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Spaces of sequences not converging to zero

Mikaela Aires∗ and Geraldo Botelho†

Abstract. Let E be a Banach space (or a Banach lattice), let τ be a vector topology on E

and let x be a sequence (or a positive sequence) in E not converging to zero with respect to τ . We

show how to construct infinite dimensional Banach spaces (or Banach lattices) consisting, up to the

origin, of sequences in E not converging to zero with respect to τ and containing a subsequence of

x. Plenty of applications to Banach space theory and to Banach lattice theory are provided.

Nollaan suppenemattomien jonojen avaruuksia

Tiivistelmä. Olkoon E Banachin avaruus (tai Banachin hila), olkoon τ avaruuden E vektori-

topologia ja olkoon x avaruuden E alkioiden jono (tai positiivinen jono), joka ei suppenene nollaan

topologiassa τ . Tässä työssä näytetään, kuinka voidaan rakentaa ääretönulotteisia Banachin ava-

ruuksia (tai Banachin hiloja), jotka koostuvat origon lisäksi sellaisista avaruuden E jonoista, jotka

eivät suppene nollaan topologiassa τ ja jotka sisältävät jonon x osajonon. Tällä on useita sovelluksia

sekä Banachin avaruuksien että Banachin hilojen teoriaan.

1. Introduction

In Banach space theory and Banach lattice theory, infinite dimensional spaces
consisting of sequences converging to zero with respect to some topology play a
central role. The space c0 of scalar sequences converging to zero and, for a Banach
space E, the space c0(E) of E-valued norm null sequences and the space cw0 (E) of
E-valued weakly null sequences are classical examples. The other side of the coin
makes us wonder about infinite dimensional spaces consisting, up to the origin, of
sequences that do not converge to zero. An obvious difficulty is that, unlike sequences
converging to zero, it is not true that the sum of two sequences not converging to zero
does not converge to zero either. The purpose of this paper is to develop a technique
to construct such spaces, which improves known results and provides new ones.

Spaces of sequences not converging to zero have already been constructed in the
context of lineability, see [8, Chapter 3]. In this setting, a subset A of a Banach
space (or a topological vector space) E is said to be spaceable if there is a closed
infinite dimensional subspace W of E contained in A ∪ {0}. A usual technique to
construct the space W consists in a convenient manipulation of a given starting
vector x ∈ A. If, in addition, the mother vector x belongs to W , then A is said
to be pointwise spaceable (see [52]). This notion has been investigated recently, see,
e.g., [10, 19, 31, 44, 56], due to the fact that, quite often, spaceability proofs do not
provide pointwise spaceability.
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When the underlying space E is a sequence space, sometimes one can get a bit
more than spaceability and a bit less than pointwise lineability: maybe that, given a
sequence x ∈ A, one can find a closed infinite dimensional subspace W of E contained
in A∪{0} and containing a subsequence of x. In this case, we shall say that the set A
is almost pointwise spaceable. We believe that the results we prove and the examples
we give in this paper justify the study of this notion, but, for the moment, let us give
a motivating example. On the one hand, it is easy to see that the set

C =
{

(aj)
∞
j=1 ∈ ℓ∞ : a2j−1 ·a2j = 0 for every j and (a2j−1 + a2j)

∞
j=1

does not converge to 0
}

is spaceable. On the other hand, it seems to us that it is far from obvious whether or
not C is (almost) pointwise spaceable. We shall settle this question in Example 2.8.

In Section 2 we prove a general theorem (cf. Theorem 2.5) that gives conditions on
a (non necessarily linear) map f : E −→ F between Banach spaces, on a subset A of
ℓ∞(E) and on a vector topology τ on F so that the set of E-valued sequences (xj)

∞
j=1

belonging to A such that (f(xj))
∞
j=1 does not converge to zero with respect to τ is

almost pointwise spaceable in ℓ∞(E). If E is a Banach lattice, then given any positive
sequence x ∈ A, the general theorem assures the existence of an infinite dimensional
closed sublattice of ℓ∞(E) contained in A ∪ {0} and containing a subsequence of x
(cf. Theorem 4.2). The proof of our general theorem is a refinement of a technique
introduced by Jiménez-Rodŕıguez [41].

In Section 3, devoted to applications to Banach space theory, we obtain corol-
laries about non-completely continuous operators; Banach spaces failing the Schur
property; non-weakly sequentially continuous polynomials; Banach spaces failing the
polynomial Schur property; sets of weak∗-null non-norm null sequences in dual Ba-
nach spaces; non-p-convergent operators; Banach spaces failing the Grothendieck
property; and non-pseudo weakly compact operators.

In Section 4, devoted to applications to Banach lattice theory, we prove corollaries
about sets of order bounded (or norm bounded), disjoint, non-norm null sequences;
Banach lattices failing the following properties: disjoint Grothendieck property, pos-
itive Schur property, dual positive Schur property, positive Grothendieck property;
and to operators not belonging to the following classes: order weakly compact oper-
ators, M-weakly compact operators, almost Dunford–Pettis operators, and weak M

weakly compact operators.
Some of the applications above improve known results and some are the first

lineability-type results obtained to their specific situations.
Throughout the paper, Banach spaces are real or complex and Banach lattices

are always real. The topological dual of a Banach space/lattice E shall be denoted
by E∗. By an operator we mean a bounded linear operator, and T ∗ stands for the
adjoint of the operator T . For the language and notation of Banach space theory, we
refer to [16, 45]. For topological vector spaces, see [16, Chapter 8]; for homogeneous
polynomials, see [29, 48]; for Banach lattices, see [1, 2, 46].

2. Main result and first consequences

As mentioned in the Introduction, we introduce a concept which, in spaces con-
sisting of Banach-valued sequences, lies between spaceability and pointwise space-
ability. Let E be a Banach space. A linear subspace of EN endowed with a complete
norm shall be called a Banach sequence space. Examples: (i) The spaces c0(E) of E-
valued norm null sequences, cw0 (E) of E-valued weakly null sequences, and ℓ∞(E) of
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bounded E-valued sequences, are Banach sequence spaces with the supremum norm.
(ii) For 1 ≤ p < ∞, the spaces ℓp(E) of absolutely p-summable E-valued sequences
and ℓwp (E) of weakly p-summable E-valued sequences are Banach sequence spaces
endowed with their natural norms (see [28]). In this paper we are interested in Ba-
nach sequence spaces consisting of sequences which do not converge to zero in certain
topologies.

Definition 2.1. A nonvoid subset A of a Banach sequence space X is said to be
almost pointwise spaceable if, for every sequence x ∈ A, there exists a closed infinite
dimensional subspace of X contained in A ∪ {0} and containing a subsequence of x.

