Existence and multiplicity of solutions for a Kirchhoff system with critical growth

Authors

  • Marcelo F. Furtado Universidade de Brasília, Departamento de Matemática
  • Luan D. de Oliveira Universidade de Brasília, Departamento de Matemática
  • João Pablo P. da Silva Universidade Federal do Pará, Departamento de Matemática

Keywords:

Kirchhoff-type problems, multiple solutions, critical nonlinearities

Abstract

 

We consider the system {m(u2)Δu=λFu(x,u,v)+12Gu(u,v),in Ω,l(v2)Δv=λFv(x,u,v)+12Gv(u,v),in Ω,u,vH01(Ω), where ΩRN, N3, is a bounded smooth domain, 2=Ω||2dx, λ>0 is a parameter, the functions m and l are positive and increasing, the function F is superlinear both at origin and at infinity, the function G is 2-homogeneous. In our first result, we obtain a nonzero nonnegative solution for large values of λ. We also prove that, for any kN, there exists λk>0 such that the problem has at least k pairs of nonzero solutions if λλk.

 

Section
Articles

Published

2021-06-21

How to Cite

Furtado, M. F., de Oliveira, L. D., & da Silva, J. P. P. (2021). Existence and multiplicity of solutions for a Kirchhoff system with critical growth. Annales Fennici Mathematici, 46(1), 295–308. Retrieved from https://afm.journal.fi/article/view/109583