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Maximal operators and differentiation associated
to collections of shifted convex bodies

Emma D’Aniello, Laurent Moonens and Giorgi Oniani

Abstract. Maximal operators and differentiation of integrals associated to collections of shifted
balls in R™ (i.e., balls that may not contain the origin) have been studied by various authors. One of
the motivations has been the intimate connection of these concepts with the boundary behaviour of
Poisson integrals along regions more general than cones. Generalizing the corresponding results of
Nagel and Stein, and Hagelstein and Parissis (established for the case of collections of balls) we give
characterizations of the two classes of monotone collections §2 of shifted convex bodies in R™ that
are defined by the following properties respectively: 1) the maximal operator associated to € (i.e.,
to the means (1/|B]) [, . |f| (B € )) satisfies the weak type (1, 1) inequality; 2) the means over
the sets B+ (B € ) are a.e. convergent for the characteristic function of an arbitrary measurable
subset of R™.

Siirrettyihin kuperiin kappaleisiin liittyvit enimméiismuunnokset ja derivointi

Tiivistelmi. Useat kirjoittajat ovat tutkineet avaruuden R™ siirrettyihin (ts. ei vilttdmétta
origon siséltiviin) kuuliin liittyvien integraalien enimméiismuunnoksia ja derivoituvuutta. Yksi vi-
rike télle on ollut nédiden ldheinen yhteys kartioita yleisemmilla alueilla laskettujen Poissonin inte-
graalien reunakéytokseen. Yleistamaélld Nagelin ja Steinin seké Hagelsteinin ja Parissiksen vastaa-
via (kuulakokoelmia koskevia) tuloksia médiritetdin téssd tyossi ne kaksi avaruuden R™ siirrettyjen
kuperien kappaleiden monotonista kokoelmaa, joilla on toinen seuraavista ominaisuuksista: 1) ko-
koelmaan Q (ts. keskiarvoihin (1/|B]) [, |f], missi B € Q) liittyvé enimmiismuunnos toteuttaa
heikon (1, 1)-epéyhtilon; 2) joukoilla B 4+ z, missd B € , lasketut keskiarvot suppenevat melkein
kaikkialla avaruuden R™ mielivaltaisen mitallisen osajoukon ilmaisimeen.

1. Introduction

Let © be a non-empty collection of bounded measurable subsets of R™ with
positive measure. We define the maximal operator associated to €2 by

Ma(F)(r) =sup o [ 1fl (F € Lh(®Y), 2 €RY).
BeQ |B‘ B+zx
Let us call 2 a regular collection in R™ if it consists of bounded measurable subsets
of R™ with positive measure and satisfies the condition inf geq diam(B U {0}) = 0.
We will say that a regular collection €2 differentiates integrals of functions from
a class F C L (R") (briefly, differentiates a class F C L (R™)) if for every f € F,

loc loc
1

TRl f=rz)

lim
BeQ, diam(BU{0})—~0 |B| /g,

for a.e. z € R™. If ) differentiates the class of all characteristic functions of measur-
able subsets of R", then 2 will be said to have the density property.
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Below everywhere balls will be assumed to be open.

The classical theorem of Lebesgue (see, e.g., [3, Section 1.3]) asserts that if {2
consists of all balls centered at the origin, or more generally, if €2 is a regular collection
of balls weakly shifted in the sense that sup g, .)eq |7 /7 < oo, then Q differentiates
L*(R™) (and consequently, € has the density property). Here and below B(z,r)
denotes the ball centered at x with radius r.

Motivated by the study of boundary behaviour of Poisson integrals along regions
more general than cones, Nagel and Stein [8] investigated maximal operators and
differentiation associated to collections 2 of balls that do not satisfy the condition
SUPp(zmen |zl /r < oo. In [8] (see also [11, Section I1.3]), it was proved that the
maximal operator Mg associated with a collection €2 of balls satisfies the weak type
(1,1) inequality if and only if 2 has the following covering property (referred to below
as the S-covering property): there exists a fixed N such that, for any given r > 0, the
balls in €2 with radius at most r are contained in a union of at most N balls of radius
r. Consequently, the validity of the S-covering property for a regular collection 2 of
balls implies that Q differentiates L'(R™).

In [8] (see also [11, Section I1.3]), it is also shown that the S-covering property is
equivalent to each of the following conditions: 1) M satisfies the strong type (p, p)
inequality for every p € (1,00); 2) M, satisfies the strong type (p,p) inequality for
some p € (1, 00).

