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Maximal operators and differentiation associated
to collections of shifted convex bodies

Emma D’Aniello, Laurent Moonens and Giorgi Oniani

Abstract. Maximal operators and differentiation of integrals associated to collections of shifted

balls in R
n (i.e., balls that may not contain the origin) have been studied by various authors. One of

the motivations has been the intimate connection of these concepts with the boundary behaviour of

Poisson integrals along regions more general than cones. Generalizing the corresponding results of

Nagel and Stein, and Hagelstein and Parissis (established for the case of collections of balls) we give

characterizations of the two classes of monotone collections Ω of shifted convex bodies in R
n that

are defined by the following properties respectively: 1) the maximal operator associated to Ω (i.e.,

to the means (1/|B|)
´
B+x

|f | (B ∈ Ω)) satisfies the weak type (1, 1) inequality; 2) the means over

the sets B+x (B ∈ Ω) are a.e. convergent for the characteristic function of an arbitrary measurable

subset of Rn.

Siirrettyihin kuperiin kappaleisiin liittyvät enimmäismuunnokset ja derivointi

Tiivistelmä. Useat kirjoittajat ovat tutkineet avaruuden R
n siirrettyihin (ts. ei välttämättä

origon sisältäviin) kuuliin liittyvien integraalien enimmäismuunnoksia ja derivoituvuutta. Yksi vi-

rike tälle on ollut näiden läheinen yhteys kartioita yleisemmillä alueilla laskettujen Poissonin inte-

graalien reunakäytökseen. Yleistämällä Nagelin ja Steinin sekä Hagelsteinin ja Parissiksen vastaa-

via (kuulakokoelmia koskevia) tuloksia määritetään tässä työssä ne kaksi avaruuden R
n siirrettyjen

kuperien kappaleiden monotonista kokoelmaa, joilla on toinen seuraavista ominaisuuksista: 1) ko-

koelmaan Ω (ts. keskiarvoihin (1/|B|)
´
B+x

|f |, missä B ∈ Ω) liittyvä enimmäismuunnos toteuttaa

heikon (1, 1)-epäyhtälön; 2) joukoilla B + x, missä B ∈ Ω, lasketut keskiarvot suppenevat melkein

kaikkialla avaruuden R
n mielivaltaisen mitallisen osajoukon ilmaisimeen.

1. Introduction

Let Ω be a non-empty collection of bounded measurable subsets of R
n with

positive measure. We define the maximal operator associated to Ω by

MΩ(f)(x) = sup
B∈Ω

1

|B|

ˆ
B+x

|f | (f ∈ L1
loc(R

n), x ∈ R
n).

Let us call Ω a regular collection in R
n if it consists of bounded measurable subsets

of Rn with positive measure and satisfies the condition infB∈Ω diam(B ∪ {0}) = 0.
We will say that a regular collection Ω differentiates integrals of functions from

a class F ⊂ L1
loc(R

n) (briefly, differentiates a class F ⊂ L1
loc(R

n)) if for every f ∈ F ,

lim
B∈Ω, diam(B∪{0})→0

1

|B|

ˆ
B+x

f = f(x)

for a.e. x ∈ R
n. If Ω differentiates the class of all characteristic functions of measur-

able subsets of Rn, then Ω will be said to have the density property.
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Below everywhere balls will be assumed to be open.
The classical theorem of Lebesgue (see, e.g., [3, Section I.3]) asserts that if Ω

consists of all balls centered at the origin, or more generally, if Ω is a regular collection
of balls weakly shifted in the sense that supB(x,r)∈Ω ‖x‖/r < ∞, then Ω differentiates

L1(Rn) (and consequently, Ω has the density property). Here and below B(x, r)
denotes the ball centered at x with radius r.

