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Derivations and Sobolev functions
on extended metric-measure spaces

Enrico Pasqualetto and Janne Taipalus

Abstract. We investigate the first-order differential calculus over extended metric-topological
measure spaces. The latter are quartets X = (X, 7,d, m), given by an extended metric space (X,d)
together with a weaker topology 7 (satisfying suitable compatibility conditions) and a finite Radon
measure m on (X, 7). The class of extended metric-topological measure spaces encompasses all
metric-measure spaces and many infinite-dimensional metric-measure structures, such as abstract
Wiener spaces. In this framework, we study the following classes of objects:

e The Banach algebra Lip, (X, 7,d) of bounded 7-continuous d-Lipschitz functions on X.
e Several notions of Lipschitz derivations on X, defined in duality with Lip, (X, 7, d).
e The metric Sobolev space W1?(X), defined in duality with Lipschitz derivations on X.

Inter alia, we generalise both Weaver’s and Di Marino’s theories of Lipschitz derivations to the
extended setting, and we discuss their connections. We also introduce a Sobolev space W1 (X)
via an integration-by-parts formula, along the lines of Di Marino’s notion of Sobolev space, and we
prove its equivalence with other approaches, studied in the extended setting by Ambrosio, Erbar
and Savaré. En route, we obtain some results of independent interest, among which are:

e A Lipschitz-constant-preserving extension result for 7-continuous d-Lipschitz functions.

e A novel and rather robust strategy for proving the equivalence of Sobolev-type spaces
defined via an integration-by-parts formula and those obtained with a relaxation procedure.

e A new description of an isometric predual of the metric Sobolev space WP (X).

Derivaatiot ja Sobolev-funktiot laajennetuissa metrisissi mitta-avaruuksissa

Tiivistelm&. Tutkimme ensimméisen kertaluokan differentiaalilaskentaa laajennetuissa met-
ritopologisissa mitta-avaruuksissa. Jilkimmaéiset ovat nelikkoja X = (X, 7,d, m), jotka muodostu-
vat laajennetusta metrisestd avaruudesta (X, d), jossa on mukana heikompi topologia 7 (joka to-
teuttaa sopivat yhteensopivuusehdot) ja avaruuden (X, 7) dérellinen Radon-mitta m. Laajennettu-
jen metritopologisten mitta-avaruuksien luokka késittdd kaikki metriset mitta-avaruudet ja monet
ddretonulotteiset metriset mitta-rakenteet, kuten abstraktit Wiener-avaruudet. Téassé viitekehyk-
sesséd tutkimme seuraavien objektien luokkia:

e Avaruuden X rajoitettujen 7-jatkuvien d-Lipschitz-funktioiden Banach-algebra Lip, (X, 7,
d).

e Avaruuden X lukuisat Lipschitz-derivaatioiden kisitteet, jotka on méaéritelty duaalisesti
avaruuden Lip, (X, 7,d) kanssa.

e Metrinen Sobolev-avaruus WP (X), joka on mééritelty avaruuden X Lipschitz-derivaatioi-
den kanssa duaalisesti.

Muun muassa yleistimme Weaverin ja Di Marinon Lipschitz-derivaatioiden teoriat laajennettuun
ymparistoon ja kasittelemme niiden yhteyksia. Esittelemme my0s osittaisintegroinnin kaavan avul-
la Sobolev-avaruuden W1?(X) Di Marinon Sobolev-avaruuden kisitettd mukaillen ja todistamme
yhtépitdvyyden muiden ldhestymistapojen kanssa, joita Ambrosio, Erbar ja Savaré tutkivat laajen-
netussa ympéristossid. Témaéan ohella saamme joitain riippumattomasti kiinnostavia tuloksia, muun
muassa:

e Lipschitz-vakion-séilyttava jatke T-jatkuville d-Lipschitz-funktioille.

e Uusi ja melko vahva strategia osittaisintegroinnin kaavan avulla ja relaksaatiomenetelmén

avulla mé#ariteltyjen Sobolev-typpisten avaruuksien yhtépitdvyyden todistamiseksi.
e Uusi tapa kuvailla metrisen Sobolev-avaruuden W1 (X) isometristi esiduaalia.
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1. Introduction

1.1. General overview. In the last three decades, the analysis in nonsmooth
spaces has undergone impressive developments. After the first nonlocal notion of
metric Sobolev space over a metric-measure space (X,d, m) had been introduced
by Hajlasz in [30], several (essentially equivalent) local notions were studied in the
literature:

A) The space H'?(X) obtained by approximation, via a relazation procedure.
This approach was pioneered by Cheeger [16] and later revisited by Ambrosio,
Gigli and Savaré [5, 6.

B) The space W?(X) proposed by Di Marino in [17, 18], based on an integration-
by-parts formula involving a suitable class of Lipschitz derivations with di-
vergence.

C) The Newtonian space N'P(X) introduced by Shanmugalingam [47], based
on the concept of upper gradient by Heinonen and Koskela [33], and on the
metric version of Fuglede’s notion of p-modulus [21].

D) The ‘Beppo Levi space’ B1?(X), where the exceptional curve families for the
validity of the upper gradient inequality are selected via test plans of curves.
The first definition of this type is due to Ambrosio, Gigli and Savaré [5, 6].
The variant of plan of curves we consider in this paper, involving the concept
of barycenter, was introduced by Ambrosio, Di Marino and Savaré in [3].

We point out that our choices of notation for the various metric Sobolev spaces
may depart from the original ones, but they are consistent with the presentation
in [7]. Other definitions of metric Sobolev spaces were introduced and studied in
the literature, but we do not mention them here as they are not needed for the
purposes of this paper. Remarkably, all the above four theories—the two ‘Eulerian
approaches’ A), B) and the two ‘Lagrangian approaches’ C), D)—were proven to
be fully equivalent on arbitrary complete metric-measure spaces [5, 16, 47]. Other
related equivalence results were then achieved in [3, 7, 20, 37].

Nevertheless, there are many infinite-dimensional metric-measure structures of
interest—where a refined differential calculus is available or feasible—that are not
covered by the theory of metric-measure spaces. Due to this reason, Ambrosio, Er-
bar and Savaré introduced in [4] the language of extended metric-topological measure
spaces, which we abbreviate to e.m.t.m. spaces. The class of e.m.t.m. spaces includes,
besides ‘standard’ metric-measure spaces, abstract Wiener spaces [12] and configura-
tion spaces [1], among others. The main goal of [4] was to understand the connection
between gradient contractivity, transport distances and lower Ricci bounds, as well as
the interplay between metric and differentiable structures, in the setting of e.m.t.m.
spaces. One of the numerous contributions of [4] is the introduction of the notion
of Sobolev space H'?(X) on e.m.t.m. spaces, later investigated further by Savaré in
the lecture notes [42]. Therein, the e.m.t.m. versions of the Sobolev spaces N'?(X)
and B'P(X) were introduced and studied in detail, ultimately obtaining the identi-
fication H'?(X) = N'?(X) = B'"?(X) on all complete e.m.t.m. spaces. The duality
properties of these metric Sobolev spaces were then investigated by Ambrosio and
Savaré in [9)].

The primary objectives of this paper are to introduce the Sobolev space WP (X))
via integration-by-parts for e.m.t.m. spaces, to show its equivalence with the other
approaches and to explore the benefits it brings to the theory of metric Sobolev
spaces. To achieve these goals, we first develop the machinery of Lipschitz derivations
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for e.m.t.m. spaces, which in turn requires an in-depth understanding of the algebra
of real-valued bounded 7-continuous d-Lipschitz functions on X.

Before delving into a more detailed description of the contents of this paper, let us
expound the advantages of working in the extended setting. Besides its intrinsic in-
terest, the study of e.m.t.m. spaces has significant implications at the level of metric-
measure spaces. On e.m.t.m. spaces the roles of the topology and of the distance are
‘decoupled’, and it turned out that for this reason the category of e.m.t.m. spaces is
closed under several useful operations under which the category of metric-measure
spaces is not closed. Key examples are the compactification [42, Section 2.1.7] and
the passage to the length-conformal distance [42, Section 2.3.2]. Therefore, once an
effective calculus on e.m.t.m. spaces is developed, it is possible to reduce some prob-
lems on metric-measure spaces to problems on 7-compact length e.m.t.m. spaces (as
done, for example, in [42, Section 5.2]). We believe that the full potential of this
technique has not been fully explored yet. However, dealing with arbitrary e.m.t.m.
spaces poses new challenges, which require new ideas and solutions. In the remaining
sections of the Introduction, we shall comment on some of them.

1.2. The algebra of T-continuous d-Lipschitz functions. Let (X, 7,d) be
an extended metric-topological space (see Definition 2.8). We consider the algebra
of bounded 7-continuous d-Lipschitz functions on X, denoted by Lip,(X, 7,d). The
latter is a Banach algebra with respect to the norm

| f I Lip, (x,ma) = || flleyx,ry + Lip(f, d).

While the Banach algebra Lip,(Y,dy) on a metric space (Y,dy) is (isometrically
isomorphic to) the dual of a Banach space, i.e. of the Arens—FEells space E(Y) of Y
[50], the space Lip,(X, 7,d) may not have a predual (as we show in Proposition 2.16),
thus it is not endowed with a weak® topology. This fact is relevant when discussing
the continuity of derivations, see Section 1.3.

Another issue we need to address in the paper is whether it is possible to extend
T-continuous d-Lipschitz functions preserving the Lipschitz constant. These kinds of
extension results are very important e.g. in some localisation arguments (such as in
Proposition 4.15). On metric spaces the McShane-Whitney extension theorem serves
the purpose, but on e.m.t. spaces the problem becomes much more delicate, because
one has to preserve both 7-continuity and d-Lipschitzianity when extending a func-
tion. In Section 3 we deal with this matter. Leveraging strong extension techniques
by Matouskova [39], we obtain the sought-after Lipschitz-constant-preserving exten-
sion result for bounded 7-continuous d-Lipschitz functions (Theorem 3.1), which is
sharp (Remark 3.2).

1.3. Metric derivations. In Section 4, we analyse various spaces of derivations
on e.m.t.m. spaces. In Definition 4.1 we introduce a rather general (and purely alge-
braic) notion of derivation, which comprises the different variants we will consider.
By a Lipschitz derivation on an e.m.t.m. space X = (X, 7,d,m) we mean a linear
map b: Lip, (X, 7,d) — L%(m) satisfying the Leibniz rule:

b(fg) = fblg) +gb(f) forevery f,g € Lip,(X,,d).

Here, L°(m) denotes the algebra of all real-valued 7-Borel functions on X, up to
m-a.e. equality. Distinguished subclasses of derivations are those having divergence
(Definition 4.2), that are local (Definition 4.3), or that satisfy ‘weak*-type’ (sequen-
tial) continuity properties (Definition 4.4). In addition to these, we develop the basic
theory of two crucial subfamilies of Lipschitz derivations:
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e WEAVER DERIVATIONS. In Definition 4.9 we propose a generalisation of
Weaver’s concept of ‘bounded measurable vector field” [50, Definition 10.30 a)]
to the extended setting. Consistently e.g. with [44], we adopt the term Weaver
derivation. An important technical point here is that we ask for the weak*-
type sequential continuity, not for the weak*-type continuity. The reason
is that weakly*-type continuous derivations are trivial on the ‘purely non-d-
separable component” X \ Sx of X (as in Lemma 2.9), see Proposition 4.7.

e D1 MARINO DERIVATIONS. In Definition 4.12 we introduce the natural gener-
alisation of Di Marino’s notion of derivation [18, 17] to e.m.t.m. spaces. More
specifically, we consider the space Der!(X) of g-integrable derivations, and
its subspace Der?(X) consisting of all those g-integrable derivations having
g-integrable divergence, for some given exponent ¢ € (1,00). This axioma-
tisation is tailored to the notion of metric Sobolev space W'?(X) (where
p € (1,00) is the conjugate exponent of ¢) that one aims at defining by means
of an integration-by-parts formula where Der{(X) is used as the family of ‘test
vector fields’.

Since in this paper we are primarily interested in the Sobolev calculus, we shall
focus our attention mostly on Di Marino derivations. Nevertheless, we set up also
the basic theory of Weaver derivations and we debate their relation with the Di
Marino ones (see Proposition 4.15 or Theorem 4.16, where we borrow some ideas
from [7]). We believe that Weaver derivations may find interesting applications even
in the analysis on e.m.t.m. spaces, for instance for studying suitable generalisations
of metric currents or Alberti representations (cf. with [43, 44, 45]), but addressing
these kinds of issues is outside the scope of the present paper.

1.4. Metric Sobolev spaces. In Section 5, we introduce the metric Sobolev
space W'?(X), and we compare it with H'?(X), B'"?(X) and N'?(X). Mimicking
[18, Definition 1.5], we declare that some f € LP(m) belongs to W?(X) if there is
a linear operator L;: Der(X) — L'(m) satisfying some algebraic and topological
conditions, as well as the following integration-by-parts formula:

/Lf(b) dm = — / fdiv(b)dm for every b € Der?(X);

see Definition 5.1. Each f € W'?(X) is associated with a distinguished function
|Df| € LP(m)*, which has the role of the ‘modulus of the weak differential of f’.
In Section 5.2, we show that on any e.m.t.m. space it holds that

H"(X) = W'(X), with |Df|=|Df|y for every f € W"(X);

see Theorem 5.4. The proof strategy for the inclusion H'?(X) C W'?(X) is taken
from [18] up to some technical discrepancies, whereas the verification of the con-
verse inclusion relies on a new argument, which was partially inspired by [37]. In a
nutshell, we first observe that H'?(X) induces a differential d: LP(m) — LP(T*X),
where LP(T*X) is the e.m.t.m. version of Gigli’s notion of cotangent module from
[23] (Theorem 2.25) and d is an unbounded operator with domain D(d) = H'?(X),
then we prove that W'?(X) C H'?(X) via a convex duality argument involving the
adjoint d* of d. The latter proof strategy is rather robust and suitable for being
adapted to obtain analogous equivalence results for other functional spaces. We also
point out that the identification H*P(X) = W1?(X) for possibly non-complete spaces
is new and interesting even in the particular case where (X, d) is a metric space and
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T is the topology induced by d, and it covers e.g. those situations in which X is an
open domain in a larger (typically complete) ambient space.

By combining Theorem 5.4 with [42], we obtain that on complete e.m.t.m. spaces
it holds that

W' (X) = B"(X), with |[Df| = |Df|p for every f € W'P(X);

see Corollary 5.6. If in addition (X, 7) is Souslin, then the space W1P(X) can be iden-
tified also with the Newtonian space N1?(X); see Remark 5.7. Yet, these identities
are not always in force without the completeness assumption, cf. with the last para-
graph of Section 2.5. However, we show that—on arbitrary e.m.t.m. spaces—each
Ty-test plan 7 (as in Definition 2.30) induces a derivation b, € Der?(X) (see Propo-
sition 5.8), and as a consequence we obtain that the inclusion W?(X) C B'*(X)
holds and that |Df|z < |Df] for all f € W'?(X) (Theorem 5.9).

Finally, in Section 5.4 we present a quite elementary construction of some isomet-
ric predual of the metric Sobolev space W'?(X), see Theorem 5.10. The formulation
of the Sobolev space in terms of derivations is particularly appropriate for this kind
of construction. The existence of an isometric predual of H'?(X) was already known
from [9].
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List of symbols. Below, we provide a list of non-standard symbols that we use
in the paper.

Oscs(f) oscillation of f on S; (2.1)

Lip(f, A,d) Lipschitz constant of f on A with respect to d; (2.2)

Lip, (X, 7,d) space of bounded 7-continuous d-Lipschitz functions f: X —
R; (2.3)

Lipy, (X, 7,d) space of all functions f € Lip,(X,,d) that are 1-Lipschitz;
(2.4)

lipy(f) asymptotic slope of f; Definition 2.2

INT 4 : M *— A" isometric isomorphism between the two notions of dual of .Z;
(2.6)

XLE restriction of an e.m.t.m. space X to the Borel set E; (2.9)

Sx maximal d-separable component of an e.m.t.m. space X;
Lemma 2.9

()A(,f',a,rﬁ) Gelfand compactification of an e.m.t.m. space (X,7,d, m);
Theorem 2.12

r Gelfand transform; (2.12)

dgiser discrete distance; (2.16)

RA(X,d) space of rectifiable arcs in (X, d); (2.18)
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é arc-length evaluation map; (2.20)

g canonical uniformity of an e.m.t. space (X, 7,d); Definition
2.21

&p Cheeger p-energy functional; Definition 2.23

H'?(X) Sobolev space via relaxation; Definition 2.23

|Df|u minimal p-relaxed slope of f € H'?(X); Section 2.4

LP(T*X) p-cotangent module; Theorem 2.25

LYTX) g-tangent module; Definition 2.26

L (TX) space of Sobolev derivations of exponent ¢; Definition 2.28

hx g-barycenter of a dynamic plan 7r; (2.27)

T,(X) space of all 7,-test plans on an e.m.t.m. space X; Definition
2.30

B'?(X) Sobolev space via T,-test plans; Definition 2.33

|Df|p minimal 7,-weak upper gradient of f € B*(X); Section 2.5

Der(X) space of (Lipschitz) derivations on an e.m.t.m. space X; Defi-
nition 4.1

D(div; X) space of all b € Der(X) having divergence div(b) € L'(m);
Definition 4.2

2 (X) space of Weaver derivations on X; Definition 4.9

Der’(X) space of Di Marino derivations on X; Definition 4.12

Der?(X) space of all b € Der’(X) that are g-integrable; Definition 4.12

Der?(X) space of all b € Der?(X) having r-integrable divergence; Defi-
nition 4.12

Li;,(TX) Lipschitz g-tangent module; (4.7)

Whr(X) Sobolev space via Di Marino derivations with divergence; Def-
inition 5.1

|Df] minimal p-weak gradient of f € W'*(X); Definition 5.1

2. Preliminaries

Let us fix some general terminology and notation, which we will use throughout
the whole paper. For any a,b € R, we write a Vb := max{a, b} and a Ab := min{a, b}.
Given a set X and a function f: X — R, we denote by Oscg(f) € [0,+oc] the
oscillation of f on a set S C X, i.e.

(2.1) Oscg(f) =sup f — i%f f.
s

For any Banach space B, we denote by B’ its dual Banach space. A map T": B; — B,
between two Banach spaces By and B, is called an isomorphism (resp. an isomet-
ric isomorphism) provided it is a linear homeomorphism (resp. a norm-preserving
linear homeomorphism). Accordingly, we say that By and By are isomorphic (resp.
isometrically isomorphic) provided there exists an isomorphism (resp. an isomet-
ric isomorphism) 7': By — B,. Finally, we say that By embeds (resp. isometrically
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embeds) into By provided B; is isomorphic (resp. isometrically isomorphic) to some
subspace of B,.

2.1. Topological and metric notions. Let us recall some notions in topology,
referring e.g. to the book [35] for a detailed discussion on the topic. Let (X, 7) be a
topological space. Then:

e (X, 7)is said to be completely regular if for any x € X and any neighbourhood
U € 7 of x there exists a continuous function f: X — [0, 1] such that f(z) =1
and f|x\v = 0. Equivalently, (X,7) is completely regular if 7 is induced by
a family of semidistances.
e (X, 7) is said to be normal if for any pair of disjoint closed sets A, B C X
there exist disjoint open sets Uy, Ug € 7 such that A C U4 and B C Ug.
e (X, 7)issaid to be a Tychonoff space if it is completely regular and Hausdorff.
Every locally compact Hausdorff topological space is a Tychonoff space.
Given two topological spaces (X, 7x) and (Y, 7y), we denote by C'((X,7x); (Y, 7v))
the space of continuous maps from (X, 7x) to (Y, 7y); we drop 7x or 7y from our
notation when the chosen topologies are clear from the context. We use the shorthand
notation C(X, 1) := C((X,7);R) for any topological space (X, 7), where the target
R is equipped with the Euclidean topology. Then

Co(X,7) = {f € C(X,7) | f is bounded}

is a Banach space if endowed with the supremum norm || f||c,(x,r) = sup,ex | f(2)|-

Next, let us recall some metric concepts. By an extended distance on a set X we
mean a symmetric function d: X x X — [0, +oc] that satisfies the triangle inequality
and vanishes exactly on the diagonal {(z,z) : € X}. The pair (X,d) is called an
extended metric space. As usual, if d(z,y) < +oo for every z,y € X, then d is called
a distance and (X, d) is called a metric space. Given an extended metric space (X, d),
a center x € X and a radius r € (0,4+00), we denote

Bi(z) ={ye X |d(x,y) <r}, Blz)={yeX|dy) <r}

A map ¢: X — Y between two extended metric spaces (X,dx) and (Y,dy) is
said to be Lipschitz (or L-Lipschitz) if for some constant L > 0 we have that
dy(p(z), o(y)) < Ldx(z,y) holds for every z,y € X. We denote by Lip,(X,d)
the space of all bounded Lipschitz functions from an extended metric space (X, d) to
the real line R (equipped with the Euclidean distance). Denote

(2.2) Lip(f, A,d) :== sup {W T,y €A, x# y}

for all f € Lip,(X,d) and A C X. For brevity, we write Lip(f,d) := Lip(f, X,d). It is
well known that Lip,(X,d) is a Banach space with respect to the norm || f||Lip, (x,d) =

Lip(f,d) + supyex | f(2)]-
Now, consider an extended metric space (X, d) together with a topology 7 on X.

