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Derivations and Sobolev functions
on extended metric-measure spaces

Enrico Pasqualetto and Janne Taipalus

Abstract. We investigate the first-order differential calculus over extended metric-topological
measure spaces. The latter are quartets X = (X, τ, d,m), given by an extended metric space (X, d)
together with a weaker topology τ (satisfying suitable compatibility conditions) and a finite Radon
measure m on (X, τ). The class of extended metric-topological measure spaces encompasses all
metric-measure spaces and many infinite-dimensional metric-measure structures, such as abstract
Wiener spaces. In this framework, we study the following classes of objects:

• The Banach algebra Lipb(X, τ, d) of bounded τ -continuous d-Lipschitz functions on X.
• Several notions of Lipschitz derivations on X, defined in duality with Lipb(X, τ, d).
• The metric Sobolev space W 1,p(X), defined in duality with Lipschitz derivations on X.

Inter alia, we generalise both Weaver’s and Di Marino’s theories of Lipschitz derivations to the
extended setting, and we discuss their connections. We also introduce a Sobolev space W 1,p(X)
via an integration-by-parts formula, along the lines of Di Marino’s notion of Sobolev space, and we
prove its equivalence with other approaches, studied in the extended setting by Ambrosio, Erbar
and Savaré. En route, we obtain some results of independent interest, among which are:

• A Lipschitz-constant-preserving extension result for τ -continuous d-Lipschitz functions.
• A novel and rather robust strategy for proving the equivalence of Sobolev-type spaces
defined via an integration-by-parts formula and those obtained with a relaxation procedure.

• A new description of an isometric predual of the metric Sobolev space W 1,p(X).

Derivaatiot ja Sobolev-funktiot laajennetuissa metrisissä mitta-avaruuksissa

Tiivistelmä. Tutkimme ensimmäisen kertaluokan differentiaalilaskentaa laajennetuissa met-
ritopologisissa mitta-avaruuksissa. Jälkimmäiset ovat nelikkoja X = (X, τ, d,m), jotka muodostu-
vat laajennetusta metrisestä avaruudesta (X, d), jossa on mukana heikompi topologia τ (joka to-
teuttaa sopivat yhteensopivuusehdot) ja avaruuden (X, τ) äärellinen Radon-mitta m. Laajennettu-
jen metritopologisten mitta-avaruuksien luokka käsittää kaikki metriset mitta-avaruudet ja monet
ääretönulotteiset metriset mitta-rakenteet, kuten abstraktit Wiener-avaruudet. Tässä viitekehyk-
sessä tutkimme seuraavien objektien luokkia:

• Avaruuden X rajoitettujen τ -jatkuvien d-Lipschitz-funktioiden Banach-algebra Lipb(X, τ,
d).

• Avaruuden X lukuisat Lipschitz-derivaatioiden käsitteet, jotka on määritelty duaalisesti
avaruuden Lipb(X, τ, d) kanssa.

• Metrinen Sobolev-avaruus W 1,p(X), joka on määritelty avaruuden X Lipschitz-derivaatioi-
den kanssa duaalisesti.

Muun muassa yleistämme Weaverin ja Di Marinon Lipschitz-derivaatioiden teoriat laajennettuun
ympäristöön ja käsittelemme niiden yhteyksiä. Esittelemme myös osittaisintegroinnin kaavan avul-
la Sobolev-avaruuden W 1,p(X) Di Marinon Sobolev-avaruuden käsitettä mukaillen ja todistamme
yhtäpitävyyden muiden lähestymistapojen kanssa, joita Ambrosio, Erbar ja Savaré tutkivat laajen-
netussa ympäristössä. Tämän ohella saamme joitain riippumattomasti kiinnostavia tuloksia, muun
muassa:

• Lipschitz-vakion-säilyttävä jatke τ -jatkuville d-Lipschitz-funktioille.
• Uusi ja melko vahva strategia osittaisintegroinnin kaavan avulla ja relaksaatiomenetelmän
avulla määriteltyjen Sobolev-typpisten avaruuksien yhtäpitävyyden todistamiseksi.

• Uusi tapa kuvailla metrisen Sobolev-avaruuden W 1,p(X) isometristä esiduaalia.
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1. Introduction

1.1. General overview. In the last three decades, the analysis in nonsmooth
spaces has undergone impressive developments. After the first nonlocal notion of
metric Sobolev space over a metric-measure space (X, d,m) had been introduced
by Haj lasz in [30], several (essentially equivalent) local notions were studied in the
literature:

A) The space H1,p(X) obtained by approximation, via a relaxation procedure.
This approach was pioneered by Cheeger [16] and later revisited by Ambrosio,
Gigli and Savaré [5, 6].

B) The spaceW 1,p(X) proposed by Di Marino in [17, 18], based on an integration-
by-parts formula involving a suitable class of Lipschitz derivations with di-
vergence.

C) The Newtonian space N1,p(X) introduced by Shanmugalingam [47], based
on the concept of upper gradient by Heinonen and Koskela [33], and on the
metric version of Fuglede’s notion of p-modulus [21].

D) The ‘Beppo Levi space’ B1,p(X), where the exceptional curve families for the
validity of the upper gradient inequality are selected via test plans of curves.
The first definition of this type is due to Ambrosio, Gigli and Savaré [5, 6].
The variant of plan of curves we consider in this paper, involving the concept
of barycenter, was introduced by Ambrosio, Di Marino and Savaré in [3].

We point out that our choices of notation for the various metric Sobolev spaces
may depart from the original ones, but they are consistent with the presentation
in [7]. Other definitions of metric Sobolev spaces were introduced and studied in
the literature, but we do not mention them here as they are not needed for the
purposes of this paper. Remarkably, all the above four theories—the two ‘Eulerian
approaches’ A), B) and the two ‘Lagrangian approaches’ C), D)—were proven to
be fully equivalent on arbitrary complete metric-measure spaces [5, 16, 47]. Other
related equivalence results were then achieved in [3, 7, 20, 37].

Nevertheless, there are many infinite-dimensional metric-measure structures of
interest—where a refined differential calculus is available or feasible—that are not
covered by the theory of metric-measure spaces. Due to this reason, Ambrosio, Er-
bar and Savaré introduced in [4] the language of extended metric-topological measure
spaces, which we abbreviate to e.m.t.m. spaces. The class of e.m.t.m. spaces includes,
besides ‘standard’ metric-measure spaces, abstract Wiener spaces [12] and configura-
tion spaces [1], among others. The main goal of [4] was to understand the connection
between gradient contractivity, transport distances and lower Ricci bounds, as well as
the interplay between metric and differentiable structures, in the setting of e.m.t.m.
spaces. One of the numerous contributions of [4] is the introduction of the notion
of Sobolev space H1,p(X) on e.m.t.m. spaces, later investigated further by Savaré in
the lecture notes [42]. Therein, the e.m.t.m. versions of the Sobolev spaces N1,p(X)
and B1,p(X) were introduced and studied in detail, ultimately obtaining the identi-
fication H1,p(X) = N1,p(X) = B1,p(X) on all complete e.m.t.m. spaces. The duality
properties of these metric Sobolev spaces were then investigated by Ambrosio and
Savaré in [9].

The primary objectives of this paper are to introduce the Sobolev space W 1,p(X)
via integration-by-parts for e.m.t.m. spaces, to show its equivalence with the other
approaches and to explore the benefits it brings to the theory of metric Sobolev
spaces. To achieve these goals, we first develop the machinery of Lipschitz derivations
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for e.m.t.m. spaces, which in turn requires an in-depth understanding of the algebra
of real-valued bounded τ -continuous d-Lipschitz functions on X.

Before delving into a more detailed description of the contents of this paper, let us
expound the advantages of working in the extended setting. Besides its intrinsic in-
terest, the study of e.m.t.m. spaces has significant implications at the level of metric-
measure spaces. On e.m.t.m. spaces the roles of the topology and of the distance are
‘decoupled’, and it turned out that for this reason the category of e.m.t.m. spaces is
closed under several useful operations under which the category of metric-measure
spaces is not closed. Key examples are the compactification [42, Section 2.1.7] and
the passage to the length-conformal distance [42, Section 2.3.2]. Therefore, once an
effective calculus on e.m.t.m. spaces is developed, it is possible to reduce some prob-
lems on metric-measure spaces to problems on τ -compact length e.m.t.m. spaces (as
done, for example, in [42, Section 5.2]). We believe that the full potential of this
technique has not been fully explored yet. However, dealing with arbitrary e.m.t.m.
spaces poses new challenges, which require new ideas and solutions. In the remaining
sections of the Introduction, we shall comment on some of them.

1.2. The algebra of τ -continuous d-Lipschitz functions. Let (X, τ, d) be
an extended metric-topological space (see Definition 2.8). We consider the algebra
of bounded τ -continuous d-Lipschitz functions on X, denoted by Lipb(X, τ, d). The
latter is a Banach algebra with respect to the norm

∥f∥Lipb(X,τ,d) := ∥f∥Cb(X,τ) + Lip(f, d).

While the Banach algebra Lipb(Y, dY ) on a metric space (Y, dY ) is (isometrically
isomorphic to) the dual of a Banach space, i.e. of the Arens–Eells space Æ(Y ) of Y
[50], the space Lipb(X, τ, d) may not have a predual (as we show in Proposition 2.16),
thus it is not endowed with a weak∗ topology. This fact is relevant when discussing
the continuity of derivations, see Section 1.3.

Another issue we need to address in the paper is whether it is possible to extend
τ -continuous d-Lipschitz functions preserving the Lipschitz constant. These kinds of
extension results are very important e.g. in some localisation arguments (such as in
Proposition 4.15). On metric spaces the McShane–Whitney extension theorem serves
the purpose, but on e.m.t. spaces the problem becomes much more delicate, because
one has to preserve both τ -continuity and d-Lipschitzianity when extending a func-
tion. In Section 3 we deal with this matter. Leveraging strong extension techniques
by Matoušková [39], we obtain the sought-after Lipschitz-constant-preserving exten-
sion result for bounded τ -continuous d-Lipschitz functions (Theorem 3.1), which is
sharp (Remark 3.2).

1.3. Metric derivations. In Section 4, we analyse various spaces of derivations
on e.m.t.m. spaces. In Definition 4.1 we introduce a rather general (and purely alge-
braic) notion of derivation, which comprises the different variants we will consider.
By a Lipschitz derivation on an e.m.t.m. space X = (X, τ, d,m) we mean a linear
map b : Lipb(X, τ, d) → L0(m) satisfying the Leibniz rule:

b(fg) = f b(g) + g b(f) for every f, g ∈ Lipb(X, τ, d).

Here, L0(m) denotes the algebra of all real-valued τ -Borel functions on X, up to
m-a.e. equality. Distinguished subclasses of derivations are those having divergence
(Definition 4.2), that are local (Definition 4.3), or that satisfy ‘weak∗-type’ (sequen-
tial) continuity properties (Definition 4.4). In addition to these, we develop the basic
theory of two crucial subfamilies of Lipschitz derivations:
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• Weaver derivations. In Definition 4.9 we propose a generalisation of
Weaver’s concept of ‘bounded measurable vector field’ [50, Definition 10.30 a)]
to the extended setting. Consistently e.g. with [44], we adopt the term Weaver
derivation. An important technical point here is that we ask for the weak∗-
type sequential continuity, not for the weak∗-type continuity. The reason
is that weakly∗-type continuous derivations are trivial on the ‘purely non-d-
separable component’ X \ SX of X (as in Lemma 2.9), see Proposition 4.7.

• Di Marino derivations. In Definition 4.12 we introduce the natural gener-
alisation of Di Marino’s notion of derivation [18, 17] to e.m.t.m. spaces. More
specifically, we consider the space Derq(X) of q-integrable derivations, and
its subspace Derqq(X) consisting of all those q-integrable derivations having
q-integrable divergence, for some given exponent q ∈ (1,∞). This axioma-
tisation is tailored to the notion of metric Sobolev space W 1,p(X) (where
p ∈ (1,∞) is the conjugate exponent of q) that one aims at defining by means
of an integration-by-parts formula where Derqq(X) is used as the family of ‘test
vector fields’.

Since in this paper we are primarily interested in the Sobolev calculus, we shall
focus our attention mostly on Di Marino derivations. Nevertheless, we set up also
the basic theory of Weaver derivations and we debate their relation with the Di
Marino ones (see Proposition 4.15 or Theorem 4.16, where we borrow some ideas
from [7]). We believe that Weaver derivations may find interesting applications even
in the analysis on e.m.t.m. spaces, for instance for studying suitable generalisations
of metric currents or Alberti representations (cf. with [43, 44, 45]), but addressing
these kinds of issues is outside the scope of the present paper.

1.4. Metric Sobolev spaces. In Section 5, we introduce the metric Sobolev
space W 1,p(X), and we compare it with H1,p(X), B1,p(X) and N1,p(X). Mimicking
[18, Definition 1.5], we declare that some f ∈ Lp(m) belongs to W 1,p(X) if there is
a linear operator Lf : Derqq(X) → L1(m) satisfying some algebraic and topological
conditions, as well as the following integration-by-parts formula:�

Lf (b) dm = −
�
f div(b) dm for every b ∈ Derqq(X);

see Definition 5.1. Each f ∈ W 1,p(X) is associated with a distinguished function
|Df | ∈ Lp(m)+, which has the role of the ‘modulus of the weak differential of f ’.

In Section 5.2, we show that on any e.m.t.m. space it holds that

H1,p(X) = W 1,p(X), with |Df | = |Df |H for every f ∈ W 1,p(X);

see Theorem 5.4. The proof strategy for the inclusion H1,p(X) ⊆ W 1,p(X) is taken
from [18] up to some technical discrepancies, whereas the verification of the con-
verse inclusion relies on a new argument, which was partially inspired by [37]. In a
nutshell, we first observe that H1,p(X) induces a differential d: Lp(m) → Lp(T ∗X),
where Lp(T ∗X) is the e.m.t.m. version of Gigli’s notion of cotangent module from
[23] (Theorem 2.25) and d is an unbounded operator with domain D(d) = H1,p(X),
then we prove that W 1,p(X) ⊆ H1,p(X) via a convex duality argument involving the
adjoint d∗ of d. The latter proof strategy is rather robust and suitable for being
adapted to obtain analogous equivalence results for other functional spaces. We also
point out that the identification H1,p(X) = W 1,p(X) for possibly non-complete spaces
is new and interesting even in the particular case where (X, d) is a metric space and
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τ is the topology induced by d, and it covers e.g. those situations in which X is an
open domain in a larger (typically complete) ambient space.

By combining Theorem 5.4 with [42], we obtain that on complete e.m.t.m. spaces
it holds that

W 1,p(X) = B1,p(X), with |Df | = |Df |B for every f ∈ W 1,p(X);

see Corollary 5.6. If in addition (X, τ) is Souslin, then the space W 1,p(X) can be iden-
tified also with the Newtonian space N1,p(X); see Remark 5.7. Yet, these identities
are not always in force without the completeness assumption, cf. with the last para-
graph of Section 2.5. However, we show that—on arbitrary e.m.t.m. spaces—each
Tq-test plan π (as in Definition 2.30) induces a derivation bπ ∈ Derqq(X) (see Propo-

sition 5.8), and as a consequence we obtain that the inclusion W 1,p(X) ⊆ B1,p(X)
holds and that |Df |B ≤ |Df | for all f ∈ W 1,p(X) (Theorem 5.9).

Finally, in Section 5.4 we present a quite elementary construction of some isomet-
ric predual of the metric Sobolev space W 1,p(X), see Theorem 5.10. The formulation
of the Sobolev space in terms of derivations is particularly appropriate for this kind
of construction. The existence of an isometric predual of H1,p(X) was already known
from [9].
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List of symbols. Below, we provide a list of non-standard symbols that we use
in the paper.

OscS(f) oscillation of f on S; (2.1)

Lip(f, A, d) Lipschitz constant of f on A with respect to d; (2.2)

Lipb(X, τ, d) space of bounded τ -continuous d-Lipschitz functions f : X →
R; (2.3)

Lipb,1(X, τ, d) space of all functions f ∈ Lipb(X, τ, d) that are 1-Lipschitz;

(2.4)

lipd(f) asymptotic slope of f ; Definition 2.2

IntM : M ∗→M ′ isometric isomorphism between the two notions of dual of M ;

(2.6)

X⌞E restriction of an e.m.t.m. space X to the Borel set E; (2.9)

SX maximal d-separable component of an e.m.t.m. space X;

Lemma 2.9

(X̂, τ̂ , d̂, m̂) Gelfand compactification of an e.m.t.m. space (X, τ, d,m);

Theorem 2.12

Γ Gelfand transform; (2.12)

ddiscr discrete distance; (2.16)

RA(X, d) space of rectifiable arcs in (X, d); (2.18)
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ê arc-length evaluation map; (2.20)

Uτ,d canonical uniformity of an e.m.t. space (X, τ, d); Definition

2.21

Ep Cheeger p-energy functional; Definition 2.23

H1,p(X) Sobolev space via relaxation; Definition 2.23

|Df |H minimal p-relaxed slope of f ∈ H1,p(X); Section 2.4

Lp(T ∗X) p-cotangent module; Theorem 2.25

Lq(TX) q-tangent module; Definition 2.26

Lq
Sob(TX) space of Sobolev derivations of exponent q; Definition 2.28

hπ q-barycenter of a dynamic plan π; (2.27)

Tq(X) space of all Tq-test plans on an e.m.t.m. space X; Definition

2.30

B1,p(X) Sobolev space via Tq-test plans; Definition 2.33

|Df |B minimal Tq-weak upper gradient of f ∈ B1,p(X); Section 2.5

Der(X) space of (Lipschitz) derivations on an e.m.t.m. space X; Defi-

nition 4.1

D(div;X) space of all b ∈ Der(X) having divergence div(b) ∈ L1(m);

Definition 4.2

X (X) space of Weaver derivations on X; Definition 4.9

Der0(X) space of Di Marino derivations on X; Definition 4.12

Derq(X) space of all b ∈ Der0(X) that are q-integrable; Definition 4.12

Derqr(X) space of all b ∈ Derq(X) having r-integrable divergence; Defi-

nition 4.12

Lq
Lip(TX) Lipschitz q-tangent module; (4.7)

W 1,p(X) Sobolev space via Di Marino derivations with divergence; Def-

inition 5.1

|Df | minimal p-weak gradient of f ∈W 1,p(X); Definition 5.1

2. Preliminaries

Let us fix some general terminology and notation, which we will use throughout
the whole paper. For any a, b ∈ R, we write a∨b := max{a, b} and a∧b := min{a, b}.
Given a set X and a function f : X → R, we denote by OscS(f) ∈ [0,+∞] the
oscillation of f on a set S ⊆ X, i.e.

(2.1) OscS(f) := sup
S
f − inf

S
f.

For any Banach space B, we denote by B′ its dual Banach space. A map T : B1 → B2

between two Banach spaces B1 and B2 is called an isomorphism (resp. an isomet-
ric isomorphism) provided it is a linear homeomorphism (resp. a norm-preserving
linear homeomorphism). Accordingly, we say that B1 and B2 are isomorphic (resp.
isometrically isomorphic) provided there exists an isomorphism (resp. an isomet-
ric isomorphism) T : B1 → B2. Finally, we say that B1 embeds (resp. isometrically
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embeds) into B2 provided B1 is isomorphic (resp. isometrically isomorphic) to some
subspace of B2.

2.1. Topological and metric notions. Let us recall some notions in topology,
referring e.g. to the book [35] for a detailed discussion on the topic. Let (X, τ) be a
topological space. Then:

• (X, τ) is said to be completely regular if for any x ∈ X and any neighbourhood
U ∈ τ of x there exists a continuous function f : X → [0, 1] such that f(x) = 1
and f |X\U = 0. Equivalently, (X, τ) is completely regular if τ is induced by
a family of semidistances.

• (X, τ) is said to be normal if for any pair of disjoint closed sets A,B ⊆ X
there exist disjoint open sets UA, UB ∈ τ such that A ⊆ UA and B ⊆ UB.

• (X, τ) is said to be a Tychonoff space if it is completely regular and Hausdorff.
Every locally compact Hausdorff topological space is a Tychonoff space.

Given two topological spaces (X, τX) and (Y, τY ), we denote by C((X, τX); (Y, τY ))
the space of continuous maps from (X, τX) to (Y, τY ); we drop τX or τY from our
notation when the chosen topologies are clear from the context. We use the shorthand
notation C(X, τ) := C((X, τ);R) for any topological space (X, τ), where the target
R is equipped with the Euclidean topology. Then

Cb(X, τ) :=
{
f ∈ C(X, τ) | f is bounded

}
is a Banach space if endowed with the supremum norm ∥f∥Cb(X,τ) := supx∈X |f(x)|.

Next, let us recall some metric concepts. By an extended distance on a set X we
mean a symmetric function d : X×X → [0,+∞] that satisfies the triangle inequality
and vanishes exactly on the diagonal {(x, x) : x ∈ X}. The pair (X, d) is called an
extended metric space. As usual, if d(x, y) < +∞ for every x, y ∈ X, then d is called
a distance and (X, d) is called a metric space. Given an extended metric space (X, d),
a center x ∈ X and a radius r ∈ (0,+∞), we denote

Bd
r (x) :=

{
y ∈ X | d(x, y) < r

}
, B̄d

r (x) :=
{
y ∈ X | d(x, y) ≤ r

}
.

A map φ : X → Y between two extended metric spaces (X, dX) and (Y, dY ) is
said to be Lipschitz (or L-Lipschitz) if for some constant L ≥ 0 we have that
dY (φ(x), φ(y)) ≤ L dX(x, y) holds for every x, y ∈ X. We denote by Lipb(X, d)
the space of all bounded Lipschitz functions from an extended metric space (X, d) to
the real line R (equipped with the Euclidean distance). Denote

(2.2) Lip(f, A, d) := sup

{
|f(x) − f(y)|

d(x, y)

∣∣∣∣ x, y ∈ A, x ̸= y

}
for all f ∈ Lipb(X, d) and A ⊆ X. For brevity, we write Lip(f, d) := Lip(f,X, d). It is
well known that Lipb(X, d) is a Banach space with respect to the norm ∥f∥Lipb(X,d) :=
Lip(f, d) + supx∈X |f(x)|.

Now, consider an extended metric space (X, d) together with a topology τ on X.
We define

(2.3) Lipb(X, τ, d) := Lipb(X, d) ∩ C(X, τ).

We endow the vector space Lipb(X, τ, d) with the norm

∥f∥Lipb(X,τ,d) := Lip(f, d) + ∥f∥Cb(X,τ) for every f ∈ Lipb(X, τ, d).

