessary condition for the existence
of the Teichmiiller extremal maps

Let f: X — Y be a K-quasiconformal map, with X and Y two arbitrary Riemann
surfaces that admit conformal hyperbolic metrics. In particular, we allow X to be
the unit disk D or any infinite Riemann surface. The results in this section do not
require that the Fuchsian groups of X and Y are of the first kind. The map f induces
the height map fu: A(X) — A(Y) which is a bijection (see [21, Theorem 4.5], [22,
Theorem 1.1]). We note that f; does not preserve the L'-norm. We first establish
that fx maps the unit sphere of A(X) between the two spheres in A(Y') of radii 1/K
and K.

Lemma 2.1. Let f: X — Y be a K-quasiconformal map. Then, for all p €
A(X),

1
2@l < llello < Kl f (o)l

where || - || ;1 is the L*-norm on the corresponding surface.

Proof. By Gardiner and Lakic [9], given f: X — Y, there exists a sequence of
K,-quasiconformal maps f,: X — Y in the same Teichmiiller class as f that are
C*-maps with lim,,_,, K, equal to the minimal dilatation of the Teichmiiller class
of f.

Let h, denote the measured horizontal foliation of the holomorphic quadratic
differential . Let (f,).(h,) be the push-forward of h, by the C*°-map f, to a
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foliation of Y. Note that the foliations ( f,).(h), for all n, are equivalent (homotopic)
because f, are in the same Teichmiiller class.

For a measured foliation h, we denote by D(h,) its Dirichlet integral (see [21]).
Note that D((fn)«(hy)) < K,D(hy) = K, [y |¢| < oo (see Ahlfors [1]). Denote by
fu(p) = ¢ € A(Y) the unique holomorphic quadratic differential whose horizontal
foliation is equivalent to the foliations ( f,,).(h,) and the foliation f,(h,) (which exists
by [21, Theorem 1.6]). Let hy be the horizontal foliation of 1.

Since the heights of hy, and (f,)«(h,) are equal, the Dirichlet’s principle (see
Strebel [25, Theorem 24.5] and [23, Theorem 3.2]) gives

/ ] = D(hy) < D((f). (o).

By the above two inequalities, we get

[t (im ) [ el < w0 [ 1ol

The last inequality follows because lim,,_,, K, equals the minimal quasiconformal
constant of the Teichmiiller class of f, which is less than or equal to K.
The opposite inequality is obtained by replacing f with f~!. ([l

The above lemma implies that 1/K < ”fﬁ(ll)”Ll < K forall p € A(X) \ {0}. We
define

(1) I — | fa(@)ler ellze

sup , .
pEA(X)\{0} ol e ||f#(<P)||L1

Note that L does not have to be achieved for any ¢ on the unit sphere of A(X)
because the unit sphere is not compact. This fact is a major difference between the
Teichmiiller spaces of infinite and finite area hyperbolic surfaces.

Assume that f is a Teichmiiller extremal map given by stretching in the natural
parameter of p € A(X). If w = u + iv is a natural parameter coordinate (given by
Z f; V(2)dz), then f is given by w = u + iv — Ku + tv. The heights of ¢ and
f#(p) = 1) are equal and [, || = K [ |p|. Therefore we conclude

Proposition 2.2. If f: X — Y is in the same class as an extremal Teichmiiller
map for ¢ € A(X), then the quantity L is achieved at .

3. A sufficient condition for the existence
of the Teichmiiller extremal maps

The main goal of this section is to prove that if L is achieved on some ¢ € A(X),
then f is homotopic to a Teichmiiller map. We assume that X = D/I" with I of the
first kind.

3.1. Approximation by differentials with single cylinders. Let ¢ € A(X)
be a non-trivial finite area holomorphic quadratic differential on X. We construct an
approximation of ¢ by holomorphic quadratic differentials whose horizontal measured
foliations consist of single cylinders, called the Jenkins—Strebel differentials. If X &
Og, then every finite area holomorphic quadratic differential is approximated by a
sequence of Jenkins-Strebel differentials on X in L'-norm (see [21, Theorem 1.2]).
However, not every X = D/I" with ' of the first kind is in the class Og. Therefore,
we establish an approximation of ¢ on the doubles of an increasing sequence of finite-
type subsurfaces of X, and their images under the quasiconformal map f: X — Y.
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Recall that a step curve for ¢ is obtained by the concatenation of the horizontal and
vertical arcs of ¢.