Definition 2.2. A map f : E −→ F between topological vector spaces is said
to be of homogeneous type if f is continuous at 0 and there exists a nonzero integer
number n such that f(λx) = λnf(x) for every scalar λ 6= 0 and every x ∈ E. It is
easy to see that f(0) = 0 in this case.

Example 2.3. (a) Continuous linear operators between topological vector spaces
are maps of homogeneous type.

(b) A map P : E −→ F between topological vector spaces is a homogeneous

polynomial if there are n ∈ N and an n-linear operator A : En −→ F such that
P (x) = A(x, . . . , x) for every x ∈ E (see [29]). Continuous homogeneous polynomials
are maps of homogeneous type.

(c) A quite useful map of homogeneous type, which is neither a linear operator
nor a homogenous polynomial, shall be presented and used in Example 2.8.

Definition 2.4. Let E be a Banach space. A subset A of ℓ∞(E) is said to be:

(i) Subsequence invariant if subsequences of sequences belonging to A belong to
A as well.

(ii) ℓ∞-complete if, for (xj)
∞
j=1 ∈ A and (αj)

∞
j=1 ∈ ℓ∞, it holds (αjxj)

∞
j=1 ∈ A.

Plenty of subsequence invariant and ℓ∞-complete sets shall appear along the
paper.

A topology τ on a linear space shall be called a vector topology if (E, τ) is a
topological vector space. In this case, a sequence (xj)

∞
j=1 in E that converges to zero

with respect to τ shall be called a τ -null sequence, in symbols, xj
τ

−→ 0. Otherwise,

the sequence is called non-τ -null, in symbols xj

τ

6−→ 0. For the norm topology on a
normed space we simply write xj −→ 0 and xj 6−→ 0.

Given two topologies τ and τ ′ on the same set, we say that τ is weaker than τ ′

if τ ⊆ τ ′. The weak topology on a normed space and the weak∗ topology on a dual
space shall be denoted by ω and ω∗, respectively.

As pointed out in the Introduction, the proof of our main result is a refinement
of an argument due to Jiménez-Rodŕıguez [41].

Theorem 2.5. Let f : E −→ F be a map of homogeneous type between Banach
spaces, let A be a subsequence invariant and ℓ∞-complete subset of ℓ∞(E), and let
τ be a vector topology on F weaker than the norm topology. Then the subset C of
sequences (xj)

∞
j=1 in A for which (f(xj))

∞
j=1 is non-τ -null is empty or almost pointwise

spaceable in ℓ∞(E). Moreover, C ∩ cw0 (E) is empty or almost pointwise spaceable in
cw0 (E).

Proof. Suppose that C is nonempty and pick (zj)
∞
j=1 ∈ C. Since f(zj)

τ

6−→0 in F ,
by a well known fact about convergent sequences in topological spaces there exists a
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subsequence (yj)
∞
j=1 of (zj)

∞
j=1 so that

(1) no subsequence of (f(yj))
∞
j=1 converges to 0 with respect to the topology τ.

In particular, f(yj)
τ

6−→0, hence ‖f(yj)‖ 6−→ 0 because τ is weaker than the norm
topology. Then there are ε > 0 and a subsequence (xj)

∞
j=1 of (yj)

∞
j=1 such that

‖f(xj)‖ ≥ ε for every j. By the continuity of f in 0, there exists δ > 0 so that
‖f(x)‖ = ‖f(x)− f(0)‖ < ε for every x ∈ E with ‖x‖ < δ. It follows that ‖xj‖ ≥ δ

for every j. Since (xj)
∞
j=1 is a subsequence of (zj)

∞
j=1 ∈ A and A is subsequence

invariant, we have (xj)
∞
j=1 ∈ A. As (f(xj))

∞
j=1 is a subsequence of (f(yj))

∞
j=1, from

(1) we get that f(xj)
τ

6−→0. This proves that (xj)
∞
j=1 ∈ C.

Let us consider the set of prime numbers {pk : k ∈ N} increasingly ordered and
the surjective map G : N− {1} −→ N given by

G(q) = k, where pk = min{p : p is prime and divides q}.

We also consider the map

T : ℓ∞ −→ ℓ∞(E), T ((aj)
∞
j=1) = (aG(j+1)xj)

∞
j=1.

Since (aG(j+1))
∞
j=1 ∈ ℓ∞, (xj)

∞
j=1 ∈ A and A is ℓ∞-complete, T (ℓ∞) ⊆ A ⊆ ℓ∞(E);

in particular, T is well defined. Note that, in the case that (zj)
∞
j=1 ∈ cw0 (E), we

have xj
ω

−→ 0 (because subsequences of weakly null sequences are weakly null) and
(aG(j+1))

∞
j=1 ∈ ℓ∞. Then, for every x∗ ∈ E∗,

x∗(aG(j+1)xj) = aG(j+1)x
∗(xj) −→ 0,

which proves that T ((aj)
∞
j=1) ∈ cw0 (E). So, T (ℓ∞) ⊆ cw0 (E) in the case that C ∩

cw0 (E) 6= ∅.
It is plain that T is linear. As (xj)

∞
j=1 ∈ A ⊆ ℓ∞(E), there is L > 0 so that

‖xj‖ ≤ L for every j. For every (aj)
∞
j=1 ∈ ℓ∞, using that G surjective we have

{|aj| : j ∈ N} = {|aG(j+1)| : j ∈ N}, from which it follows that

δ‖(aj)
∞
j=1‖∞ = sup

j

δ|aj| = sup
j

δ|aG(j+1)| ≤ sup
j

|aG(j+1)| · ‖xj‖ = sup
j

‖aG(j+1)xj‖

= ‖T (aj)
∞
j=1‖∞ = sup

j

|aG(j+1)| · ‖xj‖ ≤ L · sup
j

|aj | = L‖(aj)
∞
j=1‖∞.

We have just proved that T is an isomorphism into; in particular T (ℓ∞) is a closed
subspace of ℓ∞(E) (of cw0 (E) in the case that C ∩ cw0 (E) 6= ∅) isomorphic to ℓ∞. Since
T ((1, 1, 1, 1, . . .)) = (xj)

∞
j=1, T (ℓ∞) contains a subsequence of the original sequence

(zj)
∞
j=1.
All that is left to prove is that T (ℓ∞) ⊆ C∪{0}. We already know that T (ℓ∞) ⊆ A.

Let 0 6= ξ ∈ T (ℓ∞) be given, say ξ = T ((aj)
∞
j=1) = (aG(j+1)xj)

∞
j=1 for some sequence

(aj)
∞
j=1 ∈ ℓ∞. As ξ 6= 0, there is j such that aG(j+1) 6= 0. Calling p the smallest prime

number that divides j + 1 and m the position of p at the list of prime numbers, we
have

m = G(j + 1) = G(p) = G(p2) = G(p3) = · · · = G(pk) = · · · .