Motivated by the study of boundary behaviour of Poisson integrals along regions
more general than cones, Nagel and Stein [8] investigated maximal operators and
differentiation associated to collections Ω of balls that do not satisfy the condition
supB(x,r)∈Ω ‖x‖/r < ∞. In [8] (see also [11, Section II.3]), it was proved that the
maximal operator MΩ associated with a collection Ω of balls satisfies the weak type
(1, 1) inequality if and only if Ω has the following covering property (referred to below
as the S -covering property): there exists a fixed N such that, for any given r > 0, the
balls in Ω with radius at most r are contained in a union of at most N balls of radius
r. Consequently, the validity of the S -covering property for a regular collection Ω of
balls implies that Ω differentiates L1(Rn).

In [8] (see also [11, Section II.3]), it is also shown that the S -covering property is
equivalent to each of the following conditions: 1) MΩ satisfies the strong type (p, p)
inequality for every p ∈ (1,∞); 2) MΩ satisfies the strong type (p, p) inequality for
some p ∈ (1,∞).

Let Ω = {B(xk, rk) : k ∈ N} be a regular collection, where (rk) is a decreasing
sequence tending to zero. One of the interesting corollaries in [8] shows that, even
when supk∈N ‖xk‖/rk = ∞, the collection Ω still differentiates L1(Rn), provided that
supk∈N ‖xk+1‖/rk < ∞. This result was also established by Aversa and Preiss [1].

Hagelstein and Parissis [5] have shown that for a regular collection Ω of balls
the following three conditions are equivalent: 1) Ω has the density property; 2) Ω
differentiates L1(Rn); 3) There exists r > 0 for which the collection of all balls B ∈ Ω
with diam (B ∪ {0}) < r has the S -covering property. This result for the case of
a regular collection Ω consisting of pairwise disjoint balls was established earlier by
Csörnyei [2].

The papers of Moonens and Rosenblatt [7], and Laba and Pramanik [6], should
also be mentioned. In [7], there are studied maximal operators and differentiation
associated to collections Ω of the type {Ik + xk : k ∈ N}, where (Ik) is a sequence of
two-dimensional intervals centered at the origin. The paper [6] deals with the topic
for dilation-invariant collections Ω of sparse one-dimensional sets.

We will refer to any bounded, open, non-empty convex set in R
n as a convex

body.
The aim of the paper is to study the maximal operators and differentiation asso-

ciated to collections Ω of convex bodies that are monotone in the sense that for any
two sets B and B′ from Ω there exists a shift mapping one of them into a subset of
the other. Note that if sets from Ω are not “shifted”, i.e., all sets from Ω contain the
origin, then Ω differentiates L1(Rn) (see, e.g., [3, Section I.3]).

Let Ω be a monotone collection consisting of convex bodies in R
n. For a set

B ∈ Ω let us denote by Ω(B) the collection of all sets R ∈ Ω for which there exists
a shift mapping R into a subset of B. Let us say that the collection Ω has the S-

covering property if there exists N ∈ N such that for every set B from Ω the sets
from the collection Ω(B) lie in a union of N shifts of B. Note that for collections of
balls this definition is equivalent to the one given above (see Remark 2.1 below).
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The theorems below extend the characterizations of Nagel and Stein, and Hagel-
stein and Parissis to the monotone collections of convex bodies.

Theorem 1.1. Let Ω be a monotone collection consisting of convex bodies in

R
n. Then the following four statements are equivalent:

1) MΩ satisfies the weak type (1, 1) inequality;
2) MΩ satisfies the strong type (p, p) inequality for every p ∈ (1,∞);
3) MΩ satisfies the strong type (p, p) inequality for some p ∈ (1,∞);
4) Ω has the S-covering property.

Theorem 1.2. Let Ω be a monotone regular collection consisting of convex

bodies in R
n. Then the following three statements are equivalent:

1) Ω has the density property;

2) Ω differentiates L1(Rn);
3) There exists r > 0 for which the collection of all sets B ∈ Ω with diam(B

∪{0}) < r has the S-covering property.