Remark 2.1. We claim that(
Lipb(X, τ, d), ∥ · ∥Lipb(X,τ,d)

)
is a Banach algebra.
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Indeed, ∥f∥Lipb(X,τ,d) = ∥f∥Lipb(X,d) holds for every f ∈ Lipb(X, τ, d), and every uni-
form limit of τ -continuous functions is τ -continuous, thus Lipb(X, τ, d) is a closed vec-
tor subspace of Lipb(X, d). In particular, Lipb(X, τ, d) is a Banach space. Moreover,
it can be readily checked that for any given f, g ∈ Lipb(X, τ, d) we have that fg ∈
Lipb(X, τ, d), ∥fg∥Cb(X,τ) ≤ ∥f∥Cb(X,τ)∥g∥Cb(X,τ) and Lip(fg, d) ≤ ∥f∥Cb(X,τ)Lip(g, d)
+ ∥g∥Cb(X,τ)Lip(f, d), whence it follows that

∥fg∥Lipb(X,τ,d) = Lip(fg, d) + ∥fg∥Cb(X,τ)

≤ ∥f∥Cb(X,τ)Lip(g, d) + ∥g∥Cb(X,τ)Lip(f, d) + ∥f∥Cb(X,τ)∥g∥Cb(X,τ)

≤
(
Lip(f, d) + ∥f∥Cb(X,τ)

)(
Lip(g, d) + ∥g∥Cb(X,τ)

)
= ∥f∥Lipb(X,τ,d)∥g∥Lipb(X,τ,d).

All in all, we have shown that Lipb(X, τ, d) is a Banach algebra, as we claimed. ■

At times, it is convenient to use the following shorthand notation:

(2.4) Lipb,1(X, τ, d) :=
{
f ∈ Lipb(X, τ, d) | Lip(f, d) ≤ 1

}
.

Any given f ∈ Lipb(X, τ, d) is associated with a function lipd(f) that accounts for
the ‘infinitesimal Lipschitz constants’ of f at the different points of X:

Definition 2.2. (Asymptotic slope) Let (X, d) be an extended metric space and
let τ be a topology on X. Let f ∈ Lipb(X, τ, d) be given. Then we define the function
lipd(f) : X → [0,Lip(f, d)] as

lipd(f)(x) := inf
{

Lip(f, U, d) | x ∈ U ∈ τ
}

for every x ∈ X.

We say that lipd(f) is the asymptotic slope of f .

The function lipd(f) is τ -upper semicontinuous, as it follows from the ensuing
remark:

Remark 2.3. Let (X, τ) be a topological space and S ̸= ∅ a subset of τ . Let
F : S → [0,+∞] be any given functional. Define

F (x) := inf
{
F(U) | x ∈ U ∈ S

}
for every x ∈ X.

Then F : X → [0,+∞] is a τ -upper semicontinuous function. Indeed, for any U ∈ S
we have that

FU(x) :=

{
F(U) for every x ∈ U,

+∞ for every x ∈ X \ U
defines a τ -upper semicontinuous function FU : X → [0,+∞], thus F = infU∈S FU

is τ -upper semicontinuous as well. Similarly, we have that G(x) := sup{F(U) : x ∈
U ∈ S} (with the convention that sup(∅) = 0) defines a τ -lower semicontinuous
function G : X → [0,+∞]. ■

2.2. Measure theory. Let (X,Σ,m) be a measure space. We denote by L0(m)
the algebra of all equivalence classes (up to m-a.e. equality) of measurable functions
f : X → R. For any p ∈ [1,∞], we denote by (Lp(m), ∥ · ∥Lp(m)) the Lebesgue space
of exponent p on (X,Σ,m). Then Lp(m) is a Banach space (and L∞(m) is also a
Banach algebra). Moreover, Lp(m) is a Riesz space with respect to the partial order
given by the m-a.e. inequality: given any f, g ∈ Lp(m), we declare that f ≤ g if
and only if f(x) ≤ g(x) holds for m-a.e. x ∈ X. Assuming that the measure m is
σ-finite, we also have that Lp(m) is Dedekind complete, which means that any family
of functions {fi}i∈I ⊆ Lp(m) with an upper bound (i.e. there exists g ∈ Lp(m) such
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that fi ≤ g for all i ∈ I) has a supremum
∨

i∈I fi ∈ Lp(m). The latter is the unique
element of Lp(m) such that

• fj ≤
∨

i∈I fi for every j ∈ I,

• if f̃ ∈ Lp(m) satisfies fj ≤ f̃ for every j ∈ I, then
∨

i∈I fi ≤ f̃ .

In addition, one can find an at most countable subset C ⊆ I such that
∨

i∈I fi =∨
i∈C fi (i.e. Lp(m) has the so-called countable sup property). Similarly, every set

{fi}i∈I ⊆ Lp(m) with a lower bound has an infimum
∧

i∈I fi ∈ Lp(m) and there exists

C̃ ⊆ I at most countable such that
∧

i∈I fi =
∧

i∈C̃ fi (i.e. the countable inf property
holds). In particular, essential unions (and essential intersections) exist: given any
family {Ei}i∈I ⊆ Σ, we can find a set E ∈ Σ such that

• m(Ei \ E) = 0 for every i ∈ I,
• if F ∈ Σ satisfies m(Ei \ F ) = 0 for every i ∈ I, then m(E \ F ) = 0.

The set E is m-a.e. unique, in the sense that m(E∆Ẽ) = 0 for any other set Ẽ ∈ Σ
having the same properties. We say that E is the m-essential union of {Ei}i∈I . It
also holds that E can be chosen of the form

⋃
i∈C Ei, for some at most countable

subset C ⊆ I.
Let (X,Σ,m) be a finite measure space. Following [11, §1.12(iii)], we say that m

is a separable measure if there exists a countable family C ⊆ Σ such that for every
E ∈ Σ and ε > 0 we can find F ∈ C such that m(E∆F ) < ε. The following conditions
are equivalent:

• m is a separable measure,
• Lp(m) is separable for some p ∈ [1,∞),
• Lp(m) is separable for every p ∈ [1,∞).

See for instance [11, §7.14(iv) and Exercise 4.7.63]. In the class of spaces of our
interest in this paper, we can encounter examples of spaces whose reference measure
is non-separable (cf. with Example 2.18). An advantage of m being separable is that
it is equivalent to the fact that the weak∗ topology of L∞(m) restricted to its closed
unit ball is metrisable (see e.g. Lemma 4.11).

Let (X, τ) be a Hausdorff topological space. We denote by B(X, τ) its Borel
σ-algebra. A finite Borel measure µ : B(X, τ) → [0,+∞) is called a Radon measure
if it is inner regular, i.e.

µ(B) = sup
{
µ(K) | K ⊆ B, K is τ -compact

}
for every B ∈ B(X, τ).

It follows that µ is also outer regular, which means that

µ(B) = inf
{
µ(U) | U ∈ τ, B ⊆ U

}
for every B ∈ B(X, τ).

We denote by M+(X) or M+(X, τ) the collection of all finite Radon measures on
(X, τ). We refer to the monograph [46] for a thorough account of the theory of Radon
measures. Below we collect some more definitions and results that we shall need later
in the paper.

Remark 2.4. Radon measures verify the following version of the monotone
convergence theorem: if µ is a finite Radon measure on a Hausdorff topological
space (X, τ) and (fi)i∈I is a non-decreasing net of τ -lower semicontinuous functions
fi : X → [0,+∞) satisfying supi∈I,x∈X fi(x) < +∞, then

lim
i∈I

�
fi dµ =

�
lim
i∈I

fi dµ.
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Note that limi∈I fi = supi∈I fi is τ -lower semicontinuous, in particular it is Borel
measurable and thus the right-hand side of the identity above is meaningful. See e.g.
[11, Lemma 7.2.6]. ■

Let (X, τX) and (Y, τY ) be Tychonoff spaces. Given a finite Radon measure µ on
X, a map φ : X → Y is said to be Lusin µ-measurable if for any ε > 0 there exists
a compact set Kε ⊆ X such that µ(X \Kε) ≤ ε and φ|Kε is continuous. Each Lusin
µ-measurable map is in particular Borel µ-measurable (i.e. φ−1(B) is a µ-measurable
subset of X for every Borel set B ⊆ Y ). Moreover, if µ ∈ M+(X) is given and
φ : X → Y is Lusin µ-measurable, then we have that

(φ#µ)(B) := µ(φ−1(B)) for every Borel set B ⊆ Y

defines a Radon measure φ#µ ∈ M+(Y ), called the pushforward of µ under φ. A
map φ : X → Y is said to be universally Lusin measurable if it is Lusin µ-measurable
for every µ ∈ M+(X).

Remark 2.5. We point out that the µ-a.e. pointwise limit of a sequence of
Lusin µ-measurable functions is Lusin µ-measurable, thus in particular the pointwise
limit of a sequence of universally Lusin measurable functions is universally Lusin
measurable. Indeed, fix a Tychonoff space (X, τ) and a Radon measure µ ∈ M+(X).
Assume that a sequence (fn)n of Lusin µ-measurable functions fn : X → R and a
limit function f : X → R satisfy f(x) = limn fn(x) ∈ R for µ-a.e. x ∈ X. Given any
ε > 0 and n ∈ N, we can find a compact set Kn

ε ⊆ X such that µ(X \Kn
ε ) ≤ ε/2n and

fn|Kn
ε

is continuous. Then Kε :=
⋂

n∈NK
n
ε is a compact set with µ(X \Kε) ≤ ε such

that each fn|Kε is continuous. Thanks to Egorov’s theorem, we can find a compact
set K̃ε ⊆ Kε with µ(X \ K̃ε) ≤ 2ε such that fn|K̃ε

→ f |K̃ε
uniformly, so that f |K̃ε

is
continuous. Hence, f is Lusin µ-measurable.

Furthermore, we point out that any bounded τ -lower semicontinuous function
f : X → [0,+∞) defined on a Tychonoff space (X, τ) is universally Lusin measur-
able. To prove it, fix any Radon measure µ ∈ M+(X). It follows e.g. from [11,
Lemma 7.2.6] that

�
f dµ = sup

{ �
g dµ

∣∣∣∣ g ∈ C(X, τ), g ≤ f

}
.

Hence, we can find a non-decreasing sequence of functions (gn)n ⊆ C(X, τ) such
that gn ≤ f for every n ∈ N and limn

�
gn dµ =

�
f dµ. By applying the monotone

convergence theorem, we deduce that limn gn(x) = f(x) for µ-a.e. x ∈ X. Since each
continuous function is clearly Lusin µ-measurable, by the first claim of this remark
we conclude that f is Lusin µ-measurable. ■

2.2.1. Lp(m)-Banach L∞(m)-modules. In this section, we recall some key
concepts in the theory of Lp-Banach L∞-modules, which are Banach spaces equipped
with additional structures (roughly speaking, with a ‘pointwise norm’ and a multi-
plication by L∞-functions). This language has been developed by Gigli in [23], with
the goal of providing a functional-analytic framework for a vector calculus in metric-
measure spaces. Strictly related notions were previously studied in the literature for
different purposes, see e.g. the notion of random normed module introduced by Guo
[26, 27] and investigated in a long series of works (see [28, 29] and the references
therein), or the notion of random Banach space introduced by Haydon, Levy and
Raynaud [32]. The definitions and results presented below are taken from [22, 23].



Derivations and Sobolev functions on extended metric-measure spaces 69

For any measure space (X,Σ,m), the space L∞(m) is a commutative ring (with
unity) with respect to the usual pointwise operations. Since the field of real numbers
R can be identified with a subring of L∞(m) (via the map sending λ ∈ R to the
function that is m-a.e. equal to λ), every module over L∞(m) is in particular a
vector space. Recall also that a homomorphism T : M → N of L∞(m)-modules is an
L∞(m)-linear operator, i.e. a map satisfying

T (f · v + g · w) = f · T (v) + g · T (w) for every f, g ∈ L∞(m) and v, w ∈M.

In particular, each homomorphism of L∞(m)-modules is a homomorphism of vector
spaces, i.e. a linear operator. Observe that Lp(m) is an L∞(m)-module for every
p ∈ [1,∞].

Definition 2.6. (Lp(m)-Banach L∞(m)-module) Let (X,Σ,m) be a σ-finite mea-
sure space and let p ∈ (1,∞). Then a module M over L∞(m) is said to be an
Lp(m)-Banach L∞(m)-module if it is endowed with a functional | · | : M → Lp(m)+,
called a pointwise norm on M , such that:

i) For any v ∈ M , it holds that |v| = 0 if and only if v = 0.
ii) |v + w| ≤ |v| + |w| for every v, w ∈ M .

iii) |f · v| = |f ||v| for every f ∈ L∞(m) and v ∈ M .
iv) The norm ∥v∥M := ∥|v|∥Lp(m) on M is complete.

Every Lp(m)-Banach L∞(m)-module is in particular a Banach space. A map
Φ: M → N between Lp(m)-Banach L∞(m)-modules M , N is said to be an isomor-
phism of Lp(m)-Banach L∞(m)-modules if it is an isomorphism of L∞(m)-modules
satisfying |Φ(v)| = |v| for all v ∈ M .

Definition 2.7. (Dual of an Lp(m)-Banach L∞(m)-module) Let (X,Σ,m) be
a σ-finite measure space. Let p, q ∈ (1,∞) be conjugate exponents and let M
be an Lp(m)-Banach L∞(m)-module. Then we define M ∗ as the set of all those
homomorphisms ω : M → L1(m) of L∞(m)-modules for which there exists a function
g ∈ Lq(m)+ such that

(2.5) |ω(v)| ≤ g|v| for every v ∈ M .

The space M ∗ is called the continuous module dual of M .

The space M ∗ is a module over L∞(m) if endowed with the following pointwise
operations:

(ω + η)(v) := ω(v) + η(v) for every ω, η ∈ M ∗ and v ∈ M ,

(f · ω)(v) := f ω(v) for every f ∈ L∞(m), ω ∈ M ∗ and v ∈ M .

Moreover, to any element ω ∈ M ∗ we associate the function |ω| ∈ Lq(m)+, which we
define as

|ω| :=
∨{

ω(v) | v ∈ M , |v| ≤ 1
}

=
∧{

g ∈ Lq(m)+ | g satisfies (2.5)
}
.

It holds that (M ∗, | · |) is an Lq(m)-Banach L∞(m)-module.
The continuous module dual M ∗ of M is in particular a Banach space, which can

be identified with the dual Banach space M ′ through the operator IntM : M ∗ → M ′,
defined as

(2.6) IntM (ω)(v) :=

�
ω(v) dm for every ω ∈ M ∗ and v ∈ M .

Indeed, the map IntM is an isometric isomorphism of Banach spaces (see [23, Propo-
sition 1.2.13]).
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2.3. Extended metric-topological measure spaces. In this section, we
discuss the notion of extended metric-topological (measure) space that was introduced
by Ambrosio, Erbar and Savaré in [4, Definitions 4.1 and 4.7] (see also [42, Definition
2.1.3]).

Definition 2.8. (Extended metric-topological measure space) Let (X, d) be an
extended metric space and let τ be a Hausdorff topology on X. Then we say that
(X, τ, d) is an extended metric-topological space (or an e.m.t. space for short) if the
following conditions hold:

i) The topology τ coincides with the initial topology of Lipb(X, τ, d).
ii) The extended distance d can be recovered through the formula

(2.7) d(x, y) = sup
{
|f(x) − f(y)|

∣∣ f ∈ Lipb,1(X, τ, d)
}

for every x, y ∈ X,

where Lipb,1(X, τ, d) is defined as in (2.4).

When (X, τ, d) is equipped with a finite Radon measure m ∈ M+(X), we say that
X := (X, τ, d,m) is an extended metric-topological measure space (or an e.m.t.m.
space for short).

In particular, if (X, τ, d) is an e.m.t. space, then (X, τ) is a Tychonoff space.
Given an e.m.t.m. space X = (X, τ, d,m), we know from [42, Lemma 2.1.27] that

(2.8) Lipb(X, τ, d) is strongly dense in Lp(m), for every p ∈ [1,∞).

Moreover, given any set E ∈ B(X, τ), it can be readily checked that

(2.9) X⌞E := (E, τE, dE,m⌞E)

is an e.m.t.m. space, where τE is the subspace topology on E induced by τ , while
dE := d|E×E and m⌞E denotes the Radon measure on E that is obtained from m by
restriction.

Let us now prove some technical results, which will be needed later. First, we
show that each e.m.t.m. space can be decomposed (in an m-a.e. unique manner) into
a d-separable component and a ‘purely non-d-separable’ one:

Lemma 2.9. (Maximal d-separable component SX) Let X = (X, τ, d,m) be a
given e.m.t.m. space. Then there exists a d-separable set SX ∈ B(X, τ) such that
m(E) = 0 holds for any d-separable set E ∈ B(X, τ) satisfying E ⊆ X\SX. Moreover,
the set SX is unique in the m-a.e. sense, meaning that m(SX∆S̃X) = 0 for any other
set S̃X ∈ B(X, τ) having the same properties as SX.

Proof. Fix any m-a.e. representative SX ∈ B(X, τ) of the m-essential union of
the family of sets {

S ∈ B(X, τ) | S is d-separable and m(S) > 0
}
.

Recall that SX can be chosen to be of the form
⋃

n∈N Sn, for some sequence (Sn)n ⊆
B(X, τ) such that Sn is d-separable and m(Sn) > 0 for every n ∈ N. In particular,
the set SX is d-separable. If E ⊆ X \ SX is τ -Borel and d-separable, then m(E) = 0
thanks to the definition of m-essential union. Finally, if S̃X is another set having the
same properties as SX, then the inclusion S̃X \ SX ⊆ X \ SX (resp. SX \ S̃X ⊆ X \ S̃X)
implies that m(S̃X \ SX) = 0 (resp. m(SX \ S̃X) = 0), thus m(SX∆S̃X) = 0. □

Next, we give sufficient conditions for the separability of the measure m of an
e.m.t.m. space. The proof of the ensuing result is rather standard, but we provide it
for the reader’s convenience.
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Lemma 2.10. Let X = (X, τ, d,m) be an e.m.t.m. space. Assume either that τ
is metrisable on every τ -compact set or that m(X \ SX) = 0. Then it holds that the
measure m is separable.

Proof. Let us distinguish the two cases. First, assume that τ is metrisable on
τ -compact sets. Take an increasing sequence (Kn)n∈N of τ -compact subsets of X
with m

(
X \

⋃
nKn

)
= 0. For any n ∈ N, fix a distance dn on Kn metrising τ , and a

dn-dense sequence (xnj )j∈N in Kn. Define

C :=
⋃
n∈N

{ ⋃
j∈F

B̄dn
qj

(xnj )

∣∣∣∣ F ⊆ N finite, (qj)j∈F ⊆ Q ∩ (0,+∞)

}
.

Note that C is a countable family of τ -closed subsets of X, thus C ⊆ B(X, τ). We
claim that

(2.10) inf
C∈C

m(E∆C) = 0 for every E ∈ B(X, τ),

whence the separability of m follows. To prove the claim, fix E ⊆ X τ -Borel and
ε > 0. We can choose n ∈ N so that m(E \ Kn) ≤ ε. By the inner regularity of
m, we can find a τ -compact set K ⊆ E ∩ Kn such that m((E ∩ Kn) \ K) ≤ ε. By
the outer regularity of m, we can find U ∈ τ such that K ⊆ U and m(U \K) ≤ ε.
Due to the compactness of K, there exist y1, . . . , yk ∈ K and r1, . . . , rk > 0 such that
K ⊆

⋃k
i=1 B̄

dn
ri

(yi) ⊆ U ∩Kn. Moreover, for any i = 1, . . . , k we can find ji ∈ N and

qi ∈ Q ∩ (ri,+∞) such that B̄dn
ri

(yi) ⊆ B̄dn
qi

(xnji) ⊆ U ∩Kn. Therefore, we have that

C :=
⋃k

i=1 B̄
dn
qi

(xnji) ∈ C satisfies K ⊆ C ⊆ U , whence it follows that m(E∆C) ≤ 3ε.
This proves (2.10), which gives the statement in the case where τ is metrisable on
τ -compact sets.

Let us pass to the second case: assume m(X \ SX) = 0. Fix a d-dense sequence
(yk)k∈N in SX. In this case, we define the countable collection C of τ -closed subsets
of X as

C :=

{ ⋃
j∈F

B̄d
qk

(yk)

∣∣∣∣ F ⊆ N finite, (qk)k∈F ⊆ Q ∩ (0,+∞)

}
.

We claim that (2.10) holds. To prove it, fix any E ∈ B(X, τ) and ε > 0. By the outer
regularity of m, we can find a τ -open set U ⊆ X such that E ⊆ U and m(U \E) ≤ ε.
Since τ is coarser than the topology induced by d, we have that U is d-open, thus there
exist a subsequence (ykj)j∈N of (yk)k∈N and a sequence of radii (qj)j∈N ⊆ Q∩ (0,+∞)

such that E∩SX ⊆
⋃

j∈N B̄
d
qj

(ykj) ⊆ U . Thanks to the continuity from below of m, we

can thus find N ∈ N such that the set C :=
⋃N

j=1 B̄
d
qj

(ykj) ∈ C satisfies m(E∆C) ≤ 2ε.

This proves (2.10), thus the statement holds when m(X \ SX) = 0. □

Observe that the second assumption in Lemma 2.10 is verified, for instance, when
(X, d) is separable. We also point out that the first assumption can be relaxed to:
for some D ∈ B(X, τ) such that m is concentrated on D, the topology τ is metrisable
on every τ -compact subset of D. A significant example of a non-metrisable topology
τ that is metrisable on all τ -compact sets is the weak∗ topology of the dual B′ of a
separable infinite-dimensional Banach space B.

2.3.1. Compactification of an extended metric-topological space. A very
important feature of the category of extended metric-topological spaces is that it is
closed under a notion of compactification, devised in this framework by Savaré [42,
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Section 2.1.7] via the Gelfand theory of Banach algebras. By virtue of the existence
of compactifications, one can reduce many proofs to the compact case.

Let us briefly recall the construction of the Gelfand compactification of an e.m.t.
space (X, τ, d). By a character of Lipb(X, τ, d) we mean a non-zero element φ of the
dual Banach space of the normed space (Lipb(X, τ, d), ∥ · ∥Cb(X,τ)) that satisfies

(2.11) φ(fg) = φ(f)φ(g) for every f, g ∈ Lipb(X, τ, d).

We denote by X̂ the set of all characters of Lipb(X, τ, d). We equip X̂ with the
topology τ̂ obtained by restricting the weak∗ topology of the dual of (Lipb(X, τ, d), ∥·
∥Cb(X,τ)) to X̂. The canonical embedding map ι : X ↪→ X̂ is given by

ι(x)(f) := f(x) for every x ∈ X and f ∈ Lipb(X, τ, d).