Therefore, 0 6= aG(j+1) = am = G(pk) for every k. Then (f(amxpk−1))
∞
k=1 =

(f(aG(pk)xpk−1))
∞
k=1 is a subsequence of (f(aG(j+1)xj))

∞
j=1. Suppose that f(amxpk−1)

τ
−→ 0. Calling n the nonzero integer number that works for f in definition of maps
of homogeneous type, using that τ is a vector topology and that am 6= 0, we get

f(xpk−1) = f

(

am

am
xpk−1

)

=
1

anm
f(amxpk−1)

τ
−→

1

anm
· 0 = 0.
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Noting that (xpk−1)
∞
k=1 is a subsequence of (xj)

∞
j=1, which, in its turn, is a subse-

quence of (yj)
∞
j=1, it follows that (f(xpk−1))

∞
k=1 is a subsequence of (f(yj))

∞
j=1. By

(1), the convergence f(xpk−1)
τ

−→ 0 does not hold. This contradiction yields that
(f(amxpk−1))

∞
k=1 is a non-τ -null sequence. Since (f(amxpk−1))

∞
k=1 is a subsequence

of (f(aG(j+1)xj))
∞
j=1, we have that (f(aG(j+1)xj))

∞
j=1 is a non-τ -null sequence as well.

This proves that ξ ∈ C and completes the proof. �

Remark 2.6. The reviewer kindly pointed out to us that, in the theorem above,
the assumption that f is of homogeneous type can be replaced with the following
more general condition: f is continuous at 0, f(0) = 0, and f(λx) = ϕ(λ, f(x)) for
all λ 6= 0 and x ∈ E, where ϕ : K × F → F is a continuous function on K × {0}
for any vector topology on F with ϕ(λ, 0) = 0. Examples of such functions ϕ are
ϕ(λ, y) = φ(λ)y, where φ : K → K is a continuous map.

It is worth noting that, in the proof above, we had to pass to a subsequence in
order to get a seminormalized sequence, which is a necessary step for the operator
T to be an isomorphism into. So, if we can pick a seminormalized sequence at the
begining of the proof, then the whole sequence, and not only a subsequence of it, shall
belong to the resulting space T (ℓ∞). This remark leads to the following consequence
of the proof.

Corollary 2.7. Let f, A, τ and C be as in Theorem 2.5. If there is a seminor-
malized sequence x belonging to C, then there exists a closed infinite dimensional
subspace of ℓ∞(E) (or cw0 (E)) contained in C ∪ {0} and containing x.

Next we apply the main result, using a map of homogeneous type which is neither
a linear operator nor a homogeneous polynomial, to solve the problem stated in the
Introduction.

Example 2.8. The point is to prove that the set

C = {(aj)
∞
j=1 ∈ ℓ∞ : a2j−1 ·a2j = 0 for every j and a2j−1 + a2j 6−→ 0}

is almost pointwise spaceable in ℓ∞. Let us see that the map f : R2 −→ R
2 given by

f(x, y) =

{

(0, y), if x = 0,

(y, x), if x 6= 0,

is of homogeneous type (with n = 1): for λ 6= 0 and (x, y) ∈ R
2,

f(λ(x, y)) =

{

(0, λy), if x = 0,

(λy, λx), if x 6= 0,
= λ

{

(0, y), if x = 0,

(y, x), if x 6= 0,
= λf(x, y).(2)

Denoting by ‖ · ‖∞ the maximum norm on R
2 and using that f(0, 0) = (0, 0), the

inequality ‖f(x, y)‖∞ ≤ ‖(x, y)‖∞ gives the continuity of f at (0, 0). It is easy to see
that f is nonlinear: f((0, 1)+ (1, 1)) = (2, 1) 6= (1, 2) = f(0, 1)+ f(1, 1). By (2), f is
not an n-homogeneous polynomial for any n ≥ 2 [48, Ex. 2.C, p. 16]. It is clear that
the set

A =
{

(

(aj , bj)
)∞

j=1
∈ ℓ∞(R2) : ajbj = 0 for every j

}

is subsequence invariant and ℓ∞-complete, and that the set

D =
{

(

(aj , bj)
)∞

j=1
∈ A : f(aj, bj) 6−→ (0, 0)

}
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is nonempty. By Theorem 2.5, D is almost pointwise spaceable in ℓ∞(R2). For any
sequence

(

(aj, bj)
)∞

j=1
∈ A, it holds

(3) aj + bj −→ 0 ⇐⇒ f(aj, bj) −→ (0, 0).

Indeed, noting that aj = 0 or bj = 0 for every j, we have

f(aj , bj) =

{

(0, bj), if aj = 0,

(0, aj), if aj 6= 0,
= (0, aj + bj)

for every j, from which (3) follows. Therefore, the set

D =
{

(

(aj , bj)
)∞

j=1
∈ ℓ∞(R2) : ajbj = 0 for every j and aj + bj 6−→ 0

}

is almost pointwise spaceable in ℓ∞(R2). Consider now the isometric isomorphism

T : ℓ∞ −→ ℓ∞(R2), T
(

(aj)
∞
j=1

)

=
(

(a2j−1, a2j)
)∞

j=1
.

Given a sequence x ∈ C, we have T (x) ∈ D, so there is a closed infinite dimensional
subspace W of ℓ∞(R2) containing a subsequence of T (x) and W ⊆ D ∪ {0}. Then,
T−1(W ) is a closed infinite dimensional subspace of ℓ∞ containing a subsequence of
x and T−1(W ) ⊆ C ∪ {0}. This proves that C is almost pointwise spaceable in ℓ∞.

In the following sections we shall provide many more concrete applications of the
main theorem, as well as of its consequences we will prove next.

Before proceeding, this is the moment to say that, unlike the case of spaceability,
pointwise spaceability and almost pointwise spaceability do not pass (automatically)
from a set to its supersets. For instance, c0 is pointwise spaceable in ℓ∞ whereas
c0 ∪ {(1, 1, 1, 1, . . .)} is not even almost pointwise spaceable in ℓ∞.

Recall that a subset A of a linear space is balanced if λA ⊆ A for every scalar λ
with |λ| ≤ 1.

Proposition 2.9. Let f : E −→ F be a map of homogeneous type between
Banach spaces, let τE be a vector topology on E and let τF be a vector topology on
F weaker than the norm topology. Then

(a) The set

C1 = {(xj)
∞
j=1 ∈ ℓ∞(E) : xj

τE−→ 0 and f(xj)
τF

6−→ 0}

is empty or almost pointwise spaceable in ℓ∞(E). Moreover, C1 ∩ cw0 (E) is
empty or almost pointwise spaceable cw0 (E).