2. Auxiliary statements

Remark 2.1. Let Ω be a collection of balls. Then the following two statements
are equivalent: 1) There exists N ∈ N such that for every r > 0 the balls from Ω
having radii at most r lie in a union of N balls of radius r; 2) There exists M ∈ N

such that for every ball B from Ω the balls from Ω(B) lie in a union of M shifts of
B.

The proof of this statement follows from Theorem 1.1 and the result of Nagel
and Stein given in the introduction. Below we provide its direct proof as well.

For a ball B denote by r(B) and c(B) its radius and center, respectively.
The implication 1) ⇒ 2) is obvious.
Suppose that the statement 2) is true. Take any t > 0. If the collection

{B ∈ Ω: r(B) 6 t} is empty or there is a ballB ∈ Ω with r(B) = t∗ = sup{r(B) : B ∈
Ω, r(B) 6 t}, then clearly we can find balls B(x1, t), . . . , B(xM , t) which cover
the union

⋃
B∈Ω,r(B)6t B. Otherwise we can find a sequence of balls Bk ∈ Ω with

r(B1) 6 r(B2) 6 · · · < t∗ and limk→∞ r(Bk) = t∗. For each k denote by Ωk the collec-
tion of all balls from Ω with radius at most r(Bk). Then for every k we can find balls

Bk,1, . . . Bk,M which are shifts of Bk,
⋃

B∈Ωk
B ⊂

⋃M
m=1Bk,m and Bk,m∩

(⋃
B∈Ωk

B
)
6=

∅ (m = 1, . . . ,M). Then the sequences of centers (c(Bk,1)), . . . , (c(Bk,M)) are boun-
ded (otherwise it is easy to see that the statement 2) would not be true). Conse-
quently, we can find sub-sequences (c(Bkj ,1)), . . . , (c(Bkj ,M)) which are convergent to

some points x1, . . . , xM . Then it is easy to see that
⋃

B∈Ω,r(B)6t B ⊂
⋃M

m=1B(xm, 2t).

This completes the proof of the implication 2) ⇒ 1).

For a bounded set B with center of symmetry x and for a number α > 0, we will
denote by α×B the dilation of B by the coefficient α, i.e., the set {x+α(y−x) : y ∈
B}.

Recall that by virtue of the lemma of John (see, e.g., [3, Section VI.2]), for an
arbitrary convex body B ⊂ R

n there exists an open ellipsoid T such that T ⊂ B ⊂
n× T . This lemma easily implies the following statement.

Lemma 2.2. Let B be a convex body in R
n. Then there exists an open n-

dimensional rectangle R such that R ⊂ B ⊂ n2 ×R.
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Lemma 2.3. Let B1 and B2 be convex bodies in R
n, and let there exists a shift

mapping B1 into a subset of B2. Then the set B1+B2 can be covered by 4nn2n shifts

of B2. The same is true for the set B1 −B2. Consequently, |B1 ± B2| 6 4nn2n|B2|.

Proof. By Lemma 2.2 we can choose an open rectangle such that R ⊂ B2 ⊂
n2 × R. Then denoting by τ the shift mapping B1 into a subset of B2 we have that
B1+B2 ⊂ τ−1(B2)+B2 ⊂ τ−1(n2×R)+n2×R. The last set is a shift of a rectangle
2n2 × R which clearly can be covered by 4nn2n shifts of R, and consequently, by
the same number of shifts of B2. The proof is analogous for the case of the set
B1 − B2. �

Below we will switch to a more general terminology related with maximal oper-
ators and differentiation of integrals.

A mapping B defined on R
n is called a differentiation basis (briefly: a basis)

if for each x ∈ R
n the value B(x) is a collection of bounded measurable sets of

positive measure such that there exists a sequence (Bk) of sets from B(x) with
limk→∞ diam(Bk ∪ {x}) = 0.

Let B be a basis. For f ∈ L1
loc(R

n) it is said that B differentiates
´
f (or

´
f

is differentiable with respect to B) if for almost every x ∈ R
n, 1

|B|

´
B
f → f(x) as

B ∈ B(x) and diam(B) → 0. If this is true for each f in the class of functions F , we
say that B differentiates F . If B differentiates the class of all characteristic functions
of measurable subsets of Rn, then B is called a density basis.