Moreover, the Gelfand transform Γ: Lipb(X, τ, d) → Cb(X̂, τ̂) is defined as

(2.12) Γ(f)(φ) := φ(f) for every f ∈ Lipb(X, τ, d) and φ ∈ X̂.

Note that Γ(f) ◦ ι = f for every f ∈ Lipb(X, τ, d). Finally, we define the extended

distance d̂ as

d̂(φ, ψ) := sup
{
|φ(f) − ψ(f)| | f ∈ Lipb,1(X, τ, d)

}
for every φ, ψ ∈ X̂.

Remark 2.11. We claim that

φ(λ1X) = λ for every φ ∈ X̂ and λ ∈ R.

Indeed, (2.11) and the linearity of φ guarantee that φ(λ1X)φ(1X) = φ(λ1X) =
λφ(1X), and (2.11) implies also that φ(1X) ̸= 0 (otherwise, we would have φ(f) =
φ(f1X) = φ(f)φ(1X) = 0 for every f ∈ Lipb(X, τ, d), contradicting the fact that
φ ̸= 0). It follows that φ(λ1X) = λ. ■

The objects X̂, τ̂ , ι, Γ and d̂ defined above have the following properties [42,
Theorem 2.1.34]:

Theorem 2.12. (Gelfand compactification of an e.m.t. space) Let (X, τ, d) be

an e.m.t. space. Then (X̂, τ̂ , d̂) is an e.m.t. space and (X̂, τ̂) is compact. Moreover,
the following conditions hold:

i) The map ι is a homeomorphism between (X, τ) and its image ι(X) in (X̂, τ̂).

ii) The set ι(X) is a dense subset of (X̂, τ̂).

iii) We have that d̂(ι(x), ι(y)) = d(x, y) for every x, y ∈ X.

We say that (X̂, τ̂ , d̂) is the compactification of (X, τ, d), with embedding ι : X ↪→ X̂.

If X = (X, τ, d,m) is an e.m.t.m. space and (X̂, τ̂ , d̂) denotes the compactification

of (X, τ, d), with embedding ι : X ↪→ X̂, then we define the measure m̂ on X̂ as

m̂ := ι#m ∈ M+(X̂, τ̂).

The fact that m̂ is a Radon measure follows from the continuity of ι (as all continuous
maps are universally Lusin measurable). Given any exponent p ∈ [1,∞], we have

that ι : X ↪→ X̂ induces via pre-composition a map ι∗ : Lp(m̂) → Lp(m) (sending

the m̂-a.e. equivalence class of a p-integrable Borel function f̂ : X̂ → R to the m-a.e.
equivalence class of f̂ ◦ ι), which is an isomorphism of Banach spaces and of Riesz
spaces (and also of Banach algebras when p = ∞).

Albeit implicitly contained in [42], we isolate the following result for the reader’s
convenience:
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Lemma 2.13. Let (X, τ, d) be an e.m.t. space. Let (X̂, τ̂ , d̂) be its compactifica-

tion, with embedding ι : X ↪→ X̂. Then the Gelfand transform Γ maps Lipb(X, τ, d)

to Lipb(X̂, τ̂ , d̂). Moreover, it holds that Γ: Lipb(X, τ, d) → Lipb(X̂, τ̂ , d̂) is an iso-
morphism of Banach algebras, with inverse given by

(2.13) Lipb(X̂, τ̂ , d̂) ∋ f̂ 7−→ f̂ ◦ ι ∈ Lipb(X, τ, d).

Proof. Fix f ∈ Lipb(X, τ, d). If Lip(f, d) = 0, then f is constant, thus |Γ(f)(φ)−
Γ(f)(ψ)| = 0 for every φ, ψ ∈ X̂ by Remark 2.11. If Lip(f, d) > 0, then f̃ :=
Lip(f, d)−1f ∈ Lipb,1(X, τ, d), thus

|Γ(f)(φ) − Γ(f)(ψ)| = |φ(f) − ψ(f)| = Lip(f, d)|φ(f̃) − ψ(f̃)| ≤ Lip(f, d)d̂(φ, ψ)

for all φ, ψ ∈ X̂. All in all, we have that Γ(f) ∈ Lipb(X̂, τ̂ , d̂) and Lip(Γ(f), d̂) ≤
Lip(f, d). Also,

Lip(Γ(f), d̂) ≥ Lip(Γ(f), ι(X), d̂)

= sup

{
|Γ(f)(ι(x)) − Γ(f)(ι(y))|

d̂(ι(x), ι(y))

∣∣∣∣ x, y ∈ X, x ̸= y

}
= sup

{
|f(x) − f(y)|

d(x, y)

∣∣∣∣ x, y ∈ X, x ̸= y

}
= Lip(f, d),

so that Lip(Γ(f), d̂) = Lip(f, d). Moreover, since Γ(f) is τ̂ -continuous and ι(X) is

τ̂ -dense in X̂, we have that ∥Γ(f)∥Cb(X̂,τ̂) = supx∈X |Γ(f)(ι(x))| = supx∈X |f(x)| =

∥f∥Cb(X,τ). Hence, it holds that Γ(Lipb(X, τ, d)) ⊆ Lipb(X̂, τ̂ , d̂) and ∥Γ(f)∥Lipb(X̂,τ̂ ,d̂)

= ∥f∥Lipb(X,τ,d) for every f ∈ Lipb(X, τ, d).
Now, denote by I the map in (2.13). Clearly, Γ and I are homomorphisms of

Banach algebras. As we already pointed out, we have that (I ◦ Γ)(f) = Γ(f) ◦ ι = f
for every f ∈ Lipb(X, τ, d), which means that I ◦Γ = idLipb(X,τ,d). Conversely, for any

f̂ ∈ Lipb(X̂, τ̂ , d̂) we have that

(Γ ◦ I)(f̂)(ι(x)) = Γ(f̂ ◦ ι)(ι(x)) = ι(x)(f̂ ◦ ι) = f̂(ι(x)) for every x ∈ X,

which gives that (Γ ◦ I)(f̂)|ι(X) = f̂ |ι(X). Since (Γ ◦ I)(f̂), f̂ are τ̂ -continuous and

ι(X) is τ̂ -dense in X̂, we conclude that (Γ ◦ I)(f̂) = f̂ , thus Γ ◦ I = idLipb(X̂,τ̂ ,d̂). The
proof is complete. □

Let us also point out that for any given function f ∈ Lipb(X, τ, d) it holds that

(2.14) lipd(f)(x) ≤ lipd̂(Γ(f))(ι(x)) for every x ∈ X,

but it might happen that the inequality in (2.14) is not an equality. Hence, we have
that

(2.15) lipd(f) ≤ ι∗
(
lipd̂(Γ(f))

)
holds m-a.e. on X, for every f ∈ Lipb(X, τ, d),

but it might happen that the m-a.e. inequality in (2.15) is not an m-a.e. equality.

2.3.2. Examples of extended metric-topological spaces. We collect here
many examples of e.m.t.(m.) spaces. As observed in [4, Section 13] and [42, Sec-
tion 2.1.3], the following are e.m.t.m. spaces:

• A metric space (X, d) together with the topology τd induced by d and a finite
Radon measure m ≥ 0 on X. In particular, a complete and separable metric
space (X, d) together with the topology τd and a finite Borel measure m ≥ 0
on X (as all finite Borel measures on a complete and separable metric space
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are Radon). The latter are often referred to as metric-measure spaces in the
literature.

• A Banach space B together with the distance induced by its norm, the weak
topology τw and a finite Radon measure on (B, τw).

• The dual B′ of a Banach space B together with the distance induced by the
dual norm, the weak∗ topology τw∗ and a finite Radon measure on (B′, τw∗).
We point out that if B is separable, then (B′, τw∗) is a Lusin space [46, Corol-
lary 1 at p. 115], so that every finite Borel measure on (B′, τw∗) is Radon.

• An abstract Wiener space, i.e. a separable Banach space X together with a
(centered, non-degenerate) Gaussian measure γ and the extended distance
that is induced by the Cameron–Martin space of (X, γ); see e.g. [12].

• Other important examples of e.m.t.m. spaces are given by some ‘extended
sub-Finsler-type structures’ [42, Example 2.1.3] or the so-called configuration
spaces [4, Section 13.3].

• Another collection of structures that fall into the class of e.m.t.m. spaces is
the one of disjoint unions of e.m.t.m. spaces equipped with ∞-cross-distances.
Namely, given a countable family {(Xi, τi, di,mi) : i ∈ I} of e.m.t.m. spaces
such that

∑
i∈I mi(Xi) < +∞, we endow X :=

⊔
i∈I Xi with the topology

τ := {U ⊆ X : U ∩Xi ∈ τi for all i ∈ I}, the finite Radon measure B(X, τ) ∋
E 7→ m(E) :=

∑
i∈I mi(E ∩Xi), and the extended distance

d(x, y) :=

{
di(x, y) if x, y ∈ Xi for some i ∈ I,

+∞ otherwise.

It can be readily checked that the resulting quartet (X, τ, d,m) is an e.m.t.m.
space.

• Similar objects that can be modelled by the theory of e.m.t.m. spaces are
several kinds of structures that are ‘foliated’, such as the parabolic space
or measurable laminations. In these examples, a given topological space is
partitioned into subspaces, each equipped with its own distance, that are
not ‘interconnected’ (which means that the pairwise distance between two
different subspaces is declared to be infinite).

On the one hand, the class of e.m.t. spaces in the first bullet point above (i.e.
metric spaces equipped with the topology induced by the distance) shows that, in
a sense, the theory of e.m.t. spaces is an extension of that of metric spaces. On
the other hand, as it is evident from Example 2.14 below (which was pointed out
to us by Timo Schultz), the category of e.m.t. spaces encompasses also the one of
Tychonoff spaces, but in this paper we will not investigate further in this direction.
We point out that it would be interesting to study also the larger class of extended
pseudometric-topological spaces, which are defined as e.m.t. spaces with the only
exception that d is an extended pseudodistance (i.e. d is allowed to vanish off the
diagonal {(x, x) : x ∈ X} ⊆ X ×X), but we do not pursue this goal here. However,
we draw attention to the fact that the topology τ of an extended pseudometric-
topological space (X, τ, d) is Hausdorff if and only if d is an extended distance. Several
interesting structures, such as metric quotients endowed with a suitable topology, are
examples of extended pseudometric-topological spaces.
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Example 2.14. (‘Purely-topological’ e.m.t. space) Let (X, τ) be a given Ty-
chonoff space. We denote by ddiscr the discrete distance on X, i.e. we define

(2.16) ddiscr(x, y) :=

{
1 for every x, y ∈ X with x ̸= y,

0 for every x, y ∈ X with x = y.

Then (X, τ, ddiscr) is an e.m.t. space. Indeed, it can be readily checked that the ddiscr-
Lipschitz functions f : X → R are exactly the bounded functions and Lip(f, ddiscr) =
OscX(f), in particular

Lipb(X, τ, ddiscr) = Cb(X, τ), ∥ · ∥Lipb(X,τ,ddiscr) = OscX(·) + ∥ · ∥Cb(X,τ).

Therefore, the complete regularity of (X, τ) ensures that the initial topology of
Lipb(X, τ, ddiscr) coincides with τ (so that Definition 2.8 i) holds), and for any two dis-
tinct points x, y ∈ X we can find (as (X, τ) is completely Hausdorff) a τ -continuous
function f : X → [0, 1] such that f(x) = 1 and f(y) = 0, so that ddiscr(x, y) = 1 =
|f(x) − f(y)| (whence Definition 2.8 ii) follows). ■

Next, we present explicit constructions of e.m.t.m. spaces that will be useful later
in the paper.

Example 2.15. We endow X := [0, 1]2 ⊆ R2 with the Euclidean topology τ and
the distance

d((x, t), (y, s)) := max{ddiscr(x, y), dEucl(t, s)} for every (x, t), (y, s) ∈ X,

where ddiscr denotes the discrete distance, while dEucl(t, s) := |t− s| is the Euclidean
distance. One can easily check that (X, τ, d) is an e.m.t. space, and that a given
function f : X → R belongs to the space Lipb(X, τ, d) if and only if it is τ -continuous,
f(x, ·) ∈ Lipb([0, 1], dEucl) for every x ∈ [0, 1] and supx∈[0,1] Lip(f(x, ·), dEucl) < +∞.
Moreover, straightforward arguments show that

(2.17) Lip(f, d) = OscX(f) ∨ sup
x∈[0,1]

Lip(f(x, ·), dEucl)

for every f ∈ Lipb(X, τ, d). ■

Whereas the Banach algebra Lipb(X, d) associated to a metric space (X, d) is
(isometrically isomorphic to) a dual Banach space (see [50, Corollary 3.4]), in the
more general setting of e.m.t. spaces we can provide examples where Lipb(X, τ, d) is
not isometrically isomorphic (and not even just isomorphic) to a dual Banach space,
see Proposition 2.16 below. The possible non-existence of a predual of Lipb(X, τ, d)
will have an important role in Definition 4.4.

Proposition 2.16. Let (K, τ) be an infinite compact metrisable topological
space. Let ddiscr denote the discrete distance on K. Then Lipb(K, τ, ddiscr) is not
isomorphic to a dual Banach space.

Proof. We recall from Example 2.14 that (K, τ, ddiscr) is an extended metric-
topological space that satisfies L := Lipb(K, τ, ddiscr) = C(K, τ) and

∥f∥L := ∥f∥Lipb(K,τ,ddiscr) = OscK(f) + ∥f∥C(K,τ)

for every f ∈ L. Note that ∥f∥C(K,τ) ≤ ∥f∥L ≤ 3∥f∥C(K,τ) for every f ∈ L. Since
(K, τ) is a compact metrisable topological space, it holds that C(K, τ) is separable
[2, Theorem 4.1.3] and thus L is separable. Since τ is a Hausdorff topology, by
virtue of Remark 2.17 below we can find a sequence (Un)n∈N ⊆ τ of pairwise disjoint
sets such that each set Un contains at least two distinct points xn and yn. Since
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(K, τ) is completely regular, for any n ∈ N we can find a τ -continuous function
fn : K → [−1, 1] such that {fn ̸= 0} ⊆ Un, fn(xn) = 1 and fn(yn) = −1. Letting c00
be the vector space of real-valued sequences a = (an)n satisfying an = 0 for all but
finitely many indices n ∈ N, we define the linear operator ϕ : c00 → L as

ϕ(a) :=
1

3

∑
n∈N:
an ̸=0

anfn ∈ L for every a = (an)n ∈ c00.

Recall that c00 is a dense subspace of the Banach space (c0, ∥·∥c0), where c0 is the space
of real-valued sequences a = (an)n with limn an = 0, and ∥·∥c0 is the supremum norm
∥a∥c0 := supn |an|. Given that ∥ϕ(a)∥L = ∥a∥c0 for every a ∈ c00 by construction,
we have that ϕ can be uniquely extended to a linear isometry ϕ̄ : c0 → L. Since c0
cannot be embedded in a separable dual Banach space (see [2, Theorem 6.3.7] or
[10, Theorem 4]), we can finally conclude that L is not isomorphic to a dual Banach
space. □

Remark 2.17. If (X, τ) is an infinite Hausdorff space, then there exists a se-
quence (Un)n∈N of pairwise disjoint non-empty open subsets of X. To prove this
claim, we distinguish two cases. If X has infinitely many isolated points, take a
sequence (xn)n∈N of pairwise distinct isolated points of X, and note that letting
Un := {xn} for every n ∈ N does the job. If X has only finitely many isolated points,
then the set X̃ of all accumulation points is an open subset of X (by the Hausdorff
assumption); since each neighbourhood of an accumulation point is infinite (again,
by the Hausdorff assumption), we can construct recursively a sequence (Un)n∈N of
pairwise disjoint infinite open subsets of X̃, which are – a fortiori – open subsets of
X. The claim is proved. ■

Example 2.18. (An e.m.t.m. space whose reference measure is non-separable)
Let (X, τ, ddiscr) be the product X := [0, 1]c of the continuum of intervals together
with the product topology τ and the discrete distance ddiscr. Since (X, τ) is com-
pact and Hausdorff, we know from Example 2.14 that (X, τ, ddiscr) is an e.m.t. space.
Moreover, we equip (X, τ) with the probability Radon measure m obtained as the
product of the one-dimensional Lebesgue measures; to be precise, the product mea-
sure of the Lebesgue measures is defined on the product σ-algebra

⊗
t∈c B([0, 1]),

but it extends to a Radon measure m on B(X, τ) thanks to [11, Theorem 7.14.3].
However, the measure m of the e.m.t.m. space (X, τ, ddiscr,m) is not separable, see
[11, Section 7.14(iv)]. ■

2.3.3. Rectifiable arcs and path integrals. Let (X, τ, d) be an e.m.t. space.
As in [42, Section 2.2.1], we endow the space C([0, 1]; (X, τ)) of all τ -continuous
curves γ : [0, 1] → X with the compact-open topology τC and with the extended
distance dC : C([0, 1]; (X, τ)) × C([0, 1]; (X, τ)) → [0,+∞], which we define as

dC(γ, σ) := sup
t∈[0,1]

d(γt, σt) for every γ, σ ∈ C([0, 1]; (X, τ)).

Then (C([0, 1]; (X, τ)), τC , dC) is an extended metric-topological space [42, Proposi-
tion 2.2.2]. We recall that a subbasis for the compact-open topology τC is given by
the family of sets {

S(K,V ) | K ⊆ [0, 1] compact, V ∈ τ
}
,

where we denote S(K,V ) :=
{
γ ∈ C([0, 1]; (X, τ)) : γ(K) ⊆ V

}
.
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Following [42, Section 2.2.2], we denote by Σ the set of all continuous, non-
decreasing, surjective maps ϕ : [0, 1] → [0, 1]. Let us consider the following equiva-
lence relation on C([0, 1]; (X, τ)): given any γ, σ ∈ C([0, 1]; (X, τ)), we declare that
γ ∼ σ if and only if there exist ϕγ, ϕσ ∈ Σ such that

γ ◦ ϕγ = σ ◦ ϕσ.

We endow the associated quotient space A(X, τ) := C([0, 1]; (X, τ))/ ∼ with the
quotient topology τA induced by τC . The elements of A(X, τ) are called arcs. We
denote by [γ] ∈ A(X, τ) the equivalence class of a curve γ ∈ C([0, 1]; (X, τ)). We
define the subspace A(X, d) ⊆ A(X, τ) as

A(X, d) :=
{

[γ] | γ ∈ C([0, 1]; (X, d))
}
.

Letting dA : A(X, d)×A(X, d) → [0,+∞] be the extended distance on A(X, d) given
by

dA(γ, σ) := inf
{
dC(γ̃, σ̃) | γ̃, σ̃ ∈ C([0, 1]; (X, τ)), [γ̃] = γ, [σ̃] = σ

}
for every γ, σ ∈ A(X, d), we have that (A(X, d), τA, dA) is an extended metric-
topological space [42, Proposition 2.2.6].

Given a curve γ ∈ C([0, 1]; (X, d)) and any t ∈ [0, 1], the d-variation of γ on [0, t]
is defined as

Vγ(t) := sup

{ n∑
i=1

d(γti , γti−1
)

∣∣∣∣ n ∈ N, {ti}ni=0 ⊆ [0, 1], t0 < t1 < . . . < tn

}
∈ [0,+∞].

The d-length of γ is defined as ℓ(γ) := Vγ(1) ∈ [0,+∞]. As in [42, Lemma 2.2.8], we
set

BVC([0, 1]; (X, d)) :=
{
γ ∈ C([0, 1]; (X, d)) | ℓ(γ) < +∞

}
.

Since ℓ is τC-lower semicontinuous, the space BVC([0, 1]; (X, d)) is an Fσ subset of
C([0, 1]; (X, τ)). We say that a curve γ ∈ BVC([0, 1]; (X, d)) has constant d-speed if
Vγ(t) = ℓ(γ)t holds for every t ∈ [0, 1]. For any given γ ∈ BVC([0, 1]; (X, d)), there
exists a unique ℓ(γ)-Lipschitz curve Rγ ∈ BVC([0, 1]; (X, d)) having constant d-speed
such that

γ(t) = Rγ(ℓ(γ)−1Vγ(t)) for every t ∈ [0, 1],

with the convention that ℓ(γ)−1Vγ(t) = 0 if ℓ(γ) = 0. Then it holds that [γ] = [Rγ]
and we say that Rγ is the arc-length parameterisation of γ. The space of rectifiable
arcs is given by

(2.18) RA(X, d) :=
{

[γ] | γ ∈ BVC([0, 1]; (X, d))
}
⊆ A(X, d).

Then (RA(X, d), τA, dA) is an extended metric-topological space. Given γ, σ ∈
BVC([0, 1]; (X, d)), we have that [γ] = [σ] if and only ifRγ = Rσ [42, Lemma 2.2.11(b)],
thus we can unambiguously write Rγ for γ ∈ RA(X, d). Similarly, we can write γ0,
γ1 and ℓ(γ) for γ ∈ RA(X, d), and

(2.19) RA(X, d) ∋ γ 7→ ℓ(γ) is τA-lower semicontinuous,

see [42, Lemma 2.2.11(d)]. Given any γ ∈ RA(X, d) and a Borel function f : (X, τ) →
R such that f ◦Rγ ∈ L1(0, 1) (or a Borel function f : X → [0,+∞]), the path integral
of f over γ is given by �

γ

f := ℓ(γ)

� 1

0

f(Rγ(t)) dt.

When f is bounded, (RA(X, d), τA) ∋ γ 7→
�
γ
f ∈ R is Borel measurable [42, Theo-

rem 2.2.13(e)].
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For any t ∈ [0, 1], the arc-length evaluation map êt : RA(X, d) → X at time t is
defined as

êt(γ) := Rγ(t) for every γ ∈ RA(X, d).

We also introduce the arc-length evaluation map ê : RA(X, d) × [0, 1] → X, given by

(2.20) ê(γ, t) := êt(γ) = Rγ(t) for every γ ∈ RA(X, d) and t ∈ [0, 1].

Let us now prove some technical results, concerning the measurability properties of
ê and of a map that describes the derivative of a continuous Lipschitz function along
rectifiable arcs, which we will use in Section 5.3.

Lemma 2.19. Let (X, τ, d) be an e.m.t. space. Then it holds that ê : RA(X, d)×
[0, 1] → X is universally Lusin measurable (when RA(X, d) × [0, 1] is equipped with
the product topology).

Proof. First of all, we claim that if ((γi, ti))i∈I ⊆ RA(X, d) × [0, 1] is a given net
converging to (γ, t) ∈ RA(X, d) × [0, 1] such that limi∈I ℓ(γ

i) = ℓ(γ), then

(2.21) lim
i∈I

ê(γi, ti) = ê(γ, t).

