Remarks on the regularity of quasislits

Authors

  • Lukas Schoug University of Cambridge, Faculty of Mathematics
  • Atul Shekhar Université Lyon 1, Département Mathématiques
  • Fredrik Viklund KTH Royal Institute of Technology, Department of Mathematics

Keywords:

Loewner differential equation, quasicircles, quasislits

Abstract

A quasislit is the image of a vertical line segment [0,iy], y>0, under a quasiconformal homeomorphism of the upper half-plane fixing . Quasislits correspond precisely to curves generated by the Loewner equation with a driving function in the Lip-12 class. It is known that a quasislit is contained in a cone depending only on its Loewner driving function Lip-12 seminorm, σ. In this note we use the Loewner equation to give quantitative estimates on the opening angle of this cone in the maximal range σ<4. The estimate is shown to be sharp for small σ. As consequences, we derive explicit Hölder exponents for σ<4 as well as estimates on winding rates. We also relate quantitatively the Lip-12 seminorm with the quasiconformal dilatation and discuss the optimal regularity of quasislits achievable through reparametrization.

 

Section
Articles

Published

2021-06-21

How to Cite

Schoug, L., Shekhar, A., & Viklund, F. (2021). Remarks on the regularity of quasislits. Annales Fennici Mathematici, 46(1), 355–370. Retrieved from https://afm.journal.fi/article/view/109589