Let Q = {B(zk,r): k € N} be a regular collection, where (r1) is a decreasing
sequence tending to zero. One of the interesting corollaries in [8] shows that, even
when supyey ||2k||/rr = 0o, the collection 2 still differentiates L'(R"), provided that
SUPgen || Tk41]| /7% < 0o. This result was also established by Aversa and Preiss [1].

Hagelstein and Parissis [5] have shown that for a regular collection Q of balls
the following three conditions are equivalent: 1) Q has the density property; 2) €2
differentiates L'(R™); 3) There exists r > 0 for which the collection of all balls B € Q
with diam (B U {0}) < r has the S-covering property. This result for the case of
a regular collection €2 consisting of pairwise disjoint balls was established earlier by
Csornyei [2].

The papers of Moonens and Rosenblatt [7], and Laba and Pramanik [6], should
also be mentioned. In [7], there are studied maximal operators and differentiation
associated to collections €2 of the type {Iy + zx: k € N}, where (1) is a sequence of
two-dimensional intervals centered at the origin. The paper [6] deals with the topic
for dilation-invariant collections €2 of sparse one-dimensional sets.

We will refer to any bounded, open, non-empty convex set in R™ as a convex
body.

The aim of the paper is to study the maximal operators and differentiation asso-
ciated to collections €2 of convex bodies that are monotone in the sense that for any
two sets B and B’ from () there exists a shift mapping one of them into a subset of
the other. Note that if sets from {2 are not “shifted”, i.e., all sets from {2 contain the
origin, then € differentiates L'(R™) (see, e.g., [3, Section 1.3]).

Let © be a monotone collection consisting of convex bodies in R™. For a set
B € Q let us denote by Q(B) the collection of all sets R € Q) for which there exists
a shift mapping R into a subset of B. Let us say that the collection () has the S-
covering property if there exists N € N such that for every set B from () the sets
from the collection ©(B) lie in a union of N shifts of B. Note that for collections of
balls this definition is equivalent to the one given above (see Remark 2.1 below).
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The theorems below extend the characterizations of Nagel and Stein, and Hagel-
stein and Parissis to the monotone collections of convex bodies.

Theorem 1.1. Let €2 be a monotone collection consisting of convex bodies in
R™. Then the following four statements are equivalent:

1) Mg, satisfies the weak type (1,1) inequality;

2) My, satisfies the strong type (p,p) inequality for every p € (1,00);
3) My, satisfies the strong type (p,p) inequality for some p € (1,00);
4) Q has the S-covering property.

Theorem 1.2. Let 2 be a monotone regular collection consisting of convex
bodies in R™. Then the following three statements are equivalent:

1) Q has the density property;

2) Q differentiates L'(R™);

3) There exists r > 0 for which the collection of all sets B € ) with diam(B
U{0}) < r has the S-covering property.

2. Auxiliary statements

Remark 2.1. Let €2 be a collection of balls. Then the following two statements
are equivalent: 1) There exists N € N such that for every r» > 0 the balls from Q
having radii at most 7 lie in a union of N balls of radius r; 2) There exists M € N
such that for every ball B from (2 the balls from Q(B) lie in a union of M shifts of
B.

The proof of this statement follows from Theorem 1.1 and the result of Nagel
and Stein given in the introduction. Below we provide its direct proof as well.

For a ball B denote by r(B) and ¢(B) its radius and center, respectively.

The implication 1) = 2) is obvious.

Suppose that the statement 2) is true. Take any ¢ > 0. If the collection
{B € Q:r(B) < t}isempty or thereisaball B € Q withr(B) = t* = sup{r(B): B €
O, r(B) < t}, then clearly we can find balls B(xy,t),..., B(x,t) which cover
the union Jpcq,(p)<; B- Otherwise we can find a sequence of balls By, € Q with
r(By) < r(Bg) < -+ < t* and limg_,o, 7(Bg) = t*. For each k denote by {2 the collec-
tion of all balls from € with radius at most r(By). Then for every k we can find balls
By 1, ... B which are shifts of By, UBer B C U%zl By, 1, and By, N (UBer B) =+
@ (m=1,...,M). Then the sequences of centers (¢(By1)), ..., (c(Bgm)) are boun-
ded (otherwise it is easy to see that the statement 2) would not be true). Conse-
quently, we can find sub-sequences (c¢(B,.1)), . . ., (c¢(Bx, ar)) which are convergent to

some points 1, ...,y Then it is easy to see that (Upcq . (p)<; B C UM, B(wm, 2t).
This completes the proof of the implication 2) = 1).