(b) If, in addition, τ is a vector topology on F , then the set

C2 = {(xj)
∞
j=1 ∈ ℓ∞(E) : xj

τE−→ 0, f(xj)
τ

−→ 0 and f(xj)
τF

6−→ 0}

is empty or almost pointwise spaceable in ℓ∞(E). Moreover, C2 ∩ cw0 (E) is
empty or almost pointwise spaceable in cw0 (E).

Proof. (a) The set A := {(xj)
∞
j=1 ∈ ℓ∞(E) : xj

τE−→ 0} is obviously subsequence
invariant. By Theorem 2.5 it is enough to show that A is ℓ∞-complete. To do so, let
(aj)

∞
j=1 ∈ ℓ∞ and (xj)

∞
j=1 ∈ A be given, and let U be a neighborhood of 0 with respect

to τE . If aj = 0 for each j ∈ N, then there is nothing to do because 0 ∈ U . So, we

can assume that ‖(ak)
∞
k=1‖∞ 6= 0. Since xj

τE−→ 0 and τE is a vector topology, we

have ‖(ak)
∞
k=1‖∞xj

τE−→ 0. Since the origin of any topological vector space admits a
neighborhood basis consisting of balanced sets [16, Proposition 8.1.7], there exists a

balanced neighborhood V of 0 such that V ⊆ U. The convergence ‖(ak)
∞
k=1‖∞xj

τE−→ 0
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gives a natural number j0 ∈ N so that ‖(ak)
∞
k=1‖∞xj ∈ V for every j ≥ j0. Using

that V is balanced and that
|aj |

‖(ak)
∞

k=1
‖∞

≤ 1 for any j, we get

ajxj =
aj

‖(ak)∞k=1‖∞
‖(ak)

∞
k=1‖∞xj ∈ V ⊆ U

for every j ≥ j0. It follows that ajxj
τE−→ 0, from which we obtain (ajxj)

∞
j=1 ∈ A,

proving that A is ℓ∞-complete.
(b) Again, by Theorem 2.5 it is enough to check that the set

A := {(xj)
∞
j=1 ∈ ℓ∞(E) : xj

τE−→ 0 and f(xj)
τ

−→ 0}

is ℓ∞-complete and subsequence invariant. Subsequence invariance is obvious, and
ℓ∞-complete-ness follows from an adaptation of the reasoning used in the proof of (a)

as follows: to prove that f(ajxj)
τ

−→ 0, use that τ is also a vector topology, let n be
the natural number that works in the definition of map of homogeneous type for f and
work with the convergence ‖(ak)

∞
k=1‖

n
∞f(xj)

τ
−→ 0 instead of ‖(ak)

∞
k=1‖∞f(xj)

τ
−→

0. �

3. Applications to Banach spaces

In this section we give applications of our results to Banach spaces failing well
studied properties and to operators/homogeneous polynomials not belonging to well
studied classes. Linear operators and homogeneous polynomials in this section are
always continuous and act between Banach spaces. We shall use (without warn-
ing) that linear operators and homogeneous polynomials are maps of homogeneous
type and that the weak topology on a Banach space and the weak∗ topology on a
dual Banach spaces are vector topologies weaker than the norm topology. We begin
improving some known results.

A sequence (xj)
∞
j=1 in a Banach space E is polynomially null if P (xj) −→ 0 for

every scalar-valued homogeneous polynomial P on E.
• A Banach space space E has the polynomial Schur property if polynomially null

sequence in E are norm null. Such spaces are also called Λ-spaces. This property was
introduced by Carne, Cole and Gamelin in [20], further developments can be found
in, eg., [9, 13, 14, 30, 40].

• A bounded linear operator is completely continuous if it sends weakly null
sequences to norm null sequences. A continuous homogeneous polynomial is weakly
sequentially continuous if it sends weakly null sequences to norm null sequences.
These notions are classic and the literature about them is vast.

Corollary 3.1. (a) Let T : E −→ F be a non-completely continuous operator
between Banach spaces. Then the set of E-valued weakly null sequences (xj)

∞
j=1 such

that T (xj) 6−→ 0 is almost pointwise spaceable in cw0 (E). Furthermore, if E fails the
Schur property and x is a seminormalized weakly null E-valued sequence, then there
exists a closed infinite dimensional subspace of cw0 (E) consisting, up to the origin, of
weakly null non-norm null sequences containing x.

(b) Let P : E −→ F be a non-weakly sequentially continuous homogeneous poly-
nomial. Then the set of E-valued weakly null sequences (xj)

∞
j=1 such that P (xj) 6−→ 0

is almost pointwise spaceable in cw0 (E).
(c) Let E be a Banach space failing the polynomial Schur property. Then the set

of E-valued polynomially null non-norm null sequences is almost pointwise spaceable
in cw0 (E). Furthermore, if x is a seminormalized polynomially null E-valued sequence,
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then there exists a closed infinite dimensional subspace of cw0 (E) consisting, up to
the origin, of polynomially null non-norm null sequences containing x.

Proof. Note that polynomially null sequences are weakly null, so everything in
all three items happens within cw0 (E). Items (a) and (b) follow from Proposition 2.9.
It is obvious that the set of E-valued polynomially null sequences is subsequence
invariant. To obtain (c) from Theorem 2.5 we just have to check that this set is
ℓ∞-complete. Indeed, given a scalar-valued m-homogeneous polynomial P on E, a
polynomially null sequence (xj)

∞
j=1 in E and (aj)

∞
j=1 ∈ ℓ∞, P (ajxj) = amj P (xj) −→ 0

because P (xj) −→ 0 and (amj )
∞
j=1 is bounded. The second statements of (a) and (c)

follow from Corollary 2.7. �

Item (a) of the corollary above improves [12, Corollary 2.10(a)]. The second
statement of (a) improves [41, Theorem 2.1], which is the original source of the
technique we used to prove our main result. Item (b) improves [12, Corollary 2.10(b)]
and item (c) improves [14, Theorem 2.1(a)].

Examples 3.2. Non-completely continuous operators and non-weakly sequen-
tially continuous homogeneous polynomials are abundant in the literature. The fol-
lowing spaces fail the polynomial Schur property: L1[0, 1], ℓ∞, c0 and Banach spaces
containing a copy of c0 (see [20, Theorems 6.2, 6.5 and 7.5]).

From now on, we shall give applications of our results to situations that, to the
best of our knowledge, have not been handled in the context of lineability thus far.