To prove it, fix a neighbourhood V ∈ τ of ê(γ, t). By the complete regularity of τ ,
we can find a neighbourhood U ∈ τ of Rγ(t) = ê(γ, t) whose τ -closure Ū is contained
in V . Since the curve Rγ : [0, 1] → X is τ -continuous and limi∈I t

i = t, there exists
i0 ∈ I such that Rγ(ti) ∈ U for every i ∈ I with i0 ⪯ i. Letting K denote the closure
of {ti : i ∈ I, i0 ⪯ i}, which is a compact subset of [0, 1], we have that t ∈ K and
Rγ(s) ∈ Ū ⊆ V for every s ∈ K, thus S(K,V ) ∈ τC is a neighbourhood of Rγ. Since
limi∈I Rγi = Rγ in

(
C([0, 1]; (X, τ)), τC

)
by [42, Theorem 2.2.13(a)], we deduce that

there exists i1 ∈ I with i0 ⪯ i1 and Rγi ∈ S(K,V ) for every i ∈ I with i1 ⪯ i. It
follows that ê(γi, ti) = Rγi(ti) ∈ V for every i ∈ I with i1 ⪯ i, which shows that
(2.21) holds.

Now let µ ∈ M+(RA(X, d) × [0, 1]) be fixed. By (2.19), the map RA(X, d) ×
[0, 1] ∋ (γ, t) 7→ ℓ(γ) is lower semicontinuous, thus it is Lusin µ-measurable by
Remark 2.5. Hence, for any ε > 0 we can find a compact set Kε ⊆ RA(X, d) × [0, 1]
such that Kε ∋ (γ, t) 7→ ℓ(γ) is continuous. The first part of the proof then gives
that ê|Kε is continuous, so that ê is universally Lusin measurable. □

Corollary 2.20. Let (X, τ, d) be an e.m.t. space. Let f ∈ Lipb(X, τ, d) be given.
We define the function Df : RA(X, d) × [0, 1] → R as

Df (γ, t) := lim sup
h→0

f(Rγ(t+ h)) − f(Rγ(t))

h
for every γ ∈ RA(X, d) and t ∈ [0, 1].

Then Df is universally Lusin measurable.

Proof. Note that Df (γ, t) = limN∋n→∞ Dn
f (γ, t) for every (γ, t) ∈ RA(X, d)×[0, 1],

where we set

Dn
f (γ, t) := sup

{
f(Rγ(t+ h)) − f(Rγ(t))

h

∣∣∣∣ h ∈ (Q \ {0}) ∩ (−1/n, 1/n)

}
for brevity. Fix n ∈ N. Let us enumerate the elements of (Q \ {0}) ∩ (−1/n, 1/n) as
(qi)i∈N. Then

Dn
f (γ, t) = lim

k→∞
max

{
f(Rγ(t+ qi)) − f(Rγ(t))

qi

∣∣∣∣ i = 1, . . . , k

}
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for all (γ, t) ∈ RA(X, d) × [0, 1]. Since the map ê is universally Lusin measurable by
Lemma 2.19, one can easily deduce that each function (γ, t) 7→ maxi≤k(f(Rγ(t+ qi))
−f(Rγ(t)))/qi is universally Lusin measurable. By taking Remark 2.5 into account,
we can finally conclude that Df is universally Lusin measurable. □

Given γ ∈ RA(X, d) and f ∈ Lipb(X, τ, d), we have that f ◦ Rγ : [0, 1] → R is a
Lipschitz function, thus in particular it is L 1-a.e. differentiable. Therefore, it holds
that

(2.22) Df (γ, t) = (f ◦Rγ)′(t) for L 1-a.e. t ∈ [0, 1].

In particular, it holds that

(2.23) |Df (γ, t)| ≤ ℓ(γ)(lipd(f) ◦Rγ)(t) for L 1-a.e. t ∈ [0, 1].

2.3.4. Uniform structure of an extended metric-topological space. We
assume the reader is familiar with the basics of the theory of uniform spaces, for which
we refer e.g. to [14, 15]. It is well known that every completely regular topology is
induced by a uniform structure (in fact, completely regular topological spaces are
exactly the uniformisable topological spaces). In the setting of e.m.t. spaces, we
make a canonical choice of such a uniform structure:

Definition 2.21. (Canonical uniform structure of an e.m.t. space) Let (X, τ, d)
be an e.m.t. space. Then we define the canonical uniformity of (X, τ, d) as the
uniform structure Uτ,d on X that is induced by the family of semidistances {δf : f ∈
Lipb,1(X, τ, d)}, which are defined as

δf (x, y) := |f(x) − f(y)| for every f ∈ Lipb,1(X, τ, d) and x, y ∈ X.

It can be readily checked that the following properties are verified:

• The topology induced by Uτ,d coincides with τ .
• The topology τ is metrisable if and only if Uτ,d has a countable basis of

entourages.

Moreover, we denote by Bτ,d ⊆ Uτ,d the family of all open symmetric entourages of
Uτ,d, i.e.

Bτ,d :=
{
U ∈ Uτ,d ∩ (τ × τ) | (y, x) ∈ U for every (x, y) ∈ U

}
.

It holds that Bτ,d is a basis of entourages for Uτ,d. In the case where τ is metrisable,
it is possible to find a countable basis of entourages for Uτ,d consisting of elements of
Bτ,d.

Remark 2.22. Let f ∈ Lipb(X, τ, d) and U ∈ Bτ,d be given. Then we claim
that

Lip(f,U [·], d) : X → [0,Lip(f, d)] is τ -lower semicontinuous,

where U [x] := {y ∈ X : (x, y) ∈ U} for all x ∈ X. Indeed, U [y] ∩ U [z] ∈ τ for every
y, z ∈ X and

Lip(f,U [x], d) = sup

{
|f(y) − f(z)|

d(y, z)

∣∣∣∣ y, z ∈ X, y ̸= z, x ∈ U [y] ∩ U [z]

}
for every x ∈ X, so that the function Lip(f,U [·], d) is τ -lower semicontinuous thanks
to Remark 2.3. ■
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Let us now discuss how the canonical uniform structure behaves under restriction
of the e.m.t. space. Let (X, τ, d) be a given e.m.t. space and fix E ∈ B(X, τ).
Consider the restricted e.m.t. space (E, τE, dE) (as in (2.9)). Then it holds that

(2.24) UτE ,dE = {U|E×E | U ∈ Uτ,d}, BτE ,dE = {U|E×E | U ∈ Bτ,d}.

The first identity follows easily from the definition of canonical uniformity. The
second identity follows from τE×E = τE × τE and from the fact that U ∩ U−1 ∈ Bτ,d

for every U ∈ Uτ,d ∩ (τ × τ), where we set U−1 := {(y, x) : (x, y) ∈ U}.

2.4. Sobolev spaces H1,p via relaxation. The first notion of Sobolev space
over an e.m.t.m. space we consider is the one obtained by relaxation, which was
introduced in [42, Section 3.1] as a generalisation of [16, 6, 5]. A function f ∈ Lp(m)
is declared to be in the Sobolev space H1,p(X) if it is the Lp(m)-limit of a sequence
(fn)n of functions in Lipb(X, τ, d) whose asymptotic slopes (lipd(fn))n form a bounded
sequence in Lp(m). Namely, following [42, Definitions 3.1.1 and 3.1.3]:

Definition 2.23 (The Sobolev space H1,p(X)). Let X = (X, τ, d,m) be an
e.m.t.m. space and p ∈ (1,∞). Then we define the Cheeger p-energy functional
Ep : Lp(m) → [0,+∞] of X as

Ep(f) := inf

{
lim inf
n→∞

1

p

�
lipd(fn)p dm

∣∣∣∣ (fn)n ⊆ Lipb(X, τ, d), fn → f in Lp(m)

}
for all f ∈ Lp(m). Then we define the Sobolev space H1,p(X) as the finiteness domain
of Ep, i.e.

H1,p(X) :=
{
f ∈ Lp(m) | Ep(f) < +∞

}
.

The Cheeger p-energy functional is convex, p-homogeneous and Lp(m)-lower semi-
continuous. The vector subspace H1,p(X) of Lp(m) is a Banach space with respect to
the Sobolev norm

∥f∥H1,p(X) :=
(
∥f∥pLp(m) + p Ep(f)

)1/p
for every f ∈ H1,p(X).

Also, Ep admits an integral representation, in terms of relaxed slopes [42, Defini-
tion 3.1.5]:

Definition 2.24. (Relaxed slope) Let X = (X, τ, d,m) be an e.m.t.m. space and
p ∈ (1,∞). Let f ∈ Lp(m) be given. Then we say that a function G ∈ Lp(m)+ is
a p-relaxed slope of f if there exist a sequence (fn)n ⊆ Lipb(X, τ, d) and a function
G̃ ∈ Lp(m)+ such that the following hold:

i) fn → f strongly in Lp(m),
ii) lipd(fn) ⇀ G̃ weakly in Lp(m),

iii) G̃ ≤ G in the m-a.e. sense.

Below, we collect many properties and calculus rules for p-relaxed slopes (see [42,
Section 3.1.1]).

• The set of all p-relaxed slopes of a given f ∈ H1,p(X) is a closed sublattice of
Lp(m). Its (unique) m-a.e. minimal element is denoted by |Df |H ∈ Lp(m)+

and is called the minimal p-relaxed slope of f .
• The Cheeger p-energy functional can be represented as

Ep(f) =
1

p

�
|Df |pH dm for every f ∈ H1,p(X).
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• Given any f ∈ H1,p(X), there exists a sequence (fn)n ⊆ Lipb(X, τ, d) such
that fn → f and lipd(fn) → |Df |H strongly in Lp(m).

• Lipb(X, τ, d) ⊆ H1,p(X), and |Df |H ≤ lipd(f) holds m-a.e. for every f ∈
Lipb(X, τ, d).

• We have that |D(f + g)|H ≤ |Df |H + |Dg|H and |D(λf)|H = |λ||Df |H hold
m-a.e. for every f, g ∈ H1,p(X) and λ ∈ R.

• Locality property. If f ∈ H1,p(X) and N ⊆ R is a Borel set with
L 1(N) = 0, then

|Df |H = 0 holds m-a.e. on f−1(N).

In particular, |Df |H = |Dg|H holds m-a.e. on {f = g} for every f, g ∈
H1,p(X).

• Chain rule. If f ∈ H1,p(X) and ϕ ∈ Lipb(R), then ϕ ◦ f ∈ H1,p(X) and

|D(ϕ ◦ f)|H ≤ |ϕ′| ◦ f |Df |H holds m-a.e. on X.

• Leibniz rule. If f, g ∈ H1,p(X) ∩ L∞(m) are given, then fg ∈ H1,p(X) and

|D(fg)|H ≤ |f ||Dg|H + |g||Df |H holds m-a.e. on X.

Minimal p-relaxed slopes are induced by a linear differential operator d: H1,p(X)
→ Lp(T ∗X), where Lp(T ∗X) is a distinguished Lp(m)-Banach L∞(m)-module, called
the p-cotangent module:

Theorem 2.25. (Cotangent module) Let X = (X, τ, d,m) be an e.m.t.m. space
and p ∈ (1,∞). Then there exist an Lp(m)-Banach L∞(m)-module Lp(T ∗X) (called
the p-cotangent module) and a linear operator d: H1,p(X) → Lp(T ∗X) (called the
differential) such that:

i) |df | = |Df |H for every f ∈ H1,p(X).
ii) The L∞(m)-linear span of {df : f ∈ H1,p(X)} is dense in Lp(T ∗X).

The pair (Lp(T ∗X), d) is unique up to a unique isomorphism: for any (M , d̃) having
the same properties, there exists a unique isomorphism of Lp(m)-Banach L∞(m)-
modules Φ: Lp(T ∗X) → M such that

is a commutative diagram. Moreover, the differential d satisfies the following Leibniz
rule:

(2.25) d(fg) = f · dg + g · df for every f, g ∈ H1,p(X) ∩ L∞(m).

Proof. This construction is due to Gigli [23]. The existence and uniqueness of
(Lp(T ∗X), d) can be proved by repeating verbatim the proof of [23, Section 2.2.1] or
[22, Theorem/Definition 2.8] (see also [25, Theorem 4.1.1], or [24, Theorem 3.2] for the
case p ̸= 2). Alternatively, one can apply [38, Theorem 3.19]. The Leibniz rule (2.25)
can be proved by arguing as in [23, Corollary 2.2.8] (or as in [22, Proposition 2.12],
or as in [25, Theorem 4.1.4], or as in [24, Proposition 3.5]). □

Following [23, Definition 2.3.1], we then introduce the q-tangent module of X by
duality:
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Definition 2.26. (Tangent module) Let X = (X, τ, d,m) be an e.m.t.m. space.
Let p, q ∈ (1,∞) be conjugate exponents. Then we define the q-tangent module
Lq(TX) of X as

Lq(TX) := Lp(T ∗X)∗.

Recall that Lq(TX), when regarded as a Banach space, can be identified with the
dual Banach space Lp(T ∗X)′ through the isomorphism

(2.26) Ip,X := IntLp(T ∗X) : Lq(TX) → Lp(T ∗X)′

defined in (2.6). The following result can be proved by suitably adapting [23, Propo-
sition 1.4.8] (or by applying [38, Proposition 3.20]):

Proposition 2.27. Let X = (X, τ, d,m) be an e.m.t.m. space. Let p, q ∈ (1,∞)
be conjugate exponents. Assume that φ : H1,p(X) → L1(m) is a linear map with the
following property: there exists a function G ∈ Lq(m)+ such that |φ(f)| ≤ G|Df |H
holds for every f ∈ H1,p(X). Then there exists a unique vector field vφ ∈ Lq(TX)
such that

is a commutative diagram. Moreover, it holds that |vφ| ≤ G.

Exactly as in [23, Section 2.3.1], the tangent module Lq(TX) can be equivalently
characterised in terms of a suitable notion of derivation, which we call ‘Sobolev
derivation’ (in order to make a distinction with the notion of ‘Lipschitz derivation’,
which we will introduce in Section 4). Namely:

Definition 2.28. (Sobolev derivation) Let X = (X, τ, d,m) be an e.m.t.m. space
and q ∈ (1,∞). Then by a Sobolev derivation (of exponent q) on X we mean a linear
map δ : H1,p(X) → L1(m) such that the following conditions hold:

i) δ(fg) = f δ(g) + g δ(f) for every f, g ∈ H1,p(X) ∩ L∞(m).
ii) There exists a function G ∈ Lq(m)+ such that |δ(f)| ≤ G|Df |H for every

f ∈ H1,p(X).

We denote by Lq
Sob(TX) the set of all Sobolev derivations of exponent q on X.

The above definition is adapted from [23, Definition 2.3.2]. To any derivation
δ ∈ Lq

Sob(TX), we associate the function |δ| ∈ Lq(m)+ given by

|δ| :=
∧{

G ∈ Lq(m)+ | |δ(f)| ≤ G|Df |H for every f ∈ H1,p(X)
}
.

Note that |δ(f)| ≤ |δ||Df |H for all f ∈ H1,p(X). It is straightforward to check that
(Lq

Sob(TX), | · |) is an Lq(m)-Banach L∞(m)-module. The latter can be identified with
the tangent module Lq(TX), as the next result (which is essentially taken from [23,
Theorem 2.3.3]) shows:

Proposition 2.29. (Identification between Lq(TX) and Lq
Sob(TX)) Let X =

(X, τ, d,m) be an e.m.t.m. space and q ∈ (1,∞). Then for any v ∈ Lq(TX) we have
that v ◦d: H1,p(X) → L1(m) is an element of Lq

Sob(TX). Moreover, the resulting map
Φ: Lq(TX) → Lq

Sob(TX) is an isomorphism of Lq(m)-Banach L∞(m)-modules.
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Proof. Let v ∈ Lq(TX) be a given vector field. Then v ◦ d: H1,p(X) → L1(m) is
linear and

(v ◦ d)(fg) = d(fg)(v) = f dg(v) + g df(v) = f (v ◦ d)(g) + g (v ◦ d)(f)

for every f, g ∈ H1,p(X) ∩ L∞(m) by (2.25). Moreover, |(v ◦ d)(f)| = |df(v)| ≤
|Df |H |v| for every f ∈ H1,p(X). This gives v ◦ d ∈ Lq

Sob(TX) and |v ◦ d| ≤ |v|. It
follows that Φ: Lq(TX) → Lq

Sob(TX) is a linear map such that |Φ(v)| ≤ |v| for every
v ∈ Lq(TX). Since we have that

Φ(h · v)(f) = ((h · v) ◦ d)(f) = df(h · v) = h df(v) = hΦ(v)(f) = (h · Φ(v))(f)

for every h ∈ L∞(m) and f ∈ H1,p(X), we deduce that Φ is L∞(m)-linear. To
conclude, it remains to check that for any δ ∈ Lq

Sob(TX) there exists vδ ∈ Lq(TX)
such that Φ(vδ) = δ and |vδ| ≤ |δ|. Since δ : H1,p(X) → L1(m) is linear and |δ(f)| ≤
|δ||Df |H for every f ∈ H1,p(X), we deduce from Proposition 2.27 that there exists (a
unique) vδ ∈ Lq(TX) such that δ = vδ ◦ d = Φ(vδ), and it holds that |vδ| ≤ |δ|. All
in all, the statement is achieved. □

2.5. Sobolev spaces B1,p via test plans. The second notion of Sobolev
space over an e.m.t.m. space we consider is the one obtained by investigating the
behaviour of functions along suitably chosen curves. The relevant object here is that
of a Tq-test plan (see Definition 2.30 below), which was introduced in [42, Section
4.2] after [3, 5, 6]. A function f ∈ Lp(m) is declared to be in the Sobolev space
B1,p(X) if it has a p-integrable Tq-weak upper gradient (where p, q are conjugate
exponents), i.e. a function satisfying the upper gradient inequality [16, 33, 36] along
π-a.e. curve, for every Tq-test plan π. Our notation ‘B1,p’ is different from the one
of [42], where ‘W 1,p’ is used instead. The reason is that in this paper we prefer to
denote by W 1,p(X) the Sobolev space that we will define through an integration-
by-parts formula in Section 5.1, which comes with a notion of ‘weak derivative’. In
analogy with [7], the notation B1,p(X) is chosen to remind the resemblance to Beppo
Levi’s approach to weakly differentiable functions.

Let X = (X, τ, d,m) be an e.m.t.m. space. According to [42, Definition 4.2.1], a
dynamic plan on X is a Radon measure π ∈ M+(RA(X, d), τA) satisfying�

ℓ(γ) dπ(γ) < +∞.

The barycenter of π is defined as the unique Radon measure µπ ∈ M+(X, τ) such
that�

f dµπ =

� ( �
γ

f

)
dπ(γ) for every bounded Borel function f : (X, τ) → R.

Moreover, we say that π has q-barycenter, for some q ∈ (1,∞), if it holds that
µπ ≪ m and

(2.27) hπ :=
dµπ
dm

∈ Lq(m)+.

The following definition is taken from [42, Definition 5.1.1]:

Definition 2.30. (Tq-test plan) Let X = (X, τ, d,m) be an e.m.t.m. space and
q ∈ (1,∞). Then a dynamic plan π on X is said to be a Tq-test plan provided it has
q-barycenter and it holds that

(ê0)#π, (ê1)#π ≪ m,
d(ê0)#π

dm
,
d(ê1)#π

dm
∈ Lq(m)+.
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We denote by Tq(X) the set of all Tq-test plans on X.

The corresponding notion of weak upper gradient is the following (from [42,
Definition 5.1.4]):

Definition 2.31. (Tq-weak upper gradient) Let X = (X, τ, d,m) be an e.m.t.m.
space and q ∈ (1,∞). Let f : X → R and G : X → [0,+∞) be given τ -Borel
functions. Then we say that G is a Tq-weak upper gradient of f provided for any
π ∈ Tq(X) it holds that

(2.28) |f(γ1) − f(γ0)| ≤
�
γ

G < +∞ for π-a.e. γ ∈ RA(X, d).

If f, f̃ : X → R are τ -Borel functions satisfying f = f̃ in the m-a.e. sense, then
f and f̃ have the same Tq-weak upper gradients. Hence, we can unambiguously say
that a function f ∈ L1(m) has a Tq-weak upper gradient.

Lemma 2.32. Let X = (X, τ, d,m) be an e.m.t.m. space. Let p, q ∈ (1,∞)
be conjugate exponents. Let f : X → R and G : X → [0,+∞) be given τ -Borel
functions with

�
Gp dm < +∞. Then the function G is a Tq-weak upper gradient of

f if and only if

(2.29)

�
f(γ1) − f(γ0) dπ(γ) ≤

�
Ghπ dm for every π ∈ Tq(X).

Proof. Necessity can be shown by integrating (2.28). For sufficiency, we argue by
contradiction: suppose that (2.29) holds, but G is not a Tq-weak upper gradient of f .
Then there exist a Tq-test plan π ∈ Tq(X), a Borel set Γ ⊆ RA(X, d) with π(Γ) > 0
and some ε > 0 such that

(2.30) |f(γ1) − f(γ0)| ≥ ε+

�
γ

G for every γ ∈ Γ.

Denote Γ+ := {γ ∈ Γ: f(γ1) ≥ f(γ0)} and Γ− := Γ \ Γ+. Now let us consider π+ :=
π|Γ+ ∈ Tq(X) and π− := Rev#(π|Γ−) ∈ Tq(X), where Rev : RA(X, d) → RA(X, d)
denotes the map sending a rectifiable arc [γ] to the ∼-equivalence class of the curve
[0, 1] ∋ t 7→ γ1−t ∈ X. We deduce that

επ(Γ±) +

�
Ghπ± dm =

� (
ε+

�
γ

G

)
dπ±(γ)

(2.30)

≤
�
f(γ1) − f(γ0) dπ±(γ)

(2.29)

≤
�
Ghπ± dm.

Either π(Γ+) > 0 or π(Γ−) > 0, thus the above estimates lead to a contradiction. □

If f ∈ L1(m) has a Tq-weak upper gradient in Lp(m) (where p ∈ (1,∞) denotes
the conjugate exponent of q), then there exists a unique function |Df |B ∈ Lp(m)+,
which we call the minimal Tq-weak upper gradient of f , such that the following hold:

i) |Df |B has a representative Gf : X → [0,+∞) that is a Tq-weak upper gradient
of f .

ii) If G is a Tq-weak upper gradient of f , then |Df |B ≤ G holds m-a.e. in X.