Lemma 3.1. Let f: X =D/T" = Y be a quasiconformal map, with I a Fuchsian
group of the first kind. Fix a finite area holomorphic quadratic differential ¢ on X
and let ¢ = fu(p) € A(Y). Let {X,,} be an exhaustion of X by increasing finite-type
subsurfaces whose boundary curves are step curves of ¢ and let {Y, = f(X,)} be
the corresponding exhaustion of Y. Denote by X and Y the doubled surfaces of
X, and Y, respectively. R R

Then f: X,, — Y, extends to a quasiconformal map f: X, — Y,, by the reflection
in the bqyndaries of X,, and Y,,. MQreover, there exist Jenkins—Strebel differentials
on € A(X,) and ¢, = fu(dn) € A(Y,) invariant under the reflections in the bound-
aries of X,, and Y,, such that, as n — oo,

/ 0= gnl = 0
Xn

Yn

and

Proof. Let y € M L (X) be the geodesic lamination obtained by straightening
the leaves of the horizontal measured foliation A, of ¢ (see [21]). As in [21, §3],
consider an exhaustion of X by finite-area geodesic subsurfaces {X,} such that the
boundary curves of X,, are p-step curves (i.e., curves made by concatenating hori-
zontal and vertical ¢-arcs). Consider the restriction of the horizontal foliation h,, of
¢ € A(X) to the subsurface X,, and erase all leaves that can be homotoped to a sin-
gle component of the boundary of X,,. Denote the partial measured foliation by h,,.
Each leaf of h,, corresponds to a unique leaf of N X, (see [21, §3 and Definition 3.4]).

The double Riemann surface X,, over the boundary of X, is a finite type Riemann
surface, i.e., a compact Riemann surface with finitely many points removed. The
partial foliation h, C X, together with its mirror image in X,, \ X,, forms a partial
foliation h, in X, that is proper (see [21, Lemma 3.6]). By the realization theorem
of Hubbard-Masur [10], there exists a unique holomorphic quadratic differential @,
on X whose horizontal foliation realizes the partial foliation hn in the sense that
they have equal heights on simple closed curves.

Since h is invariant under the mirror symmetry in X,, across the boundary 0X,,,
it follows that (,, is also invariant under the mirror symmetry by the uniqueness of
the realization. Then

2) / Bl = 2/ 1l
Xn Xn

and
Dx, (hn) = 2Dx, ().

Then by the Dirichlet principle [5, Theorem 7.5] (see also [23, Theorem 3.2]), we have

/ 8] < D () = D (hn).

n
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Since the foliation h,, is a subfoliation of the foliation h,, we have Dx, (h,) <
Dx(hy) = [y |¢| and we conclude that

3) lim sup / 1Bl < / o],

By [21, Lemmas 3.7 and 3.8], we have that $,|x, converges uniformly on compact
subsets of X to ¢.
Define

_ JPn(z), forze X,
) &nl2) = {O, for z € X\ X,.

By the above, £, (z) converges locally uniformly to ¢. From (3) and [21, Lemma 3.9]
we have, as n — 00,

(5) /X|so—§n| S0,

Consider the holomorphic quadratic differential ¢ = fx(y) induced by f: X —
Y. Denote by {Y,} the exhaustion of Y by finite area geodesic subsurfaces such
that Y,, = f(X,). Let e, be the partial foliation of Y,, obtained by restricting the
horizontal foliation of ¥ to Y,, and erasing leaves that can be homotoped relative
endpoints to the boundary. Then we double Y,, to a finite area surface Y,, without
boundary and e, to a partial foliation €,. By the construction, the partial foliations
I« h and ¢, are equwalent since both straighten to the same measured (geodesm)
lamination on Y Let 1/1” be the integrable holomorphlc quadratic differential on Y
whose horizontal foliation is equivalent to €, (see Hubbard-Masur [10]). We note
that the quasiconformal map f: X — Y restricts to a quasiconformal map f: X,, —
Y, that homeomorphically maps boundary curves to boundary curves. Then, the
extension f: X, — Y, is defined by the reflections in the boundary sides (namely,
f(r(z)) = r[f(z)], where r(z) is the reflection), which implies that the extended
map is quasiconformal with the same quasiconformal constant as the original map
f: X, =Y,