Corollary 3.3. Let E be a separable Banach space and let T : E −→ E be
a non-completely continuous operator whose adjoint T ∗ is completely continuous.
Then, the set of weak∗-null sequences (x∗

j )
∞
j=1 in E∗ for which T ∗(x∗

j ) 6−→ 0 in E∗ is
almost pointwise spaceable in ℓ∞(E∗).

Proof. By [25, Theorem 3], the set of weak∗-null sequences (x∗
j )

∞
j=1 in E∗ for

which T ∗(x∗
j ) 6−→ 0 in F is nonempty. Actually, there is a normalized weak∗-null

sequence (x∗
j )

∞
j=1 in E∗ such that (T ∗(x∗

j ))
∞
j=1 is seminormalized. The result follows

from Proposition 2.9. �

Examples 3.4. Let E be an infinite dimensional separable Banach space such
that E∗ has the Schur property. For instance, E = c0 or E =

(

⊕∞
j=1Ej

)

0
, where

each Ej is separable and E∗
j has the Schur property. In particular, E =

(

⊕∞
j=1ℓ

j
2

)

0

is a separable infinite dimensional Banach space whose dual E∗ =
(

⊕∞
j=1ℓ

j
2

)

1
is the

Stegall space, which has the Schur property. As an infinite dimensional Banach space
and its dual cannot have the Schur property simultaneously (see [54, Theorem 3] or
[26, Theorem 3 and remark thereafter]), E fails the Schur property. Hence, there
are plenty of non-completely continuous operators from E to E, all of them having
completely continuous adjoints because E∗ has the Schur property.

For the identity operator on a dual Banach space, the next result is more general
than the previous corollary.

Corollary 3.5. Let E be an infinite dimensional Banach space. Then the set of
weak∗-null non-norm null sequences in E∗ is almost pointwise spaceable in ℓ∞(E∗).
Furthermore, given a seminormalized weak∗ null E∗-valued sequence x∗, there is a
closed infinite dimensional subspace of ℓ∞(E∗) consisting, up to the origin, of weak∗-
null non-norm null sequences and containing x∗.
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Proof. The Josefon–Nissenzweig Theorem assures the existence of a normalized
weak∗ null E∗-valued sequence. Using the identity operator on E∗, the first statement
follows from Proposition 2.9 and the second from Corollary 2.7. �

In the corollary above, given a closed infinite dimensional subspace F of E∗, it
is not always true that there is a weak∗-null non-norm null sequence belonging to
F . For an example, take F to be a subspace of ℓ∞ = (ℓ1)

∗ isometrically isomorphic
to ℓ1, which exists because ℓ∞ contains isometric copies of any separable space. To
remedy this situation it is enough to avoid copies of ℓ1:

Corollary 3.6. Let E be Banach space containing no copy of ℓ1 and let F be a
closed infinite dimensional subspace of E∗. Then the set

C = {(x∗
j )

∞
j=1 ∈ ℓ∞(F ) : x∗

j

ω∗

−→ 0 in E∗ and x∗
j 6−→ 0}

is almost pointwise spaceable in ℓ∞(F ).

Proof. The fact that C is nonempty was established in [39, Theorem 1(a)] for
real spaces and extended in [47, Corollary 6] for complex spaces. Given a sequence
x∗ ∈ C, we have x∗ ∈ ℓ∞(E∗), so, using that the norm of F is the norm of E∗, by
Proposition 2.9 there is a closed infinite dimensional subspace V of ℓ∞(E∗) formed,
up to the origin, by weak∗-null sequences non-norm null in E∗ and containing x∗.
Since x∗ ∈ ℓ∞(F ), the proof of Theorem 2.5 makes clear that V is contained in
ℓ∞(F ), therefore V ⊆ C ∪ {0}. �

Let 1 ≤ p < ∞ be given. A sequence (xj)
∞
j=1 in a Banach space E is weakly

p-summable if (x∗(xj))
∞
j=1 ∈ ℓp for every x∗ ∈ E∗ (see [28]).

• A linear operator between Banach spaces is p-convergent if it sends weakly
p-summable sequences to norm null sequences.

This class was introduced in [21, 22]. The case p = 1 was studied, with a
different definition, in [36, 51] under the name unconditionally summing operators,
and, for arbitrary 1 ≤ p < ∞, under the name unconditionally p-summing operators

in [42]. The equivalence of the definitions was proved in [42, Theorem 1.7]. Recent
developments can be found, e.g., in [6, 17, 24].

Corollary 3.7. Let T : E −→ F be non-p-convergent operator, 1 ≤ p < ∞.
Then the set of weakly p-summable in E such that (T (xj))

∞
j=1 is non-norm null in F

is almost pointwise spaceable in cw0 (E
∗).

Proof. It is obvious that the set of weakly p-summable sequences is a subsequence
invariant subset of cw0 (E). Its ℓ∞-completeness is easily checked. So, the result follows
from Theorem 2.5. �

Examples 3.8. Let (ej)
∞
j=1 denote the sequence of canonical unit vectors in

spaces of scalar-valued sequences. Then, (ej)
∞
j=1 is normalized and weakly p-summable

in c0 for every 1 ≤ p < ∞, and it is normalized and weakly r-summable in ℓq, 1 < q <

∞, for every q∗ ≤ r, where q∗ is the conugate of q. Therefore, the identity operator
on c0 fails to be p-convergent for every 1 ≤ p < ∞, and the identity operator on ℓq,
1 < q < ∞, fails to be r-convergent for every q∗ ≤ r.

A Banach space has the Grothendieck property if weak∗ null sequences in its dual
are weakly null. This property was introduced by Grothendieck [38] in 1953 and
has been developed since then. For a comprehensive account on the Grothendieck
property we refer the reader to [37].

One more application of Proposition 2.9 and Corollary 2.7 gives the following:
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Corollary 3.9. Let E be a Banach space failing the Grothendieck property.
Then the set of weak∗-null non-weaklly null sequences in E∗ is almost pointwise
spaceable in ℓ∞(E∗). Furthermore, given a seminormalized weak∗ null non-weakly
null E∗-valued sequence x∗, there is a closed infinite dimensional subspace of ℓ∞(E∗)
consisting, up to the origin, of weak∗-null non-weakly null sequences and containing
x∗.

Examples 3.10. A separable Banach space has the Grothendieck property if
and only if it is reflexive (see [37, p. 263]). For being nonreflexive separable spaces,
c0, ℓ1, L1[0, 1] and C[0, 1] fail the Grothendieck property.