We define
(2.3) Lip, (X, 7,d) := Lip,(X,d) N C(X, 7).
We endow the vector space Lip,(X, 7,d) with the norm

[ flltip, (x,7a) = Lip(f,d) + || flley(x,) for every f € Lip,(X,7,d).
Remark 2.1. We claim that

(Lipy (X, 7,d), || - ||lLip,(x,7d)) is a Banach algebra.
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Indeed, [|f||Lip,x,rd) = |I.f||Lip,(x,a) holds for every f € Lip,(X,,d), and every uni-
form limit of 7-continuous functions is 7-continuous, thus Lip, (X, 7, d) is a closed vec-
tor subspace of Lip,(X,d). In particular, Lip,(X, 7,d) is a Banach space. Moreover,
it can be readily checked that for any given f,g € Lip,(X,7,d) we have that fg €

Lipb(X7 T7d)7 ||ngCb(X77') < ”f”c'b(X,T)HgHCb(X,T) and Lip(fg7d) < ||f||0b(X,7')Lip(g7d)
+19llc,(x,Lip(f,d), whence it follows that

1 f9llLip,(xra) = Lin(fg,d) + [ f9llcyx.m)
< | flleyxmLip(g, d) + lglle,x»Lin(f, d) + | flleyx.m lgll ey
< (Lip(f.d) + [ flleycxn) (Lin(g, d) + llgllcyx.n)
= [/ lluip,cx.ra) 9l Lip, (x.7.0) -
All in all, we have shown that Lip,(X,7,d) is a Banach algebra, as we claimed. W

At times, it is convenient to use the following shorthand notation:
(24) Lipb,1<X7 Tad) = {f € Llpb(Xa Tad) ‘ Llp(fad) S 1}

Any given f € Lip,(X,7,d) is associated with a function lipy(f) that accounts for
the ‘infinitesimal Lipschitz constants’ of f at the different points of X:

Definition 2.2. (Asymptotic slope) Let (X, d) be an extended metric space and
let 7 be a topology on X. Let f € Lip,(X,7,d) be given. Then we define the function

11pd (f) : X — [Oa Llp(f7 d)] as
lipg(f)(z) = inf {Lip(f, Ud)|zeUe 7'} for every z € X.
We say that lipy(f) is the asymptotic slope of f.

The function lipy4(f) is T-upper semicontinuous, as it follows from the ensuing
remark:

Remark 2.3. Let (X, 7) be a topological space and S # @ a subset of 7. Let
F: S —[0,400] be any given functional. Define

F(z) =if{FU)|zcUecS} foreveryzeX.

Then F: X — [0, 4+00] is a 7-upper semicontinuous function. Indeed, for any U € S
we have that

Fu(z) = F(U) for every x € U,
YT Y400 forevery z € X \U

defines a 7-upper semicontinuous function Fyy: X — [0, +oc|, thus F' = infyes Fiy
is T-upper semicontinuous as well. Similarly, we have that G(x) = sup{F(U) : x €
U € S} (with the convention that sup(@) = 0) defines a 7-lower semicontinuous
function G: X — [0, +o0]. |

2.2. Measure theory. Let (X, X, m) be a measure space. We denote by L°(m)
the algebra of all equivalence classes (up to m-a.e. equality) of measurable functions
f: X — R. For any p € [1,00], we denote by (LP(m), || - ||r(m)) the Lebesgue space
of exponent p on (X, ¥, m). Then LP(m) is a Banach space (and L>(m) is also a
Banach algebra). Moreover, LP(m) is a Riesz space with respect to the partial order
given by the m-a.e. inequality: given any f,g € LP(m), we declare that f < g if
and only if f(z) < g(x) holds for m-a.e. z € X. Assuming that the measure m is
o-finite, we also have that LP(m) is Dedekind complete, which means that any family
of functions {f;}ic; € LP(m) with an upper bound (i.e. there exists g € LP(m) such
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that f; < g for all ¢ € I) has a supremum \/,.,; f; € LP(m). The latter is the unique
element of LP(m) such that

o fi <V, fi for every j €I,
o if f € LP(m) satisfies f; < f for every j € I, then \/,_, f; < f.

In addition, one can find an at most countable subset C' C I such that \/iE 1 fi =
Viec fi (i.e. LP(m) has the so-called countable sup property). Similarly, every set
{fitier € LP(m) with a lower bound has an infimum A, f; € L?(m) and there exists
C' C I at most countable such that Nier i = Niee fi (ie. the countable inf property
holds). In particular, essential unions (and essential intersections) exist: given any
family {E;}icr C X, we can find a set £ € ¥ such that

e m(E;\ E) =0 for every i € I,
o if ' € ¥ satisfies m(E; \ F') =0 for every ¢ € I, then m(E \ F)) = 0.

The set F is m-a.e. unique, in the sense that m(EAFE) = 0 for any other set E € %
having the same properties. We say that E is the m-essential union of {E;}icr. It
also holds that £ can be chosen of the form |J,. £;, for some at most countable
subset C' C 1.

Let (X, 3, m) be a finite measure space. Following [11, §1.12(iii)], we say that m
is a separable measure if there exists a countable family C C ¥ such that for every
E € ¥ and ¢ > 0 we can find F' € C such that m(EFAF) < e. The following conditions
are equivalent:

e m is a separable measure,
e [P(m) is separable for some p € [1,0),
e [P(m) is separable for every p € [1, 00).

See for instance [11, §7.14(iv) and Exercise 4.7.63]. In the class of spaces of our
interest in this paper, we can encounter examples of spaces whose reference measure
is non-separable (cf. with Example 2.18). An advantage of m being separable is that
it is equivalent to the fact that the weak™ topology of L*>°(m) restricted to its closed
unit ball is metrisable (see e.g. Lemma 4.11).

Let (X, 7) be a Hausdorff topological space. We denote by Z(X,7) its Borel
o-algebra. A finite Borel measure pu: #(X,7) — [0,400) is called a Radon measure
if it is inner regular, i.e.

u(B) = sup {u(K) | K € B, K is T-compact} for every B € B(X, 7).
It follows that p is also outer regular, which means that
w(B) =inf {u(U) |U €T, BCU} forevery B € B(X,T).

We denote by M (X) or M, (X, 7) the collection of all finite Radon measures on
(X, 7). We refer to the monograph [46] for a thorough account of the theory of Radon
measures. Below we collect some more definitions and results that we shall need later
in the paper.

Remark 2.4. Radon measures verify the following version of the monotone
convergence theorem: if p is a finite Radon measure on a Hausdorff topological
space (X, 7) and (f;)ies is a non-decreasing net of 7-lower semicontinuous functions
fi: X = [0, +00) satisfying sup;c; e x fi(z) < 400, then

lim/fi dp = /limfi dy.
iel icl
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Note that lim;e; f; = sup,c; fi is 7-lower semicontinuous, in particular it is Borel
measurable and thus the right-hand side of the identity above is meaningful. See e.g.
[11, Lemma 7.2.6]. |

Let (X, 7x) and (Y, 7y) be Tychonoff spaces. Given a finite Radon measure y on
X,amap ¢: X — Y is said to be Lusin p-measurable if for any € > 0 there exists
a compact set K. C X such that u(X \ K.) < ¢ and ¢|g, is continuous. Each Lusin
p-measurable map is in particular Borel y-measurable (i.e. ¢~!(B) is a y-measurable
subset of X for every Borel set B C Y'). Moreover, if p € M (X) is given and
¢: X — Y is Lusin p-measurable, then we have that

(pu1)(B) = pu(¢'(B)) for every Borel set B CY

defines a Radon measure pypu € My (Y), called the pushforward of ;1 under ¢. A
map ¢: X — Y is said to be universally Lusin measurable if it is Lusin p-measurable
for every p € M4 (X).

Remark 2.5. We point out that the p-a.e. pointwise limit of a sequence of
Lusin p-measurable functions is Lusin p-measurable, thus in particular the pointwise
limit of a sequence of universally Lusin measurable functions is universally Lusin
measurable. Indeed, fix a Tychonoff space (X, 7) and a Radon measure u € M (X).
Assume that a sequence (f,), of Lusin pu-measurable functions f,: X — R and a
limit function f: X — R satisfy f(x) = lim,, f,(z) € R for p-a.e. z € X. Given any
e > 0and n € N, we can find a compact set K C X such that u(X\ K?) < /2" and
fnlkr is continuous. Then K =),y K7 is a compact set with p(X \ K.) < € such
that each f,|k. is continuous. Thanks to Egorov’s theorem, we can find a compact
set K. C K. with u(X \ K.) < 2¢ such that fulg. — fli. uniformly, so that f|z is
continuous. Hence, f is Lusin py-measurable.

Furthermore, we point out that any bounded 7-lower semicontinuous function
f: X — [0,400) defined on a Tychonoff space (X, 7) is universally Lusin measur-
able. To prove it, fix any Radon measure p € M (X). It follows e.g. from [11,
Lemma 7.2.6] that

/fduzsup{/gdu’gEC(X,T),gﬁf}

Hence, we can find a non-decreasing sequence of functions (g,), € C(X,7) such
that g, < f for every n € N and lim,, [ g, dp = [ fdu. By applying the monotone
convergence theorem, we deduce that lim,, g,(x) = f(x) for p-a.e. x € X. Since each
continuous function is clearly Lusin py-measurable, by the first claim of this remark
we conclude that f is Lusin p-measurable. [

2.2.1. LP(m)-Banach L*°(m)-modules. In this section, we recall some key
concepts in the theory of LP-Banach L*>*-modules, which are Banach spaces equipped
with additional structures (roughly speaking, with a ‘pointwise norm’ and a multi-
plication by L*-functions). This language has been developed by Gigli in [23], with
the goal of providing a functional-analytic framework for a vector calculus in metric-
measure spaces. Strictly related notions were previously studied in the literature for
different purposes, see e.g. the notion of random normed module introduced by Guo
[26, 27] and investigated in a long series of works (see [28, 29] and the references
therein), or the notion of random Banach space introduced by Haydon, Levy and
Raynaud [32]. The definitions and results presented below are taken from [22; 23].
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For any measure space (X, Y, m), the space L>(m) is a commutative ring (with
unity) with respect to the usual pointwise operations. Since the field of real numbers
R can be identified with a subring of L>(m) (via the map sending A € R to the
function that is m-a.e. equal to \), every module over L*®(m) is in particular a
vector space. Recall also that a homomorphism 7': M — N of L*>°(m)-modules is an
L*(m)-linear operator, i.e. a map satisfying

T(f-v+g-w)=f-Tw)+g- -T(w) forevery f,g € L>®(m) and v,w € M.

In particular, each homomorphism of L*(m)-modules is a homomorphism of vector
spaces, i.e. a linear operator. Observe that LP(m) is an L°°(m)-module for every
p € [1,00].

Definition 2.6. (LP(m)-Banach L*>°(m)-module) Let (X, 3, m) be a o-finite mea-

sure space and let p € (1,00). Then a module .#Z over L*>(m) is said to be an

LP(m)-Banach L>(m)-module if it is endowed with a functional | - |: .#Z — LP(m)™,
called a pointwise norm on .# , such that:

i) For any v € .#, it holds that |v| = 0 if and only if v = 0.

)
i) |v+ w| < |v| + |w| for every v,w € A .
iii) |f-v|=|f|lv] for every f € L>®(m) and v € .
iv) The norm |[v||.z == |||v|||Lr(m) On A is complete.
Every LP(m)-Banach L*°(m)-module is in particular a Banach space. A map
O: A — N between LP(m)-Banach L>°(m)-modules .#, .4 is said to be an isomor-

phism of LP(m)-Banach L*°(m)-modules if it is an isomorphism of L*(m)-modules
satisfying |®(v)| = |v| for all v € .

Definition 2.7. (Dual of an LP(m)-Banach L*(m)-module) Let (X, 3, m) be
a o-finite measure space. Let p,q € (1,00) be conjugate exponents and let .#
be an LP(m)-Banach L°°(m)-module. Then we define .Z* as the set of all those
homomorphisms w: .# — L'(m) of L°°(m)-modules for which there exists a function
g € L1(m)" such that

(2.5) lw(v)| < glv|  for every v € .
The space .#* is called the continuous module dual of A .

The space .#* is a module over L>(m) if endowed with the following pointwise
operations:
(w+n)(v) =w)+n(v) foreveryw,ne€ . #* andve #,
(f-w)(v) = fw(v) forevery fe L®(m),we .#" andv e .

Moreover, to any element w € .#* we associate the function |w| € L9(m)*, which we
define as

lw| = \/ {w) |ve, |v] <1} = /\ {g € LY(m)* | g satisfies (2.5)}.

It holds that (.Z*,|-|) is an L9(m)-Banach L*>(m)-module.

The continuous module dual .#Z™* of . is in particular a Banach space, which can
be identified with the dual Banach space .#’ through the operator INT 4 : . #* — .4,
defined as

(2.6) INT 4(w)(v) = /w(v) dm for every w € 4" and v € .

Indeed, the map INT 4 is an isometric isomorphism of Banach spaces (see [23, Propo-
sition 1.2.13]).
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2.3. Extended metric-topological measure spaces. In this section, we
discuss the notion of extended metric-topological (measure) space that was introduced
by Ambrosio, Erbar and Savaré in [4, Definitions 4.1 and 4.7] (see also [42, Definition
2.1.3)).

Definition 2.8. (Extended metric-topological measure space) Let (X, d) be an
extended metric space and let 7 be a Hausdorff topology on X. Then we say that
(X, 7,d) is an extended metric-topological space (or an e.m.t. space for short) if the
following conditions hold:

i) The topology 7 coincides with the initial topology of Lip,(X, 7,d).
ii) The extended distance d can be recovered through the formula

(2.7)  d(z,y) =sup {|f(z) = f(y)| | f € Lipy,(X,7,d)} for every z,y € X,
where Lip, ; (X, 7,d) is defined as in (2.4).

When (X, 7,d) is equipped with a finite Radon measure m € M (X), we say that
X = (X,7,d,m) is an eztended metric-topological measure space (or an e.m.t.m.
space for short).

In particular, if (X, 7,d) is an e.m.t. space, then (X,7) is a Tychonoff space.
Given an e.m.t.m. space X = (X, 7,d, m), we know from [42, Lemma 2.1.27] that

(2.8) Lip, (X, 7,d) is strongly dense in LP(m), for every p € [1, 00).
Moreover, given any set £ € Z(X, 1), it can be readily checked that
(2.9) X E = (E,p,dp, mLE)

is an e.m.t.m. space, where 7z is the subspace topology on F induced by 7, while
dg = d|gxr and m_FE denotes the Radon measure on E that is obtained from m by
restriction.

Let us now prove some technical results, which will be needed later. First, we
show that each e.m.t.m. space can be decomposed (in an m-a.e. unique manner) into
a d-separable component and a ‘purely non-d-separable’ one:

Lemma 2.9. (Maximal d-separable component Sx) Let X = (X, 7,d,m) be a
given e.m.t.m. space. Then there exists a d-separable set Sx € (X, 1) such that
m(E) = 0 holds for any d-separable set E € 2(X, 7) satisfying E C X\Sx. Moreover,
the set Sx is unique in the m-a.e. sense, meaning that m(SXAgx) = 0 for any other
set Sx € #B(X,7) having the same properties as Sx.

Proof. Fix any m-a.e. representative Sx € (X, 1) of the m-essential union of
the family of sets

{S € B(X,7)| S is d-separable and m(S) > 0}.

Recall that Sx can be chosen to be of the form | J, o Sn, for some sequence (S,), €
PB(X,T) such that S, is d-separable and m(S,,) > 0 for every n € N. In particular,
the set Sx is d-separable. If £ C X \ Sx is 7-Borel and d-separable, then m(E) = 0
thanks to the definition of m-essential union. Finally, if Sx is another set having the
same properties as Sy, then the inclusion Sx \ Sx € X \ Sx (resp. Sx \ Sy C X \ SX)
implies that m(Sx \ Sx) = 0 (resp. m(Sx \ Sx) = 0), thus m(SxASx) = 0. O

Next, we give sufficient conditions for the separability of the measure m of an

e.m.t.m. space. The proof of the ensuing result is rather standard, but we provide it
for the reader’s convenience.
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Lemma 2.10. Let X = (X, 7,d,m) be an e.m.t.m. space. Assume either that T
is metrisable on every T-compact set or that m(X \ Sx) = 0. Then it holds that the
measure m is separable.

Proof. Let us distinguish the two cases. First, assume that 7 is metrisable on
T-compact sets. Take an increasing sequence (K, )nen of T-compact subsets of X
with m(X \U, Kn) = 0. For any n € N, fix a distance d,, on K, metrising 7, and a
d,-dense sequence (77%)jen in K. Define

C— U { U ngﬁ(x?) ’ F C N finite, (g;)jer CQN (O,—l—oo)}.

neN ~ jeF

Note that C is a countable family of 7-closed subsets of X, thus C C B(X, 7). We
claim that

(2.10) émé m(EAC) =0 forevery £ € B(X, 1),
€

whence the separability of m follows. To prove the claim, fix £ C X 7-Borel and
e > 0. We can choose n € N so that m(E£ \ K,,) < e. By the inner regularity of
m, we can find a 7-compact set K C E'N K, such that m((EN K,,)\ K) < e. By
the outer regularity of m, we can find U € 7 such that K C U and m(U \ K) < .
Due to the compactness of K, there exist y;,...,yr € K and rq,...,7rp > 0 such that
KcUr, B (y;) C U N K,. Moreover, for any i = 1,...,k we can find j; € N and
¢ € QN (r;,400) such that B (y;) € B (27 ) C U N K,,. Therefore, we have that
C=UL, Bir(x7) € C satisfies K € C' C U, whence it follows that m(EAC) < 3e.
This proves (2.10), which gives the statement in the case where 7 is metrisable on
T-compact sets.

Let us pass to the second case: assume m(X \ Sx) = 0. Fix a d-dense sequence
(Yx)ren in Sx. In this case, we define the countable collection C of 7-closed subsets

of X as
¢ = { U B ()

jEF

F N fuite, (g0her QN (0, 459) .

We claim that (2.10) holds. To prove it, fix any £ € Z(X, 1) and € > 0. By the outer
regularity of m, we can find a 7-open set U C X such that £ C U and m(U \ F) < e.
Since 7 is coarser than the topology induced by d, we have that U is d-open, thus there
exist a subsequence (yx,)jen of (Yx)ren and a sequence of radii (¢;);en € QN (0, +00)
such that ENSx C ;o ng (Yx;) € U. Thanks to the continuity from below of m, we

can thus find N € N such that the set C' := Uj\le ng (yr;) € C satisfies m(FAC) < 2e.
This proves (2.10), thus the statement holds when m(X \ Sx) = 0. O

Observe that the second assumption in Lemma 2.10 is verified, for instance, when
(X,d) is separable. We also point out that the first assumption can be relaxed to:
for some D € B(X,T) such that m is concentrated on D, the topology T is metrisable
on every T-compact subset of D. A significant example of a non-metrisable topology
7 that is metrisable on all T7-compact sets is the weak* topology of the dual B’ of a
separable infinite-dimensional Banach space B.

2.3.1. Compactification of an extended metric-topological space. A very
important feature of the category of extended metric-topological spaces is that it is
closed under a notion of compactification, devised in this framework by Savaré [42,
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Section 2.1.7] via the Gelfand theory of Banach algebras. By virtue of the existence
of compactifications, one can reduce many proofs to the compact case.

Let us briefly recall the construction of the Gelfand compactification of an e.m.t.
space (X, 7,d). By a character of Lip,(X, 7,d) we mean a non-zero element ¢ of the
dual Banach space of the normed space (Lip,(X,7,d), || - [|c,x,-) that satisfies

(2.11) ©(fg) = ¢(f)p(g) for every f,g € Lip,(X,7,d).