Let us call a mapping B defined on R
n a semi-basis if for each x ∈ R

n the value
B(x) is a collection of bounded measurable sets of positive measure.

The maximal operator associated with a semi-basis B is defined as follows

MB(f)(x) = sup
B∈B(x)

1

|B|

ˆ
B

|f | (f ∈ L1
loc(R

n), x ∈ R
n).

A semi-basis B is called shift-invariant if for every x ∈ R
n, B(x) = {B+ x : B ∈

B(0)}.
Let Ω be a collection of bounded measurable subsets of Rn with positive mea-

sure. Denote by BΩ the shift-invariant semi-basis for which B(0) coincides with Ω.
Obviously, MΩ = MBΩ

. Note also that, if Ω is a regular collection in R
n, then the

process of differentiation of integrals associated to Ω (defined in the introduction)
coincides with the one with respect to the basis BΩ.

Let B be a semi-basis. For a point x0 ∈ R
n and a set B0 ∈ B(x0) by HB(x0, B0)

denote the union of all sets B∪{x}, where x ∈ R
n, B ∈ B(x), (B∪{x})∩(B0∪{x0})

6= ∅ and |B| 6 2|B0|.
By |E|∗ we will denote the outer measure of a set E ⊂ R

n.

Lemma 2.4. Let Ω be a monotone collection of convex bodies in R
n which has

the S-covering property. Then for every x0 ∈ R
n and B0 ∈ BΩ(x0) we have that

|HBΩ
(x0, B0)|∗ 6 C|B0|, where the constant C depends only on the dimension n and

the constant N from the definition of the S-covering property.

Proof. Taking into account monotonicity of Ω and continuity of the outer measure
from below, it is sufficient to show that for every set R ∈ Ω with |B0| 6 |R| 6 2|B0|
the estimate |HBΩ(R)

(x0, B0)|∗ 6 C|B0| holds, where C depends only on the dimension
n and the constant N associated to the S -covering property.
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Let us take any R ∈ Ω with |B0| 6 |R| 6 2|B0|. By the S -covering property of
Ω we can find shifts R1, . . . , RN of R for which

⋃

B∈Ω(R)

B ⊂ R1 ∪ · · · ∪ RN .

Denote by Λ the set of all pairs (x,B) such that x ∈ R
n, B ∈ BΩ(R)(x) and

(B ∪ {x}) ∩ (B0 ∪ {x0}) 6= ∅. We have that

HBΩ(R)
(x0, B0) =

⋃

(x,B)∈Λ

(B ∪ {x}).

Note that the condition (B ∪ {x}) ∩ (B0 ∪ {x0}) 6= ∅ is valid if and only if at least
one among the four following conditions is true: 1) x = x0; 2) B ∋ x0; 3) x ∈ B0;
and 4) B ∩B0 6= ∅. Hence, setting

Λ1 = {(x,B) ∈ Λ: x = x0}, Λ2 = {(x,B) ∈ Λ: B ∋ x0},

Λ3 = {(x,B) ∈ Λ: x ∈ B0}, Λ4 = {(x,B) ∈ Λ: B ∩ B0 6= ∅},

H
(k)
BΩ(R)

(x0, B0) =
⋃

(x,B)∈Λk

(B ∪ {x}) (k = 1, 2, 3, 4),

we have that

HBΩ(R)
(x0, B0) =

4⋃

k=1

H
(k)
BΩ(R)

(x0, B0).