In [53], the authors consider a locally convex (hence vector) topology τR on a
Banach E, called the Right topology, which is the smallest topology on E so that
the following equivalence holds: regardless of the Banach space F , a linear operator
T : E −→ F is weakly compact if and only if T : (E, τR) −→ (F, ‖·‖) is continuous. It
is clear that τR lies between the weak topology and the norm topology. The following
class of operators was also introduced in [53], further developments can be found,
e.g., in [33, 34, 35, 58].

• A bounded linear operator between Banach spaces is pseudo weakly compact if
it maps τR-null sequences in E to norm null sequences in F .

These operators are sometimes called Dunford–Pettis completely continuous opeara-

tors (see [34, Proposition 1]).

Corollary 3.11. Let T : E −→ F be a non-pseudo weakly compact operator.
Then the set of τR-null sequences in E such that (T (xj))

∞
j=1 is non-norm null in F is

almost pointwise spaceable in cw0 (E).

Proof. Since τR is a vector topology weaker than the norm topology and τR-null
sequences are weakly null, because the weak topology is weaker than τR, the result
follows from Proposition 2.9. �

Examples 3.12. Recall that an operator T : E −→ F between Banach spaces:
• Is unconditionally converging if, for every weakly unconditionally Cauchy series

∑∞
j=1 xj in E, the series

∑∞
j=1 T (xj) is unconditionally convergent in F .

• Fixes a copy of c0 if there exists a subspace S of E isomorphic to c0 for which
the restriction of T to S is an isomorphism onto T (S).

In [53, Proposition 14] it is proved that pseudo weakly compact operators are
unconditionally converging; and, according to [27, Exercise 8, p. 64], an operator
fails to be unconditionally converging if and only if it fixes a copy of c0. Therefore,
every operator that fixes a copy of c0 fails to be pseudo weakly compact. In particular,
the identity operator on every Banach space containing a copy of c0 is a non-pseudo
weakly compact operator.

4. Applications to Banach lattices

In this section we shall use freely that, for a Banach lattice E, ℓ∞(E) is a Banach
lattice with the pointwise ordering [2, p. 183]. Unlike the previous sections, we shall
not pass to cw0 (E) in this section because, in general, cw0 (E) is not a sublattice of
ℓ∞(E) (see [14, Remark 2.3(1)]). As usual, E+ denotes the positive cone of the
Banach lattice E. By a Banach sequence lattice we mean a linear subspace X of EN,
where E is a Banach lattice, endowed with a complete norm that makes X a Banach
lattice with the pointwise ordering.
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Definition 4.1. Let A be a subset of a Banach sequence lattice X such that
A ∩ X+ 6= ∅. We say that A is almost positive pointwise latticeable if, for each
positive sequence x∗ ∈ A, there exists a closed infinite dimensional sublattice of X
contained in A ∪ {0} and containing a subsequence of x∗.

To be consistent with the terminology of [14, 49], we should have written almost

positively pointwisely completely latticeable, but, for simplicity, we have shortened the
terminology.

Again, it is worth mentioning that almost positive pointwise latticeability does
not pass, automatically, from a set to its supersets.

Theorem 4.2. Let f : E −→ F be a map of homogeneous type from a Banach
lattice E to a Banach space F , let A be a subsequence invariant and ℓ∞-complete
subset of ℓ∞(E), and let τ be a vector topology on F weaker than the norm topology.
Consider the sets

C1 = {(xj)
∞
j=1 ∈ A : f(xj)

τ

6−→0},

C2 = {(xj)
∞
j=1 ∈ A : (xj)

∞
j=1 is disjoint and f(xj)

τ

6−→0}.

For i = 1, 2, Ci ∩ ℓ∞(E)+ = ∅ or Ci is almost positive pointwise latticeable in ℓ∞(E).

Proof. Suppose that C1 ∩ ℓ∞(E)+ 6= ∅ and let x = (xj)
∞
j=1 be a positive sequence

in A such that f(xj)
τ

6−→0. Considering the operator T : ℓ∞ −→ ℓ∞(E) from the
proof of Theorem 2.5, we know that T (ℓ∞) is a subspace of ℓ∞(E) isomorphic to ℓ∞,
contained in C1 ∪ {0} and containing a subsequence of x. All that is left to prove is
that T (ℓ∞) is a sublattice of ℓ∞(E). To do so, it is enough to check that T is a Riesz
homomorphism. For every sequence a = (aj)

∞
j=1 ∈ ℓ∞, using that xj ≥ 0 for every j

and the definition of T by means of the surjective map G : N− {1} −→ N, we get

|T (a)| = |T ((aj)
∞
j=1)| = |(aG(k+1)xk)

∞
k=1| = (|aG(k+1)xk|)

∞
k=1 = (|aG(k+1)|xk)

∞
k=1

= T ((|ak|)
∞
k=1) = T (|(ak)

∞
k=1|) = T (|a|).

This proves that T is a Riesz homomorphism and completes the proof for C1.
Suppose now that C2 ∩ ℓ∞(E)+ 6= ∅ and let x = (xj)

∞
j=1 be a positive disjoint

sequence in C2. From the case of C1 we know that T (ℓ∞) is a sublattice of ℓ∞(E)
isomorphic to ℓ∞, contained in C1 ∪ {0} and containing a subsequence of x. We just
have to prove that T (ℓ∞) ⊆ C2 ∪ {0}, that is, we have to prove that each sequence
of T (ℓ∞) is disjoint. Given a = (aj)

∞
j=1 ∈ ℓ∞, since xj ⊥ xk for all j 6= k, we

have aG(j+1)xj ⊥ aG(k+1)xk for all j 6= k by [1, Lemma 1.9]. Then the sequence
T (a) = (aG(j+1)xj)

∞
j=1 is disjoint. �

Reasoning as we did before Corollary 2.7, we get the following.

Corollary 4.3. Let E, F, f, A, τ, C1 and C2 be as in Theorem 4.2. For i = 1, 2,
if there is a seminormalized sequence x belonging to Ci, then there exists a closed
infinite dimensional sublattice of ℓ∞(E) contained in Ci ∪ {0} and containing x.

As to applications of the results above, we start with Banach lattices not enjoying
certain well studied properties.

Corollary 4.4. For any Banach lattice E, each of the sets

C1 = {(xj)
∞
j=1 ∈ EN : (xj)

∞
j=1 is order bounded, disjoint and xj 6−→ 0} and

C2 = {(xj)
∞
j=1 ∈ EN : (xj)

∞
j=1 is norm bounded, disjoint and xj

ω

6−→ 0}
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is empty or almost positive pointwise latticeable in ℓ∞(E).