For a bounded set B with center of symmetry x and for a number a > 0, we will
denote by a x B the dilation of B by the coefficient a, i.e., the set {z+a(y—x): y €
B}.

Recall that by virtue of the lemma of John (see, e.g., [3, Section VI.2]), for an
arbitrary convex body B C R" there exists an open ellipsoid 7" such that T" C B C
n X T. This lemma easily implies the following statement.

Lemma 2.2. Let B be a convex body in R™. Then there exists an open n-
dimensional rectangle R such that R C B C n? x R.
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Lemma 2.3. Let B; and By be convex bodies in R", and let there exists a shift
mapping B into a subset of By. Then the set By + By can be covered by 4™n?" shifts
of By. The same is true for the set B; — By. Consequently, |B; &+ Bs| < 4"n*"|By.

Proof. By Lemma 2.2 we can choose an open rectangle such that R C By C
n? x R. Then denoting by 7 the shift mapping B; into a subset of B, we have that
By + By C 7 Y(By)+ By C 7 1(n? x R)+n? X R. The last set is a shift of a rectangle
2n? x R which clearly can be covered by 4"n?" shifts of R, and consequently, by
the same number of shifts of By. The proof is analogous for the case of the set
B; — Bs. O

Below we will switch to a more general terminology related with maximal oper-
ators and differentiation of integrals.

A mapping B defined on R” is called a differentiation basis (briefly: a basis)
if for each x € R™ the value B(z) is a collection of bounded measurable sets of
positive measure such that there exists a sequence (By) of sets from B(z) with
limy, oo diam(By U {x}) = 0.

Let B be a basis. For f € L (R") it is said that B differentiates [ f (or [ f

loc

is differentiable with respect to B) if for almost every = € R", ‘—é‘ [z f — f(z) as

B € B(x) and diam(B) — 0. If this is true for each f in the class of functions F', we
say that B differentiates F'. If B differentiates the class of all characteristic functions
of measurable subsets of R”, then B is called a density basis.

Let us call a mapping B defined on R™ a semi-basis if for each x € R™ the value
B(x) is a collection of bounded measurable sets of positive measure.

The mazimal operator associated with a semi-basis B is defined as follows

1 1 n T n
Ma(f)(x) = sup)@/Bm (f € LL(R"), z € R").

BeB(z

A semi-basis B is called shift-invariant if for every x € R", B(z) = {B+z: B €
B(0)}.

Let ©2 be a collection of bounded measurable subsets of R™ with positive mea-
sure. Denote by Bg the shift-invariant semi-basis for which B(0) coincides with €.
Obviously, Mg = Mp,. Note also that, if €2 is a regular collection in R", then the
process of differentiation of integrals associated to € (defined in the introduction)
coincides with the one with respect to the basis Bgq.

Let B be a semi-basis. For a point 2o € R" and a set By € B(zo) by Hg(x¢, Bo)
denote the union of all sets BU{x}, where z € R", B € B(z), (BU{z})N(ByU{x0})
# @ and |B| < 2|By|.

By |E|« we will denote the outer measure of a set £ C R".

Lemma 2.4. Let €2 be a monotone collection of convex bodies in R™ which has
the S-covering property. Then for every xy € R™ and By € Bq(xg) we have that
|Hp,, (20, Bo)|« < C|By|, where the constant C' depends only on the dimension n and
the constant N from the definition of the S-covering property.

Proof. Taking into account monotonicity of {2 and continuity of the outer measure
from below, it is sufficient to show that for every set R € Q with |By| < |R| < 2|By|
the estimate | gy, , (20, Bo)|« < C|Bo| holds, where C' depends only on the dimension
n and the constant N associated to the S-covering property.
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Let us take any R € Q with |By| < |R| < 2|By|. By the S-covering property of
2 we can find shifts Ry, ..., Ry of R for which

U BC R/ U---URy.
BEQ(R)

Denote by A the set of all pairs (z, B) such that « € R", B € Bg)(z) and
(BU{z})N(ByU{xo}) # @. We have that

(z,B)EA

Note that the condition (B U {z}) N (By U {xo}) # @ is valid if and only if at least
one among the four following conditions is true: 1) x = xg; 2) B 3 x¢; 3) € Bo;
and 4) BN By # @. Hence, setting

A ={(@,B)e Nix=x0}, Ao={(z,B) € AN: B>y},
Agz{(x,B)EAIl'EBo}, A4:{<.§U,B)EABQB(]§£®},

k
HY) (70, Bo) :( L)JA(BU{x}) (k=1,2,3,4),
$7B ENg

we have that
4

HBQ(R)("EO’ BO) = U H(k)

Bor)
k=1

(IL‘Q,BQ).