Let us estimate the outer measures of the sets H
(k)
BΩ(R)

(x0, B0). We will discuss in

detail the case k = 4. The other three cases are analogous.
Let J0 be the set from Ω for which B0 = J0 + x0.
Suppose (x,B) ∈ Λ4. Let J be a set from Ω(R) for which B = J + x. Then

taking into account that B ∩ B0 = (J + x) ∩ (J0 + x0) 6= ∅ and J ⊂ R1 ∪ · · · ∪ RN

we have

B ∪ {x} ⊂ [(x0 + J0 −R1 ∪ · · · ∪ RN) +R1 ∪ · · · ∪ RN ]

∪ [x0 + J0 − R1 ∪ · · · ∪RN ].

Since (x,B) is any pair from Λ4, we obtain that

H
(4)
BΩ(R)

(x0, B0) ⊂
N⋃

i,j=1

(x0 + J0 −Ri +Rj) ∪
N⋃

i=1

(x0 + J0 −Ri).

Let i, j ∈ {1, . . . , N}. By Lemma 2.3,

|x0 + J0 −Ri| 6 c|Ri| = c|R| 6 2c|B0|,

where c depends only on the dimension n. Now noticing that x0+J0−Ri is a convex
body which contains a shift of Rj , by Lemma 2.3 again we obtain

|x0 + J0 − Ri +Rj | 6 c|x0 + J0 −Ri| 6 2c2|B0|.

From the last two estimates we conclude that

|H
(4)
BΩ(R)

(x0, B0)|∗ 6 2N2c2|B0|+ 2Nc|B0|.

By similar reasoning it can be shown that |H
(1)
BΩ(R)

(x0, B0)|∗ 6 2N |B0|, |H
(2)
BΩ(R)

(x0,

B0)|∗ 6 2N2c|B0|+ 2N |B0| and |H
(3)
BΩ(R)

(x0, B0)|∗ 6 2Nc|B0|+ 2N |B0|. �
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Lemma 2.5. Let B be a semi-basis in R
n. If there exists a constant C > 0 for

which |HB(x,B)|∗ 6 C|B| for every x ∈ R
n and B ∈ B(x), then

|{MB(f) > λ}|∗ 6
C

λ

ˆ
Rn

|f |

for every f ∈ L1(Rn) and λ > 0.

Proof. Suppose f ∈ L1(Rn) and λ > 0. For every x ∈ {MB(f) > λ} let us
choose a set Bx ∈ B(x) such that 1

|Bx|

´
Bx

|f | > λ. Using the greedy algorithm of

choice (see, e.g., [10, Section I.1.7]) for the collection {Bx ∪ {x} : x ∈ {MB(f) > λ}}
with respect to the value of the measure of a set, and taking into account the estimate
|HB(x,B)|∗ 6 C|B| (x ∈ R

n, B ∈ B(x)) we find a sequence (xk) of points from the
set {MB(f) > λ} for which the sets Bxk

∪ {xk} (k ∈ N) are pairwise disjoint and
∣∣∣∣∣∣

⋃

x∈{MB(f)>λ}

(Bx ∪ {x})

∣∣∣∣∣∣
∗

6 C
∑

k

|Bxk
∪ {xk}| = C

∑

k

|Bxk
|.

Hence, we obtain that

|{MB(f) > λ}|∗ 6

∣∣∣∣∣∣

⋃

x∈{MB(f)>λ}

(Bx ∪ {x})

∣∣∣∣∣∣
∗

6 C
∑

k

|Bxk
|

< C
∑

k

1

λ

ˆ
Bxk

|f | 6
C

λ

ˆ
Rn

|f |.

The lemma is proved. �

Remark 2.6. Let Ω be a monotone collection of convex bodies in R
n containing

the origin. Then Ω has the S -covering property and, consequently, by Lemmas 2.4
and 2.5, the maximal operator MΩ = MB(Ω) satisfies the weak type (1, 1) inequality.
The S-covering property is verified as follows. Fix an arbitrary B ∈ Ω. Then every
set in the collection Ω(B) is contained in B + B − B. By Lemma 2.3, the latter set
can be covered by 42nn4n shifts of the set B.