Proof. It is obvious that C1 ∪ C2 ⊆ ℓ∞(E). Let us see that Ci 6= ∅ =⇒ Ci
∩ ℓ∞(E)+ 6= ∅. Indeed, given (xj)

∞
j=1 ∈ Ci, it is obvious that the sequence (|xj |)

∞
j=1

is disjoint and order bounded (if a ≤ xj ≤ b for every j, then 0 ≤ |xj| ≤ b ∨ (−a)
for every n). On the one hand, it is also obvious that, if xj 6−→ 0, then |xj | 6−→ 0.

On the other hand, it is not difficult to check that, if xj

ω

6−→ 0, then |xj |
ω

6−→ 0.
Therefore, (|xj |)

∞
j=1 ∈ Ci ∩ ℓ∞(E)+.

From Theorem 4.2, the case of C2 follows immediately; and for C1 it suffices to
show that the set of order bounded E-valued sequences is subsequence invariant and
ℓ∞-complete. Subsequence invariance is straighforward. Let (xj)

∞
j=1 be an order

bounded E-valued sequence, say, |xj| ≤ w for every j and some w ∈ E+, and let
(aj)

∞
j=1 ∈ ℓ∞ be given, say, |aj | ≤ c2 for every j and some c ≥ 0. Then, |ajxj | =

|aj|·|xj| ≤ c|xj | ≤ cw for every j, proving that the set of order bounded sequences is
ℓ∞-complete. �

Examples 4.5. (1) For every Banach lattice E not having order continuous
norm, the set C1 of the corollary above is nonempty by [2, Theorem 4.14], thus
the set of non-norm null, order bounded and disjoint E-valued sequences is almost
positive pointwise latticeable in ℓ∞(E).

(2) For every Banach lattice E such that E∗ does not have order continuous norm,
the set C2 of the corollary above is nonempty by [2, Theorem 4.69], thus the set of
non-weakly null, norm bounded and disjoint E-valued sequences is almost positive
pointwise latticeable in ℓ∞(E).

On the one hand, it is known that order bounded disjoint sequences in Banach
lattices are weakly null [2, p. 192]; on the other hand, the following property was
introduced in [62] in order to study reflexive Banach lattices:

• A Banach lattice has the disjoint Grothendieck property if norm bounded dis-
joint sequences in its dual are weakly null.

Corollary 4.6. Let E be a Banach lattice failing the disjoint Grothendieck
property. Then the set of norm bounded disjoint non-weakly null E∗-valued sequences
is almost positive pointwise latticeable in ℓ∞(E∗).

Proof. The failure of the disjoint Grothendieck property gives a norm bounded
disjoint non-weakly null sequence (x∗

j)
∞
j=1 in E∗. The same reasoning of the proof

of Corollary 4.4 shows that (|x∗
j |)

∞
j=1 is a positive norm bounded disjoint non-weakly

null sequence in E∗. The result follows from Corollary 4.4. �

Examples 4.7. ℓ∞ and Banach lattices containing a copy of ℓ∞ fail the disjoint
Grothendieck property (see [2, Theorem 4.56] and [62, p. 4]).

Next we state the counterpart of Proposition 2.9 to Banach lattices. The argu-
ment is essentially the same, with Theorem 4.2 playing the role of Theorem 2.5, so
we skip the proof.

Proposition 4.8. Let E be a Banach lattice, let F be a Banach space, let
f : E −→ F be a map of homogeneous type, and let τE , τF be vector topologies in E



Spaces of sequences not converging to zero 53

and F , respectively, with τF weaker than the norm topology. Consider the sets

C1 = {(xj)
∞
j=1 ∈ ℓ∞(E) : xj

τE
−→ 0 and f(xj)

τF

6−→ 0} and

C2 = {(xj)
∞
j=1 ∈ ℓ∞(E) : (xj)

∞
j=1 is disjoint, xj

τE
−→ 0 and f(xj)

τF

6−→ 0}.

For i = 1, 2, if Ci contains a positive sequence, then it is almost positive pointwise
latticeable.

The following property, introduced by Wnuk [59, 60] and Räbiger [55], is a quite
popular topic in Banach lattice theory; in particular it is the subject of a number of
recent papers, see, e.g., [5, 7, 11, 15, 23] and references therein.

• A Banach lattice has the positive Schur property if positive (or disjoint or
positive disjoint) weakly null sequences are norm null.

For a Banach lattice E failing the positive Schur property, the existence of a closed
infinite dimensional sublattice of ℓ∞(E) consisting, up to 0, of disjoint non-norm null
weakly null E-valued sequences, was established in [14, Theorem 2.1(b)]. In order to
improve this result, let us recall the definition of the absolute weak topology:

Given a Banach lattice E and a functional x∗ ∈ E∗, consider the seminorm
x ∈ E 7→ px∗(x) := |x∗|(|x|). The absolute weak topology is the locally convex-solid
topology |σ|(E,E∗) on E generated by the family of seminorms {px∗ : x∗ ∈ E∗},
see [2, p. 172]. As a locally convex topology, the absolute weak topology is a vector
topology, and it is clear that it lies between the weak and norm topologies. A sequence
that converges to 0 with respect to this topology shall be called an absolutely weakly

null sequence, in symbols, xj

|σ|
−→0.

Corollary 4.9. If the Banach lattice E fails the positive Schur property, then
the sets

C1 = {(xj)
∞
j=1 ∈ ℓ∞(E) : xj

|σ|
−→0 and xj 6−→ 0} and

C2 = {(xj)
∞
j=1 ∈ ℓ∞(E) : (xj)

∞
j=1 is disjoint, xj

|σ|
−→ 0 and xj 6−→0}

are almost positive pointwise latticeable.

Proof. As E fails the positive Schur property, there exists a positive disjoint
weakly null non-norm null sequence (xj)

∞
j=1 in E. Since a positive sequence is abso-

lutely weakly null if and only if it is weakly null, (xj)
∞
j=1 is absolutely weakly null.

Hence, C1 ∩ ℓ∞(E)+ 6= ∅ 6= C2 ∩ ℓ∞(E)+. Proposition 4.8 yields the result. �

It is worth mentioning that the corollary above generalizes [14, Theorem 2.1(b)]
in three directions: here we work with smaller sets, with the weak absolute topology
and we prove almost positive pointwise latticeability.

Examples 4.10. The following are examples of Banach lattices failing the pos-
itive Schur property: (i) Reflexive infinite dimensional spaces, in particular, for
1 < p < ∞, ℓp(Γ) for Γ infinite and infinite dimensional Lp(µ)-spaces; (ii) Infi-
nite dimensional AM-spaces, in particular, c0(Γ), ℓ∞(Γ) for Γ infinite, and C(K) for
any infinite compact Hausdorff space; (iii) Infinite dimensional Banach lattices not
containing a lattice copy of ℓ1.