Define

@n(z), for z €Y,
6 n pr—
(©) 7in(2) {O, for z€ Y\ 'Y,

and by the same reasoning as the above, we have, as n — oo,

(7) /Y = | = 0.

The quadratic differentials @,, € A(X ) and Un € A(Y ) are finite-area. A differ-
ential on a finite surface is called Jenkins—Strebel if its regular horizontal trajectories
are closed and homotopic to each other forming a single cylinder on the surface (see
[25]) By [17], each differential can be approximated by Jenkins—Strebel holomorphic
quadratic differentials in the L'-norm (since X, and Y, are of finite area). We can

choose the approximating differentials to correspond to each other under the homo-
topy class of the double of f: X,, — Y, = f(X,) and to be invariant under the

reflection by the invariance of @, and ,. More precisely, let @, € A()?n) and



8 Dragomir Sarié

@n,k € A(?n) be the Jenkins—Strebel differentials with corresponding cylinders under
f such that

[ B Gosl =0 and [ [P — Dol =+ 0
n Yn

as k — oo for each n € N.
Let &, be the quadratic differential which agrees with @, x on X, and is equal
to zero on X \ X,,. Then there exists k,, such that, as n — oo,

X

Define the quadratic differential 7, ; given by 1,5 = Qan on Y, and 7, := 0 on
Y \ Y, we have, as n — oo,
[ 16 = sl =0
Y

The quadratic differentials ¢,, := @, , and ¥, == @ann satisfy the statement of
the lemma. O

3.2. The heights of the negative of the maximum quadratic differential.
Let ¢max be the quadratic differential such that L = M, where L is the

llomaxll L1
supremum in (1). Define

¢max = f#(@max)-
In this subsection, we relate the heights of (f4) ' (—%max) to the heights of —¢pax
which is a major step in the proof of Theorem 1.1.

Theorem 3.2. Let f: X — Y be a quasiconformal map. If the supremum in
) bm (Ul el )
o A(X)\{0} lellze "Nl fa(e)ll
is achieved at some pp.x € A(X) \ {0}, then there exists ¢ > 0 such that

f#<_90max> = _Cf#(gpmax)-
Proof. We prove the theorem under the assumption that L = W (omallpr

llomaxll 1
proof for the other case is given by replacing f with f~! and following the steps for
the first case.

Define

¢max = f#(@max)
and
Pmax = (f#)_1<_wmax)-
We need to prove that

(9) @ = —CPmax-

Recall that X = D/I" with I' a Fuchsian group of the first kind. The proof of (9)
extends the idea in Marden and Strebel [16, Theorem 10.4] from compact to infinite
Riemann surfaces X = /T with I" of the first kind using an approximation method
developed in [21, §3 and §4].

Let ¢, € A(X,) and ¢, € A(Y,) be the Jenkins-Strebel differentials with the
properties from Lemma 3.1 with respect to ¢na, and .. Let R, and @, denote
the horizontal cylinders of ¢,, and 1), respectively. Denote the lengths of the closed
horizontal trajectories in R,, and @, by a, and a,, and the heights by b, and b/,
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respectively. Since ¢, and 1, correspond to each other under the natural class of
homeomorphisms obtained by doubling f: X,, — f(X,), the heights of the cylinders
R, and @, are equal, i.e., b, =1/,.