We denote by X the set of all characters of Lip, (X, 7,d). We equip X with the
topology 7 obtained by restricting the weak* topology of the dual of (Lip,(X, 7,d), || -

leyx,m)) to X. The canonical embedding map ¢: X < X is given by
t(x)(f) = f(z) forevery x € X and f € Lip,(X,7,d).

Moreover, the Gelfand transform T': Lip,(X,7,d) — Cy(X, 7) is defined as

(2.12) T(f)(p) = @(f) for every f € Lip,(X,7,d) and ¢ € X.

Note that I'(f) o« = f for every f € Lip,(X,7,d). Finally, we define the extended
distance d as

d(e, ¥) = sup {|¢(f) — ¥(f)| | f € Lip,y(X,7,d)} for every ¢, v € X.
Remark 2.11. We claim that

©(Alx) =X\ forevery o € X and X € R.

Indeed, (2.11) and the linearity of ¢ guarantee that p(Alx)p(ly) = p(Alx) =
Ap(lx), and (2.11) implies also that ¢(1x) # 0 (otherwise, we would have p(f) =
o(flx) = ¢(f)e(lx) = 0 for every f € Lip,(X,7,d), contradicting the fact that
@ #0). It follows that p(Alyx) = \. |

The objects X , 7, ¢, I' and d defined above have the following properties [42,
Theorem 2.1.34]:

Theorem 2.12. (Gelfand compactification of an e.m.t. space) Let (X, 7,d) be
an e.m.t. space. Then (X, %,a) is an e.m.t. space and (X, 7) is compact. Moreover,
the following conditions hold:

i) The map ¢ is a homeomorphism between (X, 1) and its image «(X) in (X, 7).

ii) The set 1(X) is a dense subset of (X, 7).

iii) We have that d(c(x), (y)) = d(z,y) for every z,y € X.

We say that (X, T, EI) is the compactification of (X, 7,d), with embedding 1: X < X.

If X = (X, 7,d,m) is an e.m.t.m. space and (X, T, a) denotes the compactification

of (X, 7,d), with embedding ¢: X < X, then we define the measure m on X as
M= m e M, (X, 7).

The fact that m is a Radon measure follows from the continuity of ¢ (as all continuous
maps are universally Lusin measurable). Given any exponent p € [1, 0], we have
that ¢: X < X induces via pre-composition a map ¢*: LP(m) — L”(m) (sending
the m-a.e. equivalence class of a p-integrable Borel function f X — R to the m-a.e.
equivalence class of f o¢), which is an isomorphism of Banach spaces and of Riesz
spaces (and also of Banach algebras when p = 00).

Albeit implicitly contained in [42], we isolate the following result for the reader’s
convenience:
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Lemma 2.13. Let (X, 7,d) be an e.m.t. space. Let (X', 7, a) be its compactifica-
tion, with embedding v: X < X. Then the Gelfand transform I" maps Lip,(X, 7, d)
to Lip,(X,7,d). Moreover, it holds that I': Lip,(X,7,d) — Lip,(X,7,d) is an iso-
morphism of Banach algebras, with inverse given by
(2.13) Lip,(X,7,d) 3 f — f o € Lip, (X, 7,d).

Proof. Fix f € Lip,(X,7,d). If Lip(f,d) = 0, then f is constant, thus |T'(f)(y¢) —

L(f)(1)] = 0 for every ¢,9p € X by Remark 2.11. If Lip(f,d) > 0, then f =
Lip(f,d)~'f € Lip,,; (X, 7,d), thus

L)) = TN = le(f) = ¢(f)] = Lin(f,d)e(f) — o

for all ,1) € X. All in all, we have that I'(f) € Lip,(X
Lip(f,d). Also,

)| < Lip(f,d)d(¢, ¢)
,d) and Lip(T'(f),d) <

w,yGX,m#y}

r,y€ X, v # y} = Lip(f,d),

so that Lip(D(f),d) = Lip(f,d). Moreover, since I'(f) is #-continuous and ¢(X) is
-dense in X, we have that [T(f)]lcycx.s) = SUPsex DA ()] = sup,ex |f(2)] =
[ flleyx,r)- Hence, it holds that I'(Lip,(X, 7,d)) € Lip,(X, 7,d) and [[T'(f)|y;,, % +.4)

= || fllLip,(x,rq) for every f € Lip,(X,,d).

Now, denote by I the map in (2.13). Clearly, I' and I are homomorphisms of
Banach algebras. As we already pointed out, we have that (I oI')(f) =T'(f)or=f
for every f € Lip,(X,7,d), which means that I oI' = idp,,(x,rq). Conversely, for any

fe Lipb(f(,%,a) we have that

(Lo D)(f)(u(2)) = T(f o )(e(x)) = (2)(f o 1) = f(u(z)) for every z € X,
which gives that (I" o I)(f)]L(X) = f]L(X) Since (I" o [)(f) f are 7-continuous and
1(X) is #-dense in X, we conclude that (Do I)(f) = f, thus T o] = idp,, (x.7.- The
proof is complete.

Let us also point out that for any given function f € Lip,(X, 7,d) it holds that

(2.14) lipg(f)(z) <lipg(I'(f))(e(x)) for every z € X,

but it might happen that the inequality in (2.14) is not an equality. Hence, we have
that

(2.15)  lipg(f) < *(lipg(T'(f))) holds m-a.e. on X, for every f € Lip,(X,7,d),
but it might happen that the m-a.e. inequality in (2.15) is not an m-a.e. equality.

2.3.2. Examples of extended metric-topological spaces. We collect here
many examples of e.m.t.(m.) spaces. As observed in [4, Section 13] and [42, Sec-
tion 2.1.3], the following are e.m.t.m. spaces:

e A metric space (X, d) together with the topology 74 induced by d and a finite
Radon measure m > 0 on X. In particular, a complete and separable metric
space (X,d) together with the topology 74 and a finite Borel measure m > 0
on X (as all finite Borel measures on a complete and separable metric space
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are Radon). The latter are often referred to as metric-measure spaces in the
literature.

e A Banach space B together with the distance induced by its norm, the weak
topology 7, and a finite Radon measure on (B, 7).

e The dual B’ of a Banach space B together with the distance induced by the
dual norm, the weak* topology 7, and a finite Radon measure on (B, 7,+).
We point out that if B is separable, then (B’, 7,,+) is a Lusin space [46, Corol-
lary 1 at p. 115], so that every finite Borel measure on (B, 7,,) is Radon.

e An abstract Wiener space, i.e. a separable Banach space X together with a
(centered, non-degenerate) Gaussian measure v and the extended distance
that is induced by the Cameron—-Martin space of (X,7); see e.g. [12].

e Other important examples of e.m.t.m. spaces are given by some ‘extended
sub-Finsler-type structures’ [42, Example 2.1.3] or the so-called configuration
spaces [4, Section 13.3].

e Another collection of structures that fall into the class of e.m.t.m. spaces is
the one of disjoint unions of e.m.t.m. spaces equipped with co-cross-distances.
Namely, given a countable family {(X;, 7;,d;,m;): i € I} of e.m.t.m. spaces
such that ) .., m;(X;) < +oo, we endow X = | |,., X; with the topology
7 ={U CX:UNX, €7, for all i € I}, the finite Radon measure Z(X, 1) >
E—m(E):=>,.,m(£NX;),and the extended distance

d(. 1) di(z,y) if z,y € X; for some i € I,
I’ = .
Y ~+00 otherwise.

It can be readily checked that the resulting quartet (X, 7,d, m) is an e.m.t.m.
space.

e Similar objects that can be modelled by the theory of e.m.t.m. spaces are
several kinds of structures that are ‘foliated’, such as the parabolic space
or measurable laminations. In these examples, a given topological space is
partitioned into subspaces, each equipped with its own distance, that are
not ‘interconnected’ (which means that the pairwise distance between two
different subspaces is declared to be infinite).

On the one hand, the class of e.m.t. spaces in the first bullet point above (i.e.
metric spaces equipped with the topology induced by the distance) shows that, in
a sense, the theory of e.m.t. spaces is an extension of that of metric spaces. On
the other hand, as it is evident from Example 2.14 below (which was pointed out
to us by Timo Schultz), the category of e.m.t. spaces encompasses also the one of
Tychonoff spaces, but in this paper we will not investigate further in this direction.
We point out that it would be interesting to study also the larger class of extended
pseudometric-topological spaces, which are defined as e.m.t. spaces with the only
exception that d is an extended pseudodistance (i.e. d is allowed to vanish off the
diagonal {(z,z): x € X} C X x X), but we do not pursue this goal here. However,
we draw attention to the fact that the topology 7 of an extended pseudometric-
topological space (X, 7,d) is Hausdorff if and only if d is an extended distance. Several
interesting structures, such as metric quotients endowed with a suitable topology, are
examples of extended pseudometric-topological spaces.
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Example 2.14. (‘Purely-topological’ e.m.t. space) Let (X,7) be a given Ty-
chonoff space. We denote by dgis.r the discrete distance on X, i.e. we define

1 for every x,y € X with x ,
(216) ddiscr(xu y) = Y Y . 7& Y

0 for every x,y € X with z =y.
Then (X, 7, dgiser) i an e.m.t. space. Indeed, it can be readily checked that the dgjse-
Lipschitz functions f: X — R are exactly the bounded functions and Lip(f, dgiger) =
Oscx(f), in particular

Lipb(Xa T, ddiSCr) = Ob(X7 T)? H ’ ”Lipb(X,ﬂddiscr) = OSCX(') + “ : ||Cb(X77')'

Therefore, the complete regularity of (X, 7) ensures that the initial topology of
Lip, (X, 7, dgiser) coincides with 7 (so that Definition 2.8 i) holds), and for any two dis-
tinct points =,y € X we can find (as (X, 7) is completely Hausdorff) a 7-continuous
function f: X — [0, 1] such that f(z) = 1 and f(y) = 0, so that dgiser(x,y) = 1 =
|f(x) — f(y)| (whence Definition 2.8 ii) follows). |

Next, we present explicit constructions of e.m.t.m. spaces that will be useful later
in the paper.

Example 2.15. We endow X = [0,1]? C R? with the Euclidean topology 7 and
the distance

d((z, 1), (y,s)) = max{dgise: (7, ¥), dgua(t, s)} for every (z,t), (y,s) € X,

where dgjser denotes the discrete distance, while dgya (£, s) == |t — s| is the Euclidean
distance. One can easily check that (X, 7,d) is an e.m.t. space, and that a given
function f: X — R belongs to the space Lip, (X, 7, d) if and only if it is 7-continuous,
f(z,-) € Lip,([0,1],dgua) for every x € [0,1] and sup,¢o 1) Lip(f(z, ), dgua) < +00.
Moreover, straightforward arguments show that

(2.17) Lip(f,d) = Oscx(f) V sup Lip(f(z,-),dgua)

z€[0,1]
for every f € Lip,(X,7,d). [

Whereas the Banach algebra Lip,(X,d) associated to a metric space (X,d) is
(isometrically isomorphic to) a dual Banach space (see [50, Corollary 3.4]), in the
more general setting of e.m.t. spaces we can provide examples where Lip, (X, 7,d) is
not isometrically isomorphic (and not even just isomorphic) to a dual Banach space,
see Proposition 2.16 below. The possible non-existence of a predual of Lip, (X, 7,d)
will have an important role in Definition 4.4.

Proposition 2.16. Let (K,7) be an infinite compact metrisable topological
space. Let dgiser denote the discrete distance on K. Then Lip, (K, T, dgiser) Is not
isomorphic to a dual Banach space.

Proof. We recall from Example 2.14 that (K, 7,dgiser) 18 an extended metric-
topological space that satisfies L := Lip, (K, 7, dgiser) = C(K, 7) and

1 F1IL = 1 f |Lipy (k7 dasser) = OsCr (f) + [ fllez,r)

for every f € L. Note that || f|lcx, < ||flln < 3| fllew, for every f € L. Since
(K, 7) is a compact metrisable topological space, it holds that C'(K,7) is separable
[2, Theorem 4.1.3] and thus L is separable. Since 7 is a Hausdorff topology, by
virtue of Remark 2.17 below we can find a sequence (U, )neny C 7 of pairwise disjoint
sets such that each set U, contains at least two distinct points x, and y,. Since
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(K, 7) is completely regular, for any n € N we can find a 7-continuous function
fn: K — [=1,1] such that {f, # 0} C U,, fu(z,) =1 and f,(y,) = —1. Letting coo
be the vector space of real-valued sequences a = (a,), satisfying a,, = 0 for all but
finitely many indices n € N, we define the linear operator ¢: coo — L as

1
o(a) = 3 Z anfn € L for every a = (a,)n € coo-

neN:

an#0
Recall that ¢ is a dense subspace of the Banach space (co, ||||¢, ), Where ¢y is the space
of real-valued sequences a = (a,), with lim, a,, = 0, and ||- ||, is the supremum norm
lalle, = sup,, |an|. Given that ||¢p(a)|lL = ||all., for every a € coo by construction,
we have that ¢ can be uniquely extended to a linear isometry ¢: ¢ — L. Since cq
cannot be embedded in a separable dual Banach space (see [2, Theorem 6.3.7] or
[10, Theorem 4]), we can finally conclude that L is not isomorphic to a dual Banach
space. 0

Remark 2.17. If (X, 7) is an infinite Hausdorff space, then there exists a se-
quence (Up,)nen of pairwise disjoint non-empty open subsets of X. To prove this
claim, we distinguish two cases. If X has infinitely many isolated points, take a
sequence (x,)n,en of pairwise distinct isolated points of X, and note that letting
U, = {x,} for every n € N does the job. If X has only finitely many isolated points,
then the set X of all accumulation points is an open subset of X (by the Hausdorff
assumption); since each neighbourhood of an accumulation point is infinite (again,
by the Hausdorff assumption), we can construct recursively a sequence (Up)nen of
pairwise disjoint infinite open subsets of X, which are — a fortiori — open subsets of
X. The claim is proved. [ |

Example 2.18. (An e.m.t.m. space whose reference measure is non-separable)
Let (X, 7,dgiser) be the product X = [0, 1]° of the continuum of intervals together
with the product topology 7 and the discrete distance dgise;. Since (X, 7) is com-
pact and Hausdorff, we know from Example 2.14 that (X, 7, dgiser) is an e.m.t. space.
Moreover, we equip (X, 7) with the probability Radon measure m obtained as the
product of the one-dimensional Lebesgue measures; to be precise, the product mea-
sure of the Lebesgue measures is defined on the product o-algebra @), . %([0,1]),
but it extends to a Radon measure m on (X, 7) thanks to [11, Theorem 7.14.3].
However, the measure m of the e.m.t.m. space (X, 7, dgiser, M) is not separable, see
[11, Section 7.14(iv)]. |

2.3.3. Rectifiable arcs and path integrals. Let (X, 7,d) be an e.m.t. space.
As in [42, Section 2.2.1], we endow the space C([0,1]; (X, 7)) of all 7-continuous
curves 7: [0,1] — X with the compact-open topology 7¢ and with the extended
distance d¢: C(]0, 1]; (X, 7)) x C([0,1]; (X, 7)) — [0, +00], which we define as

do(7,0) = sup d(y,00) for every 7,0 € C([0, 1]; (X, 7).

t€[0,1]
Then (C(]0,1]; (X, 7)), 7c,de) is an extended metric-topological space [42, Proposi-
tion 2.2.2]. We recall that a subbasis for the compact-open topology 7¢ is given by
the family of sets

{S(K,V)| K C[0,1] compact, V € 7},
where we denote S(K,V) == {y € C([0,1]; (X,7)): v(K) C V}.
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Following [42, Section 2.2.2], we denote by X the set of all continuous, non-
decreasing, surjective maps ¢: [0,1] — [0,1]. Let us consider the following equiva-
lence relation on C([0,1]; (X, 7)): given any ~,0 € C([0,1]; (X, 7)), we declare that
7 ~ o if and only if there exist ¢., ¢, € £ such that

7Y © ¢’y =00 ¢a-
We endow the associated quotient space A(X,7) = C([0,1]; (X, 7))/ ~ with the
quotient topology 7a induced by 7¢. The elements of A(X, ) are called arcs. We
denote by [y] € A(X,7) the equivalence class of a curve v € C([0,1]; (X, 7)). We
define the subspace A(X,d) C A(X, ) as
AX.d) = {1 v € C([0,1];(X,d))}.
Letting da: A(X,d) x A(X,d) — [0, +o0] be the extended distance on A(X,d) given
by
da(y,0) =inf{dc(7,6) | 3,6 € C([0,1); (X, 7)), (7] = 7, [6] = o'}

for every v,0 € A(X,d), we have that (A(X,d),7a,da) is an extended metric-
topological space [42, Proposition 2.2.6].

Given a curve v € C([0,1]; (X,d)) and any ¢ € [0, 1], the d-variation of v on [0, t]
is defined as

V’Y(t) = sup { Z d(ryti7’)/ti—1)
i=1

The d-length of v is defined as ¢(y) = V,(1) € [0,400]. As in [42, Lemma 2.2.8], we
set

neN {t}1,C[0,1,to<t1 <...< tn} € [0, 4o0].

BVC([0,1]; (X, d)) = {7 € C([0,1]; (X,d)) | £(7) < +oo}.
Since ¢ is T-lower semicontinuous, the space BVC([0,1]; (X, d)) is an F,, subset of
C([0,1]; (X, 7)). We say that a curve v € BVC([0, 1]; (X, d)) has constant d-speed if
V,(t) = ()t holds for every t € [0,1]. For any given v € BVC(][0, 1]; (X, d)), there
exists a unique ¢(v)-Lipschitz curve R, € BVC([0, 1]; (X, d)) having constant d-speed
such that
Y(t) = R,(£(y)" 'V, (t)) for every t € [0,1],

with the convention that ¢(y)~'V,(t) = 0 if £(y) = 0. Then it holds that [y] = [R,]
and we say that R, is the arc-length parameterisation of «y. The space of rectifiable
arcs is given by

(218) RA(Y,d) = {[7] | 7 € BVC(D, 1; (X,d))} € A(X, d)
Then (RA(X,d),7a,da) is an extended metric-topological space. Given 7,0 €
BVC([0, 1]; (X, d)), we have that [y] = [o] if and only if R, = R, [42, Lemma 2.2.11(b)],

thus we can unambiguously write R, for v € RA(X,d). Similarly, we can write 7,

~v and £(7) for v € RA(X,d), and
(2.19) RA(X,d) 5y~ £(v) is Ta-lower semicontinuous,

see [42, Lemma 2.2.11(d)]. Given any v € RA(X,d) and a Borel function f: (X,7) —
R such that fo R, € L*(0,1) (or a Borel function f: X — [0,400]), the path integral

of f over v is given by 1
[ 1=t [ s
v 0

When f is bounded, (RA(X,d),75) > v — f7 f € R is Borel measurable [42, Theo-
rem 2.2.13(e)].



78 Enrico Pasqualetto and Janne Taipalus

For any t € [0, 1], the arc-length evaluation map &: RA(X,d) — X at time t is
defined as

&(y) = R,(t) for every v € RA(X,d).
We also introduce the arc-length evaluation map €: RA(X,d) x [0,1] — X, given by
(2.20) é(v,t) = &(y) = R,(t) for every v € RA(X,d) and t € [0, 1].

Let us now prove some technical results, concerning the measurability properties of
e and of a map that describes the derivative of a continuous Lipschitz function along
rectifiable arcs, which we will use in Section 5.3.

Lemma 2.19. Let (X, 7,d) be an e.m.t. space. Then it holds that &: RA(X,d) x
[0,1] — X is universally Lusin measurable (when RA(X,d) x [0, 1] is equipped with
the product topology).

Proof. First of all, we claim that if ((7*,t"));e; € RA(X,d) x [0, 1] is a given net
converging to (7,t) € RA(X,d) x [0,1] such that lim;e; £(7*) = £(7), then

(2.21) lime(y', 1) = &(y,1).

To prove it, fix a neighbourhood V' € 7 of é(~,t). By the complete regularity of 7,
we can find a neighbourhood U € 7 of R, (t) = &(v,t) whose T-closure U is contained
in V. Since the curve R,: [0,1] — X is 7-continuous and lim;e; t* = ¢, there exists
io € I such that R, (t') € U for every i € I with iy < i. Letting K denote the closure
of {t":i € I, iy < i}, which is a compact subset of [0, 1], we have that ¢t € K and
R,(s) € U CV for every s € K, thus S(K,V) € 7¢ is a neighbourhood of R.,. Since
limje; R, = R, in (C([0,1]; (X, 7)), 7¢) by [42, Theorem 2.2.13(a)], we deduce that
there exists i1 € I with ig < 4; and R € S(K,V) for every i € I with iy <. It
follows that é(v',t") = R.,i(t") € V for every i € I with ¢; < i, which shows that
(2.21) holds.