See [42, paragraph after Definition 5.1.23]. Consequently, the following definition
(which is taken from [42, Definition 5.1.24]) is well posed:

Definition 2.33. (The Sobolev space B1,p(X)) Let X = (X, τ, d,m) be an
e.m.t.m. space. Let p, q ∈ (1,∞) be conjugate exponents. Then we define the
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Sobolev space B1,p(X) as the set of all functions f ∈ Lp(m) having a Tq-weak upper
gradient in Lp(m). Moreover, we define

∥f∥B1,p(X) :=
(
∥f∥pLp(m) + ∥|Df |B∥pLp(m)

)1/p
for every f ∈ B1,p(X).

It holds that (B1,p(X), ∥ · ∥B1,p(X)) is a Banach space. In the setting of d-complete
e.m.t.m. spaces, the full equivalence of H1,p and W 1,p was obtained by Savaré in [42,
Theorem 5.2.7] (see Theorem 2.34 below for the precise statement), thus generalising
previous results for metric-measure spaces [5, 6, 16, 47]. See also [7, 20, 37] for other
related equivalence results.

Theorem 2.34. (H1,p = B1,p on complete e.m.t.m. spaces) Let X = (X, τ, d,m)
be an e.m.t.m. space such that (X, d) is a complete extended metric space. Let
p ∈ (1,∞) be given. Then

H1,p(X) = B1,p(X).

Moreover, it holds that |Df |B = |Df |H for every f ∈ H1,p(X).

The completeness assumption in Theorem 2.34 cannot be dropped. For instance,
let us consider the space (−1, 1) \ {0} equipped with the restriction of the Euclidean
distance, its induced topology and the restriction of the one-dimensional Lebesgue
measure. It can be readily checked that the function 1(0,1) is B1,p-Sobolev with null
minimal Tq-weak upper gradient, but not H1,p-Sobolev.

3. Extensions of τ -continuous d-Lipschitz functions

A fundamental tool in metric geometry is the McShane–Whitney extension theo-
rem, which ensures that every real-valued Lipschitz function defined on some subset
of a metric space can be extended to a Lipschitz function on the whole metric space,
also preserving the Lipschitz constant. In the setting of extended metric-topological
spaces, we rather need an extension theorem for τ -continuous d-Lipschitz functions
for which both the τ -continuity and the d-Lipschitz conditions are preserved. The
McShane–Whitney extension theorem does not accomplish this goal, as we are go-
ing to illustrate: it states that if f : E → R is a Lipschitz function with Lipschitz
constant L defined on a subset E of some metric space (X, d), then by letting

(3.1) f∧(x) := sup
y∈E

(
f(y) − Ld(x, y)

)
, f∨(x) := inf

y∈E

(
f(y) + Ld(x, y)

)
for every x ∈ X we obtain two Lipschitz functions f∧, f∨ : X → R with Lipschitz
constant L that extend f ; moreover, every Lipschitz extension f̄ : X → R of f with
Lipschitz constant L satisfies f∧ ≤ f̄ ≤ f∨. However, if in addition X is equipped
with a topology τ for which d is τ × τ -lower semicontinuous, then it is clear that the
functions f∧, f∨ defined in (3.1) are typically not (semi)continuous with respect to
τ (unless e.g. τ is exactly the topology induced by d), since f∧ is a supremum of τ -
upper semicontinuous functions, whereas f∨ is an infimum of τ -lower semicontinuous
functions.

Conversely, the extension results obtained by Matoušková in [39] are fit for our
purposes:

Theorem 3.1. (Extension result) Let (X, τ, d) be an e.m.t. space with (X, τ)
normal. Assume

(3.2) B̄d
r (C) is τ -closed, for every τ -closed set C ⊆ X and r ∈ (0,+∞).
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Let C ⊆ X be a τ -closed set. Let f : C → R be a bounded τ -continuous d-Lipschitz
function. Then there exists a function f̄ ∈ Lipb(X, τ, d) such that

f̄ |C = f, Lip(f̄ , d) = Lip(f, C, d), inf
C
f ≤ f̄ ≤ sup

C
f.

Proof. Without loss of generality, we can assume that Lip(f, C, d) > 0. We define

M :=
OscC(f)

Lip(f, C, d)
> 0

and let us consider the truncated distance d̃ := d ∧ M . Then d̃ is (τ × τ)-lower

semicontinuous, f is d̃-Lipschitz and Lip(f, C, d̃) = Lip(f, C, d). By virtue of [39,

Theorem 2.4], we can find a τ -continuous d̃-Lipschitz extension f̄ : X → R of f such

that Lip(f̄ , d̃) = Lip(f, C, d̃) and infC f ≤ f̄ ≤ supC f . Given that d̃ ≤ d, we can
thus conclude that f̄ ∈ Lipb(X, τ, d) and Lip(f̄ , d) = Lip(f, C, d). □

Remark 3.2. Let us make some comments on Theorem 3.1:

i) Every τ -compact e.m.t. space (X, τ, d) satisfies the assumptions of Theo-
rem 3.1. Indeed, all compact Hausdorff spaces are normal, and (3.2) holds by
[39, proof of Corollary 2.5].

ii) If B is a Banach space, dB′ denotes the distance on B′ induced by its norm
and τw∗ is the weak∗ topology of B′, then (B′, τw∗ , dB′) fulfils the assumptions
of Theorem 3.1, as it is shown in the proof of [39, Corollary 2.6].

iii) The requirement (3.2) cannot be dropped. Indeed, if B is a non-reflexive
Banach space, dB denotes its induced distance and τw is its weak topology,
then (B, τw, dB) neither fulfils (3.2) nor the conclusions of Theorem 3.1; see
the proof of [39, Theorem 3.1]. Note also that if in addition B′ is separable,
then (B, τw) is normal (it can be readily checked that it is both regular and
Lindelöf, thus it is normal by [35, Lemma at page 113]).

iv) If (X, τ) is a normal Hausdorff space and d := ddiscr denotes the discrete
distance on X, then Theorem 3.1 for (X, τ, d) reduces to the Tietze exten-
sion theorem for bounded functions (note that (3.2) holds in this case, since
B̄d

r (C) = C if r < 1, B̄d
r (C) = X otherwise). In particular, in Theorem 3.1

both the assumptions that τ is normal and that the set C is τ -closed are
needed.

v) If (X, d) is a metric space and τd denotes the topology induced by d, then
Theorem 3.1 for (X, τd, d) implies the McShane–Whitney extension theorem
for bounded functions.

vi) Differently from the Tietze and the McShane–Whitney extension theorems,
in Theorem 3.1 the boundedness assumption on f cannot be dropped; see e.g.
[39, Example 3.2]. ■

In Section 4, the above extension result will be used to study the relation between
different notions of Lipschitz derivations. Rather than Theorem 3.1, we will apply a
consequence of it:

Corollary 3.3. Let (X, τ, d) be an e.m.t. space. Let K ⊆ X be a τ -compact set.
Let f : K → R be a bounded τ -continuous d-Lipschitz function. Then there exists
f̄ ∈ Lipb(X, τ, d) such that

f̄ |K = f, Lip(f̄ , d) = Lip(f,K, d), min
K

f ≤ f̄ ≤ max
K

f.
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Proof. Consider the compactification (X̂, τ̂ , d̂) of (X, τ, d) and the canonical

embedding ι : X ↪→ X̂. Since ι is continuous, we have that ι(K) is τ̂ -compact. The
function g : ι(K) → R, which we define as g(y) := f(ι−1(y)) for every y ∈ ι(K), is

τ̂ -continuous and d̂-Lipschitz. By applying Theorem 3.1 (taking also Remark 3.2 i)

into account), we deduce that there exists a function ḡ : X̂ → R such that ḡ|ι(K) = g,

Lip(ḡ, d̂) = Lip(g, ι(K), d̂) and minι(K) g ≤ ḡ ≤ maxι(K) g. Now define f̄ : X → R
as f̄(x) := ḡ(ι(x)) for every x ∈ X. Observe that f̄ ∈ Lipb(X, τ, d), f̄ |K = f ,
Lip(f̄ , d) = Lip(f,K, d) and minK f ≤ f̄ ≤ maxK f . Therefore, the statement is
proved. □

4. Lipschitz derivations

Let us begin by introducing a rather general notion of Lipschitz derivation over
an arbitrary e.m.t.m. space. In Sections 4.1 and 4.2, we will then identify and study
two special classes of derivations, which extend previous notions by Weaver [49, 50]
and Di Marino [18, 17], respectively.

Definition 4.1. (Lipschitz derivation) Let X = (X, τ, d,m) be an e.m.t.m. space.
Then by a Lipschitz derivation on X we mean a linear operator b : Lipb(X, τ, d) →
L0(m) such that

(4.1) b(fg) = f b(g) + g b(f) for every f, g ∈ Lipb(X, τ, d).

We refer to (4.1) as the Leibniz rule. We denote by Der(X) the set of all derivations
on X.

It can be readily checked that the space Der(X) is a module over L0(m) if endowed
with

(b+ b̃)(f) := b(f) + b̃(f) for every b, b̃ ∈ Der(X) and f ∈ Lipb(X, τ, d),

(hb)(f) := h b(f) for every b ∈ Der(X), h ∈ L0(m) and f ∈ Lipb(X, τ, d).

In particular, Der(X) is a vector space (since the field R can be identified with a
subring of L0(m), via the map that associates to every number λ ∈ R the function
that is m-a.e. equal to λ).

Definition 4.2. (Divergence of a Lipschitz derivation) Let X = (X, τ, d,m) be
an e.m.t.m. space and b ∈ Der(X). Then we say that b has divergence provided
it holds that b(f) ∈ L1(m) for every f ∈ Lipb(X, τ, d) and there exists a function
div(b) ∈ L1(m) such that

(4.2)

�
b(f) dm = −

�
f div(b) dm for every f ∈ Lipb(X, τ, d).

We denote by D(div;X) the set of all Lipschitz derivations on X having divergence.

Let us make some comments on Definition 4.2:

• Since Lipb(X, τ, d) is weakly∗ dense in L1(m) (as it easily follows from (2.8)),
it holds that the divergence div(b) is uniquely determined by (4.2).

• D(div;X) is a vector subspace of Der(X).
• div : D(div;X) → L1(m) is a linear operator.
• The divergence satisfies the Leibniz rule, i.e. for every b ∈ D(div;X) and
h ∈ Lipb(X, τ, d) it holds that hb ∈ D(div;X) and

div(hb) = h div(b) + b(h).
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In particular, D(div;X) is a Lipb(X, τ, d)-submodule of Der(X).

We shall focus on classes of derivations satisfying additional locality or continuity
properties:

Definition 4.3. (Local derivation) Let X = (X, τ, d,m) be an e.m.t.m. space.
Let b ∈ Der(X) be a given derivation. Then we say that b is local if for every function
f ∈ Lipb(X, τ, d) we have that

b(f) = 0 holds m-a.e. on {f = 0}.
Let E ∈ B(X, τ) be such that m(E) > 0. Then every local derivation b ∈ Der(X)

induces by restriction a local derivation b⌞E ∈ Der(X⌞E), where X⌞E is as in (2.9),
in the following way. Thanks to the inner regularity of m, we can find a sequence
(Kn)n of pairwise disjoint τ -compact subsets of E such that m

(
E \

⋃
n∈NKn

)
= 0.

For any f ∈ Lipb(E, τE, dE) and n ∈ N, we know from Corollary 3.3 that there exists
f̄n ∈ Lipb(X, τ, d) such that f̄n|Kn = f |Kn . We then define

(4.3) (b⌞E)(f) :=
∑
n∈N

1Knb(f̄n) ∈ L0(m⌞E).

By using the locality of b, one can readily check that b⌞E is well defined and local.
In the definition below, we endow the closed unit ball B̄Lipb(X,τ,d) of Lipb(X, τ, d)

with the topology τpt of pointwise convergence, and the space L∞(m) with its weak∗

topology τw∗ .

Definition 4.4. (Weak∗-type continuity of derivations) Let X = (X, τ, d,m) be
an e.m.t.m. space. Let b ∈ Der(X) be a given derivation satisfying b(f) ∈ L∞(m) for
every f ∈ Lipb(X, τ, d). Then:

i) We say that b is weakly∗-type continuous provided the map b|B̄Lipb(X,τ,d)
is

continuous between (B̄Lipb(X,τ,d), τpt) and (L∞(m), τw∗).
ii) We say that b is weakly∗-type sequentially continuous provided the map

b|B̄Lipb(X,τ,d)
is sequentially continuous between (B̄Lipb(X,τ,d), τpt) and (L∞(m),

τw∗).

Some comments on the weak∗-type continuity and the weak∗-type sequential
continuity:

• Since derivations are linear, the weak∗-type continuity can be equivalently
reformulated by asking that if a bounded net (fi)i∈I ⊆ Lipb(X, τ, d) and a
function f ∈ Lipb(X, τ, d) satisfy limi∈I fi(x) = f(x) for every x ∈ X, then
limi∈I b(fi) = b(f) with respect to the weak∗ topology of L∞(m). Similarly, the
weak∗-type sequential continuity is equivalent to asking that if a bounded
sequence (fn)n∈N ⊆ Lipb(X, τ, d) and a function f ∈ Lipb(X, τ, d) satisfy

limn fn(x) = f(x) for every x ∈ X, then b(fn)
∗
⇀ b(f) weakly∗ in L∞(m)

as n→ ∞.
• The terminology ‘weak∗-type (sequential) continuity’ is motivated by the fact

that it strongly resembles the weak∗ (sequential) continuity in the Banach
algebra Lipb(X, d) of bounded Lipschitz functions on a metric space (see
[50, Corollary 3.4]), even though in the setting of e.m.t. spaces one has that
Lipb(X, τ, d) does not always have a predual (see Proposition 2.16) and thus
we cannot talk about an actual weak∗ topology on it.

• We point out that if a bounded sequence (fn)n ⊆ Lipb(X, τ, d) and a function
f : X → R satisfy fn(x) → f(x) for every x ∈ X, then f is d-Lipschitz, but
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it can happen that it is not τ -continuous, and thus it does not belong to
Lipb(X, τ, d); see Example 4.5 below.

• The weak∗-type continuity is stronger than the weak∗-type sequential conti-
nuity, but they are not equivalent concepts, as we will see in Proposition 4.7
and Remark 5.5.

Example 4.5. When (X, d) is a metric space, the topology τpt on B̄Lipb(X,d) co-
incides with the restriction of the weak∗ topology of Lipb(X, τ, d), thus in particular
(B̄Lipb(X,d), τpt) is a compact Hausdorff topological space. On the contrary, in the
more general setting of e.m.t. spaces the Hausdorff topological space (B̄Lipb(X,τ,d), τpt)
needs not be compact. For example, consider the unit interval [0, 1] together with
the Euclidean topology τ and the discrete distance ddiscr, which gives a ‘purely-
topological’ e.m.t. space as in Example 2.14. Letting (fn)n∈N ⊆ Lipb([0, 1], τ, ddiscr)
be defined as fn(t) := (nt) ∧ 1 for every n ∈ N and t ∈ [0, 1], we have that
∥fn∥Lipb([0,1],τ,ddiscr) = 2 for every n ∈ N and 1(0,1](t) = limn fn(t) for every t ∈ [0, 1],
but 1(0,1] /∈ Lipb([0, 1], τ, ddiscr) (because it is not τ -continuous at 0). In particular,
(B̄Lipb([0,1],τ,ddiscr), τpt) is not compact. ■

The weak∗-type sequential continuity condition implies both locality and strong
continuity:

Theorem 4.6. Let X = (X, τ, d,m) be an e.m.t.m. space. Let b ∈ Der(X) be
weakly∗-type sequentially continuous. Then b is a local derivation. Moreover, the
map b : Lipb(X, τ, d) → L∞(m) is a bounded linear operator.

Proof. The proof of locality is essentially taken from [50, Lemma 10.34]. Fix any
f ∈ Lipb(X, τ, d). For any n ∈ N, we define the auxiliary functions ϕn, ψn : R → R
as ϕn(t) := 1 − e−nt2 and ψn(t) := t ϕn(t) for every t ∈ R. Since 0 ≤ ϕn(t) ≤ 1

and ϕ′
n(t) = 2nte−nt2 for all t ∈ R, we have that ϕn is Lipschitz on f(X) and thus

ϕn ◦ f ∈ Lipb(X, τ, d). Moreover, −|t| ≤ ψn(t) ≤ |t| and 0 ≤ ψ′
n(t) ≤ 1 + 2e−3/2

for all t ∈ R, so that ψn ◦ f ∈ Lipb(X, τ, d) with ∥ψn ◦ f∥Cb(X,τ) ≤ ∥f∥Cb(X,τ) and

Lip(ψn ◦ f, d) ≤ (1 + 2e−3/2)Lip(f, d). In particular, the sequence (ψn ◦ f)n is norm
bounded in Lipb(X, τ, d). Note also that limn(ψn ◦ f)(x) = f(x) for every x ∈ X,
whence it follows that

f b(ϕn ◦ f) + (ϕn ◦ f)b(f) = b((ϕn ◦ f)f) = b(ψn ◦ f)
∗
⇀ b(f)

weakly∗ in L∞(m) as n → ∞ by the weak∗-type sequential continuity of b. In
particular, as 1{f=0}(f b(ϕn ◦ f) + (ϕn ◦ f)b(f)) = 0 holds m-a.e. for every n ∈ N, we
conclude that 1{f=0}b(f) = 0 in the m-a.e. sense, thus b is local.

Let us now prove that b : Lipb(X, τ, d) → L∞(m) is a bounded linear operator.
Given any function h ∈ L1(m), we define the linear operator Th : Lipb(X, τ, d) → R
as

Th(f) :=

�
h b(f) dm for every f ∈ Lipb(X, τ, d).

If (fn)n∈N ⊆ Lipb(X, τ, d) and f ∈ Lipb(X, τ, d) satisfy ∥fn − f∥Lipb(X,τ,d) → 0 as n→
∞, then we have in particular that supn∈N ∥fn∥Lipb(X,τ,d) < +∞ and f(x) = limn fn(x)

for every x ∈ X, so that b(fn)
∗
⇀ b(f) weakly∗ in L∞(m) by the weak∗-type sequential

continuity of b, and thus accordingly Th(fn) =
�
h b(fn) dm →

�
h b(f) dm = Th(f).

This shows that Th : Lipb(X, τ, d) → R is continuous, thus Th ∈ Lipb(X, τ, d)′. Next,
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denote B := {h ∈ L1(m) : ∥h∥L1(m) ≤ 1}. Note that

sup
h∈B

|Th(f)| ≤ sup
h∈B

�
|h||b(f)| dm ≤ ∥b(f)∥L∞(m) for every f ∈ Lipb(X, τ, d)

by Hölder’s inequality. Thanks to the Uniform Boundedness Principle, we then
deduce that

M := sup
h∈B

∥Th∥Lipb(X,τ,d)′ < +∞.

Therefore, we can conclude that for any f ∈ Lipb(X, τ, d) with ∥f∥Lipb(X,τ,d) ≤ 1 it
holds that

∥b(f)∥L∞(m) = sup
h∈B

�
h b(f) dm = sup

h∈B
Th(f) ≤ sup

h∈B
∥Th∥Lipb(X,τ,d)′ = M,

whence it follows that b : Lipb(X, τ, d) → L∞(m) is a bounded linear operator. □

The next result clarifies the interplay between weak∗-type continuous deriva-
tions and the decomposition of an e.m.t.m. space into its maximal d-separable and
purely non-d-separable components. The proof of i) was suggested to us by Sylvester
Eriksson-Bique.

Proposition 4.7. Let X = (X, τ, d,m) be an e.m.t.m. space. Let b ∈ Der(X) be
given. Then:

i) If b is weakly∗-type continuous, then b(f) = 0 m-a.e. on X \ SX for every
f ∈ Lipb(X, τ, d).

ii) If b is a local derivation and b⌞SX is weakly∗-type sequentially continuous,
then b⌞SX is weakly∗-type continuous. In particular, if b is weakly∗-type
sequentially continuous, then b⌞SX is weakly∗-type continuous.

Proof. i) Assume that b is weakly∗-type continuous. We argue by contradiction:
suppose that there exists a function f ∈ Lipb(X, τ, d) such that m({b(f) ̸= 0}\SX) >
0. Up to replacing f with −f , we can assume that m({b(f) > 0} \ SX) > 0, so that
there exists a real number λ > 0 such that m({b(f) ≥ λ} \ SX) > 0. Fix any τ -Borel
m-a.e. representative P of {b(f) ≥ λ} \ SX satisfying P ⊆ X \ SX. Next, we define

I :=
{

(F,G) | F ⊆ X finite, G ⊆ Lipb,1(X, τ, d) finite
}
.

For any (F,G), (F̃ , G̃) ∈ I, we declare that (F,G) ⪯ (F̃ , G̃) if and only if F ⊆ F̃ and
G ⊆ G̃. Note that (I,⪯) is a directed set. We then define the net (uF,G)(F,G)∈I ⊆
Lipb(X, τ, d) as

uF,G(x) := min
p∈F

max
g∈G

|g(x) − g(p)| ∧ 1 for every (F,G) ∈ I and x ∈ X.

Given any x ∈ X, we have that uF,G(x) = 0 holds for every (F,G) ∈ I with
({x},∅) ⪯ (F,G), thus accordingly lim(F,G)∈I uF,G(x) = 0 and lim(F,G)∈I(uF,Gf)(x) =
0. Since {uF,G : (F,G) ∈ I} and {uF,Gf : (F,G) ∈ I} are bounded subsets of
Lipb(X, τ, d), we deduce that

lim
(F,G)∈I

uF,G b(f) = lim
(F,G)∈I

(
b(uF,Gf) − f b(uF,G)

)
= 0 weakly∗ in L∞(m),

by the weak∗-type continuity of b and the Leibniz rule. Hence, lim(F,G)∈I
�
P
uF,G·

b(f) dm = 0. Since 0 ≤ λ
�
P
uF,G dm ≤

�
P
uF,G b(f) dm for every (F,G) ∈ I, we get
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lim(F,G)∈I
�
P
uF,G dm = 0. Then we can find a ⪯-increasing sequence ((Fk, Gk))k∈N ⊆

I such that

(4.4)

�
P

uF,G dm ≤ 1

k
for every k ∈ N and (F,G) ∈ I with (Fk, Gk) ⪯ (F,G).