Let Ω be a monotone collection consisting of convex bodies in R
n. Let us define

the completion of Ω as the collection of all sets R such that R is a shift of some
set from Ω and R contains some set from Ω. We will use the notation Ω for the
completion of Ω.

Lemma 2.7. Let Ω be a monotone collection consisting of convex bodies in R
n.

Then the following two statements are equivalent:

1) Ω has the S-covering property;

2) there exists C > 0 such that
∣∣⋃

R∈Ω(B) R
∣∣ 6 C|B| for every B ∈ Ω.

Proof. Assume that 1) is true. Let B ∈ Ω. Then we can find sets B1, . . . , BN

which are shifts of B and cover the union of sets from Ω(B). Take any R ∈ Ω(B).
Note that R contains some set from Ω(B) and, consequently, R ∩ Bk 6= ∅ for some
k ∈ {1, . . . , N}. Hence, taking into account that R can be mapped into a subset of
Bk by some shift, we have

R ⊂ Bk −Bk +Bk.
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From the last inclusion we get

⋃

R∈Ω(B)

R ⊂
N⋃

k=1

(Bk − Bk +Bk).

This by Lemma 2.3 implies that the statement 2) is true.
Now suppose that the statement 2) is true. Let B ∈ Ω. Note that

⋃
R∈Ω(B) R can

be represented as a union of shifts of B. Indeed, for every R ∈ Ω(B) there is a set
BR which is a shift of B such that R ⊂ BR. Then

⋃
R∈Ω(B) R =

⋃
R∈Ω(B) BR. Denote

by Λ the collection {BR : R ∈ Ω(B)}.
Let us choose sets E1, . . . , EK ∈ Λ in the following way: Take E1 ∈ Λ arbitrarily.

If E1, . . . , Ek have already been chosen and the collection Λk = {E ∈ Λ: E ∩ (E1 ∪
· · · ∪ Ek) 6= ∅} is non-empty then choose Ek+1 from Λk arbitrarily.

The sets E1, . . . , EK ∈ Λ chosen in this way are pairwise disjoint and E ∩ (E1 ∪
· · · ∪ EK) 6= ∅ for every E ∈ Λ. From the disjointness we have the estimate

(2.1) K 6

∣∣∣∣
⋃

R∈Ω(B)

R

∣∣∣∣/|B| 6 C|B|/|B| = C.

On the other hand, by the condition E ∩ (E1 ∪ · · · ∪ EK) 6= ∅ (E ∈ Λ) we have

(2.2)
⋃

R∈Ω(B)

R ⊂
⋃

R∈Ω(B)

R ⊂
K⋃

k=1

(Ek − Ek + Ek).

From Lemma 2.2 it follows that each set Ek−Ek+Ek (k = 1, . . . , K) can be covered
by M shifts of B, where M depends only on the dimension n. This together with the
relations (2.1) and (2.2) implies the validity of the S -covering property for Ω with
constant N equal to CM . �

Remark 2.8. The proof of the implication 2) ⇒ 1) of Lemma 2.7 actually shows
that the collection Ω has the S-covering property. Consequently, taking into account
the implication 1) ⇒ 2) of Lemma 2.7 we see that a monotone collection of convex
bodies Ω has the S-covering property if and only if its completion Ω has the same
property.

Remark 2.9. The validity of the estimate
∣∣⋃

R∈Ω(B) R
∣∣ 6 C|B| (B ∈ Ω) does not

imply the S-covering property for a monotone collection Ω of convex bodies. Indeed,
let (Ik) be a sequence of one-dimensional open intervals such that Ik ⊂ (0,∞) and
sup Ik+1 < |Ik|/(k2

k) for every k ∈ N. For each k, let Ik,1, . . . , Ik,k be pairwise disjoint
open sub-intervals of Ik with lengths equal to |Ik|/k, and let Bk,1, . . . , Bk,k be open
intervals which are concentric to Ik,1, . . . , Ik,k respectively, and |Bk,j| = |Ik|/(k2

k)
(j = 1, . . . , k). Then for the collection Ω = {Bk,j : k ∈ N, j = 1, . . . , k} the estimate∣∣⋃

R∈Ω(B) R
∣∣ 6 3|B| (B ∈ Ω) holds although Ω does not have the S-covering property.

