Compactification, and beyond, of composition operators on Hardy spaces by weights

Kirjoittajat

  • Pascal Lefèvre Université d'Artois, Laboratoire de Mathématiques de Lens (LML) UR 2462 & Fédération Mathématique des Hauts-de-France FR 2037 CNRS
  • Daniel Li Université d'Artois, Laboratoire de Mathématiques de Lens (LML) UR 2462 & Fédération Mathématique des Hauts-de-France FR 2037 CNRS
  • Hervé Queffélec Université Lille Nord de France, USTL, Laboratoire Paul Painlevé U.M.R. CNRS 8524 & Fédération Mathématique des Hauts-de-France FR 2037 CNRS
  • Luis Rodríguez-Piazza Universidad de Sevilla, Facultad de Matemáticas, Departamento de Análisis Matemático

Avainsanat:

Approximation numbers, composition operator, compactification, decompactification, Hilbert-Schmidt operator, p-summing operators, Schatten classes

Abstrakti

We study when multiplication by a weight can turn a non-compact composition operator on \(H^2\) into a compact operator, and when it can be in Schatten classes. The \(q\)-summing case in \(H^p\) is considered. We also study when this multiplication can turn a compact composition operator into a non-compact one.

Osasto
Articles

Julkaistu

2021-06-08

Viittaaminen

Lefèvre, P., Li, D., Queffélec, H., & Rodríguez-Piazza, L. (2021). Compactification, and beyond, of composition operators on Hardy spaces by weights. Annales Fennici Mathematici, 46(1), 43–57. Noudettu osoitteesta https://afm.journal.fi/article/view/109343