Let us estimate the outer measures of the sets ng(R)(IEO,Bo)- We will discuss in
detail the case k = 4. The other three cases are analogous.

Let Jy be the set from 2 for which By = Jy + xo.

Suppose (z, B) € Ay. Let J be a set from Q(R) for which B = J + z. Then
taking into account that BN By = (J+xz)N (Jyg+x9) # @ and J C Ry U---URy

we have
BU{I‘}C[(ZEO+J0—R1U"'URN)+R1U"'URN]
Ulzo+ Jo— R1U---U Ry

Since (z, B) is any pair from A4, we obtain that

N N
H1(3§)2()(IE0,BO)C U($0+J0—R,~+R U (2o + Jo — Ry).
=1 =1

Let i,7 € {1,...,N}. By Lemma 2.3,
lzo + Jo — Ri| < ¢|R;i| = ¢|R| < 2¢| By,

where ¢ depends only on the dimension n. Now noticing that xq+ Jy — R; is a convex
body which contains a shift of R;, by Lemma 2.3 again we obtain

|$0+J0—R,‘+Rj| <C|$0+J0 R| 202|BO|
From the last two estimates we conclude that

IHY (20, Bo)|s < 2N?¢|Bo| + 2N¢|By|.

Bar)
By similar reasoning it can be shown that |HB
Bo)|« < 2N?c|By| + 2N |By| and |HB

) (0. Bo)l. < 2N|Bol, [HE) (w0,

Q(R)(l‘o, Bo)|* < 2NC|B()| + 2N|Bo| ]
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Lemma 2.5. Let B be a semi-basis in R™. If there exists a constant C' > 0 for
which |Hg(z, B)|« < C|B]| for every x € R" and B € B(z), then

C

{Mg(f) > A}« < 5 |f
R?’L

for every f € L*(R™) and A > 0.

Proof. Suppose f € L'(R") and A\ > 0. For every z € {Mg(f) > A} let us
choose a set B, € B(z) such that ‘B—lx‘ fo |f| > A. Using the greedy algorithm of
choice (see, e.g., [10, Section 1.1.7]) for the collection {B, U {z}: = € {Mg(f) > A}}
with respect to the value of the measure of a set, and taking into account the estimate
|Hg(z, B)|« < C|B| (x € R", B € B(x)) we find a sequence (x) of points from the
set {Mg(f) > A} for which the sets B,, U {zx} (k € N) are pairwise disjoint and

k k

:L‘E{MB(f)>>\} *

Hence, we obtain that

{Ms(f) > A} < U B.u{ah)| <C) B

ze{Mp(f)>A}

1 C
<5 [ <5 [
k Tk

The lemma is proved. O

Remark 2.6. Let €2 be a monotone collection of convex bodies in R™ containing
the origin. Then €2 has the S-covering property and, consequently, by Lemmas 2.4
and 2.5, the maximal operator Mg = Mp(q) satisfies the weak type (1, 1) inequality.
The S-covering property is verified as follows. Fix an arbitrary B € ). Then every
set in the collection Q(B) is contained in B + B — B. By Lemma 2.3, the latter set
can be covered by 4%2"n*" shifts of the set B.

Let 2 be a monotone collection consisting of convex bodies in R™. Let us define
the completion of ) as the collection of all sets R such that R is a shift of some
set from Q and R contains some set from Q. We will use the notation Q for the
completion of €.

Lemma 2.7. Let €2 be a monotone collection consisting of convex bodies in R™.
Then the following two statements are equivalent:

1) Q has the S-covering property;
2) there exists C' > 0 such that ‘URE@ R| < C|B| for every B € Q.