A Banach lattice E has the:
• Dual positive Schur property if positive disjoint weak∗ null sequences in E∗ are

norm null.
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• Positive Grothendieck property if positive weak∗ null sequences in E∗ are weakly
null.

These two properties were introduced by Wnuk [61], where he remarked that a
Banach lattice E has the dual positive Schur property if and only if E has the positive
Grothendieck property and E∗ has the positive Schur property. Recent developments
can be found in [15, 18, 32].

The absolute weak∗ topology on the dual E∗ of a Banach lattice E is the locally
convex-solid topology on E∗ generated by the family of seminorms {qx : x ∈ E},
where qx(x

∗) = |x∗|(|x|) for x∗ ∈ E∗ and x ∈ E [2, p. 176]. This topology lies
between the weak∗ and the weak topologies on E∗.

Corollary 4.11. Let E be a Banach lattice.

(a) If E fails the positive Grothendieck property, then the set of weak∗ null non
weakly null E∗-valued sequences is almost positive pointwise latticeable in
ℓ∞(E∗).

(b) If E fails the dual positive Schur property, then the set of weak∗ null (or
absolutely weak∗-null) disjoint non-norm null E∗-valued sequences is almost
positive pointwise latticeable in ℓ∞(E∗).

Proof. Each item follows from the definition of the corresponding property and
Proposition 4.8. For the part of the absolute weak∗-null topology on (b), use that
positive weak∗-null sequences are absolutely weak∗-null. �

Examples 4.12. Infinite dimensional AL-spaces and c0 fail the positive Groth-
endieck property [61, p. 764, p. 762]. Reasoning with the canonical unit vectors, it
is easy to see that c0 fails the dual positive Schur property. More generally, if there
exists a positive non-compact operator from a Banach lattice E to c0, then E fails
the dual positive Schur property [61, Proposition 2.7].

We shall finish the paper by showing that the results of this section can be applied
to operators not belonging to several already studied classes. We do not intend to
be exhaustive, we just want to illustrate that the results apply to classical classes of
operators, to classes that have been explored by many experts and to very recently
introduced classes. References to each of these classes shall be given, so examples of
operators not belonging to each of these classes can be found in the corresponding
references.

An operator T : E −→ F from a Banach lattice E to a Banach space F is:
• Order weakly compact if T ([0, x]) is relatively weakly compact in F for every

x ∈ E+. This class, introduced by Dodds in 1975, is a classic topic in Banach lattice
theory, see [2, Chapter 5] and [46, Section 3.4].

• M-weakly compact if T maps norm bounded disjoint sequences in E to norm
null sequences in F . This class, introduced by Meyer-Nieberg in 1974, is also a classic
topic in Banach lattice theory, see [2, Chapter 5] and [46, Section 3.6].

• Almost Dunford-Pettis if T maps disjoint weakly null sequences in E to norm
null sequences in F . This class was introduced by Sánchez [57], significant develop-
ments appeared in [4], for recent contributions, see [5, 7, 11, 43, 50].

• Weak M weakly compact if T maps disjoint norm bounded sequences in E

to weakly null sequences in F . This class was recently introduced in [50] and a
development appeared in [3].

Corollary 4.13. Let T : E −→ F be an operator from a Banach lattice E to a
Banach space F .
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(a) If T fails to be order weakly compact, then the set of order bounded weakly
null sequences (xj)

∞
j=1 in E such that T (xj) 6−→ 0 in F is almost positive

pointwise latticeable in ℓ∞(E).
(b) If T fails to be almost Dunford–Pettis, then the set of disjoint weakly null

sequences (xj)
∞
j=1 in E such that T (xj) 6−→ 0 in F is almost positive pointwise

latticeable in ℓ∞(E).

Proof. (a) As T is not order weakly compact, by [2, Ex. 3, p. 336] there exists a
positive order bounded weakly null sequence (xj)

∞
j=1 in E such that T (xj) 6−→ 0. As

the set of order bounded sequences is subsequence invariant and ℓ∞-complete (see
the proof of Corollary 4.4), the result follows from Theorem 4.2.

(b) As T is not almost Dunford–Pettis, by [4, Theorem 2.2] there exists a positive
disjoint weakly null sequence (xj)

∞
j=1 in E such that T (xj) 6−→ 0. The result follows

from Proposition 4.8. �

Corollary 4.14. Let T : E −→ F be a positive operator between Banach lat-
tices.

(a) If T fails to be M-weakly compact, then the set of norm bounded disjoint
sequences (xj)

∞
j=1 in E such that T (xj) 6−→ 0 in F is almost positive pointwise

latticeable in ℓ∞(E).
(b) If T fails to be weak M weakly compact, then the set of disjoint bounded

(xj)
∞
j=1 in E such that T (xj)

ω

6−→ 0 in F is almost positive pointwise latticeable
in ℓ∞(E).

Proof. (a) Since T is not M-weakly compact, there is a norm bounded disjoint
sequence (xj)

∞
j=1 in E such that T (xj) 6−→ 0. It is clear that (|xj |)

∞
j=1 is a positive

norm bounded disjoint sequence in E. Using that T is positive and T (|xj|) 6−→ 0, the
inequality |T (xj)| ≤ T (|xj|), which implies ‖T (xj)‖ ≤ ‖T (|xj|)‖, gives T (|xj |) 6−→ 0.
The result follows from Proposition 4.8.

(b) The proof is almost the same as in (a), the only difference is that we have to

use that T (xj)
ω

6−→ 0 implies T (|xj|)
ω

6−→ 0; but this is also an easy consequence of
the positivity of T . �
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[3] Alpay, Ö. Ş., E. Emelyanov, and S. Gorokhova: Duality and norm completeness in the
classes of limitedly Lwc and Dunford–Pettis Lwc operators. - Turkish J. Math. 48, 2024, 267–
278.

[4] Aqzzouz, B., and A. Elbour: Some characterizations of almost Dunford–Pettis operators
and applications. - Positivity 15, 2011, 369–380.

[5] Ardakani, H., V. C. C. Miranda: Dunford–Pettis like sets with applications to spaces of
operators. - Bull. Braz. Math. Soc. (N.S.) 56, 2025, Paper No. 18, 18 pp.

[6] Ardakani, H., and Kh. Taghavinejad: The strong limited p-Schur property in Banach
lattices. - Oper. Matrices 16:3, 2022, 811–825.



56 Mikaela Aires and Geraldo Botelho

[7] Ardakani, H., and F. Vali: On almost limited p-convergent operators on Banach lattices. -
Positivity 28, 2024, Paper No. 20, 17 pp.

[8] Aron, R. M., L. Bernal-González, D. Pellegrino, and J. B. Seoane-Sepúlveda: Lin-
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