Now let p € M, (RA(X,d) x [0,1]) be fixed. By (2.19), the map RA(X,d) x
[0,1] > (v,t) — L(v) is lower semicontinuous, thus it is Lusin p-measurable by
Remark 2.5. Hence, for any € > 0 we can find a compact set . C RA(X,d) x [0, 1]
such that K. > (v,t) — {(v) is continuous. The first part of the proof then gives
that €| is continuous, so that é is universally Lusin measurable. 0

Corollary 2.20. Let (X, 7,d) be an e.m.t. space. Let f € Lip,(X, 7,d) be given.
We define the function Dy: RA(X,d) x [0,1] = R as
t+h)) — t
D (000) it sap £+ 1)) = S (0)

for every v € RA(X,d) and t € [0, 1].
h—0 h

Then Dy is universally Lusin measurable.

Proof. Note that Df(v,t) = limns, 00 D} (7, 1) for every (v,t) € RA(X,d) %[0, 1],
where we set

D}, = sup { LEREIN=IERED ¢ @ oy -/m 1/}

for brevity. Fix n € N. Let us enumerate the elements of (Q\ {0}) N (—1/n,1/n) as
(¢i)ien. Then
i=1,... k}

{f(Rv(t +ai) — f(R,(1))
q;

D%(v,t) = lim max

k—o0
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for all (v,t) € RA(X,d) x [0,1]. Since the map é is universally Lusin measurable by
Lemma 2.19, one can easily deduce that each function (v,?) — max;<,(f(R,(t +¢))
—f(R,(t)))/q; is universally Lusin measurable. By taking Remark 2.5 into account,
we can finally conclude that Dy is universally Lusin measurable. 0

Given v € RA(X,d) and f € Lip,(X,7,d), we have that fo R,: [0,1] = R is a
Lipschitz function, thus in particular it is .#'-a.e. differentiable. Therefore, it holds
that

(2.22) Ds(y,t) = (fo R,)(t) for L'-ae. te]0,1].
In particular, it holds that
(2:23) Dy (3, 6)] < €3)Uip(f) 0 R)(E) for Z'-ae. t € [0, 1]

2.3.4. Uniform structure of an extended metric-topological space. We
assume the reader is familiar with the basics of the theory of uniform spaces, for which
we refer e.g. to [14, 15]. It is well known that every completely regular topology is
induced by a uniform structure (in fact, completely regular topological spaces are
exactly the uniformisable topological spaces). In the setting of e.m.t. spaces, we
make a canonical choice of such a uniform structure:

Definition 2.21. (Canonical uniform structure of an e.m.t. space) Let (X, 7,d)
be an e.m.t. space. Then we define the canonical uniformity of (X,7,d) as the
uniform structure {4 on X that is induced by the family of semidistances {d;: f €
Lipy (X, 7,d)}, which are defined as

or(x,y) = |f(z) = f(y)| for every f € Lip,,(X,7,d) and z,y € X.
It can be readily checked that the following properties are verified:

e The topology induced by 4L, 4 coincides with 7.
e The topology 7 is metrisable if and only if .4 has a countable basis of
entourages.

Moreover, we denote by B, 4 C i, 4 the family of all open symmetric entourages of
Llnd, 1.e.

By ={UeclgN(rx71)]|(y,x) €U for every (z,y) € U}.

It holds that B, 4 is a basis of entourages for L, 4. In the case where 7 is metrisable,
it is possible to find a countable basis of entourages for 4, 4 consisting of elements of
B 4.

Remark 2.22. Let f € Lip,(X,7,d) and U € B,4 be given. Then we claim
that

Lip(f,U[-],d): X — [0,Lip(f,d)] is 7-lower semicontinuous,
where Ux] = {y € X: (z,y) € U} for all x € X. Indeed, Uly] NU[z] € T for every
Y,z € X and

f(y) = f(2)]
B e ' y,2€X, y# 2 fL’EU[y]ﬂU[Z]}

for every x € X, so that the function Lip(f,U[],d) is 7-lower semicontinuous thanks
to Remark 2.3. [ |

Lip(f,U[z],d) = sup {
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Let us now discuss how the canonical uniform structure behaves under restriction
of the em.t. space. Let (X,7,d) be a given e.m.t. space and fix £ € Z(X,71).
Consider the restricted e.m.t. space (E,Tg,dg) (as in (2.9)). Then it holds that

(2.24) opdw ={U|pxp |U €U d}, Brpdp = {U|lpxe | U € Brg}.

The first identity follows easily from the definition of canonical uniformity. The
second identity follows from Tpwp = T X T& and from the fact that U NU' € B, 4
for every U € 86,4 N (7 X 7), where we set U! = {(y,z): (z,y) € U}.

2.4. Sobolev spaces H'P via relaxation. The first notion of Sobolev space
over an e.m.t.m. space we consider is the one obtained by relazation, which was
introduced in [42, Section 3.1] as a generalisation of [16, 6, 5]. A function f € LP(m)
is declared to be in the Sobolev space H'?(X) if it is the LP(m)-limit of a sequence
(fn)n of functions in Lip, (X, 7, d) whose asymptotic slopes (lipy(f5))» form a bounded
sequence in LP(m). Namely, following [42, Definitions 3.1.1 and 3.1.3]:

Definition 2.23 (The Sobolev space H'?(X)). Let X = (X,7,d,m) be an
em.t.m. space and p € (1,00). Then we define the Cheeger p-energy functional
Eyr LP(m) — [0, 400] of X as

1

&,(f) = in { lim inf ~ / lipg(f,)* dm ‘ (fudn € Lipy(X, 7,d), fu — f in L%m)}
n—oo p

for all f € LP(m). Then we define the Sobolev space H'?(X) as the finiteness domain

of &, i.e.

H'(X) = {f € L(m) | §,(f) < +o0}.
The Cheeger p-energy functional is convex, p-homogeneous and L?(m)-lower semi-

continuous. The vector subspace H'?(X) of LP(m) is a Banach space with respect to
the Sobolev norm

I fllerrex) = (||f||§p(m) —|—p5p(f))1/p for every f € H?(X).

Also, &, admits an integral representation, in terms of relaxed slopes [42, Defini-
tion 3.1.5]:

Definition 2.24. (Relaxed slope) Let X = (X, 7,d, m) be an e.m.t.m. space and
p € (1,00). Let f € LP(m) be given. Then we say that a function G € LP(m)* is
a p-relazed slope of f if there exist a sequence (f,), C Lip,(X,7,d) and a function
G € LP(m)* such that the following hold:
i) fn — f strongly in LP(m),
i) lipy(fn) — G weakly in LP(m),
iii) G < G in the m-a.e. sense.

Below, we collect many properties and calculus rules for p-relaxed slopes (see [42,
Section 3.1.1]).

e The set of all p-relaxed slopes of a given f € H'?(X) is a closed sublattice of
LP(m). Its (unique) m-a.e. minimal element is denoted by |Df|g € LP(m)*
and is called the minimal p-relazed slope of f.

e The Cheeger p-energy functional can be represented as

E(f) :%/\Df\%dm for every f € H""(X).
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e Given any f € H'"P(X), there exists a sequence (f,), C Lip,(X,7,d) such
that f, — f and lip4(f,) — |Df|g strongly in LP(m).

e Lip,(X,7,d) € H'"(X), and |Df|xz < lipy(f) holds m-a.e. for every f €
Lip, (X, 7,d).

e We have that |D(f + g)|u < |Df|u + |Dglg and |D(Af)|g = |\||Df|g hold
m-a.e. for every f,g € H'"?(X) and X\ € R.

e LOCALITY PROPERTY. If f € H'"(X) and N C R is a Borel set with
ZYN) =0, then

|IDf|r =0 holds m-a.e. on f~*(N).

In particular, |Df|g = |Dg|g holds m-a.e. on {f = g} for every f,g €
H'7(X).
e CHAIN RULE. If f € H'P(X) and ¢ € Lip,(R), then ¢ o f € H'P(X) and

|D(¢po f)lg <|¢'|of|Df|lg holds m-a.e. on X.
e LEIBNIZ RULE. If f,g € H'"P(X) N L>®(m) are given, then fg € H'?(X) and
ID(fg)la < |fIDgls + 16lID Sl holds meac. on X.

Minimal p-relaxed slopes are induced by a linear differential operator d: H'*(X)
— LP(T*X), where LP(T*X) is a distinguished LP(m)-Banach L*(m)-module, called
the p-cotangent module:

Theorem 2.25. (Cotangent module) Let X = (X, 7,d,m) be an e.m.t.m. space
and p € (1,00). Then there exist an LP(m)-Banach L*(m)-module LP(T*X) (called
the p-cotangent module) and a linear operator d: H"?(X) — LP(T*X) (called the
differential) such that:

i) |df| = |Df|y for every f € H"P(X).
ii) The L*(m)-linear span of {df: f € H'?(X)} is dense in LP(T*X).
The pair (L?(T*X), d) is unique up to a unique isomorphism: for any (., &) having

the same properties, there exists a unique isomorphism of LP(m)-Banach L*(m)-
modules ®: LP(T*X) — .# such that

HYP(X) —4 LP(T*X)
R l‘b
M

is a commutative diagram. Moreover, the differential d satisfies the following Leibniz
rule:

(2.25) d(fg) = f-dg+g-df forevery f,g € H"P(X)N L>®(m).

Proof. This construction is due to Gigli [23]. The existence and uniqueness of
(LP(T*X),d) can be proved by repeating verbatim the proof of [23, Section 2.2.1] or
[22, Theorem /Definition 2.8] (see also [25, Theorem 4.1.1], or [24, Theorem 3.2] for the
case p # 2). Alternatively, one can apply [38, Theorem 3.19]. The Leibniz rule (2.25)
can be proved by arguing as in [23, Corollary 2.2.8] (or as in [22, Proposition 2.12],
or as in [25, Theorem 4.1.4], or as in [24, Proposition 3.5]). O

Following [23, Definition 2.3.1], we then introduce the g-tangent module of X by
duality:
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Definition 2.26. (Tangent module) Let X = (X, 7,d, m) be an e.m.t.m. space.
Let p,q € (1,00) be conjugate exponents. Then we define the g-tangent module
LYTX) of X as

LYTX) = LP(T*X)".

Recall that LY(TX), when regarded as a Banach space, can be identified with the
dual Banach space LP(T*X)" through the isomorphism

(2.26) Lx == INTo(pex: LYTX) — LP(T*X)

defined in (2.6). The following result can be proved by suitably adapting [23, Propo-
sition 1.4.8] (or by applying [38, Proposition 3.20]):

Proposition 2.27. Let X = (X, 7,d,m) be an e.m.t.m. space. Let p,q € (1, 00)
be conjugate exponents. Assume that ¢: H'"P(X) — L'(m) is a linear map with the
following property: there exists a function G € Li(m)" such that |o(f)| < G|Df|u
holds for every f € H%P(X). Then there exists a unique vector field v, € LY(TX)
such that

HY2(%) — L1(m)

| /

LP(T*X)

is a commutative diagram. Moreover, it holds that |v,| < G.

Exactly as in [23, Section 2.3.1], the tangent module L(TX) can be equivalently
characterised in terms of a suitable notion of derivation, which we call ‘Sobolev
derivation’ (in order to make a distinction with the notion of ‘Lipschitz derivation’,
which we will introduce in Section 4). Namely:

Definition 2.28. (Sobolev derivation) Let X = (X, 7,d, m) be an e.m.t.m. space
and ¢ € (1,00). Then by a Sobolev derivation (of exponent ¢) on X we mean a linear
map 0: H'?(X) — L'(m) such that the following conditions hold:

i) 6(f9) = 1 6(g) + g 6(/) for every f,g € H'™(X) N L%(m
ii) There exists a function G € LI(m)*" such that |6(f)] < G|Df|n for every
e H»(X).

We denote by L¢ , (TX) the set of all Sobolev derivations of exponent ¢ on X.

The above definition is adapted from [23, Definition 2.3.2]. To any derivation
§ € LE, (TX), we associate the function [d] € LI(m)* given by

8 = A\ {G € L(m)" | [6(f)] < G|Df|y for every f € HLP(X)}.

Note that [6(f)| < |0||Df|g for all f € H'*(X). It is straightforward to check that
(L, (TX),]|-]) is an L(m)-Banach L>(m)-module. The latter can be identified with
the tangent module L(7TX), as the next result (which is essentially taken from [23,
Theorem 2.3.3]) shows:

Proposition 2.29. (Identification between LY(TX) and L, (TX)) Let X =
(X,7,d,m) be an e.m.t.m. space and q € (1,00). Then for any v € L1(TX) we have
that vod: H""(X) — L'(m) is an element of L, (TX). Moreover, the resulting map
¢: LYTX) — Lé , (TX) is an isomorphism of L(m)-Banach L>(m)-modules.
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Proof. Let v € LY(TX) be a given vector field. Then vod: H'?(X) — L'(m) is
linear and

(vod)(fg) = d(fg)(v) = fdg(v) + gdf(v) = f(ved)(g) +g(ved)(f)
for every f,g € H'?(X) N L>(m) by (2.25). Moreover, |(v o d)(f)| = |df(v)| <
|Df|ul|v| for every f € H(X). This gives vod € L&, (TX) and |[vod| < |u|. It
follows that ®: LI(TX) — LI  (TX) is a linear map such that |®(v)| < |v| for every
v € LY(TX). Since we have that

O(h-v)(f) = ((h-v) o d)(f) = df(h-v) = hdf(v) = h®()(f) = (h- 2(v))(f)
for every h € L>®(m) and f € H'?(X), we deduce that ® is L>(m)-linear. To
conclude, it remains to check that for any ¢ € L, (TX) there exists vs € LI(TX)
such that ®(vs) = ¢ and |vs| < [§]. Since §: H"P(X) — L'(m) is linear and [§(f)] <
|6]|D f|# for every f € H'P(X), we deduce from Proposition 2.27 that there exists (a
unique) vy € LY(TX) such that § = vs 0d = ®(vs), and it holds that |vs| < |6]. All
in all, the statement is achieved. 0

2.5. Sobolev spaces B'P via test plans. The second notion of Sobolev
space over an e.m.t.m. space we consider is the one obtained by investigating the
behaviour of functions along suitably chosen curves. The relevant object here is that
of a T,-test plan (see Definition 2.30 below), which was introduced in [42, Section
4.2] after [3, 5, 6]. A function f € LP(m) is declared to be in the Sobolev space
B'?(X) if it has a p-integrable T,-weak upper gradient (where p, q are conjugate
exponents), i.e. a function satisfying the upper gradient inequality [16, 33, 36] along
m-a.e. curve, for every T -test plan 7. Our notation ‘B'?’ is different from the one
of [42], where ‘WP is used instead. The reason is that in this paper we prefer to
denote by W'P(X) the Sobolev space that we will define through an integration-
by-parts formula in Section 5.1, which comes with a notion of ‘weak derivative’. In
analogy with [7], the notation B*?(X) is chosen to remind the resemblance to Beppo
Levi’s approach to weakly differentiable functions.

Let X = (X, 7,d,m) be an e.m.t.m. space. According to [42, Definition 4.2.1], a
dynamic plan on X is a Radon measure w € M, (RA(X,d), 7a) satisfying

/ ((y) dm(y) < +oo.

The barycenter of 7 is defined as the unique Radon measure p, € M, (X, 7) such
that

/fdu7T = / (/ f) dm(y) for every bounded Borel function f: (X,7) — R.
v

Moreover, we say that m has g-barycenter, for some ¢ € (1,00), if it holds that
e < m and

d
(2.27) h = dLn’; € LU (m)"
The following definition is taken from [42, Definition 5.1.1]:
Definition 2.30. (7,-test plan) Let X = (X, 7,d, m) be an e.m.t.m. space and
q € (1,00). Then a dynamic plan 7 on X is said to be a 7,-test plan provided it has

g-barycenter and it holds that

d(éo)#ﬂ' d(él)#ﬂ'
dm ~  dm

(€0)pm, (&1)pm < m, e Li(m)*.
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We denote by 7,(X) the set of all T -test plans on X.

The corresponding notion of weak upper gradient is the following (from [42,
Definition 5.1.4]):

Definition 2.31. (7,weak upper gradient) Let X = (X, 7,d, m) be an e.m.t.m.
space and ¢ € (1,00). Let f: X — R and G: X — [0,400) be given 7-Borel
functions. Then we say that G is a T,-weak upper gradient of f provided for any
7 € T,(X) it holds that

(2.28) lf(71) — fF(0)] < /G < +oo for w-a.e. v € RA(X,d).
gl

It f, f: X — R are 7-Borel functions satisfying f = f in the m-a.e. sense, then
f and f have the same 7,-weak upper gradients. Hence, we can unambiguously say
that a function f € L'(m) has a T,-weak upper gradient.

Lemma 2.32. Let X = (X,7,d,m) be an e.m.t.m. space. Let p,q € (1,00)
be conjugate exponents. Let f: X — R and G: X — [0,+00) be given 7-Borel
functions with [ GP dm < +oco. Then the function G is a T,-weak upper gradient of
f if and only if

(2.29) /f(’yl) — f(y)dm(y) < /Gh,r dm for every w € T,(X).

Proof. Necessity can be shown by integrating (2.28). For sufficiency, we argue by
contradiction: suppose that (2.29) holds, but G is not a 7,-weak upper gradient of f.
Then there exist a T;-test plan 7w € T,(X), a Borel set I' C RA(X,d) with =(I') > 0
and some € > 0 such that

(2.30) |f(71) — f(y0)] > € +/G for every v € T.

~

Denote 'y :={y €T: f(11) > f(10)} and T'_ :=T \ T';. Now let us consider 7, =
m|p, € To(X) and w_ = Revy(w|r_) € T,(X), where Rev: RA(X,d) = RA(X,d)
denotes the map sending a rectifiable arc [y] to the ~-equivalence class of the curve
[0,1] 5t +— 71+ € X. We deduce that

m(ri)+/Ghﬂi dm—/(e+£0) dm.(7)

< o0 e ime) < [ Ghaam.

Either w(I'y) > 0 or ww(I'_) > 0, thus the above estimates lead to a contradiction. [

If f € L*(m) has a T,-weak upper gradient in LP(m) (where p € (1,00) denotes
the conjugate exponent of ¢), then there exists a unique function |Df|p € LP(m)™,
which we call the minimal T,-weak upper gradient of f, such that the following hold:

i) |Df|p has arepresentative Gy: X — [0, 400) that is a T,-weak upper gradient

of f.
ii) If G is a T,-weak upper gradient of f, then |Df|p < G holds m-a.e. in X.

See [42, paragraph after Definition 5.1.23]. Consequently, the following definition
(which is taken from [42, Definition 5.1.24]) is well posed:

Definition 2.33. (The Sobolev space B'?(X)) Let X = (X,7,d,m) be an
e.m.t.m. space. Let p,q € (1,00) be conjugate exponents. Then we define the
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Sobolev space B'P(X) as the set of all functions f € LP(m) having a T,-weak upper
gradient in LP(m). Moreover, we define

1/
1oy = (1120 + 11DF 151 w) " for every f € B'#(X).

It holds that (B"*(X), |- ||p1o(x)) is a Banach space. In the setting of d-complete
e.m.t.m. spaces, the full equivalence of H'? and W' was obtained by Savaré in [42,
Theorem 5.2.7] (see Theorem 2.34 below for the precise statement), thus generalising
previous results for metric-measure spaces [5, 6, 16, 47]. See also [7, 20, 37] for other
related equivalence results.

Theorem 2.34. (H'? = B'? on complete e.m.t.m. spaces) Let X = (X, 7,d, m)
be an e.m.t.m. space such that (X,d) is a complete extended metric space. Let
p € (1,00) be given. Then

H""(X) = B"(X).
Moreover, it holds that |Df|g = |Df|g for every f € H"(X).

The completeness assumption in Theorem 2.34 cannot be dropped. For instance,
let us consider the space (—1,1) \ {0} equipped with the restriction of the Euclidean
distance, its induced topology and the restriction of the one-dimensional Lebesgue
measure. It can be readily checked that the function 1oy is B'*-Sobolev with null
minimal 7,-weak upper gradient, but not H'?-Sobolev.