Given any k ∈ N, consider the directed set Ik :=
{
G ⊆ Lipb,1(X, τ, d) : Gk ⊆

G with G finite
}

ordered by inclusion. Being (uFk,G)G∈Ik a non-decreasing net of
τ -continuous functions, we have

(4.5)

�
P

min
p∈Fk

d(x, p) ∧ 1 dm(x) =

�
P

lim
G∈Ik

uFk,G dm = lim
G∈Ik

�
P

uFk,G dm ≤ 1

k

for all k ∈ N thanks to (2.7), Remark 2.4 and (4.4). Now, observe that minp∈Fk
d(x, p)

∧ 1 ↘ infp∈C d(x, p) ∧ 1 as k → ∞ for every x ∈ X, where C denotes the countable
set

⋃
k∈N Fk. By the dominated convergence theorem, we deduce from (4.5) that�

P
infp∈C d(x, p) ∧ 1 dm(x) = 0, which implies that there exists a set N ∈ B(X, τ)

such that m(N) = 0 and infp∈C d(x, p) ∧ 1 = 0 for every x ∈ P \ N . Therefore,
C is d-dense in P \ N , in contradiction with the fact that P \ N ⊆ X \ SX and
m(P \N) > 0.

ii) Assume that b is local and that b⌞SX is weakly∗-type sequentially continuous.
Theorem 4.6 ensures that there exists a constant C > 0 such that |(b⌞SX)(f)| ≤
C∥f∥Lipb(SX,τSX ,dSX ) holds m⌞SX-a.e. on SX for every f ∈ Lipb(SX, τSX , dSX). For any
R > 0, we denote

AR :=
{
f ∈ Lipb(SX, τSX , dSX) | ∥f∥Lipb(SX,τSX ,dSX ) ≤ R

}
,

BR :=
{
h ∈ L∞(m⌞SX) | ∥h∥L∞(m⌞SX) ≤ CR

}
.

Observe that b(f) ∈ BR for every f ∈ AR. Since (SX, dSX) is separable, we know
from Lemma 2.10 that L1(m⌞SX) is separable, so that the restriction of the weak∗

topology of L∞(m⌞SX) to BR is metrised by some distance δR. Moreover, fixed some
countable d-dense subset (xn)n∈N of SX, we define the distance dR on AR as

dR(f, g) :=
∑
n∈N

|f(xn) − g(xn)|
2n

for every f, g ∈ AR.

Using the fact that the set AR is d-equi-Lipschitz, it is straightforward to check
that dR metrises the pointwise convergence of functions in AR. Therefore, for the
derivation b⌞SX the weak∗-type continuity is equivalent to the weak∗-type sequential
continuity, since both conditions are equivalent to the continuity of b|AR

: (AR, d
R) →

(BR, δR) for every R > 0. □

We highlight the following facts, which are immediate consequences of Proposi-
tion 4.7:

Corollary 4.8. Let X = (X, τ, d,m) be an e.m.t.m. space. Then the following
properties hold:

i) If m(SX) = 0, the null derivation is the unique weakly∗-type continuous deriva-
tion on X.

ii) If m(X \ SX) = 0, a derivation b ∈ Der(X) is weakly∗-type continuous if and
only if it is weakly∗-type sequentially continuous.

4.1. Weaver derivations. Motivated by Corollary 4.8, we give the following
definition:
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Definition 4.9. (Weaver derivation) Let X = (X, τ, d,m) be an e.m.t.m. space
and b ∈ Der(X). Then we say that b is a Weaver derivation on X if it is weakly∗-type
sequentially continuous. We denote by X (X) the set of all Weaver derivations on X.

The goal of our axiomatisation above is to extend Weaver’s notion of ‘bounded
measurable vector field’ [50, Definition 10.30 a)] to the setting of e.m.t.m. spaces.
In fact, in those cases where the set X \ SX is m-negligible (which cover e.g. all
metric-measure spaces), we know from Corollary 4.8 ii) that our notion of Weaver
derivation is consistent with [50, Definition 10.30 a)]. Though, many e.m.t.m. spaces
of interest (e.g. Example 2.14 or abstract Wiener spaces) are ‘purely non-d-separable’,
meaning that m(SX) = 0. If this is the case, then no non-null derivation is weakly∗-
type continuous by Corollary 4.8 i). Due to this reason, in our definition of Weaver
derivation we ask for the weak∗-type sequential continuity in lieu. As we will see
in Example 5.5, abstract Wiener spaces—despite lacking in weak∗-type continuous
derivations—have plenty of weak∗-type sequential ones. The axiomatisation we have
chosen is also motivated by Theorem 4.16.

The space X (X) is an L∞(m)-submodule (and, thus, a vector subspace) of
Der(X). To any Weaver derivation b ∈ X (X), we associate the function |b|W ∈
L∞(m)+, which we define as

|b|W :=
∧{

g ∈ L∞(m)+ | |b(f)| ≤ g∥f∥Lipb(X,τ,d) m-a.e. for every f ∈ Lipb(X, τ, d)
}
.

Note that |b(f)| ≤ |b|W∥f∥Lipb(X,τ,d) holds m-a.e. on X for every f ∈ Lipb(X, τ, d).
We also point out that all Weaver derivations b ∈ X (X) are bounded linear

operators (thanks to Theorem 4.6). For ‘bounded measurable vector fields’, this fact
was observed in [50, paragraph after Definition 10.30], but in that case a stronger
statement actually holds: the image of the closed unit ball of Lipb(X, d) under b is
a weakly∗ compact subset of L∞(m) (since the closed unit ball is weakly∗ compact
by the Banach–Alaoglu theorem, and b is weakly∗ continuous). In our setting, we
have seen already in Example 4.5 that (B̄Lipb(X,τ,d), τpt) is not always compact. The
following example shows that for Weaver derivations b ∈ X (X) on an e.m.t.m. space
X it is not necessarily true that the image b(B̄Lipb(X,τ,d)) ⊆ L∞(m) is a weakly∗

compact set.

Example 4.10. Let (X, τ, d) be the e.m.t. space described in Example 2.15.
We equip it with the restriction m of the 2-dimensional Lebesgue measure, so that
X := (X, τ, d,m) is an e.m.t.m. space. Given any function f ∈ Lipb(X, τ, d), we have
that f(x, ·) ∈ Lipb([0, 1], dEucl) for every x ∈ [0, 1], thus the derivative f ′(x, ·)(t) ∈ R
exists for L 1-a.e. t ∈ [0, 1] by Rademacher’s theorem. In particular, thanks to
Fubini’s theorem and to (2.17), it makes sense to define b(f) ∈ L∞(m) as

b(f)(x, t) := f ′(x, ·)(t) for m-a.e. (x, t) ∈ X.

It easily follows from the classical calculus rules for the a.e. derivatives of Lipschitz
functions from [0, 1] to R that the resulting operator b : Lipb(X, τ, d) → L∞(m) is a
derivation on X. Moreover, if (fn)n∈N ⊆ Lipb(X, τ, d) and f ∈ Lipb(X, τ, d) are such
that supn∈N ∥fn∥Lipb(X,τ,d) < +∞ and f(x, t) = limn fn(x, t) for every (x, t) ∈ X, then
for every x ∈ [0, 1] the sequence (fn(x, ·))n is equi-Lipschitz and equibounded, thus

f ′
n(x, ·) ∗

⇀ f ′(x, ·) weakly∗ in L∞(0, 1) (as f ′
n(x, ·) is the weak derivative of fn(x, ·) by
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Rademacher’s theorem). Hence, for any h ∈ L1(m) we have that

�
h b(fn) dm =

� 1

0

� 1

0

h(x, t)f ′
n(x, ·)(t) dt dx

→
� 1

0

� 1

0

h(x, t)f ′(x, ·)(t) dt dx =

�
h b(f) dm

as n→ ∞, by Fubini’s theorem, the fact that h(x, ·) ∈ L1(0, 1) for a.e. x ∈ [0, 1], and
the dominated convergence theorem. This proves that b is weakly∗-type sequentially
continuous, so that b ∈ X (X).

Next, we claim that b(B̄Lipb(X,τ,d)) is not a weakly∗ closed subset of L∞(m), thus
in particular it is not a weakly∗ compact subset of L∞(m). To prove it, we define
(fn)n∈N ⊆ Lipb(X, τ, d) as

fn(x, t) := ψn(x)t for every n ∈ N and (x, t) ∈ X,

where the function ψn : [0, 1] →
[
0, 1

2

]
is given by ψn(x) :=

(
n
2

(
x − 1

2

)
∨ 0

)
∧ 1

2
for

every x ∈ [0, 1]. As ∥fn∥Cb(X,τ) = OscX(fn) = 1
2

and supx∈[0,1] Lip(fn(x, ·), dEucl) = 1
2
,

we have ∥fn∥Lipb(X,τ,d) = 1 for every n ∈ N thanks to (2.17). Furthermore, for every
n ∈ N we have that

b(fn)(x, t) = ψn(x) for m-a.e. (x, t) ∈ X,

so accordingly b(fn)
∗
⇀ 1

2
1[ 1

2
,1]×[0,1] =: g weakly∗ in L∞(m) as n → ∞. To conclude,

it remains to show that g /∈ b(Lipb(X, τ, d)), which implies that b(B̄Lipb(X,τ,d)) is not
weakly∗ closed in L∞(m). We argue by contradiction: assume that g = b(f) for some
f ∈ Lipb(X, τ, d). By Fubini’s theorem, we deduce that for a.e. x ∈

(
0, 1

2

)
we have

f ′(x, ·)(t) = 0 for a.e. t ∈ (0, 1), and for a.e. x ∈
(
1
2
, 1
)

we have f ′(x, ·)(t) = 1
2

for a.e.

t ∈ (0, 1). In particular, we can find sequences (xk)k ⊆
(
0, 1

2

)
and (yk)k ⊆

(
1
2
, 1
)

such

that
∣∣xk − 1

2

∣∣, ∣∣yk − 1
2

∣∣ → 0 as k → ∞, as well as f ′(xk, ·) = 0 and f ′(yk, ·) = 1
2

a.e.
on (0, 1) for every k ∈ N. Therefore, the fundamental theorem of calculus gives that

f(xk, 1)−f(xk, 0) =

� 1

0

f ′(xk, ·)(t) dt = 0, f(yk, 1)−f(yk, 0) =

� 1

0

f ′(yk, ·)(t) dt =
1

2
.

By contrast, the τ -continuity of f ensures that f(xk, 1) − f(xk, 0) and f(yk, 1) −
f(yk, 0) converge to the same number f

(
1
2
, 1
)
− f

(
1
2
, 0
)

as k → ∞, thus leading to a
contradiction. ■

Lemma 4.11. Let X = (X, τ, d,m) be an e.m.t.m. space such that m is sep-
arable. Let b ∈ D(div;X) be given. Assume that there exists C > 0 such that
|b(f)| ≤ C Lip(f, d) holds m-a.e. on X for every f ∈ Lipb(X, τ, d). Then b is a
Weaver derivation.

Proof. Let (fn)n ⊆ Lipb(X, τ, d) and f ∈ Lipb(X, τ, d) be such that fn(x) → f(x)
for every x ∈ X and M := supn∈N ∥fn∥Lipb(X,τ,d) < +∞. Since |b(fn)| ≤ CM holds
m-a.e. for every n ∈ N, the sequence (b(fn))n is bounded in L∞(m). An application
of the Banach–Alaoglu theorem, together with the separability of L1(m), ensures

(up to a non-relabelled subsequence) that b(fn)
∗
⇀ h weakly∗ in L∞(m) for some
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h ∈ L∞(m). Now fix any g ∈ Lipb(X, τ, d). We have that�
gh dm = lim

n→∞

�
g b(fn) dm = lim

n→∞

�
b(fng) − fnb(g) dm

= − lim
n→∞

�
fn(g div(b) + b(g)) dm = −

�
f(g div(b) + b(g)) dm

=

�
b(fg) − f b(g) dm =

�
g b(f) dm

by the dominated convergence theorem. As Lipb(X, τ, d) is dense in L1(m) (see (2.8)),

we deduce that h = b(f), so that the original sequence (fn)n satisfies b(fn)
∗
⇀ b(f)

weakly∗ in L∞(m). This shows that b is weakly∗-type sequentially continuous, so that
b ∈ X (X). □

4.2. Di Marino derivations. We now introduce another subclass of Lipschitz
derivations, which generalises to e.m.t.m. spaces the notions that have been intro-
duced by Di Marino in [17, 18]. After having given the relevant definitions and
discussed their main properties, we will investigate (in Theorem 4.16) the relation
between our notions of Weaver derivation and of Di Marino derivation.

Definition 4.12. (Di Marino derivation) Let X = (X, τ, d,m) be an e.m.t.m.
space. Then we say that b ∈ Der(X) is a Di Marino derivation on X if there exists
g ∈ L0(m)+ such that

(4.6) |b(f)| ≤ g lipd(f) holds m-a.e. on X, for every f ∈ Lipb(X, τ, d).

We denote by Der0(X) the set of all Di Marino derivations on X. For any q, r ∈ [1,∞],
we define

Derq(X) :=
{
b ∈ Der0(X) | (4.6) holds for some g ∈ Lq(m)+

}
,

Derqr(X) :=
{
b ∈ Derq(X) ∩D(div;X) | div(b) ∈ Lr(m)

}
.

The space Der0(X) is an L0(m)-submodule (and, thus, a vector subspace) of
Der(X). Moreover, Derq(X) is an L∞(m)-submodule of Der0(X), and Derqq(X) is a
Lipb(X, τ, d)-submodule of Derq(X), for every q ∈ [1,∞]. To any Di Marino derivation
b ∈ Der0(X), we associate the function

|b| :=
∧{

g ∈ L0(m)+ | |b(f)| ≤ g lipd(f) m-a.e. for every f ∈ Lipb(X, τ, d)
}

∈ L0(m)+.

Since in this paper we are primarily interested in Di Marino derivations (for defining
a metric Sobolev space, in Section 5.1), we use the notation |b| (instead e.g. of the
more descriptive |b|DM). In this regard, it is worth pointing out that if a derivation
b is both a Weaver derivation and a Di Marino derivation, it might happen that |b|W
and |b| are different.

Note that |b(f)| ≤ |b| lipd(f) holds m-a.e. on X for every f ∈ Lipb(X, τ, d), and
that

Derq(X) =
{
b ∈ Der0(X) | |b| ∈ Lq(m)

}
.

One can readily check that (Derq(X), | · |) is an Lq(m)-Banach L∞(m)-module for any
q ∈ (1,∞). In particular, (Derq(X), ∥·∥Derq(X)) is a Banach space for every q ∈ (1,∞),
where we define

∥b∥Derq(X) := ∥|b|∥Lq(m) for every b ∈ Derq(X).
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Furthermore, in analogy with [7, Eq. (4.9)], for any q ∈ (1,∞) we define the space
Lq
Lip(TX) as

(4.7) Lq
Lip(TX) := clDerq(X)(Derqq(X)).

The notation Lq
Lip(TX), which reminds of the fact that its elements are defined in

duality with the space Lipb(X, τ, d), is needed to distinguish it from the ‘Sobolev’
tangent modules Lq(TX) and Lq

Sob(TX) that we introduced in Section 2.4. The
relation between Lq

Lip(TX) and Lq
Sob(TX) (in the setting of metric-measure spaces) is

studied in the paper [8]. We claim that

hb ∈ Lq
Lip(TX) for every h ∈ L∞(m) and b ∈ Lq

Lip(TX).

To prove it, take a sequence (bn)n ⊆ Derqq(X) such that bn → b strongly in
Derq(X), and (using (2.8)) one can find a sequence (hn)n ⊆ Lipb(X, τ, d) such that
supn∈N ∥hn∥Cb(X,τ) ≤ ∥h∥L∞(m) and h(x) = limn hn(x) for m-a.e. x ∈ X, so that
Derqq(X) ∋ hnbn → hb strongly in Derq(X) by the dominated convergence theorem,
and thus accordingly hb ∈ Lq

Lip(TX). Since (Derq(X), |·|) is an Lq(m)-Banach L∞(m)-
module, we deduce that Lq

Lip(TX) is an Lq(m)-Banach L∞(m)-module.
The next result, whose proof is very similar to that of Lemma 4.11, studies the

continuity properties of Di Marino derivations with divergence.

Lemma 4.13. Let X = (X, τ, d,m) be an e.m.t.m. space. Let q ∈ [1,∞) and
b ∈ Derqq(X). Then

(4.8) b|B̄Lipb(X,τ,d)
: (B̄Lipb(X,τ,d), τpt) −→ (Lq(m), τw) is sequentially continuous,

where τw denotes the weak topology of Lq(m).

Proof. First, note that |b(f)| ≤ |b| lipd(f) ≤ Lip(f, d)|b| ∈ Lq(m) m-a.e. for
every f ∈ Lipb(X, τ, d), thus b(f) ∈ Lq(m) for every f ∈ Lipb(X, τ, d). Now fix any
sequence (fn)n ⊆ B̄Lipb(X,τ,d). The above estimate shows that the sequence (b(fn))n
is dominated in Lq(m), thus the Dunford–Pettis theorem ensures (up to taking a
non-relabelled subsequence) that b(fn) ⇀ G weakly in Lq(m), for some G ∈ Lq(m).
By using also the dominated convergence theorem, we then obtain that

�
hG dm = lim

n→∞

�
h b(fn) dm = lim

n→∞

�
b(hfn) − fn b(h) dm

= − lim
n→∞

�
fn(h div(b) + b(h)) dm

= −
�
f(h div(b) + b(h)) dm =

�
h b(h) dm

for every h ∈ Lipb(X, τ, d). Letting p ∈ (1,∞) be the conjugate exponent of q, we
know from (2.8) that Lipb(X, τ, d) is strongly dense (resp. weakly∗ dense) in Lp(m)
if p < ∞ (resp. if p = ∞), thus we get that G = b(f). Consequently, we have that
the original sequence (fn)n satisfies b(fn) ⇀ b(f) weakly in Lq(m). This shows the
validity of (4.8). □

As a consequence, Di Marino derivations with divergence are local:

Corollary 4.14. Let X = (X, τ, d,m) be an e.m.t.m. space. Let q ∈ [1,∞) and
b ∈ Derqq(X) be given. Then b is a local derivation.
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Proof. Fix any f ∈ Lipb(X, τ, d). For any n ∈ N, we define the auxiliary function
ϕn : R → R as

ϕn(t) :=


t+ 1

n
if t ≤ − 1

n
,

0 if − 1
n
< t < 1

n
,

t− 1
n

if t ≥ 1
n
.

Note that ϕn ◦ f ∈ Lipb(X, τ, d) with ∥ϕn ◦ f∥Cb(X,τ) ≤ ∥f∥Cb(X,τ) + 1 and Lip(ϕn ◦
f, d) ≤ Lip(f, d). It also holds that (ϕn ◦ f)(x) → f(x) for every x ∈ X, thus
Lemma 4.13 gives that b(ϕn ◦ f) ⇀ b(f) weakly in Lq(m). Moreover, one can readily
check that lipd(ϕn ◦f) ≤ (lipdEucl

(ϕn)◦f) lipd(f), so that the m-a.e. inequality |b(ϕn ◦
f)| ≤ |b| lipd(ϕn ◦ f) implies that b(ϕn ◦ f) = 0 holds m-a.e. on the set {f = 0} (as
lipdEucl

(ϕn)(0) = 0), thus accordingly b(f) = 0 holds m-a.e. on {f = 0}. □

Proposition 4.15. Let X = (X, τ, d,m) be an e.m.t.m. space. Let b ∈ Der(X)
be a local derivation. Assume that there exists a function g ∈ L0(m)+ such that

|b(f)| ≤ g∥f∥Lipb(X,τ,d) holds m-a.e. on X, for every f ∈ Lipb(X, τ, d).

Let C ⊆ X be a τ -closed set. Then for any entourage U ∈ Bτ,d we have that

(4.9) |b(f)| ≤ g Lip(f, C ∩ U [·], d) holds m-a.e. on C, for every f ∈ Lipb(X, τ, d).

In particular, if the topology τ is metrisable on C, then (letting dC := d|C×C) we
have that

(4.10) |b(f)| ≤ g lipdC
(f |C) holds m-a.e. on C, for every f ∈ Lipb(X, τ, d).

Proof. By definition of uniform structure, we can find V ∈ Uτ,d such that V ◦V ⊆
U , where we set

V ◦ V :=
{

(x, z) ∈ X ×X | (x, y), (y, z) ∈ V for some y ∈ X
}
.

Fix any ε > 0 and f ∈ Lipb(X, τ, d). Since m is a Radon measure, we can find a
sequence (Kn)n of pairwise disjoint τ -compact subsets of X such that OscKn(f) ≤ ε
for every n ∈ N and m

(
X \

⋃
n∈NKn

)
= 0. Now fix n ∈ N. Given any x ∈ Kn ∩ C,

we can find a τ -closed τ -neighbourhood F x
n of x such that F x

n ⊆ V [x]. Since Kn ∩ C
is τ -compact, there exist k(n) ∈ N and xn,1, . . . , xn,k(n) ∈ Kn∩C such that Kn∩C ⊆⋃k(n)

i=1 Fn,i, where we set Fn,i := F
xn,i
n . Denote also Kn,i := Kn ∩ C ∩ Fn,i for every

i = 1, . . . , k(n). Since Kn,i is τ -compact, by applying Corollary 3.3 we obtain a

function f̃n,i ∈ Lipb(X, τ, d) such that

f̃n,i|Kn,i
= f |Kn,i

, Lip(f̃n,i, d) = Lip(f,Kn,i, d), OscX(f̃n,i) = OscKn,i
(f) ≤ ε.

Next, we define the function fn,i ∈ Lipb(X, τ, d) as fn,i := f̃n,i − infX f̃n,i. Note that

Lip(fn,i, d) = Lip(f,Kn,i, d), ∥fn,i∥Cb(X,τ) ≤ ε.

Therefore, the locality of b ensures that the following inequalities hold for m-a.e.
point x ∈ Kn,i:

|b(f)|(x) = |b(f̃n,i)|(x) = |b(fn,i)|(x) ≤ g(x)∥fn,i∥Lipb(X,τ,d) ≤ g(x)(Lip(f,Kn,i, d) + ε)

≤ g(x)(Lip(f, C ∩ V [xn,i], d) + ε) ≤ g(x)(Lip(f, C ∩ U [x], d) + ε).

By the arbitrariness of n ∈ N and i = 1, . . . , k(n), it follows that |b(f)| ≤ g(Lip(f, C∩
U [·], d)+ε) holds m-a.e. on C. Thanks to the arbitrariness of ε > 0, we thus conclude
that (4.9) is verified.

Finally, assume that the restriction τC of the topology τ to C is metrisable.
Recalling (2.24), we can find a sequence (Un)n∈N ⊆ Bτ,d such that {Un|C×C : n ∈
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N} ⊆ BτC ,dC is a basis of entourages for UτC ,dC . Given that (Un|C×C)[x] = C ∩ Un[x]
and lipdC

(f |C)(x) = infn∈N Lip(f, C ∩ Un[x], d) hold for every x ∈ C, we have that
the inequality in (4.10) follows from (4.9). □

Theorem 4.16. (Relation between Weaver and Di Marino derivations) Let X =
(X, τ, d,m) be an e.m.t.m. space such that m is separable. Then it holds that

Der∞1 (X) ⊆ X (X)

and |b|W ≤ |b| holds m-a.e. on X for every f ∈ Der∞1 (X). Assuming in addition that
τ is metrisable on all τ -compact subsets of X, we also have that

X (X) ⊆ Der∞(X)

and |b|W = |b| holds m-a.e. on X for every b ∈ X (X).