Let L,, be defined by the equation a/, = L,a, (see [15]). Then we have

Xn

|77Z)n| - (l b, - L a'nbn

and

Since ¢,, and 1),, are invariant under mirror symmetries, we have £ [ 2. lon| = [ x, 1nl

and %f?n |thn| = fYn |t)n|. Then by (5) and (7) we have

1
/ |hmax| = lim = L,a,b, = <lim Ln)/ | Pmax |-
y n—oo 2 n—o00 ¥
Since @max attains the maximum for L in (8) and ¢ = fu(pmax) we have that

lim L, = L.

n—oo

Let 2z = x + 1y be a local parameter on X and let
Zp = Ty + 1Y, = / Vn(2) dz

be the natural parameter of ,, on )?n The local parameter z is defined on X,,, and
we extend it by reflection to X, \ X, and keep the same notation for simplicity.

Let @, = (f#) *(—tn), where f denotes the quasiconformal map obtained by
doubling f: X,, = Y, = f(X,). Let

Wy, = Uy, + 10, 1= / V on(zn) dzy,

be the natural parameter on the cylinder R, for the holomorphic quadratic differential

¥Pn.-

Let «, be a closed horizontal trajectory of R, for the quadratic differential
©n, and let o/, be a closed horizontal trajectory of @, for the quadratic differen-
tial ¢,,. For the natural parameter z, = z, + 1y, of ¢,, we have dz, = dx, on
«,. Then, for the natural parameter w, = u, + iv, of the quadratic differential

on(2) = (f4) 7' (=tn)(2), we get

~ 2
(10) 8xn &cn an

> / |dvy| > ha (o) = hy, (&) = al, = Lyay.

Note that hg; () = h_y,(a;,) follows by the definition of the height map. By
integrating 10) with respect to dy, from 0 to b,, we obtain

// |on(2n)] dxn dy, = // \/ gun 8%) dz, dy,
(11) n n x" Oz
// —‘dazndynzL anb, = L, // |on]

oy,
ox,,

dz,,
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In order to take the limit as n — oo, we change the integration to a local
parameter z = x + 1y on the surfaces X,,, which is obtained by the natural reflection
of a local parameter on X,, C X. The change of variables gives

@22 = 1Ga ()2 |d2/dzal,
dz,, dy, = |dz,/dz|* dv dy, and
|dza| = [n(2)["/?|d2].

From (11), we obtain

// 15 () on()| 2 dwdy > L, // oul

and applying the Cauchy-Schwarz inequality gives

(//n\% \d:cdy)(//n\@n \d:cdy)>L2(//n\<pn \d:cdy).

By (2), (3.1) and lim,,_,, L,, = L, after letting n go to infinity, the above inequality

gives
(limsup// |on(2)| dz dy) > 2L2 // | Omax (2)| dx dy
n—00 - X

=2L /Y |thmax (W) | du dv.

The second equality sign of (12) follows by the assumption that ¢ya, obtains maxi-

mum, namely
[//}/Wmax(w)‘duafv}/[//X|g0max(z)|dajdy] I

By Proposition 4.1 proved below, we have

lim sup // Bnl2)] ddy < 2 // Pomn(2)| da dy.
n—o00 ~ X

Together with (12), we obtain

(13) [ Emldedy = 1 [ ()l du

‘ __ L4 ()
Since fu(Pmax) = —Umax and L = max { I ﬁii]TLlllLl’ ”f;lél:?lrloLGL

equality and all the inequalities in the proof become equalities when n — co.

We claim that ®max = —L?Pmax. The natural parameter @, of ©,, on X converges
to the natural parameter @ = @ +40 of Pp.x. To see this, recall that the heights of ¢,
are the same as the heights of —1,, at the curves corresponding under f. Since —,
converge locally uniformly to —.x, it follows that the heights of —1,, converge
to the heights of —tn. (see [25, page 162, Theorem 24.7]. By Proposition 4.1,
the L'-norms of ¢, are bounded above. Therefore, a subsequence converges locally
uniformly to a finite-area holomorphic quadratic differential whose heights on X are
the same as the heights of Pnax (see [21, Lemma 3.8]). By the injectivity of the
mapping by heights (see [20, Theorem 1.2]), it follows that the limit is Puax. This
implies the convergence of the natural parameters w,, to w.