For a collection Ω of subsets of Rn by Ω∗ we will denote the collection {B−B : B ∈
Ω}.

Lemma 2.10. Let Ω be a monotone collection consisting of convex bodies in

R
n. Then for every f ∈ L1(Rn) and x ∈ R

n we have that

MBΩ
(f)(x) 6 CMBΩ∗

(MBΩ
(f))(x),

where C is a constant depending only on the dimension n.
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Proof. Taking into account the shift-invariance of BΩ,BΩ, and BΩ∗ it suffices to
show that

(2.3) MBΩ
(f)(0) 6 CMBΩ∗

(MBΩ
(f))(0)

for every f ∈ L1(Rn).
Take an arbitrary f ∈ L1(Rn). Let R be an arbitrary set from BΩ(0) = Ω and

B be its subset belonging to Ω. Then we have

MBΩ
(f) > MBΩ

(fχR) > (|f |χR) ∗ (χ−B/|B|),(2.4)

R− R ∈ BΩ∗(0),(2.5)

supp (|f |χR) ∗ (χ−B/|B|) ⊂ R −B ⊂ R −R,(2.6) ˆ
R−R

(|f |χR) ∗ (χ−B/|B|) =

ˆ
Rn

(|f |χR) ∗ (χ−B/|B|)

=

ˆ
Rn

|f |χR

ˆ
Rn

χ−B/|B| =

ˆ
R

|f |.(2.7)

Note also that by Lemma 2.3,

(2.8) |R− R| 6 C|R|,

where C depends only on the dimension n.
By (2.4)–(2.8) we have

1

|R|

ˆ
R

|f | 6 C
1

|R− R|

ˆ
R

|f | = C
1

|R−R|

ˆ
R−R

(|f |χR) ∗ (χ−B/|B|)

6 C
1

|R− R|

ˆ
R−R

MBΩ
(f) 6 CMBΩ∗

(MBΩ
(f))(0).

Hence, by the arbitrariness of R ∈ BΩ(0) we conclude the needed estimate (2.3). �

Denote by Br (r ∈ (0,∞]) the truncation of a semi-basis B at the level r defined
by Br(x) = {B ∈ B(x) : diam (B ∪ {x}) < r} (x ∈ R

n).
We will need the following characterization of shift-invariant density bases.

Theorem 2.11. Let B be a shift-invariant basis in R
n. Then the following two

properties are equivalent: (a) B is a density basis; (b) For each λ ∈ (0, 1), there exist
positive constants r(B, λ) and c(B, λ) such that

∣∣{M
B

r(B,λ)(χ
E
) > λ

}∣∣ 6 c(B, λ)|E|
for every measurable set E ⊂ R

n.

This characterization for the case of shift-invariant bases B for which B ∋ 0 for
every B ∈ B(0) was given in the works of Oniani [9], and Hagelstein and Parissis
[4]. The general case can be reduced to the above mentioned one by associating to

a given shift-invariant basis B the basis B̂ defined by B̂(x) = {B ∪ {x} : B ∈ B(x)}
(x ∈ R

n).

3. Proofs

Proof of Theorem 1.2. The implication 3) ⇒ 2) follows from Lemmas 2.4 and
2.5. The implication 2) ⇒ 1) is clear. So let us deal with 1) ⇒ 3).

Let C be the constant from Lemma 2.10. By Theorem 2.11 there exist constants
r and c such that

(3.1) |{M(BΩ)r(χE) > 1/2C}| 6 c|E|,

for every measurable set E ⊂ R
n.
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Let us show that the collection Ω(r) = {B ∈ Ω: diam (B ∪ {0}) < r} has the
S -covering property.