Proof. Assume m is separable and fix b ∈ Der∞1 (X). As |b(f)| ≤ |b| lipd(f) ≤
∥|b|∥L∞(m)Lip(f, d) holds m-a.e. on X for every f ∈ Lipb(X, τ, d), we know from
Lemma 4.11 that b ∈ X (X). Moreover, the m-a.e. inequalities |b(f)| ≤ |b| lipd(f) ≤
∥f∥Lipb(X,τ,d)|b| imply that |b|W ≤ |b| m-a.e. on X.

Now, assume in addition that τ is metrisable on all τ -compact sets and fix any
b ∈ X (X). As m is a Radon measure, we find a sequence (Kn)n of τ -compact sets
such that m

(
X \

⋃
n∈NKn

)
= 0. Since b is local by Theorem 4.6, and τ is metrisable

on Kn, we deduce from Proposition 4.15 that

|b(f)| ≤ |b|W lipdKn
(f |Kn) ≤ |b|W lipd(f) holds m-a.e. on Kn,

for every f ∈ Lipb(X, τ, d). By the arbitrariness of n ∈ N, it follows that |b(f)| ≤
|b|W lipd(f) holds m-a.e. on X for every f ∈ Lipb(X, τ, d). This proves that b ∈
Der∞(X) and |b| ≤ |b|W , thus yielding the statement. □

We close this section with a result that illustrates the relation between deriva-
tions on an e.m.t.m. space and derivations on its compactification. We denote by
ι∗ : Lipb(X̂, τ̂ , d̂) → Lipb(X, τ, d) the inverse of the Gelfand transform Γ: Lipb(X, τ, d)

→ Lipb(X̂, τ̂ , d̂), cf. with Lemma 2.13. With the same symbol ι∗ we denote the
linear bijection ι∗ : L0(m̂) → L0(m) that maps the m̂-a.e. equivalence class of a

Borel function f̂ : X̂ → R to the m-a.e. equivalence class of f̂ ◦ ι : X → R, whereas
ι∗ : L0(m) → L0(m̂) denotes its inverse.

Proposition 4.17. (Derivations on the compactification) Let X = (X, τ, d,m) be

an e.m.t.m. space. Denote by X̂ = (X̂, τ̂ , d̂, m̂) its compactification, with embedding

ι : X ↪→ X̂. We define the operator ι∗ : Der(X) → Der(X̂) as

(ι∗b)(f̂) := ι∗(b(ι
∗f̂)) ∈ L0(m̂) for every b ∈ Der(X) and f̂ ∈ Lipb(X̂, τ̂ , d̂).

Then ι∗ is a linear bijection such that ι∗(hb) = (ι∗h)(ι∗b) for every b ∈ Der(X) and
h ∈ L0(m). Moreover, the following properties are satisfied:

i) ι∗(D(div;X)) = D(div; X̂) and div(ι∗b) = ι∗(div(b)) for every b ∈ D(div;X).

ii) ι∗(X (X)) ⊆ X (X̂) and |ι∗b|W = ι∗|b|W for every b ∈ X (X).
iii) Given any derivation b ∈ Der(X), we have that b is local if and only if ι∗b is

local.
iv) ι∗(Der0(X)) ⊆ Der0(X̂) and |ι∗b| ≤ ι∗|b| for every b ∈ Der0(X). In particular,

we have that ι∗(Derq(X)) ⊆ Derq(X̂) and ι∗(Derqr(X)) ⊆ Derqr(X̂) for every
q, r ∈ [1,∞].
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v) Assume in addition that τ is metrisable on all τ -compact subsets of X. Then

it holds that ι∗(Derqq(X)) = Derqq(X̂) for every q ∈ [1,∞], and that |ι∗b| = ι∗|b|
for every b ∈ Derqq(X).

Proof. Let b ∈ Der(X) be given. The map ι∗b : Lipb(X̂, τ̂ , d̂) → L0(m̂) is linear

(as a composition of linear maps). Moreover, for every f̂ , ĝ ∈ Lipb(X̂, τ̂ , d̂) we have
that

(ι∗b)(f̂ ĝ) = ι∗
(
b((ι∗f̂)(ι∗ĝ))

)
= ι∗

(
(ι∗f̂) b(ι∗ĝ) + (ι∗ĝ) b(ι∗f̂)

)
= f̂ (ι∗b)(ĝ) + ĝ (ι∗b)(f̂),

so that ι∗b satisfies the Leibniz rule, thus ι∗b ∈ Der(X̂). The resulting map ι∗ : Der(X)

→ Der(X̂) is clearly linear. Similar arguments show that

(ι∗b̂)(f) := ι∗
(
b̂(Γ(f))

)
∈ L0(m) for every b̂ ∈ Der(X̂) and f ∈ Lipb(X, τ, d)

defines a linear operator ι∗ : Der(X̂) → Der(X) whose inverse is the map ι∗ : Der(X) →
Der(X̂), thus in particular the latter is a bijection. For any b ∈ Der(X) and h ∈ L0(m),
we also have that

(ι∗(hb))(f̂) = ι∗(h b(ι
∗f̂)) = (ι∗h) ι∗(b(ι

∗f̂)) = (ι∗h) (ι∗b)(f̂)

for every f̂ ∈ Lipb(X̂, τ̂ , d̂), which gives that ι∗(hb) = (ι∗h)(ι∗b). Let us now pass to
the verification of i), ii), iii), iv) and v).

i) Let b ∈ Der(X) be a given derivation. Note that b(f) ∈ L1(m) for every

f ∈ Lipb(X, τ, d) if and only if (ι∗b)(f̂) ∈ L1(m̂) for every f̂ ∈ Lipb(X̂, τ̂ , d̂). Moreover,
if b ∈ D(div;X), then�

(ι∗b)(f̂) dm̂ =

�
b(ι∗f̂) dm = −

�
(ι∗f̂) div(b) dm = −

�
f̂ ι∗(div(b)) dm̂

holds for every f̂ ∈ Lipb(X̂, τ̂ , d̂), so that ι∗b ∈ D(div; X̂) and div(ι∗b) = ι∗(div(b)).

Conversely, if we assume ι∗b ∈ D(div; X̂), then similar computations show that b ∈
D(div;X). This proves i).

ii) If b ∈ X (X), then (ι∗b)(f̂) = ι∗(b(ι
∗f̂)) ∈ L∞(m̂) for every f̂ ∈ Lipb(X̂, τ̂ , d̂).

Moreover, assuming that (f̂n)n ⊆ Lipb(X̂, τ̂ , d̂) and f̂ ∈ Lipb(X̂, τ̂ , d̂) satisfy

sup
n∈N

∥f̂n∥Lipb(X̂,τ̂ ,d̂) < +∞ and f̂(φ) = lim
n
f̂n(φ)

for every φ ∈ X̂, we have supn∈N ∥ι∗f̂n∥Lipb(X,τ,d) < +∞ by Lemma 2.13 and (ι∗f̂)(x) =

f̂(ι(x)) = limn f̂n(ι(x)) = limn(ι∗f̂n)(x) for every x ∈ X. Hence, the weak∗-type se-

quential continuity of b ensures that b(ι∗f̂n)
∗
⇀ b(ι∗f̂) weakly∗ in L∞(m), so that

accordingly

(ι∗b)(f̂n) = ι∗(b(ι
∗f̂n))

∗
⇀ ι∗(b(ι

∗f̂)) = (ι∗b)(f̂) weakly∗ in L∞(m̂).

This shows that ι∗b ∈ X (X̂). Finally, it follows from the m̂-a.e. inequalities

|(ι∗b)(f̂)| = ι∗|b(ι∗f̂)| ≤ ∥ι∗f̂∥Lipb(X,τ,d) ι∗|b|W = ∥f̂∥Lipb(X̂,τ̂ ,d̂) ι∗|b|W ,
ι∗|b(f)| = |(ι∗b)(Γ(f))| ≤ ∥Γ(f)∥Lipb(X̂,τ̂ ,d̂)|ι∗b|W = ∥f∥Lipb(X,τ,d)|ι∗b|W ,

which hold for all f̂ ∈ Lipb(X̂, τ̂ , d̂) and f ∈ Lipb(X, τ, d), that |ι∗b|W = ι∗|b|W . This
proves ii).



Derivations and Sobolev functions on extended metric-measure spaces 99

iii) Note that 1{Γ(f)=0} = ι∗1{f=0} holds m̂-a.e. on X̂ for every f ∈ Lipb(X, τ, d).
In particular,

1{Γ(f)=0}(ι∗b)(Γ(f)) = ι∗(1{f=0}b(f)) holds m̂-a.e. on X̂,

whence it follows that (ι∗b)(Γ(f)) = 0 m̂-a.e. on {Γ(f) = 0} if and only if b(f) = 0

m-a.e. on {f = 0}. As Γ: Lipb(X, τ, d) → Lipb(X̂, τ̂ , d̂) is bijective, we deduce that b
is local if and only if ι∗b is local.

iv) If b ∈ Der0(X), then by applying (2.15) we obtain the m̂-a.e. inequalities

|(ι∗b)(f̂)| = ι∗|b(ι∗f̂)| ≤ (ι∗|b|)(ι∗lipd(ι
∗f̂)) ≤ (ι∗|b|) lipd̂(f̂)

for every f̂ ∈ Lipb(X̂, τ̂ , d̂), whence it follows that ι∗b ∈ Der0(X̂) and |ι∗b| ≤ ι∗|b|.
v) Fix any b̂ ∈ Derqq(X̂). We know from Corollary 4.14 if q < ∞, or from

Theorems 4.16 and 4.6 if q = ∞, that b̂ is a local derivation. For any f ∈ Lipb(X, τ, d),
we have the m-a.e. inequalities

|(ι∗b̂)(f)| = ι∗|b̂(Γ(f))| ≤ (ι∗|b̂|)
(
ι∗lipd̂(Γ(f))

)
≤ Lip(Γ(f), d̂)(ι∗|b̂|) ≤ ∥f∥Lipb(X,τ,d)ι

∗|b̂|.
Therefore, Proposition 4.15 guarantees that for every τ -compact set K ⊆ X we have
that

|(ι∗b̂)(f)| ≤ (ι∗|b̂|) lipdK
(f |K) holds m-a.e. on K, for every f ∈ Lipb(X, τ, d).

Since the Radon measure m is concentrated on the union
⋃

nKn of countably many

τ -compact subsets (Kn)n∈N of X, we deduce that |(ι∗b̂)(f)| ≤ (ι∗|b̂|) lipd(f) m-a.e. on

X, so that ι∗b̂ ∈ Derq(X) and |ι∗b̂| ≤ ι∗|b̂|. Taking also i) and iv) into account, we
can finally conclude that v) holds. □

5. Sobolev spaces via Lipschitz derivations

In this section, we discuss different notions of metric Sobolev spaces in the ex-
tended setting. To begin with, we briefly remind already-known results and we
outline our new contributions. The mutual connections between the three notions
of metric Sobolev space H1,p(X), B1,p(X) and N1,p(X) were studied in [42]. More
specifically:

• As we recalled in Theorem 2.34, the equivalence H1,p(X) = B1,p(X) when
X = (X, τ, d,m) is an e.m.t.m. space with (X, d) complete was achieved in
[42, Theorem 5.2.7].

• Assuming in addition that (X, τ) is a Souslin space, it also holds that B1,p(X)
= N1,p(X), as it was proved in [42, Corollary 5.1.26]; cf. with Remark 5.7
below.

In Definition 5.1, we introduce the metric Sobolev space W 1,p(X) defined in terms
of the Di Marino derivations with divergence that we studied in Section 4.2. For an
arbitrary e.m.t.m. space X—in particular, without any completeness assumption—we
obtain the following results:

• In Theorem 5.4, we prove that H1,p(X) = W 1,p(X).
• In Theorem 5.9, we prove that W 1,p(X) ⊆ B1,p(X).

Accordingly, for a d-complete e.m.t.m. space X we have that W 1,p(X) = B1,p(X). By
contrast, in the non-d-complete case the inclusion W 1,p(X) ⊆ B1,p(X) can be strict
(cf. with the example that is presented at the end of Section 2.5).
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5.1. The space W 1,p. We introduce a new notion of metric Sobolev space
W 1,p(X) over an e.m.t.m. space X, defined via an integration-by-parts formula in
duality with the space Derqq(X) of Di Marino derivations with divergence. Our def-

inition generalises Di Marino’s notion of W 1,p space for metric-measure spaces ([18,
Definition 1.5], [17, Definition 7.1.4]) to the extended setting.

Definition 5.1. (The Sobolev spaceW 1,p(X)) Let X = (X, τ, d,m) be an e.m.t.m.
space. Let p, q ∈ (1,∞) be conjugate exponents. Then we define the Sobolev space
W 1,p(X) as the set of all functions f ∈ Lp(m) for which there exists a linear operator
Lf : Derqq(X) → L1(m) such that:

i) There exists a function g ∈ Lq(m)+ such that |Lf (b)| ≤ g|b| for every b ∈
Derqq(X).

ii) Lf (hb) = hLf (b) for every h ∈ Lipb(X, τ, d) and b ∈ Derqq(X).
iii) The following integration-by-parts formula holds:�

Lf (b) dm = −
�
f div(b) dm for every b ∈ Derqq(X).

Given any function f ∈ W 1,p(X), we define its minimal p-weak gradient |Df | ∈
Lp(m)+ as

|Df | :=
∧{

g ∈ Lp(m)+ | |Lf (b)| ≤ g|b| ∀b ∈ Derqq(X)
}

=
∨

b∈Derqq(X)

1{|b|>0}
|Lf (b)|
|b|

.

We use the notation |Df | (instead e.g. of |Df |W ) because the space W 1,p(X) will
be our main object of study in the rest of the paper. Note that |Lf (b)| ≤ |Df ||b|
holds m-a.e. for every f ∈ W 1,p(X) and b ∈ Derqq(X). It can also be readily checked
that

∥f∥W 1,p(X) :=
(
∥f∥pLp(m) + ∥|Df |∥pLp(m)

)1/p
for every f ∈ W 1,p(X)

defines a complete norm on W 1,p(X), so that (W 1,p(X), ∥·∥W 1,p(X)) is a Banach space.
Some more comments on the Sobolev space W 1,p(X):

• Since
�
hLf (b) dm = −

�
f div(hb) dm for every h ∈ Lipb(X, τ, d), and Lipb(X,

τ, d) is weakly∗ dense in L∞(m) by (2.8), the map Lf : Derqq(X) → L1(m) is
uniquely determined.

• It easily follows from the uniqueness of Lf that W 1,p(X) ∋ f 7→ Lf is a linear
operator, whose target is the vector space of all linear operators from Derqq(X)

to L1(m).
• Lipb(X, τ, d) ⊆ W 1,p(X) and Lf (b) = b(f) for every f ∈ Lipb(X, τ, d) and
b ∈ Derqq(X), thus in particular |Df | ≤ lipd(f) holds m-a.e. on X for every
f ∈ Lipb(X, τ, d).

• For any f ∈ W 1,p(X), the operator Lf : Derqq(X) → L1(m) can be uniquely
extended to an element Lf ∈ Lq

Lip(TX)∗, whose pointwise norm |Lf | coincides
with |Df |.

Example 5.2. Let (X, τ, ddiscr) be a ‘purely-topological’ e.m.t. space (as in Ex-
ample 2.14) together with a finite Radon measure m, so that X := (X, τ, ddiscr,m)
is an e.m.t.m. space. For any given function f ∈ Lipb(X, τ, ddiscr), we have that
Lip(f, U, ddiscr) = OscU(f) for every U ∈ τ , thus the τ -continuity of f implies that
lipddiscr

(f)(x) = 0 for all x ∈ X. In particular, Derqq(X) = Derq(X) = {0} for every

q ∈ [1,∞], whence it follows that W 1,p(X) = Lp(m) for every p ∈ (1,∞), with Lf = 0
and thus |Df | = 0 for every f ∈ W 1,p(X). ■
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5.2. The equivalence H1,p = W 1,p. The goal of this section is to prove
that the metric Sobolev spaces W 1,p(X) and H1,p(X) coincide on any e.m.t.m. space.
In the setting of (complete) metric-measure spaces, such equivalence was previously
known (see [18, Section 2] or [17, Section 7.2]), but the result seems to be new for non-
complete metric-measure spaces; see Theorem 5.4 below. Our proof of the inclusion
H1,p(X) ⊆ W 1,p(X) follows along the lines of [18, Section 2.1], whereas our proof
of the converse inclusion (inspired by [38, Theorem 3.3]) relies on a new argument
using tools in Convex Analysis. The latter is robust enough to be potentially useful
in other contexts.

Fix an e.m.t.m. space X = (X, τ, d,m) and p ∈ (1,∞). The differential d : H1,p(X)
→ Lp(T ∗X) given by Theorem 2.25 induces an unbounded operator d: Lp(m) →
Lp(T ∗X) whose domain is D(d) = H1,p(X); see Appendix B. As Lipb(X, τ, d) is
contained in H1,p(X), and it is dense in Lp(m) by (2.8), we deduce that d is densely
defined, thus its adjoint operator d∗ : Lp(T ∗X)′ → Lq(m) is well posed. Letting
Ip,X : Lq(TX) → Lp(T ∗X)′ be as in (2.26), the operator d∗ is characterised by

(5.1)

�
f d∗V dm = ⟨V, df⟩ =

�
df(I−1

p,X(V )) dm

for every f ∈ H1,p(X) and V ∈ D(d∗). The next result shows that each element of
D(d∗) induces a Di Marino derivation with divergence:

Lemma 5.3. (Derivation induced by a vector field) Let X = (X, τ, d,m) be
an e.m.t.m. space and q ∈ (1,∞). Fix any v ∈ Lq(TX). Define the operator
bv : Lipb(X, τ, d) → L1(m) as

bv(f) := df(v) for every f ∈ Lipb(X, τ, d).

Then it holds that bv ∈ Derq(X) and |bv| ≤ |v|. If in addition V := Ip,X(v) ∈ D(d∗),
then

bv ∈ Derqq(X), div(bv) = −d∗V.

Proof. The map bv is linear by construction and satisfies the Leibniz rule (4.1) by
(2.25), thus it is a Lipschitz derivation. Since |bv(f)| ≤ |v||Df |H ≤ |v| lipd(f) holds
m-a.e. on X, we deduce that bv ∈ Derq(X) and |bv| ≤ |v|. Now, let us assume that
V := Ip,X(v) ∈ D(d∗). Then (5.1) yields�

bv(f) dm =

�
df(v) dm =

�
f d∗V dm for every f ∈ Lipb(X, τ, d),

whence it follows that bv ∈ Derqq(X) and div(bv) = −d∗V . Hence, the statement is
achieved. □

We now pass to the equivalence result between W 1,p and H1,p. We will use
ultralimit techniques (see Appendix A) to obtain one of the two inclusions, and tools
in Convex Analysis (see Appendix B) to prove the other one.

Theorem 5.4. (H1,p = W 1,p) Let X = (X, τ, d,m) be an e.m.t.m. space and
p ∈ (1,∞). Then

H1,p(X) = W 1,p(X)

and it holds that |Df | = |Df |H for every f ∈ W 1,p(X).

Proof. Fix a non-principal ultrafilter ω on N. Let f ∈ H1,p(X) be a given function.
Take a sequence (fn)n ⊆ Lipb(X, τ, d) such that fn → f and lipd(fn) → |Df |H
strongly in Lp(m). Up to passing to a non-relabelled subsequence, we can also assume
that there exists a function h ∈ Lp(m)+ such that lipd(fn) ≤ h holds m-a.e. for every
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n ∈ N. In particular, |b(fn)| ≤ |b|h ∈ L1(m) holds for every b ∈ Derqq(X) and n ∈ N.
Therefore, by virtue of Lemma A.3 the following map is well defined:

Lf (b) := ω- lim
n
b(fn) ∈ L1(m) for every b ∈ Derqq(X),

where the ultralimit is intended with respect to the weak topology of L1(m). More-
over:

• Fix λ1, λ2 ∈ R and b1, b2 ∈ Derqq(X). Since L1(m) × L1(m) ∋ (g1, g2) 7→
λ1g1 +λ2g2 ∈ L1(m) is continuous if the domain is endowed with the product
of the weak topologies and the codomain with the weak topology, by applying
Lemma A.1 we obtain that

Lf (λ1b1 + λ2b2) = ω- lim
n

(
λ1 b1(fn) + λ2 b2(fn)

)
= λ1

(
ω- lim

n
b1(fn)

)
+ λ2

(
ω- lim

n
b2(fn)

)
= λ1Lf (b1) + λ2Lf (b2).

This proves that Lf : Derqq(X) → L1(m) is a linear operator.
• Fix b ∈ Derqq(X). Lemma A.3 and the weak continuity of Lp(m) ∋ g 7→ |b|g ∈
L1(m) yield

|Lf (b)| =
∣∣ω- lim

n
b(fn)

∣∣ ≤ ω- lim
n

|b(fn)| ≤ ω- lim
n

(
|b| lipd(fn)

)
= |b||Df |H .

• Fix b ∈ Derqq(X) and h ∈ Lipb(X, τ, d). Then Lemma A.1 implies that

Lf (hb) = ω- lim
n

(
h b(fn)

)
= h

(
ω- lim

n
b(fn)

)
= hLf (b).

• Since L1(m) ∋ g 7→
�
g dm ∈ R is weakly continuous and Lp(m) ∋ f̃ 7→�

f̃ div(b) dm ∈ R is strongly continuous for every b ∈ Derqq(X), by applying
Lemma A.1 we obtain that�
Lf (b) dm = ω- lim

n

�
b(fn) dm = −ω- lim

n

�
fndiv(b) dm = −

�
f div(b) dm.