Proof. Assume that 1) is true. Let B € Q. Then we can find sets By, ..., By
which are shifts of B and cover the union of sets from (B). Take any R € Q(B).
Note that R contains some set from Q(B) and, consequently, R N By, # & for some
k€ {1,...,N}. Hence, taking into account that R can be mapped into a subset of
By, by some shift, we have

R C B, — B, + By.
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From the last inclusion we get

N
U Rc By B+ B.
ReQ(B) k=1
This by Lemma 2.3 implies that the statement 2) is true.
Now suppose that the statement 2) is true. Let B € ). Note that URG@ R can

be represented as a union of shifts of B. Indeed, for every R € Q(B) there is a set
Bp, which is a shift of B such that R C Br. Then UBEQ R = URGQ(B Bpr. Denote

by A the collection {Bgr: R € Q(B)}.
Let us choose sets E1, ..., Ex € A in the following way: Take FE; € A arbitrarily.
If Fy,..., E} have already been chosen and the collection A, = {F € A: EN(E; U
-+ U Ey) # @} is non-empty then choose Fj.; from Ay arbitrarily.
The sets E1, ..., Fx € A chosen in this way are pairwise disjoint and F N (£ U
-+U FEg) # @ for every E € A. From the disjointness we have the estimate

U R'/|B\ C1B)/|B| =

REQ(B)
On the other hand, by the condition E N (E1 U---UFEg)#@ (F €A) we have

(2.1)

(2.2) U Rc URCU (Ej, — Ej, + Ey).

ReQ(B) ReQ(B)

From Lemma 2.2 it follows that each set Ey — Ex + Ey (k= 1,..., K) can be covered
by M shifts of B, where M depends only on the dimension n. This together with the
relations (2.1) and (2.2) implies the validity of the S-covering property for Q with
constant N equal to C M. O

Remark 2.8. The proof of the implication 2) = 1) of Lemma 2.7 actually shows
that the collection € has the S-covering property. Consequently, taking into account
the implication 1) = 2) of Lemma 2.7 we see that a monotone collection of convex
bodies  has the S-covering property if and only if its completion € has the same
property.

Remark 2.9. The validity of the estimate ‘URGQ(B) R| < C|B| (B € Q) does not
imply the S-covering property for a monotone collection €2 of convex bodies. Indeed,
let (1) be a sequence of one-dimensional open intervals such that I C (0,00) and
sup 11 < |Ix]/(k2F) for every k € N. For each k, let I 1, ..., I x be pairwise disjoint
open sub-intervals of [, with lengths equal to |I;|/k, and let By 1,..., Brx be open
intervals which are concentric to Iy, ..., Iy respectively, and |By;| = |Ix|/(k2")
(j =1,...,k). Then for the collection Q@ = {By ;: k € N, j =1,...,k} the estimate
‘UREQ(B) R‘ < 3|B| (B € Q) holds although €2 does not have the S-covering property.

For a collection 2 of subsets of R™ by 2* we will denote the collection {B—B: B €

Lemma 2.10. Let 2 be a monotone collection consisting of convex bodies in
R". Then for every f € L*(R") and x € R™ we have that

Mg (f)(z) < CMp,,. (Ms, (f))(x),

where C' is a constant depending only on the dimension n.
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Proof. Taking into account the shift-invariance of B, Bg, and Bg- it suffices to
show that

(2.3) Mgp(f)(0) < CMg,. (M, (f))(0)

for every f € L'(R™). B
Take an arbitrary f € L'(R"). Let R be an arbitrary set from Bg(0) = Q and
B be its subset belonging to €2. Then we have

(2.4) Mg, (f) = Me,(fxr) = (IfIxr) * (x-5/|BI),
(2.5) R — R € Bg-(0),
(2.6) supp (|f[xr) * (x-5/|B|]) C R — B C R — R,

[ st oftBh = [ 1510 (/1)
(2.7) = Rn|f\XR /R"XBAB‘:/RW'

Note also that by Lemma 2.3,
(2.8) |R — R| < C|R],

where C' depends only on the dimension n.
By (2.4)—(2.8) we have

1
|R|/‘f| IR — R|/|f‘ R —R| L_R(If\xﬁ)*(x3/|3\)

Mg, (f) < CMag,. (Mg, (1))(0).

<C
\R — Rl Jr-r

Hence, by the arbitrariness of R € Bg(0) we conclude the needed estimate (2.3). O

Denote by B” (r € (0, 00]) the truncation of a semi-basis B at the level r defined
by B"(z) = {B € B(z): diam (BU{z}) <r} (x € R").

We will need the following characterization of shift-invariant density bases.