After n — oo in (11), inequalities become equalities. We obtain 0u/0z* =
0, where z* = x* + iy* is the natural parameter of ... This implies that the

(12)

} the above inequality is
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horizontal trajectories of Q. are orthogonal to the horizontal trajectories of Yyax,
which implies that one differential is a constant multiple of the other. Then, by (8),

Pmax = _LZSOmax

and )
f#<_90max> = _ﬁwmax- ]

3.3. From maximum of the height function to the Teichmiiller maps.
We prove that the conclusion of Theorem 3.2 implies the desired existence of the
Teichmiiller map in the homotopy class of f: X — Y. This establishes Theorem 1.1
from the Introduction.

Theorem 3.3. Let f: X — Y be a quasiconformal map. If there exists py €
A(X) \ {0} with
f(=p0) = —cfy(po)
for some ¢ > 0, then there is a Teichmiiller extremal map homotopic to f obtained
by horizontal stretching in the natural parameter of .

Proof. Let ¢y = fx(vo) € A(Y). We lift the holomorphic quadratic differentials
o € A(X) and ¢ € A(Y) to holomorphic quadratic differentials ¢y and Yo on the
universal covers X and Y. Fix conformal identifications of X and Y with the unit
disk D. Then X = D/T" and Y = D/T';; the lift f: D — D of f: X — Y conjugates
I to I'y; and the holomorphic quadratic differentials ¢y and 1/;0 are equivariant with
respect to I' and I'y, respectively.

By [15], each regular horizontal trajectory of ¢y and of o has exactly two limit
points on the unit circle S', and each limit point corresponds to one class of trajectory
rays going to infinity for a fixed parametrization of the ray. The heights map fx
induces a bijective correspondence between regular horizontal trajectories of ¢y and
o (see [20]). There are countably many singular horizontal trajectories of ¢y and of
1o since they have countably many zeros in D.

Since fu(—o) = 25(—10) the heights map fy is also mapping the regular vertical
trajectories of ¢y onto the regular vertical trajectories of 9. The lift f induces a
bijective heights map f4 between the sets of regular horizontal trajectories of ¢y and
Yo as well as regular vertical trajectories of the two differentials.

We construct a map g: D — D using the correspondence f#. By the uniqueness
of the geodesics for the metric induced by a holomorphic quadratic differential in a
simply connected domain (see [25, page 72, Theorem 14.2.1]), each regular horizontal
and vertical trajectory of a holomorphic quadratic differential ¢y can intersect in at
most one point in D (the same is true for ¢)). Therefore, each point of the complement
of the countably many singular horizontal and vertical trajectories is the intersection
of a unique horizontal and a unique vertical regular trajectory of ¢y. We define g
to send this point to the intersection of the corresponding (under fx) horizontal and
vertical trajectories of v.

So far, the map ¢ is defined on the complement of the singular horizontal and
vertical trajectories of 5. We establish that g is continuous. Indeed, let z, € D
be a sequence of points where g is defined that converges to z € D. Let bh,, be the
horizontal trajectory of ¢y that contains z, and let v,, be the vertical trajectory of ¢
that contains z,. Then b, Nv,, = {z,}. Let b be the limit horizontal trajectory of the
sequence h,,. The horizontal trajectory b is either regular or it limits to a zero of ¢, in
at least one end. In the latter case, we can take a subsequence of b,,, if necessary, such
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that b, are on the same side of h. Then the limit of b, consists of a concatenation
of, possibly countably many, singular horizontal trajectories. In either case, the ends
of the trajectory b consist of two distinct points. An analogous construction yields a
sequence of regular vertical trajectories v,, that contain 2, and converge on one side
to a vertical trajectory v which contains z. The vertical trajectory v is either regular
or it is a concatenation of, at most countably many, singular vertical trajectories,
both ends of which converge to distinct points on S L ) )

Then fu(h,) and fu(v,) are regular trajectories of ¢. The sequence f(h,)
converges to a horizontal trajectory h*. The trajectory h* is either regular, in which
case fu(h) = b*, or it is a concatenation of singular horizontal trajectories of .
Analogous statements hold for f#(bn) and its limiting vertical trajectory v*. Let
wn:f#(bn)mf#(bn) andw:b*ﬁn*. B

Assume that z is not a zero of ¢y and w is not a zero of 1. Let R be an arbitrarily
small rectangle in the natural parameter of 1) whose center is w. By the convergence
of fu(h,) to b* and fu(v,) to v*, fu(h,) N R and fu(v,) N R are a horizontal and
vertical segments when n is large enough. Therefore w, € R and lim,,_,, w, = w
which implies that g extends to a continuous map from DD minus the set of the zeros
of By and vy onto itself. By the same reasoning, it follows that §g~! is continuous and
therefore ¢ is a homeomorphism outside a discrete subset of .