All in all, we showed that Lf verifies the conditions of Definition 5.1 and that
|Lf (b)| ≤ |Df |H |b| holds for every b ∈ Derqq(X). Consequently, we can conclude

that f ∈ W 1,p(X) and |Df | ≤ |Df |H .
Conversely, let f ∈ W 1,p(X) be given. Since Ep is convex and Lp(m)-lower semi-

continuous, we have that Ep = E∗∗
p by the Fenchel–Moreau theorem. Note also that

Ep = 1
p
∥ · ∥pLp(T ∗X) ◦ d. Therefore, by applying Theorem B.1, (B.1), Lemma 5.3 and

Young’s inequality, we obtain that

Ep(f) = E∗∗
p (f) = sup

g∈Lq(m)

( �
gf dm− E∗

p (g)

)
= sup

g∈Lq(m)

( �
gf dm−

(
1

p
∥ · ∥pLp(T ∗X) ◦ d

)∗

(g)

)
= sup

g∈Lq(m)

( �
gf dm− inf

{
1

q
∥V ∥qLp(T ∗X)′

∣∣∣∣ V ∈ D(d∗), d∗V = g

})
≤ sup

g∈Lq(m)

( �
gf dm− inf

{
1

q
∥b∥qDerq(X)

∣∣∣∣ b ∈ Derqq(X), −div(b) = g

})
= sup

b∈Derqq(X)

(
−
�
f div(b) dm− 1

q
∥b∥qDerq(X)

)
= sup

b∈Derqq(X)

�
Lf (b) − 1

q
|b|q dm
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≤ sup
b∈Derqq(X)

�
|Df ||b| − 1

q
|b|q dm ≤ 1

p

�
|Df |p dm < +∞.

It follows that f ∈ H1,p(X) and
�
|Df |pH dm = p Ep(f) ≤

�
|Df |p dm. Since we also

know from the first part of the proof that |Df | ≤ |Df |H , we can finally conclude
that W 1,p(X) = H1,p(X) and |Df |H = |Df | for every f ∈ W 1,p(X), thus proving the
statement. □

Example 5.5. (Derivations on abstract Wiener spaces) Let Xγ := (X, τ, d, γ) be
the e.m.t.m. space obtained by equipping an abstract Wiener space (X, γ) with the
norm topology τ of X and with the extended distance d induced by its Cameron–
Martin space; see Section 2.3.2. We claim that the space Xγ is ‘purely non-d-
separable’, meaning that

γ(SXγ ) = 0.

To prove it, we denote by (H(γ), | · |H(γ)) the Cameron–Martin space of (X, γ). We
recall that

d(x, y) =

{
|x− y|H(γ) if x, y ∈ X and x− y ∈ H(γ),

+∞ if x, y ∈ X and x− y /∈ H(γ),

and that γ(x+H(γ)) = 0 for every x ∈ X; see [12]. Hence, if E ∈ B(X, τ) is a given d-
separable subset of X and (xn)n is a d-dense sequence in E, then E ⊆

⋃
n∈NB

d
1(xn) ⊆⋃

n∈N(xn + H(γ)) and thus accordingly γ(E) ≤
∑

n∈N γ(xn + H(γ)) = 0, whence it
follows that γ(SXγ ) = 0.

By taking Corollary 4.8 i) into account, we deduce that the unique weakly∗-
type continuous derivation on Xγ is the null derivation. Conversely, we know from
[42, Example 5.3.14] that H1,p(Xγ) coincides with the usual Sobolev space on Xγ

defined as the completion of cylindrical functions [12]. In particular, the identity
W 1,p(Xγ) = H1,p(Xγ) we proved in Theorem 5.4 guarantees the existence of (many)
non-null Di Marino derivations with divergence, and thus (by Lemma 4.11) of non-
null weakly∗-type sequentially continuous derivations. ■

5.3. The equivalence W 1,p = B1,p. In this section, we investigate the re-
lation between the spaces W 1,p(X) and B1,p(X). By combining Theorem 5.4 with
Theorem 2.34, we see that a sufficient condition for the identity W 1,p(X) = B1,p(X)
to hold is the completeness of the extended metric space (X, d):

Corollary 5.6. (W 1,p = B1,p on complete e.m.t.m. spaces) Let X = (X, τ, d,m)
be an e.m.t.m. space such that (X, d) is a complete extended metric space. Let
p ∈ (1,∞) be given. Then

W 1,p(X) = B1,p(X).

Moreover, it holds that |Df |B = |Df | for every f ∈ W 1,p(X).

Remark 5.7. (Relation with the Newtonian space N1,p) The Newtonian space
N1,p(X) over an e.m.t.m. space X has been introduced by Savaré in [42, Defini-
tion 5.1.19], thus generalising the notion of Newtonian space for metric-measure
spaces introduced by Shanmugalingam in [47]. It follows from Corollary 5.6 and [42,
Corollary 5.1.26] that if X = (X, τ, d,m) is an e.m.t.m. space such that (X, d) is com-
plete and (X, τ) is a Souslin space (i.e. the continuous image of a complete separable
metric space), then the Sobolev space W 1,p(X) is fully consistent with N1,p(X). ■
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On an arbitrary e.m.t.m. space X, it can happen that the spaces W 1,p(X) and
B1,p(X) are different, as the example we discussed in the last paragraph of Section 2.5
shows. Nevertheless, we are going to show that every Tq-test plan π on X induces a Di
Marino derivation with divergence bπ ∈ Derqq(X) (Proposition 5.8), and as a corollary

we will prove that W 1,p(X) is always contained in B1,p(X) and that |Df |B ≤ |Df |
for every f ∈ W 1,p(X) (Theorem 5.9).

For brevity, we denote by L1 the restriction of the 1-dimensional Lebesgue mea-
sure L 1 to the unit interval [0, 1] ⊆ R. To any given Tq-test plan π ∈ Tq(X), we
associate the product measure

π̂ := π ⊗ L1 ∈ M+(RA(X, d) × [0, 1]),

where the space RA(X, d) × [0, 1] is endowed with the product topology.
The next result is inspired by (and generalises) [18, Proposition 2.4] and [7,

Proposition 4.10].

Proposition 5.8. (Derivation induced by a Tq-test plan) Let X = (X, τ, d,m)
be an e.m.t.m. space and q ∈ (1,∞). Let π ∈ Tq(X) be given. Then for any
f ∈ Lipb(X, τ, d) we have that

ê#(D+
f π̂), ê#(D−

f π̂) ≪ m, bπ(f) :=
dê#(D+

f π̂)

dm
−

dê#(D−
f π̂)

dm
∈ Lq(m),

where ê denotes the arc-length evaluation map (2.20), while D+
f and D−

f denote
the positive and the negative parts, respectively, of the function Df defined in
Lemma 2.20. Moreover, the resulting map bπ : Lipb(X, τ, d) → Lq(m) belongs to
Derqq(X) and it holds that

(5.2) |bπ| ≤ hπ, div(bπ) =
d(ê0)#π

dm
− d(ê1)#π

dm
.

Proof. First of all, observe that D±
f π̂ are Radon measures because D±

f is Borel
π̂-measurable (by Corollary 2.20) and π̂ is a Radon measure. Since ê is universally
Lusin measurable by Lemma 2.19, we have that ê#(D±

f π̂) ∈ M+(X). Given any
f, g ∈ Lipb(X, τ, d) with g ≥ 0, we can estimate

�
g dê#(D±

f π̂) =

�� 1

0

g(Rγ(t))D±
f (γ, t) dt dπ(γ)

(2.23)

≤
�� 1

0

ℓ(γ)(g lipd(f))(Rγ(t)) dt dπ(γ)

=

� ( �
γ

g lipd(f)

)
dπ(γ) =

�
g lipd(f) dµπ =

�
g lipd(f)hπ dm.

By the arbitrariness of g, we deduce that ê#(D±
f π̂) ≪ m and that bπ(f) :=

dê#(D+
f π̂)

dm
−

dê#(D−
f π̂)

dm
satisfies |bπ(f)| ≤ 2 lipd(f)hπ, so that bπ(f) ∈ Lq(m). By (2.22), for every

f, g ∈ Lipb(X, τ, d), α, β ∈ R and γ ∈ RA(X, d) we have that

Dαf+βg(γ, t) = αDf (γ, t) + βDg(γ, t),

Dfg(γ, t) = Df (γ, t)g(Rγ(t)) + Dg(γ, t)f(Rγ(t))
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hold for L1-a.e. t ∈ [0, 1]. In particular, Dαf+βg = αDf + βDg and Dfg = g ◦ êDf +
f ◦ êDg are verified in the π̂-a.e. sense. It follows that

bπ(αf + βg) =
dê#((αDf + βDg)π̂)

dm
= α

dê#(Df π̂)

dm
+ β

dê#(Dgπ̂)

dm
= α bπ(f) + β bπ(g),

bπ(fg) =
dê#((g ◦ êDf )π̂)

dm
+

dê#((f ◦ êDg)π̂)

dm

=
d(g ê#(Df π̂))

dm
+

d(f ê#(Dgπ̂))

dm
= bπ(f)g + bπ(g)f.

Hence, bπ : Lipb(X, τ, d) → Lq(m) is a linear operator satisfying the Leibniz rule, thus
it is a Lipschitz derivation on X. Given any f, g ∈ Lipb(X, τ, d) with g ≥ 0, we can
now estimate∣∣∣∣ � g bπ(f) dm

∣∣∣∣ =

∣∣∣∣ �� 1

0

g(Rγ(t))Df (γ, t) dt dπ(γ)

∣∣∣∣
≤

�� 1

0

g(Rγ(t))|Df (γ, t)| dt dπ(γ)

(2.23)

≤
�� 1

0

ℓ(γ)(g lipd(f))(Rγ(t)) dt dπ(γ) =

�
g lipd(f)hπ dm,

so that |bπ(f)| ≤ lipd(f)hπ for every f ∈ Lipb(X, τ, d). Therefore, bπ ∈ Derq(X) and
|bπ| ≤ hπ. Moreover, for any f ∈ Lipb(X, τ, d) we can compute�

bπ(f) dm =

�
Df dπ̂

(2.22)
=

�� 1

0

(f ◦Rγ)′(t) dt dπ(γ) =

�
f(γ1) − f(γ0) dπ(γ)

= −
�
f

(
d(ê0)#π

dm
− d(ê1)#π

dm

)
dm,

which shows that bπ ∈ Derqq(X) and div(bπ) =
d(ê0)#π

dm
− d(ê1)#π

dm
. The proof is com-

plete. □

As a consequence of Proposition 5.8, the space W 1,p(X) is always contained in
B1,p(X):

Theorem 5.9. (W 1,p ⊆ B1,p) Let X = (X, τ, d,m) be an e.m.t.m. space and
p ∈ (1,∞). Then

W 1,p(X) ⊆ B1,p(X).

Moreover, it holds that |Df |B ≤ |Df | for every f ∈ W 1,p(X).

Proof. Let f ∈ W 1,p(X) be given. Fix some τ -Borel representative Gf : X →
[0,+∞) of |Df |. For any π ∈ Tq(X) (where q ∈ (1,∞) denotes the conjugate
exponent of p), the derivation bπ ∈ Derqq(X) given by Proposition 5.8 satisfies�

f(γ1) − f(γ0) dπ(γ)
(5.2)
= −

�
f div(bπ) dm =

�
Lf (bπ) dm

≤
�

|Df ||bπ| dm
(5.2)

≤
�
Gf hπ dm.

By virtue of Lemma 2.32, we deduce that Gf is a Tq-weak upper gradient of f .
Therefore, we proved that f ∈ B1,p(X) and |Df |B ≤ |Df |, whence the statement
follows. □
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5.4. W 1,p as a dual space. In this section, our aim is to provide a new de-
scription of some isometric predual of the metric Sobolev space, and the formulation
of Sobolev space in terms of derivations serves this purpose very well. More pre-
cisely, in Theorem 5.10 we give an explicit construction of a Banach space whose
dual is isometrically isomorphic to W 1,p(X). The existence and the construction of
an isometric predual of the space H1,p(X) were previously obtained by Ambrosio and
Savaré in [9, Corollary 3.10].

In the proof of Theorem 5.10, we use some facts in Functional Analysis that we
collect below:

• If B, V are Banach spaces and q ∈ (1,∞), the product vector space B× V is
a Banach space if endowed with the q-norm

∥(v, w)∥q :=
(
∥v∥qB + ∥w∥qV

)1/q
for every (v, w) ∈ B× V.

We write B×q V to indicate the Banach space (B× V, ∥ · ∥q).
• If p, q ∈ (1,∞) are conjugate exponents, then (B ×q V)′ and B′ ×p V′ are

isometrically isomorphic. The canonical duality pairing between B′×pV′ and
B×q V is given by

⟨(ω, η), (v, w)⟩ = ⟨ω, v⟩ + ⟨η, w⟩ for every (ω, η) ∈ B′ × V′ and (v, w) ∈ B× V.
• The annihilator W⊥ of a closed vector subspace W of B is defined as

W⊥ :=
{
ω ∈ B′ | ⟨ω, v⟩ = 0 for every v ∈ W

}
.

Then W⊥ is a closed vector subspace of B′. Moreover, W⊥ is isometrically
isomorphic to the dual (B/W)′ of the quotient Banach space B/W.

Theorem 5.10. (A predual of W 1,p) Let X = (X, τ, d,m) be an e.m.t.m. space.
Let p, q ∈ (1,∞) be conjugate exponents. We define the closed vector subspace BX,q
of Lq(m) ×q L

q
Lip(TX) as the closure of its vector subspace{

(g, b) ∈ Lq(m) × Derqq(X) | g = div(b)
}
.

Then W 1,p(X) is isometrically isomorphic to the dual of the quotient (Lq(m) ×q

Lq
Lip(TX))/BX,q.

Proof. For any f ∈ W 1,p(X), we define Lf := IntLq
Lip(TX)(Lf ) ∈ Lq

Lip(TX)′, so

that accordingly

(5.3) ∥Lf∥Lq
Lip(TX)′ = ∥Lf∥Lq

Lip(TX)∗ = ∥|Lf |∥Lp(m) = ∥|Df |∥Lp(m).

Clearly, W 1,p(X) ∋ f 7→ Lf ∈ Lq
Lip(TX)′ is linear. Define ϕ : W 1,p(X) → Lp(m) ×p

Lq
Lip(TX)′ as

ϕ(f) := (f,Lf ) ∈ Lp(m) × Lq
Lip(TX)′ for every f ∈ W 1,p(X).

It follows from (5.3) and the definition of ∥ · ∥W 1,p(X) that ϕ is a linear isometry. We
claim that

(5.4) ϕ(W 1,p(X)) = B⊥
X,q,

where we are identifying B⊥
X,q ⊆ (Lq(m) ×q L

q
Lip(TX))′ with a subspace of Lp(m) ×p

Lq
Lip(TX)′. To prove ϕ(W 1,p(X)) ⊆ B⊥

X,q, it suffices to observe that for any f ∈
W 1,p(X) and b ∈ Derqq(X) it holds

⟨ϕ(f), (div(b), b)⟩ = ⟨f, div(b)⟩ + Lf (b) =

�
f div(b) dm +

�
Lf (b) dm = 0.
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We now prove the converse inclusion B⊥
X,q ⊆ ϕ(W 1,p(X)). Fix (f,L) ∈ B⊥

X,q ⊆
Lp(m) ×p L

q
Lip(TX)′. Letting L := Int−1

Lq
Lip(TX)(L) ∈ Lq

Lip(TX)∗, we have in particular

that L|Derqq(X) : Derqq(X) → L1(m) is a linear operator satisfying |L(b)| ≤ |L||b| for ev-
ery b ∈ Derqq(X), for some function |L| ∈ Lp(m)+ such that ∥|L|∥Lp(m) = ∥L∥Lq

Lip(TX)′ .

Moreover, the L∞(m)-linearity of L implies L(hb) = hL(b) for every h ∈ Lipb(X, τ, d)
and b ∈ Derqq(X), and using that (div(b), b) ∈ BX,q we deduce that�

f div(b) dm +

�
L(b) dm = ⟨f, div(b)⟩ + L(b) = ⟨(f,L), (div(b), b)⟩ = 0,

so that
�
L(b) dm = −

�
f div(b) dm. All in all, we proved that f ∈ W 1,p(X) and

Lf = L, which gives (f,L) = (f,Lf ) = ϕ(f) ∈ ϕ(W 1,p(X)). Consequently, the
claimed identity (5.4) is proved. Writing ∼= to indicate that two Banach spaces are
isometrically isomorphic, we then conclude that

W 1,p(X) ∼= ϕ(W 1,p(X)) ∼= B⊥
X,q

∼=
(
(Lq(m) ×q L

q
Lip(TX))/BX,q

)′
,

proving the statement. □

Appendix A. Ultrafilters and ultralimits

We collect here some definitions and results concerning ultrafilters and ultralim-
its, which we use in the proof of Theorem 5.4. See e.g. [34] or [19, Chapter 10] for
more on these topics.

Let ω be a filter on N, i.e. a collection of subsets of N that is closed under
supersets and finite intersections. Then we say that ω is an ultrafilter provided it is
a maximal filter with respect to inclusion, or equivalently if for any subset A ⊆ N
we have that either A ∈ ω or N \ A ∈ ω. Moreover, we say that ω is non-principal
provided it does not contain any finite subset of N. The existence of non-principal
ultrafilters on N follows e.g. from the so-called Ultrafilter Lemma [19, Lemma 10.18],
which is (in ZF) strictly weaker than the Axiom of Choice [48, 31]. It holds that an
ultrafilter ω on N is non-principal if and only if it contains the Fréchet filter (i.e. the
collection of all cofinite subsets of N).

Let ω be a non-principal ultrafilter on N, (X, τ) a Hausdorff topological space
and (xn)n∈N ⊆ X a given sequence. Then we say that an element ω- limn xn ∈ X is
the ultralimit of (xn)n provided

{n ∈ N | xn ∈ U} ∈ ω for every U ∈ τ with ω- lim
n
xn ∈ U.

The Hausdorff assumption on τ ensures that if the ultralimit exists, then it is unique.
The existence of the ultralimits of all sequences in (X, τ) is guaranteed when the
topology τ is compact.

We now discuss technical results about ultralimits, which we prove for the reader’s
convenience.

Lemma A.1. Let ω be a non-principal ultrafilter on N. Let X1, . . . , Xk, Y be
Hausdorff topological spaces, for some k ∈ N with k ≥ 1. Let φ : X1 × . . .×Xk → Y
be a continuous map, where the domain X1 × . . .×Xk is endowed with the product
topology. For any i = 1, . . . , k, let (xni )n∈N ⊆ Xi be a sequence whose ultralimit
xi := ω- limn x

n
i ∈ Xi exists. Then it holds that

(A.1) ∃ω- lim
n
φ(xn1 , . . . , x

n
k) = φ(x1, . . . , xk) ∈ Y.
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Proof. Fix a neighbourhood U of φ(x1, . . . , xk) in Y . Since φ is continuous,
φ−1(U) is a neighbourhood of (x1, . . . , xk). Thus, for any i = 1, . . . , k there exists
a neighbourhood Ui of xi in Xi such that U1 × . . . × Uk ⊆ φ−1(U). Recalling that
xi = ω- limn x

n
i for all i = 1, . . . , k, we get that

ω ∋
k⋂

i=1

{n ∈ N | xni ∈ Ui} ⊆
{
n ∈ N | φ(xn1 , . . . , x

n
k) ∈ U

}
and thus

{
n ∈ N | φ(xn1 , . . . , x

n
k) ∈ U

}
∈ ω. Thanks to the arbitrariness of U , (A.1)

is proved. □

Remark A.2. Let (X,Σ,m) be a finite measure space. Let h ∈ L1(m)+ be
given. Then

(A.2) Fh :=
{
f ∈ L1(m) | |f | ≤ h

}
is a weakly compact subset of L1(m).

The validity of this property follows from the Dunford–Pettis theorem and the fact
that Fh is a weakly closed subset of L1(m). ■

Lemma A.3. Let ω be a non-principal ultrafilter on N. Let (X,Σ,m) be a finite
measure space. Assume that (fn)n ⊆ L1(m) and h ∈ L1(m)+ satisfy |fn| ≤ h for every
n ∈ N. Then the weak ultralimits f := ω- limn fn ∈ L1(m) and ω- limn |fn| ∈ L1(m)
exist. Moreover, it holds that

(A.3) |f | ≤ ω- lim
n

|fn| ≤ h.

Proof. The existence of the ultralimits ω- limn fn and ω- limn |fn| in the weak
topology of L1(m) follows from Remark A.2. For any g ∈ L∞(m)+, we consider the

functional φg : L1(m) → R given by φg(f̃) :=
�
f̃ g dm for every f̃ ∈ L1(m), which is

weakly continuous. Hence, Lemma A.1 yields∣∣∣∣ � fg dm

∣∣∣∣ = |φg(f)| =
∣∣ω- lim

n
φg(fn)

∣∣ = ω- lim
n

|φg(fn)|

≤ ω- lim
n
φg(|fn|) = φg

(
ω- lim

n
|fn|

)
and

�
(ω- limn |fn|)g dm = ω- limn φg(|fn|) ≤ φg(h) =

�
hg dm, whence the claimed

inequalities in (A.3) follow thanks to the arbitrariness of g ∈ L∞(m)+. □

Appendix B. Tools in Convex Analysis

Let B, V be Banach spaces. Then by an unbounded operator A : B → V we mean
a vector subspace D(A) of B (called the domain of A) together with a linear operator
A : D(A) → V. When A if densely defined (i.e. the set D(A) is dense in B), it is
possible to define its adjoint operator A∗ : V′ → B′, which is characterised by

D(A∗) :=
{
η ∈ V′ | B ∋ v 7→ ⟨η,A(v)⟩ ∈ R is continuous

}
,

⟨η, A(v)⟩ = ⟨A∗(η), v⟩ for every η ∈ D(A∗) and v ∈ D(A).

See e.g. [40, Chapter 5] for more on unbounded operators.
Given any function f : B → [−∞,+∞], we denote by f ∗ : B′ → [−∞,+∞] its

Fenchel conjugate, which is defined as

f ∗(ω) := sup
{
⟨ω, v⟩ − f(v) | v ∈ B

}
for every ω ∈ B′.

Assuming B is reflexive, we have (unless the function f is identically equal to +∞ or
identically equal to −∞) that the Fenchel biconjugate f ∗∗ := (f ∗)∗ : B → [−∞,+∞]
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coincides with f if and only if f is convex and lower semicontinuous. This follows from
the Fenchel–Moreau theorem. Furthermore, if p, q ∈ (1,∞) are conjugate exponents,
then it is straightforward to check that

(B.1)

(
1

p
∥ · ∥pB

)∗

=
1

q
∥ · ∥qB′ .

See e.g. [41] for a thorough discussion on Fenchel conjugates.
In Theorem 5.4 we use the following result, for whose proof we refer to [13,

Theorem 5.1].

Theorem B.1. Let B and V be Banach spaces. Let A : B → V be a densely-
defined unbounded operator. Let ϕ : V → R be a convex function that is continuous
at some point of A(D(A)). Then

(ϕ ◦ A)∗(ω) = inf
{
ϕ∗(η) | η ∈ D(A∗), A∗(η) = ω

}
for every ω ∈ B′,

where we adopt the convention that (ϕ ◦ A)(v) := +∞ for every v ∈ B \D(A).
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enrico.e.pasqualetto@jyu.fi

Janne Taipalus

University of Jyväskylä
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