Theorem 2.11. Let B be a shift-invariant basis in R™. Then the following two
properties are equivalent: (a) B is a density basis; (b) For each A € (0, 1), there exist
positive constants r(B, \) and ¢(B, \) such that [{Mg.s.x (x,) = A} < (B, N)|E]|
for every measurable set E C R".

This characterization for the case of shift-invariant bases B for which B 2 0 for

every B € B(0) was given in the works of Oniani [9], and Hagelstein and Parissis
[4]. The general case can be reduced to the above mentioned one by associating to

a given shift-invariant basis B the basis B defined by B(z) = {BU {z}: B € B(z)}
(x € R™).

3. Proofs

Proof of Theorem 1.2. The implication 3) = 2) follows from Lemmas 2.4 and
2.5. The implication 2) = 1) is clear. So let us deal with 1) = 3).

Let C be the constant from Lemma 2.10. By Theorem 2.11 there exist constants
r and c such that

(3.1) {Mmy)(xE) = 1/2C}| < ¢|E|,

for every measurable set ¥ C R".
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Let us show that the collection Q(r) = {B € Q: diam (B U{0}) < r} has the
S-covering property.
Let B be a set from (r). Note that

(3.2) U (-B) C {Mo—(xs-n) > 1}.

ReQ(r)(B)

Indeed, take an arbitrary set R from the collection Q(r)(B) = Bggyy(0). Then for
every x € R we have that R — z € Bggyy(—2) and R — 2 C R — R. Since there is
a shift of B containing R, we have the inclusion R — R C B — B. Hence,
1
2
|R - ZL‘| R—=z

MBW(XB—B)(‘@ XB—B = L.

Thus, —R C {Mp_——(x5-5) > 1}.

Q(r)(B)

By Lemma 2.10 we have

(M (eso) 2 T < (Mg - (Mg ) (x5-5)) > 1/CH

|{MBQ* (MBQ(T)(B)(XB_B)) > 1/C}|
Note that Bg- is a shift-invariant basis for which Bg-(0) is a monotone collection
of convex bodies containing the origin. Hence, by Remark 2.6, the maximal operator

Mg,,. satisfies the weak type (1,1) inequality. Consequently, Mg,,. also satisfies the
estimate

<
(3.3) <

A
3.4 Me,.(f) =\ < = ,
(3.4 O (D2 A<y [

where f € LY(R™) and A > 0, and A is a constant not depending on f and .
By (3.3) and (3.4), we have

(Mo (ms) > 1 < AC
Mrg ) )

< AC‘{MBQ(T)(B) (XB*B) 2 1/20}‘

Now taking into account that Q(r)(B) C €(r) and Bgy) = (Bgq)", by (3.1) and
Lemma 2.3 we obtain that

(Mg (xo-5) > 1}| < ACCl B — B| < C'| B

MBQ(T)(B) (XB*B)
(xB-B)>1/2C}

where C is a constant not depending on B. Hence by (3.2) and Lemma 2.7 we obtain
the validity of the S-covering property for Q(r). OJ

Proof of Theorem 1.1. The implication 4) = 1) follows from Lemmas 2.4 and
2.5. The implication 1) = 2) follows from the Marcinkiewicz interpolation theorem,
and 2) = 3) is obvious. The proof of the implication 3) = 4) follows the scheme as
used for the implication 1) = 3) from Theorem 1.2 with a single distinction related
to the estimation of the measure of the set {Mp,, (xp-p) = 1/2C} (B € Q).
Here we should use the weak type (p, p) inequality for the operator Mg, (instead of
Theorem 2.11). O

Remark 3.1. The conditions in Theorem 1.1 are equivalent to the following
condition: 3*) M, satisfies the weak type (p, p) inequality for some p € (1,00). This
follows from the proof of Theorem 1.1 as well as from the Marcinkiewicz interpolation
theorem (used for showing the equivalence of conditions 3) and 3*)).
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Remark 3.2. The scheme of the proofs given above allows us to generalize

Theorems 1.1 and 1.2 to monotone collections €2 of bounded open sets containing the
origin which have the following two properties:

1) There exists N € N such that if By, By, B3 € Q and k € {1,2,3} is a number
for which |By| = max(|Bi|,|Bsl,|Bs|), then the set By — By + Bs can be
covered by N shifts of By;

2) The maximal operator Mp,,. satisfies the weak type (1,1) inequality. Here
Q2* is the collection {B — B: B € Q}.

Acknowledgments. The authors would like to thank the referee for helpful re-
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