3. Extensions of 7-continuous d-Lipschitz functions

A fundamental tool in metric geometry is the McShane—Whitney extension theo-
rem, which ensures that every real-valued Lipschitz function defined on some subset
of a metric space can be extended to a Lipschitz function on the whole metric space,
also preserving the Lipschitz constant. In the setting of extended metric-topological
spaces, we rather need an extension theorem for 7-continuous d-Lipschitz functions
for which both the 7-continuity and the d-Lipschitz conditions are preserved. The
McShane-Whitney extension theorem does not accomplish this goal, as we are go-
ing to illustrate: it states that if f: E — R is a Lipschitz function with Lipschitz
constant L defined on a subset E of some metric space (X, d), then by letting

31)  fx)= sup (fy) = Ld(z,y)), fY(z) = inf (f(y) + Ld(z,y))

for every x € X we obtain two Lipschitz functions f*, f¥: X — R with Lipschitz
constant L that extend f; moreover, every Lipschitz extension f: X — R of f with
Lipschitz constant L satisfies f < f < fY. However, if in addition X is equipped
with a topology 7 for which d is 7 x 7-lower semicontinuous, then it is clear that the
functions f”, f¥ defined in (3.1) are typically not (semi)continuous with respect to
7 (unless e.g. 7 is exactly the topology induced by d), since f" is a supremum of 7-
upper semicontinuous functions, whereas fV is an infimum of 7-lower semicontinuous
functions.

Conversely, the extension results obtained by Matouskova in [39] are fit for our
purposes:

Theorem 3.1. (Extension result) Let (X, 7,d) be an e.m.t. space with (X, )
normal. Assume

(3.2) BY(C) is T-closed, for every T-closed set C' C X and r € (0, +00).
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Let C'C X be a T-closed set. Let f: C' — R be a bounded T-continuous d-Lipschitz
function. Then there exists a function f € Lip,(X, 1,d) such that

fle =, Lip(f,d) =Lip(f,C.d), igfféfésgpf-

Proof. Without loss of generality, we can assume that Lip(f,C,d) > 0. We define

Lip(f,C,d)
and let us consider the truncated distance d := d A M. Then d is (7 x 7)-lower

semicontinuous, f is d-Lipschitz and Lip(~f, C’,a) = Lip(f,C,d). By virtue of [39,
Theorem 2.41], we can find a 7-continuous d-Lipschitz extension f X — R of f such
that Lip(f,d) = Lip(f,C,d) and info f < f < sups f. Given that d < d, we can

thus conclude that f € Lip,(X,7,d) and Lip(f,d) = Lip(f,C,d). O

Remark 3.2. Let us make some comments on Theorem 3.1:

i) Every 7T-compact e.m.t. space (X, 7,d) satisfies the assumptions of Theo-
rem 3.1. Indeed, all compact Hausdorff spaces are normal, and (3.2) holds by
[39, proof of Corollary 2.5].

ii) If B is a Banach space, dp denotes the distance on B’ induced by its norm
and 7,+ is the weak* topology of B’, then (B', 7.+, dp/) fulfils the assumptions
of Theorem 3.1, as it is shown in the proof of [39, Corollary 2.6].

iii) The requirement (3.2) cannot be dropped. Indeed, if B is a non-reflexive
Banach space, dp denotes its induced distance and 7, is its weak topology,
then (B, 7,,dg) neither fulfils (3.2) nor the conclusions of Theorem 3.1; see
the proof of [39, Theorem 3.1]. Note also that if in addition B’ is separable,
then (B, 7,) is normal (it can be readily checked that it is both regular and
Lindeldf, thus it is normal by [35, Lemma at page 113]).

iv) If (X,7) is a normal Hausdorff space and d = dgis; denotes the discrete
distance on X, then Theorem 3.1 for (X, 7,d) reduces to the Tietze exten-
sion theorem for bounded functions (note that (3.2) holds in this case, since
Bd(C) = Cifr <1, BYC) = X otherwise). In particular, in Theorem 3.1
both the assumptions that 7 is normal and that the set C' is 7-closed are
needed.

v) If (X,d) is a metric space and 74 denotes the topology induced by d, then
Theorem 3.1 for (X, 74,d) implies the McShane-Whitney extension theorem
for bounded functions.

vi) Differently from the Tietze and the McShane-Whitney extension theorems,
in Theorem 3.1 the boundedness assumption on f cannot be dropped; see e.g.
(39, Example 3.2]. |

In Section 4, the above extension result will be used to study the relation between
different notions of Lipschitz derivations. Rather than Theorem 3.1, we will apply a
consequence of it:

Corollary 3.3. Let (X, 7,d) be an e.m.t. space. Let K C X be a T-compact set.
Let f: K — R be a bounded T-continuous d-Lipschitz function. Then there exists
f € Lipy(X, 7,d) such that

flx = f, Lip(f,d) = Lip(f, K,d), mlgnféfémngf-
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Proof. Consider the compactification (X' ,%,a) of (X,7,d) and the canonical
embedding ¢: X < X. Since ¢ is continuous, we have that t(K) is 7-compact. The
function g: ¢«(K) — R, which we define as g(y) = f(:7(y)) for every y € «(K), is
#-continuous and d-Lipschitz. By applying Theorem 3.1 (taking also Remark 3.2 i)
into account), we deduce that there exists a function g: X — R such that alux) = 9,

Lip(g,d) = Lip(g,+(K),d) and min, ) g < § < max,x)g. Now define f: X — R
as f(z) = g(u(z)) for every x € X. Observe that f € Lip,(X,7,d), flx = f,
Lip(f,d) = Lip(f, K,d) and ming f < f < maxg f. Therefore, the statement is

proved. 0

4. Lipschitz derivations

Let us begin by introducing a rather general notion of Lipschitz derivation over
an arbitrary e.m.t.m. space. In Sections 4.1 and 4.2, we will then identify and study
two special classes of derivations, which extend previous notions by Weaver [49, 50]
and Di Marino [18, 17], respectively.

Definition 4.1. (Lipschitz derivation) Let X = (X, 7,d, m) be an e.m.t.m. space.
Then by a Lipschitz derivation on X we mean a linear operator b: Lip, (X, 7,d) —
L%(m) such that

(4.1) b(fg) = fblg) +gb(f) forevery f,g € Lip,(X,7,d).
We refer to (4.1) as the Leibniz rule. We denote by Der(X) the set of all derivations
on X.

It can be readily checked that the space Der(X) is a module over L°(m) if endowed
with

(b+b)(f) =b(f)+b(f) for every b,b € Der(X) and f € Lip,(X, 7,d),
(hb)(f) == hb(f) for every b € Der(X), h € L°(m) and f € Lip,(X, 7,d).

In particular, Der(X) is a vector space (since the field R can be identified with a

subring of LY(m), via the map that associates to every number A € R the function
that is m-a.e. equal to A).

Definition 4.2. (Divergence of a Lipschitz derivation) Let X = (X, 7,d, m) be
an eam.t.m. space and b € Der(X). Then we say that b has divergence provided
it holds that b(f) € L'(m) for every f € Lip,(X,7,d) and there exists a function
div(b) € L*(m) such that

(4.2) /b(f) dm = —/fdiv(b) dm for every f € Lip,(X,7,d).

We denote by D(div; X) the set of all Lipschitz derivations on X having divergence.

Let us make some comments on Definition 4.2:

e Since Lip, (X, 7,d) is weakly* dense in L'(m) (as it easily follows from (2.8)),
it holds that the divergence div(b) is uniquely determined by (4.2).

e D(div;X) is a vector subspace of Der(X).

e div: D(div;X) — L!(m) is a linear operator.

e The divergence satisfies the Leibniz rule, i.e. for every b € D(div;X) and
h € Lip,(X, 7,d) it holds that hb € D(div; X) and

div(hb) = hdiv(b) + b(h).
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In particular, D(div; X) is a Lip,(X, 7, d)-submodule of Der(X).

We shall focus on classes of derivations satisfying additional locality or continuity
properties:

Definition 4.3. (Local derivation) Let X = (X, 7,d, m) be an e.m.t.m. space.
Let b € Der(X) be a given derivation. Then we say that b is local if for every function
f € Lipy(X, 7,d) we have that

b(f) =0 holds m-a.e. on {f = 0}.

Let B € #(X,7) be such that m(E) > 0. Then every local derivation b € Der(X)
induces by restriction a local derivation b E' € Der(XLFE), where X_LF is as in (2.9),
in the following way. Thanks to the inner regularity of m, we can find a sequence
(Kn)y of pairwise disjoint 7-compact subsets of E such that m(E \ U,y Kn) = 0.
For any f € Lip,(E,7g,dg) and n € N, we know from Corollary 3.3 that there exists
fn € Lipy (X, 7,d) such that f,|x, = f|x,. We then define

(4.3) (bE)(f) =Y Lk, b(fa) € LO(mLE).

neN

By using the locality of b, one can readily check that bL F is well defined and local.

In the definition below, we endow the closed unit ball BLipb( X,r.d) of Lip, (X, 7,d)
with the topology 7, of pointwise convergence, and the space L>(m) with its weak*
topology 7.

Definition 4.4. (Weak*-type continuity of derivations) Let X = (X, 7,d, m) be
an e.m.t.m. space. Let b € Der(X) be a given derivation satisfying b(f) € L*>°(m) for
every f € Lip,(X,7,d). Then:

i) We say that b is weakly*-type continuous provided the map b Bripy is

_ X,7,d)
continuous between (Brp, (x,rd); Tpt) and (L(m), 7).
ii) We say that b is weakly*-type sequentially continuous provided the map
b| Brip,x.ry 18 Sequentially continuous between (BlLipy(X,r,d)> Tpt) and (L>(m),
Tw*)
Some comments on the weak*-type continuity and the weak*-type sequential
continuity:

e Since derivations are linear, the weak*-type continuity can be equivalently
reformulated by asking that if a bounded net (f;)ic; C Lipy(X,7,d) and a
function f € Lipy(X,7,d) satisfy lim;e; fi(x) = f(x) for every x € X, then
lim;e; b(f;) = b(f) with respect to the weak* topology of L*°(m). Similarly, the
weak*-type sequential continuity is equivalent to asking that if a bounded
sequence (fu)nen € Lip,(X,7,d) and a function f € Lip,(X,7,d) satisfy
lim, f,(z) = f(z) for every x € X, then b(f,) — b(f) weakly* in L>(m)
as n — 0o.

e The terminology ‘weak*-type (sequential) continuity’ is motivated by the fact
that it strongly resembles the weak® (sequential) continuity in the Banach
algebra Lip,(X,d) of bounded Lipschitz functions on a metric space (see
[50, Corollary 3.4]), even though in the setting of e.m.t. spaces one has that
Lip,(X, 7,d) does not always have a predual (see Proposition 2.16) and thus
we cannot talk about an actual weak® topology on it.

e We point out that if a bounded sequence (f,,), C Lip,(X,7,d) and a function
f: X — Rsatisty f,(x) — f(x) for every x € X, then f is d-Lipschitz, but
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it can happen that it is not 7-continuous, and thus it does not belong to
Lip,(X, 7,d); see Example 4.5 below.

e The weak*-type continuity is stronger than the weak*-type sequential conti-
nuity, but they are not equivalent concepts, as we will see in Proposition 4.7
and Remark 5.5.

Example 4.5. When (X, d) is a metric space, the topology 7,; on By, (x.d) €0
incides with the restriction of the weak* topology of Lip,(X,7,d), thus in particular
(BLipb(X,d);Tpt) is a compact Hausdorff topological space. On the contrary, in the
more general setting of e.m.t. spaces the Hausdorff topological space (Bmpb( X,rd)s Tpt)
needs not be compact. For example, consider the unit interval [0, 1] together with
the Euclidean topology 7 and the discrete distance dgisr, Which gives a ‘purely-
topological’ e.m.t. space as in Example 2.14. Letting (f,,)nen € Lip, ([0, 1], 7, diser)
be defined as f,(t) = (nt) A1 for every n € N and ¢t € [0,1], we have that
| frllLipy (0,1],7.duseer) = 2 for every n € N and L q(t) = lim,, f,(t) for every t € [0, 1],
but Lo ¢ Lipy([0, 1], 7, ddgiser) (because it is not 7-continuous at 0). In particular,
(BlLipy ((0,1],7,daieer) » Tpt) 18 DOt compact. |

The weak*-type sequential continuity condition implies both locality and strong
continuity:

Theorem 4.6. Let X = (X, 7,d,m) be an e.m.t.m. space. Let b € Der(X) be
weakly*-type sequentially continuous. Then b is a local derivation. Moreover, the
map b: Lip, (X, 7,d) — L*(m) is a bounded linear operator.

Proof. The proof of locality is essentially taken from [50, Lemma 10.34]. Fix any
f € Lip,(X,7,d). For any n € N, we define the auxiliary functions ¢,,?¢,: R — R
as ¢p(t) = 1— e and 1, (t) = t ¢, (t) for every t € R. Since 0 < ¢,(t) < 1
and ¢/, (t) = 2nte™™" for all t € R, we have that ¢, is Lipschitz on f(X) and thus
¢n o f € Lipy(X,7,d). Moreover, —[t| < ¢,(t) < |t| and 0 < o/ (t) < 1+ 2e73/2
for all ¢ € R, so that v, o f € Lip,(X,7,d) with ||[¢5, o fllc,x7) < [|flle,x,-) and
Lip(, o f,d) < (1 + 2e73/2)Lip(f,d). In particular, the sequence (¢, o f), is norm
bounded in Lip,(X,7,d). Note also that lim, (¢, o f)(z) = f(x) for every z € X,
whence it follows that

fb(¢nof)+(¢nof>b(f):b((¢nof)f):b(@bnof)ib(f)

weakly* in L>°(m) as n — oo by the weak*-type sequential continuity of b. In
particular, as Lgs—oy(f b(¢n © f)+ (¢n o f)b(f)) = 0 holds m-a.e. for every n € N, we
conclude that 1;;—o1b(f) = 0 in the m-a.e. sense, thus b is local.

Let us now prove that b: Lip,(X,7,d) — L*(m) is a bounded linear operator.
Given any function h € L'(m), we define the linear operator T},: Lip,(X,7,d) — R
as

Tw(f) = /hb(f) dm for every f € Lip,(X,7,d).

If (fn)nen € Lip,(X,7,d) and f € Lip,(X, 7,d) satisfy || f,, = f||Lip,(x,ra) = 0 as 7 —
00, then we have in particular that sup,,cy || fn||Lip, (x,rd) < +00 and f(z) = lim,, f,(z)
for every x € X, so that b(f,) = b(f) weakly* in L>°(m) by the weak*-type sequential
continuity of b, and thus accordingly Ty(f,) = [hb(f,)dm — [hb(f)dm = T,(f).
This shows that T}, : Lip,(X, 7,d) — R is continuous, thus 7}, € Lip,(X, 7,d)". Next,
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denote B := {h € L*(m): ||h||f1m) < 1}. Note that

sup | 15,(f)| < Sup/ [A[[6(F)] dm < [|b(f)[|Loo(m)  for every f € Lip,(X,7,d)
heB heB
by Holder’s inequality. Thanks to the Uniform Boundedness Principle, we then
deduce that
M = sup || Th||vip, (x,r.ay < +00.
heB

Therefore, we can conclude that for any f € Lip,(X,7,d) with || f||vip,x,ra) < 11t
holds that

16(F)] Loo(m) = sup/hb(f) dm = sup T}, (f) < sup | Th||Lip, (x,ray = M,
heB heB

heB

whence it follows that b: Lip, (X, 7,d) — L*(m) is a bounded linear operator. [

The next result clarifies the interplay between weak*-type continuous deriva-
tions and the decomposition of an e.m.t.m. space into its maximal d-separable and
purely non-d-separable components. The proof of i) was suggested to us by Sylvester
Eriksson-Bique.

Proposition 4.7. Let X = (X, 7,d,m) be an e.m.t.m. space. Let b € Der(X) be
given. Then:

i) If b is weakly*-type continuous, then b(f) = 0 m-a.e. on X \ Sx for every
f € Lip, (X, 7,d).

i) If b is a local derivation and b_Sx is weakly*-type sequentially continuous,
then b_Sx is weakly*-type continuous. In particular, if b is weakly*-type
sequentially continuous, then bLSx is weakly*-type continuous.

Proof. i) Assume that b is weakly*-type continuous. We argue by contradiction:
suppose that there exists a function f € Lip, (X, 7,d) such that m({b(f) # 0} \ Sx) >
0. Up to replacing f with —f, we can assume that m({b(f) > 0} \ Sx) > 0, so that
there exists a real number A > 0 such that m({b(f) > A} \ Sx) > 0. Fix any 7-Borel
m-a.e. representative P of {b(f) > A} \ Sx satisfying P C X \ Sx. Next, we define

Z:={(F,G)| F C X finite, G C Lip,, (X, 7,d) finite}.

For any (F,G), (F, G) € T, we declare that (F, G) =< (ﬁ, é) if and only if F C F and
G C G. Note that (Z, =) is a directed set. We then define the net (upq)ra)ezr
Lip,(X, 7,d) as

upg(x) = minmax|g(x) — g(p)| A1 for every (F,G) € Z and x € X.

peF geG

Given any =z € X, we have that upg(z) = 0 holds for every (F,G) € I with
({z}, @) = (F,G), thus accordingly lim g g)ez upg(2) = 0 and limpgyez(urcf)(x) =
0. Since {upg: (F,G) € I} and {upgf: (F,G) € I} are bounded subsets of
Lip,(X, 7,d), we deduce that

li b(f)= 1 b —fb =0 kly* in L

(F,lcglel urG b(f) (F,g?eI( (urcf) — f (UFG)> weakly® in L>(m),

by the weak*-type continuity of b and the Leibniz rule. Hence, lim ez f p UFG"
b(f)dm = 0. Since 0 < X [Lupedm < [, upeb(f)dm for every (F,G) € Z, we get
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lim(pqyez fP up e dm = 0. Then we can find a <-increasing sequence ((Fj, Gi))ren C
7 such that

1
(4.4) / upgdm < z for every k € N and (F,G) € Z with (Fy, Gx) < (F,G).
P

Given any k € N, consider the directed set [, = {G C Lipy,(X,7,d): G}, C
G with G ﬁnite} ordered by inclusion. Being (up, ¢)cer, @ non-decreasing net of
T-continuous functions, we have

. . _ 1
(4.5) Pgelg;d(x,p) Aldm(z) = /PclzleI% up, ¢ dm = éleﬂllk PUF’C’G dm < %
for all £ € N thanks to (2.7), Remark 2.4 and (4.4). Now, observe that min,cp, d(z, p)
A1 N infecd(z,p) A1 as k — oo for every z € X, where C' denotes the countable
set Upen Fr- By the dominated convergence theorem, we deduce from (4.5) that
[pinfyecd(z,p) A 1dm(z) = 0, which implies that there exists a set N € Z(X,7)
such that m(N) = 0 and inf,ccd(x,p) A1 = 0 for every x € P\ N. Therefore,
C' is d-dense in P\ N, in contradiction with the fact that P\ N C X \ Sx and
m(P\ N) > 0.

ii) Assume that b is local and that b_Sx is weakly*-type sequentially continuous.
Theorem 4.6 ensures that there exists a constant C' > 0 such that |(buSx)(f)| <
Ol flLipy (55,7, ds,) holds miSx-a.e. on Sx for every f € Lip,(Sx, 7s,, ds,). For any
R > 0, we denote

AR = {f € Lipb(SX7TSX>de) | ||f||Lipb(Sx,TsX,dsX) < R}’
Bg = {h € L®(m_Sx) | Al mesy) < CR}.

Observe that b(f) € Bg for every f € Ag. Since (Sx,ds,) is separable, we know
from Lemma 2.10 that L'(m_Sx) is separable, so that the restriction of the weak*
topology of L>°(mLSx) to Bg is metrised by some distance dz. Moreover, fixed some
countable d-dense subset (,,)nen of Sx, we define the distance d* on Ag as

df(f,g) = Z |f(33n)2—ng($n)| for every f,g € Ag.

neN

Using the fact that the set Ag is d-equi-Lipschitz, it is straightforward to check
that df* metrises the pointwise convergence of functions in Ar. Therefore, for the
derivation bLSx the weak*-type continuity is equivalent to the weak*-type sequential
continuity, since both conditions are equivalent to the continuity of b|4,: (Ag,d?) —
(Bg, 6g) for every R > 0. O

We highlight the following facts, which are immediate consequences of Proposi-
tion 4.7:

Corollary 4.8. Let X = (X, 7,d, m) be an e.m.t.m. space. Then the following
properties hold:

i) Ifm(Sx) = 0, the null derivation is the unique weakly*-type continuous deriva-
tion on X.

ii) If m(X \ Sx) = 0, a derivation b € Der(X) is weakly*-type continuous if and
only if it is weakly*-type sequentially continuous.

4.1. Weaver derivations. Motivated by Corollary 4.8, we give the following
definition:
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Definition 4.9. (Weaver derivation) Let X = (X, 7,d,m) be an e.m.t.m. space
and b € Der(X). Then we say that b is a Weaver derivation on X if it is weakly*-type
sequentially continuous. We denote by 2 (X) the set of all Weaver derivations on X.