In addition, the map ¢ is fixing the vertical direction and stretching the horizontal
direction by a factor L? in the natural parameter of ¢y because fi(h_y,) = 25 (h_y,).
It follows that § is an L2-quasiconformal map, and it extends to the complementary
discrete set because quasiconformal maps extend to isolated points. In fact, g is the
Teichmiiller map for the differential ¢y and it agrees with f on S* by the construction.
Since g is invariant under I', then we obtain a Teichmiiller map g: X — Y in the
homotopy class of f: X — Y. O

4. The continuity of the approximations with respect to the heights map

Let f: X — Y be a quasiconformal map. Consider the mapping by heights
fut A(X) — A(Y) which assigns to each ¢ € A(X) a holomorphic quadratic differ-
ential fu(p) € A(Y) such that f.(v,) = vy, (), Where v, is the measured geodesic
foliation obtained by straigthening h,, and vy, () is the measured geodesic lamination
obtained by straigthening hy, (). We set ¥ = fx ().

The quasiconformal map f: X — Y extends by reflections to a quasiconformal
map f: X, — Y,. Denote by X, and Y,, the halves of X, and Y, that lie in X and
Y, respectively. Let g := f~! be the inverse quasiconformal map and let u be its
Beltrami coefficient. Set

gd=g¢"Y Y

where ¢g' is the quasiconformal map whose Beltrami coefficient is tu for 0 < ¢ < 1.
Then g* = f1, g0 = id and Y is the image Riemann surface ¢%(Y). By definition,
¢ (Y)=Y and ¢}(Y) = X.

The double Riemann surfaces Yt are obtained by doubhng the Riemann surfaces
¢'(Y,) = Y! C Y*. The induced quasiconformal map from Y,, to ¥* will be denoted
by ¢, for sn’nphmt/y.

Let ¢, € A(X,) and ¥, € A( ) be Jenkins-Strebel differentials with corre-
sponding cylinders under f from Lemma 3.1 for ¢ € A(X) and ¢ = fu(¢) € A(Y).
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To simplify the notation, we set
Qn = @Z)n

and

Prn = @n-
Note that g#(—qn) = p,, and define

Pl = 95%(—an)-
Proposition 4.1. Under the above notation, we have

limsup/ lpn| < 2/ 2]
n—o00 Xn X

Proof. Assume, on the contrary, that

limsup/ | P >2/ lo]-
n—oo Xn X

We seek a contradiction. Our method uses an idea from Lakic [12, Lemma 3].
We note that pf, have bounded L'-norms on Y,! because gl (—gn) = pl, g; is a

quasiconformal map and the L!'-norms on }/}n of g, are bounded. Since the heights
of simple closed curves on Y* in the pf-metric converge to the heights of the corre-
sponding curves on Y in the (—)-metric, it follows that pf, converge uniformly on
compact subsets of Y to an integrable holomorphic quadratic differential p* whose
heights are equal to the heights of ¢ on Y. Indeed, the L'-norms of the differen-
tials p!, are bounded by the Dirichlet principle and the fact that ¢"* have bounded
quasiconformal constants. Then a subsequence of p! converges uniformly on com-
pact subsets. By [25, Theorem 24.7], the heights of the subsequence converge to the
heights of the limit quadratic differential. By the uniqueness of the heights function
[20], the limit differential p* € A(Y") is independent of the subsequence. Therefore,
the whole sequence converges to p'.