Let B be a set from Ω(r). Note that

(3.2)
⋃

R∈Ω(r)(B)

(−R) ⊂ {MB
Ω(r)(B)

(χB−B) > 1}.

Indeed, take an arbitrary set R from the collection Ω(r)(B) = BΩ(r)(B)(0). Then for

every x ∈ R we have that R − x ∈ BΩ(r)(B)(−x) and R − x ⊂ R − R. Since there is

a shift of B containing R, we have the inclusion R− R ⊂ B − B. Hence,

MB
Ω(r)(B)

(χB−B)(−x) >
1

|R− x|

ˆ
R−x

χB−B = 1.

Thus, −R ⊂ {MB
Ω(r)(B)

(χB−B) > 1}.

By Lemma 2.10 we have

|{MB
Ω(r)(B)

(χB−B) > 1}| 6 |{MBΩ(r)(B)∗
(MBΩ(r)(B)

(χB−B)) > 1/C}|

6 |{MBΩ∗
(MBΩ(r)(B)

(χB−B)) > 1/C}|.(3.3)

Note that BΩ∗ is a shift-invariant basis for which BΩ∗(0) is a monotone collection
of convex bodies containing the origin. Hence, by Remark 2.6, the maximal operator
MBΩ∗

satisfies the weak type (1, 1) inequality. Consequently, MBΩ∗
also satisfies the

estimate

(3.4) |{MBΩ∗
(f) > λ}| 6

A

λ

ˆ
{|f |>λ/2}

|f |,

where f ∈ L1(Rn) and λ > 0, and A is a constant not depending on f and λ.
By (3.3) and (3.4), we have

|{MB
Ω(r)(B)

(χB−B) > 1}| 6 AC

ˆ
{MBΩ(r)(B)

(χB−B)>1/2C}

MBΩ(r)(B)
(χB−B)

6 AC|{MBΩ(r)(B)
(χB−B) > 1/2C}|.

Now taking into account that Ω(r)(B) ⊂ Ω(r) and BΩ(r) = (BΩ)
r, by (3.1) and

Lemma 2.3 we obtain that

|{MB
Ω(r)(B)

(χB−B) > 1}| 6 ACc|B −B| 6 C ′|B|,

where C ′ is a constant not depending on B. Hence by (3.2) and Lemma 2.7 we obtain
the validity of the S-covering property for Ω(r). �

Proof of Theorem 1.1. The implication 4) ⇒ 1) follows from Lemmas 2.4 and
2.5. The implication 1) ⇒ 2) follows from the Marcinkiewicz interpolation theorem,
and 2) ⇒ 3) is obvious. The proof of the implication 3) ⇒ 4) follows the scheme as
used for the implication 1) ⇒ 3) from Theorem 1.2 with a single distinction related
to the estimation of the measure of the set {MBΩ(B)

(χB−B) > 1/2C} (B ∈ Ω).

Here we should use the weak type (p, p) inequality for the operator MBΩ
(instead of

Theorem 2.11). �

Remark 3.1. The conditions in Theorem 1.1 are equivalent to the following
condition: 3∗) MΩ satisfies the weak type (p, p) inequality for some p ∈ (1,∞). This
follows from the proof of Theorem 1.1 as well as from the Marcinkiewicz interpolation
theorem (used for showing the equivalence of conditions 3) and 3∗)).
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Remark 3.2. The scheme of the proofs given above allows us to generalize
Theorems 1.1 and 1.2 to monotone collections Ω of bounded open sets containing the
origin which have the following two properties:

1) There exists N ∈ N such that if B1, B2, B3 ∈ Ω and k ∈ {1, 2, 3} is a number
for which |Bk| = max(|B1|, |B2|, |B3|), then the set B1 − B2 + B3 can be
covered by N shifts of Bk;

2) The maximal operator MBΩ∗
satisfies the weak type (1, 1) inequality. Here

Ω∗ is the collection {B − B : B ∈ Ω}.

Acknowledgments. The authors would like to thank the referee for helpful re-
marks.
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