The goal of our axiomatisation above is to extend Weaver’s notion of ‘bounded
measurable vector field” [50, Definition 10.30 a)] to the setting of e.m.t.m. spaces.
In fact, in those cases where the set X \ Sx is m-negligible (which cover e.g. all
metric-measure spaces), we know from Corollary 4.8 ii) that our notion of Weaver
derivation is consistent with [50, Definition 10.30 a)]. Though, many e.m.t.m. spaces
of interest (e.g. Example 2.14 or abstract Wiener spaces) are ‘purely non-d-separable’,
meaning that m(Sx) = 0. If this is the case, then no non-null derivation is weakly*-
type continuous by Corollary 4.8 i). Due to this reason, in our definition of Weaver
derivation we ask for the weak*-type sequential continuity in lieu. As we will see
in Example 5.5, abstract Wiener spaces—despite lacking in weak*-type continuous
derivations—have plenty of weak*-type sequential ones. The axiomatisation we have
chosen is also motivated by Theorem 4.16.

The space 2 (X) is an L*(m)-submodule (and, thus, a vector subspace) of
Der(X). To any Weaver derivation b € 2'(X), we associate the function |bly €
L*°(m)*, which we define as

Blw = A\ {g € L) [ 16(/)] < gllf luip,(x,r.a) m-ae. for every f € Lipy(X, 7,d)}.

Note that [b(f)| < |b|lw || f||Lip,(x,ra) holds m-a.e. on X for every f € Lip,(X,,d).

We also point out that all Weaver derivations b € 27(X) are bounded linear
operators (thanks to Theorem 4.6). For ‘bounded measurable vector fields’, this fact
was observed in [50, paragraph after Definition 10.30], but in that case a stronger
statement actually holds: the image of the closed unit ball of Lip,(X,d) under b is
a weakly* compact subset of L>°(m) (since the closed unit ball is weakly* compact
by the Banach—Alaoglu theorem, and b is weakly* continuous). In our setting, we
have seen already in Example 4.5 that (BLipb( X,r.d), Tpt) is not always compact. The
following example shows that for Weaver derivations b € 27 (X) on an e.m.t.m. space
X it is not necessarily true that the image b(Brip,(x,ra)) C L®(m) is a weakly*
compact set.

Example 4.10. Let (X, 7,d) be the e.m.t. space described in Example 2.15.
We equip it with the restriction m of the 2-dimensional Lebesgue measure, so that
X:= (X, 7,d,m) is an e.m.t.m. space. Given any function f € Lip,(X, 7,d), we have
that f(z,-) € Lip,([0,1],dgua) for every z € [0,1], thus the derivative f'(z,-)(t) € R
exists for Z1-a.e. t € [0,1] by Rademacher’s theorem. In particular, thanks to
Fubini’s theorem and to (2.17), it makes sense to define b(f) € L>(m) as

b(f)(x,t) = f'(x,-)(t) for m-ae. (z,t) € X.

It easily follows from the classical calculus rules for the a.e. derivatives of Lipschitz
functions from [0, 1] to R that the resulting operator b: Lip,(X,7,d) — L>®(m) is a
derivation on X. Moreover, if (f,)neny C Lip, (X, 7,d) and f € Lip, (X, 7,d) are such
that sup,,ey || follLip,(x,7d) < +00 and f(x,t) = lim,, f,(z,t) for every (z,t) € X, then
for every x € [0, 1] the sequence (f,(z,-)), is equi-Lipschitz and equibounded, thus
fi(x, ) = f'(x,-) weakly* in L>=(0,1) (as f’(x,-) is the weak derivative of f,(z,-) by
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Rademacher’s theorem). Hence, for any h € L'(m) we have that

/hbfndm // (2,4) f (&, ) (¢) dt da
%// (.0)f ()dtdx_/hb(f)dm

as n — 00, by Fubini’s theorem, the fact that h(zx,-) € L'(0,1) for a.e. x € [0, 1], and
the dominated convergence theorem. This proves that b is weakly*-type sequentially
continuous, so that b € 2 (X).

Next, we claim that b(BLipb( X,r.d)) s not a weakly* closed subset of L>(m), thus
in particular it is not a weakly* compact subset of L>(m). To prove it, we define

(fa)nen C Lipy(X,7,d) as
folz,t) =, (x)t for every n € N and (z,t) € X,

where the function ¢, : [0,1] — [0,1] is given by ¥, (z) == (%(z — 1) V0) A L for
every 2 € [0, 11. As || fulleyxr) = Osex () = & and sup, oy Lip(fu(2), i) = 3,
we have || fy||Lip,(x,ra) = 1 for every n € N thanks to (2.17). Furthermore, for every

n € N we have that
b(fu)(z,t) = ¢p(x) for m-ace. (z,t) € X,

so accordingly b(f,) — %1[%71]X[071} =: g weakly* in L>°(m) as n — oo. To conclude,
it remains to show that g ¢ b(Lip,(X,7,d)), which implies that b(Byip,(x,rq)) is not
weakly* closed in L*°(m). We argue by contradiction: assume that g = b(f) for some
f € Lip,(X, 7,d). By Fubini’s theorem, we deduce that for a.e. x € (0, %) we have
f(z,-)(t) =0 for a.e. t € (0,1), and for a.e. z € (3,1) we have f'(z,-)(t) = 3 for a.e.

€ (0,1). In particular, we can find sequences (zx); C (0, %) and (yx)r C (3,1) such
that !xk — %!, ‘yk — %‘ — 0 as k — oo, as well as f'(zg,-) = 0 and f'(yx,") = l a.e.
on (0,1) for every k € N. Therefore, the fundamental theorem of calculus gives that

f(l‘k, xkv /f Ika _Oa f(yk, yk7 /f yka ;

By contrast, the 7-continuity of f ensures that f(zx,1) — f(xx,0) and f(yx, 1) —
f(yx,0) converge to the same number f(%, 1) — f(%, O) as k — oo, thus leading to a
contradiction. [ ]

Lemma 4.11. Let X = (X,7,d,m) be an e.m.t.m. space such that m is sep-
arable. Let b € D(div;X) be given. Assume that there exists C' > 0 such that
|b(f)| < CLip(f,d) holds m-a.e. on X for every f € Lip,(X,7,d). Then b is a

Weaver derivation.

Proof. Let (f,)n C Lip,(X,7,d) and f € Lip,(X, 7,d) be such that f,(z) — f(x)
for every x € X and M = sup,,cy || fn|lLip, (x,rd) < +00. Since |b(f,)| < CM holds
m-a.e. for every n € N, the sequence (b(f,)), is bounded in L>(m). An application
of the Banach—Alaoglu theorem, together with the separability of L!'(m), ensures
(up to a non-relabelled subsequence) that b(f,) — h weakly* in L>°(m) for some
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h € L*(m). Now fix any g € Lip,(X, 7,d). We have that
[odn=1tm [ go(s)am =t [ b5, fublo) dm
=t [ u(gdiv(t) + b)) dm = — [ Flgdiv) + b(g)) dm

:/b(fg)—fb(g)dﬂ‘t:/gb(f>dm

by the dominated convergence theorem. As Lip, (X, 7,d) is dense in L' (m) (see (2.8)),
we deduce that h = b(f), so that the original sequence (f,), satisfies b(f,,) = b(f)

weakly* in L>°(m). This shows that b is weakly*-type sequentially continuous, so that
be Z2(X). O

4.2. Di Marino derivations. We now introduce another subclass of Lipschitz
derivations, which generalises to e.m.t.m. spaces the notions that have been intro-
duced by Di Marino in [17, 18]. After having given the relevant definitions and
discussed their main properties, we will investigate (in Theorem 4.16) the relation
between our notions of Weaver derivation and of Di Marino derivation.

Definition 4.12. (Di Marino derivation) Let X = (X, 7,d,m) be an e.m.t.m.
space. Then we say that b € Der(X) is a Di Marino derivation on X if there exists
g € L°(m)™" such that

(4.6) 1b(f)| < glipg(f) holds m-a.e. on X, for every f € Lip,(X,7,d).

We denote by DerO(X) the set of all Di Marino derivations on X. For any ¢, r € [1, o],
we define

Der?(X) == {b € Der’(X) | (4.6) holds for some g € L(m)* },
Der?(X) == {b € Der?(X) N D(div; X) | div(b) € L"(m)}.

The space Der’(X) is an L°(m)-submodule (and, thus, a vector subspace) of
Der(X). Moreover, Der?(X) is an L>(m)-submodule of Der’(X), and Der!(X) is a
Lip, (X, 7, d)-submodule of Der?(X), for every ¢ € [1, oo]. To any Di Marino derivation
b € Der’(X), we associate the function

bl = A\ {g € L(m)* | [b(1)] < glipa(f) menc. for every f € Lip,(X. .d)}
€ L°(m)".

Since in this paper we are primarily interested in Di Marino derivations (for defining
a metric Sobolev space, in Section 5.1), we use the notation [b| (instead e.g. of the
more descriptive |b|pys). In this regard, it is worth pointing out that if a derivation
b is both a Weaver derivation and a Di Marino derivation, it might happen that |b|w
and |b| are different.

Note that |b(f)| < |b]lipg(f) holds m-a.e. on X for every f € Lip,(X,7,d), and
that

Der?(X) = {b € Der’(X) | |b] € LI(m)}.

One can readily check that (Der?(X),|-|) is an L?(m)-Banach L*°(m)-module for any
q € (1,00). In particular, (Der?(X), ||-|lpera(x)) is @ Banach space for every ¢ € (1, 00),
where we define

16| Dera(x) = ||[b|||Lagmy  for every b € Der?(X).
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Furthermore, in analogy with [7, Eq. (4.9)], for any ¢ € (1,00) we define the space

L1, (TX) as
(4.7) L1, (TX) = clperax) (Derd (X))

The notation L{; (7X), which reminds of the fact that its elements are defined in
duality with the space Lip,(X,7,d), is needed to distinguish it from the ‘Sobolev’
tangent modules LY(7TX) and L, (TX) that we introduced in Section 2.4. The
relation between L{; (TX) and L (TX) (in the setting of metric-measure spaces) is
studied in the paper [8]. We claim that

hb € L]

Lip

(TX) for every h € L*®(m) and b € L{

Lip

(TX).

To prove it, take a sequence (b,), C Der!(X) such that b, — b strongly in
Der?(X), and (using (2.8)) one can find a sequence (h,), C Lip,(X,7,d) such that
suPpen |Anlleyxr) < |[P]|Le@m) and h(x) = lim, h,(x) for m-ae. 2 € X, so that
Der(X) > hnb, — hb strongly in Der?(X) by the dominated convergence theorem,
and thus accordingly hb € L{; (TX). Since (Der?(X), |-|) is an L?(m)-Banach L>(m)-
module, we deduce that L{; (TX) is an L?(m)-Banach L>(m)-module.

The next result, whose proof is very similar to that of Lemma 4.11, studies the
continuity properties of Di Marino derivations with divergence.

Lemma 4.13. Let X = (X, 7,d,m) be an e.m.t.m. space. Let q € [1,00) and
b € Derl(X). Then

(4.8) b|BLipb(de): (BLipy(X.r.d)s Tpt) — (L9(m), 7,) s sequentially continuous,

where 7,, denotes the weak topology of L(m).

Proof. First, note that [b(f)| < |b|lipg(f) < Lip(f,d)|b] € Li(m) m-a.e. for
every f € Lip,(X,7,d), thus b(f) € L9(m) for every f € Lip,(X,7,d). Now fix any
sequence (fn)n, C BLipb( x,~d)- The above estimate shows that the sequence (b(f))n
is dominated in L?(m), thus the Dunford-Pettis theorem ensures (up to taking a
non-relabelled subsequence) that b(f,) = G weakly in L9(m), for some G € L9(m).
By using also the dominated convergence theorem, we then obtain that

n—oo

/thm: tim [ Bb(f,)dm = lim /b(hfn) — £, b(h) dm

= — lim [ f.(hdiv(b) + b(h))dm

_ / F(hdiv(b) + b(h)) dm = / hb(h) dm

for every h € Lip,(X,7,d). Letting p € (1,00) be the conjugate exponent of ¢, we
know from (2.8) that Lip,(X,7,d) is strongly dense (resp. weakly* dense) in LP(m)
if p < oo (resp. if p = 00), thus we get that G = b(f). Consequently, we have that
the original sequence (f,), satisfies b(f,,) — b(f) weakly in L?(m). This shows the
validity of (4.8). O

As a consequence, Di Marino derivations with divergence are local:

Corollary 4.14. Let X = (X, 7,d,m) be an e.m.t.m. space. Let q € [1,00) and
b € Der(X) be given. Then b is a local derivation.
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Proof. Fix any f € Lip,(X, 7,d). For any n € N, we define the auxiliary function

On: R— R as

t+ 14 ift < -1

bu(t) =<0 if —l<t<l

t—2L ift>1
Note that ¢, o f € Lip,(X, 7,d) with ||¢, o flleyx.) < || flleyx,-) + 1 and Lip(¢, o
f,d) < Lip(f,d). It also holds that (¢, o f)(z) — f(x) for every x € X, thus
Lemma 4.13 gives that b(¢,, o f) — b(f) weakly in L9(m). Moreover, one can readily
check that lipy (¢, 0 f) < (lipg,, , (¢n)o f)lipg(f), so that the m-a.e. inequality [b(¢,, o
DI < bl lipy(pn o f) implies that b(¢, o f) = 0 holds m-a.e. on the set {f = 0} (as
lipg,,, (¢n)(0) = 0), thus accordingly b(f) = 0 holds m-a.e. on {f = 0}. O

Proposition 4.15. Let X = (X, 7,d, m) be an e.m.t.m. space. Let b € Der(X)
be a local derivation. Assume that there exists a function g € L°(m)" such that

16(f)] < gl fllLipy(x,ra) holds m-a.e. on X, for every f € Lip,(X,7,d).
Let C C X be a t-closed set. Then for any entourage U € B, 4 we have that
(4.9) |b(f)| < gLip(f,CNU[],d) holds m-a.e. on C, for every f € Lip,(X,,d).

In particular, if the topology 7 is metrisable on C, then (letting d¢ = d|cxc) we
have that

(4.10) 1b(f)] < glipg.(flc) holds m-a.e. on C, for every f € Lip,(X,7,d).

Proof. By definition of uniform structure, we can find V € i, 4 such that Vo)V C
U, where we set

VoV :={(z,2) € X xX|(z,y),(y,z) €V for some y € X}.

Fix any ¢ > 0 and f € Lip,(X,7,d). Since m is a Radon measure, we can find a
sequence (K,), of pairwise disjoint 7-compact subsets of X such that Oscg, (f) < ¢
for every n € N and m(X \ Unen Kn) = 0. Now fix n € N. Given any =z € K, N C,
we can find a 7-closed T-neighbourhood F¥ of z such that F¥ C V[z|. Since K,, N C
is 7-compact, there exist k(n) € N and @, 1, ..., Ty rm) € K,NC such that K, NC C
Ufﬁi) F.;, where we set F,,; == F,™". Denote also K,,; = K, N C N FE,; for every
i =1,...,k(n). Since K, is 7-compact, by applying Corollary 3.3 we obtain a
function f,; € Lip,(X,7,d) such that

fn,i|Kn,i - flKn,i7 Lip(fn,h d) = Llp(fa Kn,z’7 d)? OSCX(fn,i) = OSCKn,i(f) S e
Next, we define the function f,; € Lip,(X, 7,d) as f,; == fn, —infy fm Note that

Llp(fn,z; d) = L1p<f7 Kn,i; d)7 an,l'HCb(Xﬂ') S €.

Therefore, the locality of b ensures that the following inequalities hold for m-a.e.
point x € K, ;:
B(N)I(x) = [b(fai)l(2) = [0(fa)|(2) < g(@) | faillLingxra) < 9()(Lip(f, Kni,d) + )
By the arbitrariness of n € Nand i =1, ..., k(n), it follows that |b(f)| < g(Lip(f,CN
U[],d)+¢) holds m-a.e. on C'. Thanks to the arbitrariness of € > 0, we thus conclude
that (4.9) is verified.

Finally, assume that the restriction 7o of the topology 7 to C' is metrisable.
Recalling (2.24), we can find a sequence (Uy,)nen C B 4 such that {U,|cxc: n €
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N} € B, 4. is a basis of entourages for . 4.. Given that (U,|cxc)[z] = C NU,[z]
and lipy,, (f|c¢)(x) = infuen Lip(f, C NU,[x],d) hold for every x € C, we have that
the inequality in (4.10) follows from (4.9). O

Theorem 4.16. (Relation between Weaver and Di Marino derivations) Let X =
(X, 7,d,m) be an e.m.t.m. space such that m is separable. Then it holds that

Der(*(X) € Z7(X)

and |bly < |b| holds m-a.e. on X for every f € Der(®(X). Assuming in addition that
T is metrisable on all T-compact subsets of X, we also have that

Z (X) C Der™(X)
and |blw = |b| holds m-a.e. on X for every b € 2 (X).

Proof. Assume m is separable and fix b € Der®(X). As [b(f)| < [b|lipg(f) <
116]|| Lo myLip(f,d) holds m-a.e. on X for every f € Lip,(X,7,d), we know from
Lemma 4.11 that b € 27(X). Moreover, the m-a.e. inequalities |b(f)| < [b|lip4(f) <
| || Lipy (x,7,a)|b| imply that by < [b] m-a.e. on X.

Now, assume in addition that 7 is metrisable on all 7-compact sets and fix any
be 2 (X). As m is a Radon measure, we find a sequence (K,), of 7-compact sets
such that m(X \ U,y K») = 0. Since b is local by Theorem 4.6, and 7 is metrisable
on K,, we deduce from Proposition 4.15 that

(/)| < |blw lipg,, (flx.) < [blw lipg(f) holds m-a.e. on K,

for every f € Lip,(X,7,d). By the arbitrariness of n € N, it follows that |b(f)| <
|blw lipg(f) holds m-a.e. on X for every f € Lip,(X,7,d). This proves that b €
Der*(X) and |b| < |b|w, thus yielding the statement. O

We close this section with a result that illustrates the relation between deriva-
tions on an e.m.t.m. space and derivations on its compactification. We denote by
v*: Lip, (X, #,d) — Lip, (X, 7,d) the inverse of the Gelfand transform I': Lip,(X, 7, d)
— Lip,(X,7,d), of. with Lemma 2.13. With the same symbol t* we denote the
linear bijection ¢*: L°(m) — L%m) that maps the m-a.e. equivalence class of a
Borel function f : X — R to the m-a.e. equivalence class of f ot: X — R, whereas
Le: L%(m) — LO(m) denotes its inverse.

Proposition 4.17. (Derivations on the compactification) Let X = (X, 7,d, m) be
an e.m.t.m. space. Denote by X = (X, %,a,ﬁl) its compactification, with embedding
v: X < X. We define the operator v, : Der(X) — Der(X) as

(1) (f) = 0. (b(*f)) € L°(w)  for every b € Der(X) and f € Lip,(X,7,d).

Then v, is a linear bijection such that t,(hb) = (1,h)(.b) for every b € Der(X) and
h € L°(m). Moreover, the following properties are satisfied:

i) 1.(D(div; X)) = D(div; X) and div(e,b) = .(div(b)) for every b € D(div; X).
i) 1, (2 (X)) C 2 (X) and |1,b|w = t.|b|w for every b e 2 (X).
iii) Given any derivation b € Der(X), we have that b is local if and only if 1,b is
local.
iv) 1,(Der’(X)) C Der’(X) and |1,b| < 1,|b| for every b € Der®(X). In particular,
we have that t,(Der?(X)) C Der?(X) and t,(Der?(X)) C Der?(X) for every
q,7 € [1,00].
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v) Assume in addition that T is metrisable on all T-compact subsets of X. Then
it holds that t.(Der}(X)) = Der{(X) for every q € [1, 00|, and that [.b| = 1.|b|
for every b € Der(X).