Define
_ hmsup/ k] 2/ 7
n—oo

and note that the following holds:
(1) A(t) is non-negative for all 0 <¢ <1 and

1+ oo
S = sup A(t) < 2] prgyy i Aloe
te[0,1] 11— ||N||oo
(2) A(1) = timsup, oo [ [pal — 2 fy l¢| > 0 and A(0) = limsup, o [ |a] -

2 [ Y| =0, and
To see that A(t) > 0, note that by Fatou’s lemma we have
limsup | |py,| > hmmf/ Pl > 2/ P’
n—oo  JVi n—oo Jyi yt

The second part of (1) follows from

limsup/ It | — / p'| < limsup \pn\ < limsup K(g¢) [ |gn]
Yt

n—00 n—o00 n—00 Yn
: 1+ il 1+ |l
<timsup [ (g e gy EE e
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The first condition in (2) is the initial assumption in this proof, and the second
condition in (2) is by definition. To prove condition (3), note that, by the change of
variables,

: LA+ 1 plloo
A(t) < timsup lanll 15 oo

— QHQHLl(Y) (1 +t”:uHOO _ 1- t”””oo)
L—tllplloe T4 tlplloo

which implies the desired condition.
The supremum S is positive because A(1) > 0. Since lim; o A(t) = 0 and
A(0) = 0, there exists ¢y € (0, 1] such that

1 — tflpllo

[ e e
T+ 1l oo

(14)

(15) Ato) > S/2.
Define

(16 o) =[] v

and

(1 )= [[ 1l

The functions h(t) and h,(t) are C!, and a variational formula for the Dirichlet
integral from Lakic [12, page 311] applies to arbitrary Riemann surfaces to give

t
H 9z -
(19) ity =2Re [ Lo )y
and
t
H 92 -
(19) ) =2ke [ Ho o (),

In order to have integration over the same space, we extend pf to be zero in
Y\ Y} and keep the notation pf,. Whenever we have the integration of pf, over Y,
we formally replace it with the integration of p!, over Y* without further mention.

Then we have

Alto) = Timsup /0 () — W) dt

n—oo

to
(20) < 2lim sup/

n—o0

yr 1 — |tﬂ|2:t

2{| 4] oo
< H'MH 5 hmsup/ / ‘pn p‘dt
T—lpl2 " amse

Since ¢, approximate ¢ and by the change of the variables, there exists M > 0
such that [[,, [p,, — p'| < M. The Fatou’s lemma gives

to to

limsup/ / pl, — p'|dt = Mty — liminf/ (M — // Ipt, — p'| dt)

n—o00 J0 Yyt n—oo Jo Yyt

to

(21) < Mty — / lim inf <M — / Ip! —pt\) dt

0 n—oo vt

to
g/ limsup/ Ipl, — p'| dt.
0 n—o00 Yt
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Then we obtain

922 A(to)<—2”MHm /to limsup// lpr, —p'| ) dt
(22) Sl Sy RS My
< 2”#”& o li t t t 1; i1 g
< — 5 1m sup |pn —p | - |pn| + lim sup |Pn| t.
L —pllZ Jo n—c0 yt n—oo Ayt

By the above inequality, since p!, converges uniformly on compact subsets of Y*
to p' and by an application of the Lebesgue Dominated Convergence Theorem to the
first integral on the right, we get

2
A(to) < ”MHOOQ / (// ~Ip'| +1imsup// Iptl) dt
L —lpll% Yt n—00 yt

2| plls / 2| plls 2[| pll o
= JEI_ [ A dt < I A(ty) = —1X 40 S
1= {lplZ, Jo 1= [lpll% 1= {lpllZ%

Since A(tg) > S/2, the above inequality implies

(23)

2| pll oo 2|l oo
S/2 < ——1t1S < ———=8
1=z 1= lpll3
which gives
L= [lullz < 4llpll-

The above inequality gives a contradiction when ||u|/. < 1/5.

Therefore the statement is true for all f whose Beltrami coefficient has norm
less than 1/5. Since each quasiconformal map can be written as a composition of
finitely many quasiconformal maps whose Beltrami coefficients have norms less than
1/5 and the heights map of a composition is the composition of the height maps, the
proposition follows. O
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