~

Proof. Let b € Der(X) be given. The map t,b: Lip,(X,7,d) — LO(th) is linear
,d

(as a composition of linear maps). Moreover, for every f ,g € Lip X ) we have

that
(D)(f9) = e (" ))(79))) = eu((H) () + (¥ 9) b(* f)) = [ (1)(§) +§ (eub) (),

so that 1,b satisfies the Leibniz rule, thus ¢,b € Der(X). The resulting map ¢, : Der(X)
— Der(X) is clearly linear. Similar arguments show that

(D)(f) =" (B(F(f))) e L°(m) for every b € Der(X) and f € Lip,(X,7,d)

defines a linear operator .*: Der(X) — Der(X) whose inverse is the map ¢, : Der(X) —
Der(X), thus in particular the latter is a bijection. For any b € Der(X) and h € L°(m),
we also have that

(1 (h0)(f) = (R O(f)) = () (b7 f)) = (D) (12D)(f)

for every f € Lip,(X,7,d), which gives that 1, (hb) = (t.h)(1.b). Let us now pass to
the verification of i), ii), iii), iv) and v).

i) Let b € Der(X) be a given derivation. Note that b(f) € L'(m) for every
f € Lip, (X, 7,d) if and only if (1,0)(f) € L' (1) for every f € Lip,(X,7,d). Moreover,
if b € D(div; X), then

Jenan= [wefam=- [@havwam = [ oo

holds for every f € Lip,(X,7,d), so that t,b € D(div;X) and div(e,b) = 1, (div(b)).
Conversely, if we assume t,.b € D(div; X), then similar computations show that b €
D(div; X). This proves i).

i) If b € 27(X), then (..b)(f) = 1.(b(v*
Moreover, assuming that (f,), C Lip,(X,7

) e L*(m) for every f € Lip, (X, 7,d).
.d) and f € Lip,(X,7,d) satisfy

Supl|fn||Llpbed><+OO and  f(p )—liggnfn(w)

neN

for every ¢ € X, we have sup, . ||L fn||L1pb(XTd) < 400 by Lemma 2.13 and (¢* f)(z) =
F(u(x)) = lim, f,(u(x)) = lim, (:* f,) () for every 2 € X. Hence, the weak*-type se-

quential continuity of b ensures that b(.*f,) = b(v*f) weakly* in L*°(m), so that
accordingly

~

(10)(fn) = ta(b(" f2)) = 0a(b("f)) = (b)(f)  weakly® in L= ().
This shows that +,b € 27 (X). Finally, it follows from the th-a.e. inequalities

[(20) ()] = el N < 16 Flluipy ey e lblw = 1 1lwip, 2 .8) t/Blw
tlb(f)] = (D) TN <N ipy 7.0 [exblw = [F Lipy cx.ra bl

A

which hold for all f € Lip,(X,7,d) and f € Lip,(X, 7,d), that |¢,b|w = ¢.|b|w. This
proves ii).



Derivations and Sobolev functions on extended metric-measure spaces 99

iii) Note that 1ir(p—o} = t+L{s=0} holds m-a.e. on X for every f € Lip,(X,7,d).
In particular,

Lircp=03 (t0)(T'(f)) = ta(Ls=03b(f)) holds m-a.e. on X,

whence it follows that (4.0)(I'(f)) = 0 m-a.e. on {I'(f) = 0} if and only if b(f) =0
m-a.e. on {f = 0}. As I': Lip,(X,7,d) — Lip,(X,7,d) is bijective, we deduce that b
is local if and only if ¢,b is local.

iv) If b € Der’(X), then by applying (2.15) we obtain the m-a.e. inequalities

D) ()] = walb(e” )] < (alb)) (elipa (e f)) < (ealbl) lipg(f)
for every f € Lip,(X,7,d), whence it follows that b € Der®(X) and |e,b] < ¢, [b].

A

v) Fix any b € Der{(X). We know from Corollary 4.14 if ¢ < oo, or from

Theorems 4.16 and 4.6 if ¢ = oo, that b is a local derivation. For any f € Lip,(X, ,d),
we have the m-a.e. inequalities

(O] = BTN < (b)) (lipg(T(f)))
< Lip(T(f), d)(*[6]) < [1f luip, x.rer¢"101-

Therefore, Proposition 4.15 guarantees that for every 7-compact set K C X we have
that

(D) (f)] < (¢%[b]) lipg, (f]x) holds m-a.e. on K, for every f € Lip,(X,7,d).

Since the Radon measure m is concentrated on the union |, K,, of countably many
T-compact subsets (K, )nen of X, we deduce that |(0*b)(f)| < (+*|b]) lipg(f) m-a.e. on
X, so that *b € Der?(X) and |¢*b| < ¢*|b|. Taking also i) and iv) into account, we
can finally conclude that v) holds. U

5. Sobolev spaces via Lipschitz derivations

In this section, we discuss different notions of metric Sobolev spaces in the ex-
tended setting. To begin with, we briefly remind already-known results and we
outline our new contributions. The mutual connections between the three notions
of metric Sobolev space H'P(X), B (X) and N'P(X) were studied in [42]. More
specifically:

e As we recalled in Theorem 2.34, the equivalence H'?(X) = B'*(X) when
X = (X,7,d,m) is an e.m.t.m. space with (X, d) complete was achieved in
[42, Theorem 5.2.7].

e Assuming in addition that (X, 7) is a Souslin space, it also holds that B'*(X)
= N'P(X), as it was proved in [42, Corollary 5.1.26]; cf. with Remark 5.7
below.

In Definition 5.1, we introduce the metric Sobolev space W1P(X) defined in terms
of the Di Marino derivations with divergence that we studied in Section 4.2. For an
arbitrary e.m.t.m. space X—in particular, without any completeness assumption—we
obtain the following results:

e In Theorem 5.4, we prove that H'*(X) = W?(X).

e In Theorem 5.9, we prove that W?(X) C B%?(X).
Accordingly, for a d-complete e.m.t.m. space X we have that W'?(X) = B'?(X). By
contrast, in the non-d-complete case the inclusion W?(X) C B'(X) can be strict
(cf. with the example that is presented at the end of Section 2.5).
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5.1. The space WP, We introduce a new notion of metric Sobolev space
WP(X) over an e.m.t.m. space X, defined via an integration-by-parts formula in
duality with the space Der{(X) of Di Marino derivations with divergence. Our def-
inition generalises Di Marino’s notion of WP space for metric-measure spaces ([18,
Definition 1.5], [17, Definition 7.1.4]) to the extended setting.

Definition 5.1. (The Sobolev space W?(X)) Let X = (X, 7,d, m) be an e.m.t.m.
space. Let p,q € (1,00) be conjugate exponents. Then we define the Sobolev space
WP(X) as the set of all functions f € LP(m) for which there exists a linear operator
Ly: Derl(X) — L*(m) such that:

i) There exists a function g € L9(m)* such that |L(b)| < g¢|b| for every b €
Der?(X).
ii) Lg(hb) = h Ly(b) for every h € Lip,(X,7,d) and b € Der?(X).
iii) The following integration-by-parts formula holds:

/Lf(b) dm = — / fdiv(b)dm for every b € Der?(X).

Given any function f € W'P(X), we define its minimal p-weak gradient |Df| €
LP(m)" as

L(b
DS = Ao € D) [0 < gbl e D0} =\ 1o 570
beDerd (X)

We use the notation |Df| (instead e.g. of | D f|yw) because the space WP (X) will
be our main object of study in the rest of the paper. Note that |L(b)| < |Df||b|
holds m-a.e. for every f € W'?(X) and b € Der{(X). It can also be readily checked
that

1/
1 lwrocy = (11 + NIDA ) for every f € WHP(X)

defines a complete norm on WhP(X), so that (W?(X), || - |[w1.rx)) is a Banach space.
Some more comments on the Sobolev space W?(X):

e Since [h L;(b)dm = — [ fdiv(hb) dm for every h € Lip,(X,7,d), and Lip, (X,
7,d) is weakly* dense in L*°(m) by (2.8), the map Ly: Der{(X) — L'(m) is
uniquely determined.

e It easily follows from the uniqueness of L; that W'*(X) 3 f +— L; is a linear
operator, whose target is the vector space of all linear operators from Derg(X)
to L*(m).

e Lip,(X,7,d) € W'?(X) and L(b) = b(f) for every f € Lip,(X,,d) and
b € Derl(X), thus in particular [Df| < lipy(f) holds m-a.e. on X for every
f € Llpb<X7 T, d)

e For any f € W'P(X), the operator Ly: Derf(X) — L'(m) can be uniquely
extended to an element L; € L{; (TX)*, whose pointwise norm |Lg| coincides
with |Df].

Example 5.2. Let (X, 7, dgiser) be a ‘purely-topological” e.m.t. space (as in Ex-
ample 2.14) together with a finite Radon measure m, so that X = (X, 7, dgiger, m)
is an e.m.t.m. space. For any given function f € Lip,(X, T, dgiser), we have that
Lip(f, U, dgiser) = Oscy(f) for every U € 1, thus the 7-continuity of f implies that
lipg, . (f)(x) = 0 for all x € X. In particular, Der!(X) = Der!(X) = {0} for every
q € [1, 00], whence it follows that W'P(X) = LP(m) for every p € (1,00), with Ly =0
and thus |Df| = 0 for every f € WP(X). |
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5.2. The equivalence H"? = W?1P, The goal of this section is to prove
that the metric Sobolev spaces WP(X) and H'?(X) coincide on any e.m.t.m. space.
In the setting of (complete) metric-measure spaces, such equivalence was previously
known (see [18, Section 2] or [17, Section 7.2]), but the result seems to be new for non-
complete metric-measure spaces; see Theorem 5.4 below. Our proof of the inclusion
H'?(X) C WP(X) follows along the lines of [18, Section 2.1], whereas our proof
of the converse inclusion (inspired by [38, Theorem 3.3]) relies on a new argument
using tools in Convex Analysis. The latter is robust enough to be potentially useful
in other contexts.

Fix an e.m.t.m. space X = (X, 7,d, m) and p € (1,00). The differential d: H'?(X)
— LP(T*X) given by Theorem 2.25 induces an unbounded operator d: LP(m) —
LP(T*X) whose domain is D(d) = H'(X); see Appendix B. As Lip,(X,7,d) is
contained in H'?(X), and it is dense in L?(m) by (2.8), we deduce that d is densely
defined, thus its adjoint operator d*: LP(T*X)" — L4(m) is well posed. Letting
L, x: LY(TX) — LP(T*X)" be as in (2.26), the operator d* is characterised by

(5.1) [ravan=wan = [0 dm

for every f € H"P(X) and V € D(d*). The next result shows that each element of
D(d*) induces a Di Marino derivation with divergence:

Lemma 5.3. (Derivation induced by a vector field) Let X = (X,7,d,m) be
an e.m.t.m. space and q € (1,00). Fix any v € LY(TX). Define the operator
by: Lipy(X,7,d) = L'(m) as

by(f) =df(v) forevery f € Lip,(X,,d).
Then it holds that b, € Der?(X) and |b,| < |v|. If in addition V = I,x(v) € D(d*),
then
by, € Der(X), div(b,) = —d*V.

Proof. The map b, is linear by construction and satisfies the Leibniz rule (4.1) by

(2.25), thus it is a Lipschitz derivation. Since |b,(f)| < |[v||Df|g < |v|lip4(f) holds

m-a.e. on X, we deduce that b, € Der?(X) and |b,| < |v|. Now, let us assume that
Vi=1,x(v) € D(d*). Then (5.1) yields

/bv(f)dm:/df(v)dm:/fd*Vdm for every f € Lip,(X,7,d),

whence it follows that b, € Der(X) and div(b,) = —d*V. Hence, the statement is
achieved. O]

We now pass to the equivalence result between WP and H'P. We will use
ultralimit techniques (see Appendix A) to obtain one of the two inclusions, and tools
in Convex Analysis (see Appendix B) to prove the other one.

Theorem 5.4. (H"»? = W'?) Let X = (X,7,d,m) be an e.m.t.m. space and

p € (1,00). Then
H"(X) = WP(X)
and it holds that |Df| = |Df|y for every f € WP(X).

Proof. Fix a non-principal ultrafilter w on N. Let f € H'?(X) be a given function.
Take a sequence (f,), C Lip,(X,7,d) such that f, — f and lip4(f.) — |Df|u
strongly in L”(m). Up to passing to a non-relabelled subsequence, we can also assume
that there exists a function h € LP(m)" such that lip,(f,) < h holds m-a.e. for every
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n € N. In particular, [b(f,)| < [bJh € L'(m) holds for every b € Der?(X) and n € N.
Therefore, by virtue of Lemma A.3 the following map is well defined:

Ls(b) = w-limb(f,) € L'(m) for every b € Der?(X),

where the ultralimit is intended with respect to the weak topology of L'(m). More-
over:
e Fix A\;, Ay € R and by,b; € Der!(X). Since L'(m) x L'(m) > (g1,92) —
A1g1 + A2ga € L'(m) is continuous if the domain is endowed with the product
of the weak topologies and the codomain with the weak topology, by applying
Lemma A.1 we obtain that

Ly(Aiby + Aoby) = w- hrfln ()\1 bi(fn) + A2 bz(fn))
= )\1 (w— h?{n b1<fn)) + )\2 (UJ— hgn bg(fn)) = )\1Lf(b1) —+ )\2Lf<b2)

This proves that Ly : Der{(X) — L'(m) is a linear operator.
e Fix b € Der{(X). Lemma A.3 and the weak continuity of LP(m) > g + |bg €
L'(m) yield

|Ls(0)] = |w-lim b( )] < w-lim [b(f,)] < w-Tim ([b|Tipg(fa)) = [bI|DSf11-
e Fix b € Der}(X) and h € Lip,(X, 7,d). Then Lemma A.1 implies that
Ly(hb) = w-lim (hb(f,)) = h(w-limb(f,)) = h Ly(b).

e Since L'(m) > g — [gdm € R is weakly continuous and LP(m) > f
[ fdiv(b)dm € R is strongly continuous for every b € Der(X), by applying
Lemma A.1 we obtain that

/ Ly(b) dm = - lim / b(f,) dm = —o-lim / £ div() dm = — / Fdiv(b) dm

All in all, we showed that L; verifies the conditions of Definition 5.1 and that
|Ls(b)| < |Df|u|b] holds for every b € Derf(X). Consequently, we can conclude
that f € Wh(X) and |Df| < |Df|x.

Conversely, let f € WP(X) be given. Since &, is convex and LP(m)-lower semi-
continuous, we have that &, = £ by the Fenchel-Moreau theorem. Note also that
& = ]l)|| . H’zp(T*X) o d. Therefore, by applying Theorem B.1, (B.1), Lemma 5.3 and
Young’s inequality, we obtain that

e =& = s ( [oram-g0)

g€ELI(m)

[aran= (31 00) )

= sup ( gf dm — inf {—||V||Lp ey | V€ D(AY), &V = g})

= sup
g€ELI(m)

g€L(m)

< sup
g€ELI(m)

gf dm — inf {_”bHDerq

b € Der}(X), —div(b) = g})

1
= sup ( /fle dm——||b||Derq ): sup /Lf(b)—&|b|‘1dm

beDerd (X) beDerd (X)
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< sup /\Df\|b| ~ L ppram < 1/|Df|pdm< to0.
beDerd(X) q p

It follows that f € H'P(X) and [ |Df[},dm = p&,(f) < [|Df|P dm. Since we also

know from the first part of the proof that |Df| < |Df|y, we can finally conclude

that WiP(X) = H'(X) and |Df|y = |Df| for every f € WP(X), thus proving the

statement. 0

Example 5.5. (Derivations on abstract Wiener spaces) Let X, := (X, 7,d,7) be
the e.m.t.m. space obtained by equipping an abstract Wiener space (X,~) with the
norm topology 7 of X and with the extended distance d induced by its Cameron—
Martin space; see Section 2.3.2. We claim that the space X, is ‘purely non-d-
separable’, meaning that

"}/(va) =0.

To prove it, we denote by (H(7v),| - |#(y)) the Cameron-Martin space of (X,v). We
recall that

Az y) = |z —yluey) fz,yeXandar—ye H(y),
W= +00 ifx,ye X andz—y ¢ H(y),

and that y(z+H (7)) = 0 for every x € X; see [12]. Hence, if E € #(X, 1) is a given d-
separable subset of X and (z,,), is a d-dense sequence in E, then E C |, oy B (z,) C
Unen(@n + H(7)) and thus accordingly v(E) < > v(z, + H(y)) = 0, whence it
follows that (Sx ) = 0.

By taking Corollary 4.8 i) into account, we deduce that the unique weakly*-
type continuous derivation on X, is the null derivation. Conversely, we know from
[42, Example 5.3.14] that H'?(X,) coincides with the usual Sobolev space on X,
defined as the completion of cylindrical functions [12]. In particular, the identity
Wte(X,) = H'"(X,) we proved in Theorem 5.4 guarantees the existence of (many)
non-null Di Marino derivations with divergence, and thus (by Lemma 4.11) of non-
null weakly*-type sequentially continuous derivations. [ |

5.3. The equivalence WP = BUP_  In this section, we investigate the re-
lation between the spaces W'?(X) and B'P(X). By combining Theorem 5.4 with
Theorem 2.34, we see that a sufficient condition for the identity W'?(X) = B'*(X)
to hold is the completeness of the extended metric space (X, d):

Corollary 5.6. (IW!'? = B on complete e.m.t.m. spaces) Let X = (X, 7,d, m)
be an e.m.t.m. space such that (X,d) is a complete extended metric space. Let
p € (1,00) be given. Then

W?(X) = B"(X).
Moreover, it holds that |Df|g = |Df] for every f € WP(X).

Remark 5.7. (Relation with the Newtonian space N'?) The Newtonian space
N'?(X) over an e.m.t.m. space X has been introduced by Savaré in [42, Defini-
tion 5.1.19], thus generalising the notion of Newtonian space for metric-measure
spaces introduced by Shanmugalingam in [47]. It follows from Corollary 5.6 and [42,
Corollary 5.1.26] that if X = (X, 7,d, m) is an e.m.t.m. space such that (X, d) is com-
plete and (X, 7) is a Souslin space (i.e. the continuous image of a complete separable
metric space), then the Sobolev space W?(X) is fully consistent with N'7(X). M
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On an arbitrary e.m.t.m. space X, it can happen that the spaces W1?(X) and
B'?(X) are different, as the example we discussed in the last paragraph of Section 2.5
shows. Nevertheless, we are going to show that every 7,-test plan 7 on X induces a Di
Marino derivation with divergence b, € Der?(X) (Proposition 5.8), and as a corollary
we will prove that W'?(X) is always contained in B?(X) and that |Df|p < |Df]
for every f € WH?(X) (Theorem 5.9).

For brevity, we denote by .Z; the restriction of the 1-dimensional Lebesgue mea-
sure £ to the unit interval [0,1] € R. To any given T,-test plan m € T,(X), we
associate the product measure

ﬁ' = 7'l'®.,§/pl < M+(RA(X7d) X [07 1])7

where the space RA(X,d) x [0, 1] is endowed with the product topology.

The next result is inspired by (and generalises) [18, Proposition 2.4] and [7,
Proposition 4.10].

Proposition 5.8. (Derivation induced by a 7,-test plan) Let X = (X, 7,d, m)
be an e.m.t.m. space and q € (1,00). Let w € T,X) be given. Then for any
f € Lipy (X, 7,d) we have that

dé#(DJTfr) dé#(D;ﬁ')
dm B dm

é#(D;{fr),é#(D;fr) <m, bg(f) = € Li(m),
where & denotes the arc-length evaluation map (2.20), while D}“ and D} denote
the positive and the negative parts, respectively, of the function Dy defined in

Lemma 2.20. Moreover, the resulting map by : Lip,(X,7,d) — L%(m) belongs to
Derl(X) and it holds that

. d(ég)um d(é))pm
(5.2) b < hr,  div(bg) = (C?‘L# - (521# .

Proof. First of all, observe that for are Radon measures because D]jf is Borel
mr-measurable (by Corollary 2.20) and 7 is a Radon measure. Since € is universally
Lusin measurable by Lemma 2.19, we have that é#(Dfﬁ') € M, (X). Given any
f,g € Lipy (X, 7,d) with g > 0, we can estimate

/gde# // £))Dy (v, 1) dt dm(v)

< / ) (g lipa(£))(Ry (1)) dt dr(4)

=/<Lglipd(f)> dm(v) Z/glipd(f) dpin =/glipd(f)hwdm-

+
By the arbitrariness of g, we deduce that é#(DjE ) < mand that by (f) == de#éz #)
déy (D7

d—mfﬁ) satisfies |br(f)] < 2lipy(f)hx, so that bg(f) € Li(m). By (2.22), for every

f,g € Lipy(X,7,d), o, 8 € R and v € RA(X,d) we have that

Dozf—i-,Bg(’Ya t) = Df(,% t) + /6 D9<77 t)a
Dyg(7: 1) = Dy(v, 1)g(Ry () + Dy(, 1) f (R, (1))
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hold for Zj-a.e. t € [0,1]. In particular, Dysygy = @Dy + 38D, and Dy, = goéDy +
foeDy are verified in the m-a.e. sense. It follows that

br(af + Bg) = Ealle Dénir A% _ O‘dé#(g]ifﬁ) +5 dé#éigﬁ)
= abr(f) + Bbx(g),
i - S
d(g&x(Dy7))  d(féx(Dy
- AoeelBm) | QDM _ (1) 4 batas

Hence, by : Lip,(X, 7,d) — L%(m) is a linear operator satisfying the Leibniz rule, thus
it is a Lipschitz derivation on X. Given any f, g € Lip,(X,7,d) with g > 0, we can
now estimate

Fomion|-| [ sscomsman
< [ str@)pselatanty

2 [ gmdxmmamm:/WMme

so that b (f)| < lipy(f)hx for every f € Lip,(X,7,d). Therefore, by € Der?(X) and
|bx| < hg. Moreover, for any f € Lip,(X,7,d) we can compute

/ £)dm = /Dfd “2’// foR,)(t)dtdm(y /]w1 F(70) dm (%)

__/f<d(eo)#7f d(el)#ﬂ') dm,

dm dm

which shows that by € Der!(X) and div(br) = d(égzi#ﬂ — d(éér)n#“. The proof is com-

plete. [l

As a consequence of Proposition 5.8, the space W1?(X) is always contained in
B'?(X):
Theorem 5.9. (W' C B'?) Let X = (X,7,d,m) be an e.m.t.m. space and
€ (1,00). Then
WP (X) C B*(X).
Moreover, it holds that |Df|g < |Df| for every f € WP(X).

Proof. Let f € W'?(X) be given. Fix some 7-Borel representative G;: X —
[0, 4+00) of |Df| For any w € T,(X) (Where q € (1,00) denotes the conjugate
exponent of p), the derivation by € Derl(X) given by Proposition 5.8 satisfies

/f Y1) — f(70) drr(y /fdw ) dm = /Lf

/|Df||b dm = /th dm.

By virtue of Lemma 2.32, we deduce that G is a 7T,-weak upper gradient of f.
Therefore, we proved that f € B'"(X) and |Df|g < |Df|, whence the statement
follows. 0
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5.4. WP as a dual space. In this section, our aim is to provide a new de-
scription of some isometric predual of the metric Sobolev space, and the formulation
of Sobolev space in terms of derivations serves this purpose very well. More pre-
cisely, in Theorem 5.10 we give an explicit construction of a Banach space whose
dual is isometrically isomorphic to W'P(X). The existence and the construction of
an isometric predual of the space H'?(X) were previously obtained by Ambrosio and
Savaré in [9, Corollary 3.10].

In the proof of Theorem 5.10, we use some facts in Functional Analysis that we
collect below:

e If B, V are Banach spaces and ¢ € (1, 00), the product vector space B x V is
a Banach space if endowed with the ¢-norm

: 1/
(v, w)llg = (Ilvllg + llwllf) ™

We write B x, V to indicate the Banach space (B x V| -|,)-

e If p,g € (1,00) are conjugate exponents, then (B x, V)" and B’ x, V' are
isometrically isomorphic. The canonical duality pairing between B’ x, V" and
B x, V is given by

for every (v,w) € B x V.

{(w,n), (v,w)) = (w,v) + (n,w) for every (w,n) € B' x V' and (v,w) € B x V.
e The annihilator W+ of a closed vector subspace W of B is defined as
Wt = {w e B | (w,v) =0 for every v € W}.
Then W+ is a closed vector subspace of B’. Moreover, W+ is isometrically
isomorphic to the dual (B/W)" of the quotient Banach space B/W.

Theorem 5.10. (A predual of W?) Let X = (X, 7,d,m) be an e.m.t.m. space.
Let p,q € (1,00) be conjugate exponents. We define the closed vector subspace By,
of Li(m) x, L{, (TX) as the closure of its vector subspace

Lip
{(g,b) € LY(m) x DerZ(X) | g = div(b)}.
Then W'?(X) is isometrically isomorphic to the dual of the quotient (L9(m) x,
Li;p(TX)) /Bx.q-
Proof. For any f € W'?(X), we define £; = INTLg () (Ly) € Li,(TX)', so
that accordingly
(5.3) 1€l g

Clearly, W'?(X) 5 f = £ € L{,,(TX)" is linear. Define ¢: W'P(X) — LP(m) x,,
L1, (TX) as
o(f) = (f,Ly) € LP(m) x L{, (TX)" for every f € W'?(X).

It follows from (5.3) and the definition of || - ||w1r(x) that ¢ is a linear isometry. We
claim that

axy = 1 Lslleg, rxye = NEsllrmy = DI oy

Lip

(5.4) S(W'(X)) = Bx,,,
where we are identifying By, C (LY(m) x4 L{, (TX))" with a subspace of LP(m) x,
L{,(TX)'. To prove ¢(W"P(X)) C By, it suffices to observe that for any f €

WP (X) and b € Der(X) it holds

(o(f), (div(b), b)) = (f,div(b)) + £4(b) = /fdiv(b) dm—i—/Lf(b) dm = 0.
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We now prove the converse inclusion By, € ¢(W'?(X)). Fix (f,£) € By, C

LP(m) x, L, (TX)'. Letting L = INT 4 (TX)(S) € L{;,(TX)*, we have in particular
Lip

that L|pesgx) : Derd(X) — L'(m) is a linear operator satisfying |L(b)| < |L|[b] for ev-
ery b € Derj(X), for some function [L| € LP(m)* such that [|[L||zom) = [|€]lLs, (rxy-
Moreover, the L>(m)-linearity of L implies L(hb) = h L(b) for every h € Lip,(X, 7,d)
and b € Der(X), and using that (div(b), b) € Bx, we deduce that

/fdiv(b) dm + / L(b) dm = (f,div(b)) + £(b) = ((f, &), (div(b),b)) = 0,

so that [L(b)dm = — [ fdiv(b)dm. All in all, we proved that f € W?(X) and
Ly = L, which gives (f,£) = (f,£;) = ¢(f) € ¢(WP(X)). Consequently, the
claimed identity (5.4) is proved. Writing = to indicate that two Banach spaces are
isometrically isomorphic, we then conclude that

WhP(X) = g(W'P(X)) = By, = ((L9(m) x4 L{;,(TX))/Bx,)

proving the statement. ]

Appendix A. Ultrafilters and ultralimits

We collect here some definitions and results concerning ultrafilters and ultralim-
its, which we use in the proof of Theorem 5.4. See e.g. [34] or [19, Chapter 10] for
more on these topics.

Let w be a filter on N, i.e. a collection of subsets of N that is closed under
supersets and finite intersections. Then we say that w is an ultrafilter provided it is
a maximal filter with respect to inclusion, or equivalently if for any subset A C N
we have that either A € w or N\ A € w. Moreover, we say that w is non-principal
provided it does not contain any finite subset of N. The existence of non-principal
ultrafilters on N follows e.g. from the so-called Ultrafilter Lemma [19, Lemma 10.18],
which is (in ZF) strictly weaker than the Axiom of Choice [48, 31]. It holds that an
ultrafilter w on N is non-principal if and only if it contains the Fréchet filter (i.e. the
collection of all cofinite subsets of N).

Let w be a non-principal ultrafilter on N, (X, 7) a Hausdorff topological space
and (z,)neny € X a given sequence. Then we say that an element w-lim,, z, € X is
the wltralimit of (x,), provided

{neN|x,eU}ew forevery U € 7 with w-limz, € U.

The Hausdorff assumption on 7 ensures that if the ultralimit exists, then it is unique.
The existence of the ultralimits of all sequences in (X, 7) is guaranteed when the
topology 7 is compact.

We now discuss technical results about ultralimits, which we prove for the reader’s
convenience.

Lemma A.1. Let w be a non-principal ultrafilter on N. Let Xi,..., Xy, Y be
Hausdorff topological spaces, for some k € N with k > 1. Let p: X1 X ... x Xy =Y
be a continuous map, where the domain X; X ... X X}, is endowed with the product
topology. For any i = 1,...,k, let (x}'),en € X; be a sequence whose ultralimit
x; = w-lim, ' € X, exists. Then it holds that

(A.1) Jw-lime(x}, ..., 23) = p(x1,...,2%) €Y.
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Proof. Fix a neighbourhood U of ¢(z1,...,x;) in Y. Since ¢ is continuous,
¢ 1(U) is a neighbourhood of (zy,...,z). Thus, for any ¢ = 1,...,k there exists
a neighbourhood Uj; of x; in X; such that Uy x ... x U, C 90_1(U). Recalling that
r; = w-lim, o for all : = 1,... k, we get that

k
wBﬂ{nGN|x?EUi}§ {neN|p@l,.. . 20)eU}
i=1
and thus {n € N | ¢(a7,...,2}) € U} € w. Thanks to the arbitrariness of U, (A.1)
is proved. 0

Remark A.2. Let (X,3,m) be a finite measure space. Let h € L'(m)™ be
given. Then

(A.2) Frn={f€L'(m)||f| <h} isa weakly compact subset of L'(m).

The validity of this property follows from the Dunford—Pettis theorem and the fact
that F;, is a weakly closed subset of L'(m). |

Lemma A.3. Letw be a non-principal ultrafilter on N. Let (X, 3, m) be a finite
measure space. Assume that (f,,), € L*(m) and h € L*(m)* satisty |f,| < h for every
n € N. Then the weak ultralimits f = w-lim, f,, € L*(m) and w-lim, |f,| € L*(m)
exist. Moreover, it holds that

(A.3) /] < w-lim |f,] < b

Proof. The existence of the ultralimits w-lim, f, and w-lim, |f,| in the weak
topology of L!(m) follows from Remark A.2. For any g € L°°(m)", we consider the
functional ¢, : L'(m) — R given by ¢,(f) == [ fgdm for every f € L'(m), which is
weakly continuous. Hence, Lemma A.1 yields

/fgdm

and [ (w-limy, |fo])gdm = w-lim, oy(|fa]) < ¢4(h) = [ hgdm, whence the claimed
inequalities in (A.3) follow thanks to the arbitrariness of g € L>°(m)™. O

= g (F) = [w-Tim g (f)| = w-Tim [ipg(f2)]

< w-lim gy (| fal) = i, (w-Tim | £a])

Appendix B. Tools in Convex Analysis

Let B, V be Banach spaces. Then by an unbounded operator A: B — V we mean
a vector subspace D(A) of B (called the domain of A) together with a linear operator
A: D(A) — V. When A if densely defined (i.e. the set D(A) is dense in B), it is
possible to define its adjoint operator A*: V' — B’, which is characterised by
D(A*) ={neV |B>vr~ (nA()) € R is continuous},
(n, A(v)) = (A*(n),v) for every n € D(A*) and v € D(A).
See e.g. [40, Chapter 5] for more on unbounded operators.
Given any function f: B — [—00, 400, we denote by f*: B" — [—o0, +o0] its
Fenchel conjugate, which is defined as
fH(w) =sup {{w,v) — f(v) |v€B} forevery w € B

Assuming B is reflexive, we have (unless the function f is identically equal to +o0 or
identically equal to —oo) that the Fenchel biconjugate f** .= (f*)*: B — [—o0, +00]
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coincides with f if and only if f is convex and lower semicontinuous. This follows from
the Fenchel-Moreau theorem. Furthermore, if p, g € (1,00) are conjugate exponents,
then it is straightforward to check that

1 * 1
B.1 _.p) L
(B.1) (pu BIENE

See e.g. [41] for a thorough discussion on Fenchel conjugates.
In Theorem 5.4 we use the following result, for whose proof we refer to [13,
Theorem 5.1].

Theorem B.1. Let B and V be Banach spaces. Let A: B — V be a densely-
defined unbounded operator. Let ¢: V — R be a convex function that is continuous
at some point of A(D(A)). Then

(po A)(w) =inf {¢*(n) | n € D(A*), A*(n) =w} for every w € B,
where we adopt the convention that (¢ o A)(v) == +oo for every v € B\ D(A).

References

[1] ALBEVERIO, S., Y.G. KONDRATIEV, and M. ROCKNER: Analysis and geometry on configu-
ration spaces. - J. Funct. Anal. 154:2, 1998, 444-500.

[2] ALBIAC, F., and N.J. KaLTON: Topics in Banach space theory. - Springer, New York, 2006.

[3] AMBROSIO, L., S. DI MARINO, and G. SAVARE: On the duality between p-modulus and
probability measures. - J. Eur. Math. Soc. (JEMS) 17:8, 2015, 1817-1853.

[4] AMBROSIO, L., M. ERBAR, and G. SAVARE: Optimal transport, Cheeger energies and con-
tractivity of dynamic transport distances in extended spaces. - Nonlinear Anal. 137, 2016,
T77-134.

[6] AMBROSIO, L., N. GicLl, and G. SAVARE: Density of Lipschitz functions and equivalence of
weak gradients in metric measure spaces. - Rev. Mat. Iberoam. 29:3, 2013, 969-996.

[6] AMBROSIO, L., N. GiGLI, and G. SAVARE: Calculus and heat flow in metric measure spaces
and applications to spaces with Ricci bounds from below. - Invent. Math. 195:2, 2014, 289-391.

[7] AmBROSIO, L., T. IkONEN, D. LucCi¢, and E. PASQUALETTO: Metric Sobolev spaces I:
equivalence of definitions. - Milan J. Math. 92:2, 2024, 255-347.

[8] AMBROSIO, L., T. IKONEN, D. LUCI¢, and E. PASQUALETTO: Metric Sobolev spaces II: dual
energies and divergence measures. - ArXiv preprint, arXiv:2510.12424, 2025.

[9] AMBROSIO, L., and G. SAVARE: Duality properties of metric Sobolev spaces and capacity. -
Math. Eng. 3:1, 2021, Paper No. 1, 31.

[10] BEssaca, C., and A. PELCZYNSKI: On bases and unconditional convergence of series in
Banach spaces. - Studia Math. 17:2, 1958, 151-164.

[11] BoGACHEV, V.1.: Measure theory. Vol. I, II. - Springer-Verlag, Berlin, 2007.
2] BoGACHEV, V.I.: Gaussian measures. - Math. Surveys Monogr. 62, Amer. Math. Soc., 2015.

[13] BoucHITTE, G., G. BUTTAZZO, and P. SEPPECHER: Energies with respect to a measure and
applications to low dimensional structures. - Calc. Var. Partial Differential Equations 5, 1997,
37-54.

[14] BOURBAKI, N.: General topology. Part 1. - Hermann, Paris, 1966.
5] BOURBAKI, N.: General topology. Part 2. - Hermann, Paris, 1966.

[16] CHEEGER, J.: Differentiability of Lipschitz functions on metric measure spaces. - Geom. Funct.
Anal. 9:3, 1999, 428-517.

[17] D1 MARINO, S.: Recent advances on BV and Sobolev spaces in metric measure spaces. - PhD
thesis, Scuola Normale Superiore (Pisa), 2014.



110

Enrico Pasqualetto and Janne Taipalus
D1 MARINO, S.: Sobolev and BV spaces on metric measure spaces via derivations and inte-
gration by parts. - ArXiv preprint, arXiv:1409.5620, 2014.

Drutu, C., and M. KAPOVICH: Geometric group theory. - Colloquium Publications 63, Amer.
Math. Soc., 2018.

ERIKSSON-BIQUE, S.: Density of Lipschitz functions in energy. - Calc. Var. Partial Differential
Equations 62:2, 2023, Paper No. 60.

FUGLEDE, B.: Extremal length and functional completion. - Acta Math. 98, 1957, 171-219.

GiGL1, N.: Lecture notes on differential calculus on RCD spaces. - Publ. RIMS Kyoto Univ.
54, 2018.

Gicri, N.: Nonsmooth differential geometry - an approach tailored for spaces with Ricci
curvature bounded from below. - Mem. Amer. Math. Soc. 251:1196, 2018.

GigLl, N., and E. PASQUALETTO: Differential structure associated to axiomatic Sobolev
spaces. - Expo. Math. 38:4, 2020, 480-495.

Gicrr, N., and E. PASQUALETTO: Lectures on nonsmooth differential geometry. - SISSA
Springer Series 2, 2020.

Guo, T. X.: The theory of probabilistic metric spaces with applications to random functional
analysis. - Master’s thesis, Xi’an Jiaotong University (China), 1989.

Guo, T.X.: Random metric theory and its applications. - PhD thesis, Xi’an Jiaotong Univer-
sity (China), 1992.

Guo, T.X.: Recent progress in random metric theory and its applications to conditional risk
measures. - Sci. China Math. 54, 2011, 633-660.

Guo, T.X., X. Mu, and Q. Tu: Relations among the notions of various kinds of stability
and applications. - Banach J. Math. Anal. 18, 2024.

HaJtAsz, P.: Sobolev spaces on an arbitrary metric space. - Potential Anal. 5, 1996, 403-415.

HALPERN, J.: The independence of the axiom of choice from the Boolean prime ideal theorem.
- Fund. Math. 55, 1964, 57-66.

Haypon, R., M. LEvy, and Y. RAYNAUD: Randomly normed spaces. - Travaux en Cours 41,
Hermann, Paris, 1991.

HEINONEN, J., and P. KOSKELA: Quasiconformal maps in metric spaces with controlled ge-
ometry. - Acta Math. 181:1, 1998, 1-61.

JECH, T.: Set theory. - Academic Press, 1978.

KELLEY, J. L.: General topology. - Grad. Texts in Math. 27, Springer New York, 1st edition,
1975.

KoskiLA, P., and P. MACMANUS: Quasiconformal mappings and Sobolev spaces. - Studia
Math. 131:1, 1998, 1-17.

Luci¢, D., and E. PASQUALETTO: Yet another proof of the density in energy of Lipschitz
functions. - Manuscripta Math. 175, 2024, 421-438.

Luci¢, D., and E. PASQUALETTO: An axiomatic theory of normed modules via Riesz spaces.
- Q. J. Math. 75, 2024, 1429-1479.

MATOUSKOVA, E.: Extensions of continuous and Lipschitz functions. - Canad. Math. Bull.
43:2, 2000, 208-217.

PEDERSEN, G.K.: Analysis now. - Grad. Texts in Math. 118, Springer-Verlag, 1989.

ROCKAFELLAR, R.T.: Conjugate duality and optimization. - Society for Industrial and Ap-
plied Mathematics, Philadelphia, 1974.

SAVARE, G.: Sobolev spaces in extended metric-measure spaces. - In: New trends on analysis
and geometry in metric spaces, Lecture Notes in Math. 2296, Springer, Cham, 2022, 117-276.



Derivations and Sobolev functions on extended metric-measure spaces 111

ScHIOPPA, A.: On the relationship between derivations and measurable differentiable struc-
tures. - Ann. Acad. Sci. Fenn. Math. 39, 2014, 275-304.

ScHIOPPA, A.: Derivations and Alberti representations. - Adv. Math. 293, 2016, 436-528,
2016.

ScHIOPPA, A.: Metric currents and Alberti representations. - J. Funct. Anal. 271:11, 2016,
3007-3081.

SCHWARTZ, L.: Radon measures on arbitrary topological spaces and cylindrical measures. -
Studies in Mathematics, Tata Institute of Fundamental Research, 1973.

SHANMUGALINGAM, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure
spaces. - Rev. Mat. Iberoam. 16:2, 2000, 243-279.

TARSKI, A.: Une contribution & la théorie de la mesure. - Fund. Math. 15, 1930, 42-50.

WEAVER, N.: Lipschitz algebras and derivations. II. Exterior differentiation. - J. Funct. Anal.
178:1, 2000, 64-112.

WEAVER, N.: Lipschitz algebras. - World Scientific, 2nd edition, 2018.

Received 14 July 2025 e Revision received 12 January 2026 e Accepted 13 January 2026
Published online 28 January 2026

Enrico Pasqualetto Janne Taipalus

University of Jyvaskyla University of Jyvaskyla

Department of Mathematics and Statistics Department of Mathematics and Statistics
P.O. Box 35 (MaD) P.O. Box 35 (MaD)

FI-40014 University of Jyvaskyla FI-40014 University of Jyvaskyla

enrico.e.pasqualetto@jyu.fi janne.m.m.taipalus@jyu.fi



	1. Introduction
	1.1. General overview
	1.2. The algebra of -continuous d-Lipschitz functions
	1.3. Metric derivations
	1.4. Metric Sobolev spaces

	2. Preliminaries
	2.1. Topological and metric notions
	2.2. Measure theory
	2.3. Extended metric-topological measure spaces
	2.4. Sobolev spaces H1,p via relaxation
	2.5. Sobolev spaces B1,p via test plans

	3. Extensions of -continuous d-Lipschitz functions
	4. Lipschitz derivations
	4.1. Weaver derivations
	4.2. Di Marino derivations

	5. Sobolev spaces via Lipschitz derivations
	5.1. The space W1,p
	5.2. The equivalence H1,p=W1,p
	5.3. The equivalence W1,p=B1,p
	5.4. W1,p as a dual space

	Appendix A. Ultrafilters and ultralimits
	Appendix B. Tools in Convex Analysis
	References

